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Abstract. A refined a posteriori error analysis for symmetric
eigenvalue problems and the convergence of the first-order adap-
tive finite element method (AFEM) is presented. The H1 stabil-
ity of the L2 projection provides reliability and efficiency of the
edge-contribution of standard residual-based error estimators for
P1 finite element methods. In fact, the volume contributions and
even oscillations can be omitted for Courant finite element meth-
ods. This allows for a refined averaging scheme and so improves
[Dong Mao, Lihua Shen and Aihui Zhou, Adaptive finite element
algorithms for eigenvalue problems based on local averaging type
a posteriori error estimates, Advanced in Computational Mathe-
matics, 2006, 25: 135-160]. The proposed AFEM monitors the
edge-contributions in a bulk criterion and so enables a contraction
property up to higher-order terms and global convergence. Nu-
merical experiments exploit the remaining L2 error contributions
and confirm our theoretical findings. The averaging schemes show
a high accuracy and the AFEM leads to optimal empirical conver-
gence rates.

1. Introduction

While error estimates for adaptive methods for space and time de-
pendent PDEs have been studied in great detail in recent years, er-
ror estimates and adaptive algorithms for eigenvalue problems are still
under development. A priori error estimates for elliptic operators
[BO89, Cha83, Kny97, LT03, OB91, RT83, Sau08, SF73] assume that
the mesh-size is sufficiently small. Knyazev and Osborn [KO06] over-
came this difficulty and presented the first truly a priori error estimate
for symmetric eigenvalue problems.
The a posteriori error analysis for symmetric second order elliptic eigen-
value problems started with Verfürth [Ver96] and Larson [Lar00] for
L2 and H1 error estimates based on duality. An energy-based tech-
nique due to Durán, Padra, and Rodŕıguez [DPR03] controlled the
error by some edge and volume residual plus a higher-order term. This
paper will provide a refinement without the volume contribution for
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all eigenvalues which generalises and simplifies the proof in [DPR03].
Mao, Shen, and Zhou [MSZ06] suggested some local averaging tech-
nique which we improve by neglecting the volume contributions. The
first convergence of an adaptive algorithm with oscillation terms can be
found in [GG07], which we further develop here for a refined adaptive
scheme.
Nonsymmetric elliptic eigenvalue problems are analysed by Heuveline
and Rannacher in [BR03, HR01] and lay beyond the scope of this paper.

Throughout this paper, we study the following general formulation.
The weak form of the symmetric eigenvalue problem involves two real
Hilbert spaces (V, a) and (H, b) with V ⊂ H ⊂ V ∗. The scalar products
a and b induce norms in respective spaces, namely

|||.||| := a(., .)1/2 and ‖.‖ := b(., .)1/2,

and the embedding of V in H is continuous and compact,

V
c
↪→ H.

The continuous eigenvalue problem consists in finding a pair (λ, u) of
λ ∈ R (actually λ > 0) and u ∈ V with ‖u‖ = 1 and

(1.1) a(u, v) = λ b(u, v) for all v ∈ V.
Given any finite-dimensional subspace V` of V , the discrete eigenvalue
problem consists in finding (λ`, u`) ∈ R× V` with ‖u`‖ = 1 and

(1.2) a(u`, v`) = λ` b(u`, v`) for all v` ∈ V`.

Throughout this paper, the min-max principle [SF73] allows some or-
dering of the discrete eigenvalues with 0 ≤ λ ≤ λ`.
Typical examples for eigenvalue problems include the Poisson problem

−∆u = λu in Ω and u = 0 on ∂Ω

(for the Laplace operator ∆) and the Lamé problem

−∆∗u = λρu in Ω and u = 0 on ∂Ω

from harmonic dynamic of linear elasticity (with the Lamé operator
∆∗ and the density ρ).
Given an initial coarse mesh T0, an adaptive finite element method
(AFEM) successively generates a sequence of meshes T1, T2, . . . and
associated discrete subspaces

V0 ( V1 ( . . . ( V` ( V`+1 ( . . . ( V

with discrete solutions consisting of discrete eigenpairs (λ`, u`). A typ-
ical loop from V` to V`+1 (at frozen level `) consists of the steps

(1.3) SOLVE→ ESTIMATE→ MARK→ REFINE

This paper contributes to the a posteriori error analysis [DPR03, MSZ06,
WRH05] of eigenvalue problems and to the design and convergence of
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AFEM [GG07]. Here we give a shorter proof of the edge-residual esti-
mator in [DPR03] and improve the results from [MSZ06], in the sense
that in the estimator no additional volumetric part is needed. Addi-
tionally, we show that the higher-order terms can really be neglected
and underline that by numerical experiments. In contrast to [GG07]
we proof the convergence of AFEM without the inner node property.
Our global convergence proof seems to be the first that does not need
the usual assumption that the mesh size is small enough.

The outline of the remainder of this paper is as follows. Section 2
describes an adaptive mesh-refinement algorithm that allows for the
H1 stability of the L2 projection. In Section 3, the algebraic aspects
of the a posteriori error analysis are provided. Section 4 presents the
edge residual and the refined averaging technique. Section 5 analyses
the convergence of the AFEM illustrated in Section 6 by numerical
experiments.

2. Adaptive Mesh Refinement Algorithm

This Section describes the algorithm REFINE of one loop of AFEM
from (1.3) in order to state precisely conditions for an H1 stable L2

projection required below.

2.1. Input: Assumptions on course triangulation T0. The initial
mesh T0 is a regular triangulation of Ω ⊂ Rn into closed triangles in
the sense that two distinct closed-element domains are either disjoint
or their intersection is one common vertex or one common edge. We
suppose that each element with domain in T0 has at least one vertex
in the interior of Ω.
Given any T ∈ T0, one chooses one of its edges E(T ) as a reference
edge from the set of Edges E(T ) such that the following holds. An
element T ∈ T0 is called isolated if E(T ) either belongs to the boundary
∂Ω or equals the side of another element K ∈ T0 with E(T ) = ∂T ∩
∂K 6= E(K). Given a regular triangulation T0, Algorithm 2.1 of [Car04]
computes the reference edges (E(T ) : T ∈ T0) such that two distinct
isolated triangles do not share an edge. This is important for the H1

stability of the L2 projection in Subsection 2.4.

2.2. Red-Green-Blue Refinements. Given a triangulation T` on the
level `, let E` denote its set of interior edges and suppose that E(T )
(E(T ) : T ∈ T`) denotes the given reference edges. There is no need
to label the reference edges E(T ) by some level ` because E(T ) will be
the same edge of T in all triangulations Tm which include T . However,
once T in T` is refined, the reference edges will be specified for the
sub-triangles as indicated in Figure 2.1. The mesh-refinement strategy
consists of the following five different refinements. Elements with no
marked edge are not refined, elements with one marked edge are refined
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green, elements with two marked edges are refined blue, and elements
with three marked edges are refined red.

2.3. Marking and Closure. The set of refined edges M` ⊂ E` is
specified in the algorithm MARK. The closure algorithm computes

the smallest subset M̂` of E` which includes M` such that{
E(T ) : T ∈ T with E(T ) ∩ M̂` 6= ∅

}
⊆ M̂`.

In other words, once an edge E of an element T is marked for refine-

ment (written E ∈ M̂`), the reference edge E(T ) of T is marked as
well. Consequently, each element has either k = 0, 1, 2, or 3 of its
edges marked for refinement, if k ≥ 1, the reference edge belongs to
it. Therefore, exactly one of the five refinement rules of Figure 2.1 is
applied. This specifies sub-triangles and their reference edges in the
new triangulation T`+1.
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Figure 2.1. Red, green and blue refinement. The new
reference edge is marked through a second line in parallel
opposite the new vertices new1, new2 or new3.

2.4. Properties of the Triangulations. This Subsection lists a few
results on the triangulation T` obtained by REFINE under the assump-
tions on T0 of Subsection 2.1. The non-elementary proofs can be found
in [Car04].

(i) T` is a regular triangulation of Ω into triangles; for each T ∈ T`

there exists one reference edge E(T ) which depends only on T but not
on the level `.

(ii) For each K ∈ T0, T`|K := {T ∈ T` |T ⊆ K} is the pic-
ture under an affine map Φ : K → Tref onto the reference triangle
Tref = conv{(0, 0), (0, 1), (1, 0)} by Φ(E(K)) = conv{(0, 0), (1, 0)} and

detDΦ > 0. The triangulation T̂K := {Φ(T ) : T ∈ T , T ⊆ K} of K
consists of right isosceles triangles. (A right isosceles triangle results
from a square halved along a diagonal.)
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(iii) The L2 projection Π onto V` := P1(T`) ∩ V is H1 stable. The
piecewise affine space are defined by

P1(T ; Rm) := {v ∈ C∞(T ; Rm) : v affine on T} ,
P1(T`; Rm) := {v ∈ L∞(Ω; Rm) : ∀T ∈ T`, v|T ∈ P1(T ; Rm)} .

For any v ∈ V := H1
0 (Ω) the L2 projection Πv on V` satisfies

‖∇Πv‖L2(Ω) ≤ Cstab‖∇v‖L2(Ω).

(iv) The approximation property of the L2 projection states∑
T∈T`

‖h−1
T (v − Πv)‖2

L2(T ) +
∑
E∈E`

‖h−1/2
E (v − Πv)‖2

L2(E) ≤ Capp‖∇v‖2
L2(Ω)

for all v ∈ V . The constants Cstab and Capp depend exclusively on T0.

3. Algebraic aspects of an A posteriori Error Analysis

Throughout this Section, (λ, u) solves (1.1) and (λ`, u`) solves (1.2).
Suppose that the orientation of the unit vectors u and u` is normalised
to b(u, u`) ≥ 0. Set e` := u− u` and

Res` := λ`b(u`, ·)− a(u`, ·) ∈ V ∗

such that

V` ⊂ ker(Res`).

Lemma 3.1. It holds

|||e`|||2 = λ‖e`‖2 + λ` − λ = (λ+ λ`)‖e`‖2/2 + Res`(e`).

Proof. The first identity follows from

a(e`, e`) = λ` + λ− 2a(u, u`)

= λ` − λ+ 2λ(1− b(u, u`))

= λ` − λ+ λb(e`, e`)

and the second follows from

a(e`, e`) = a(u, e`) + a(u`, u`)− a(u`, u)

= λb(u, e`) + λ`b(u`, u`)− a(u`, u)

= b(λu− λ`u`, e`) + λ`b(u`, u)− a(u`, u)

= b(λu− λ`u`, e`) + Res`(u)

= (λ+ λ`) (1− b(u, u`)) + Res`(e`)

=
λ+ λ`

2
b(e`, e`) + Res`(e`). �

For the discussion of ‖e`‖ � |||e`|||, suppose that N` = dim(V`) discrete
eigenvalues are ordered

0 < λ`,1 ≤ λ`,2 ≤ λ`,3 ≤ . . . ≤ λ`,m < λ`,m+1 ≤ . . . ≤ λ`,N`
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with some significant (computable) gap between λ`,m and λ`,m+1 and
assume that λ is one of the first m exact eigenvalues such that λ ≤ λ`,m.
Let (u`,1, . . . , u`,m, u`,m+1, . . . , u`,N`

) denote a b-orthonormal basis of V`

of corresponding eigenfunctions. Let W` := span{u`,1, . . . u`,m} such
that

V` = W` ⊕ span{u`,m+1, . . . , u`,N`
}

and set dist‖.‖(v,W`) := min{‖v − w`‖ : w` ∈ W`}. Let G` : V → V`

denote the Galerkin projection and let P` : V → W` denote the b-
orthogonal projection onto W`, i.e.,

a(G`u− u, ·)|V`
= 0 = b(P`u− u, ·)|W`

.

Proposition 3.2. For ρ := λ/λ`,m+1 ≤ λ`,m/λ`,m+1 < 1 it holds

dist‖.‖(G`u,W`) ≤ ρ dist‖.‖(u,W`).

Proof of Proposition 3.2. Set v := G`u− P`(G`u) for the b-orthogonal
projection P` onto W`. Then dist‖.‖(G`u,W`) = ‖v‖ with some v :=∑N`

j=m+1 αju`,j and there holds

‖v‖2 =

N∑̀
j=m+1

α2
j .

Moreover, W` ⊥ span{u`,1, . . . u`,m} implies

b(P`(G`u),
∑
j>m

αju`,j) = 0 and b(P`u,
∑
j>m

αj
λ

λj

u`,j) = 0.

The orthogonality of the basis functions u`,1, . . . , u`,N`
yields

‖
∑
j>m

αj
λ

λj

u`,j‖2 =
∑
j>m

‖αj
λ

λj

u`,j‖2 =
∑
j>m

(
λ

λj

)2

‖αju`,j‖2

≤ ρ2
∑
j>m

‖αju`,j‖2 = ρ2‖
∑
j>m

αju`,j‖2 = ρ2‖v‖2

This, some algebra and elementary estimations show

dist‖.‖(G`u,W`)
2 = ‖v‖2 = b(v,

∑
j>m

αju`,j)

= b(G`u,
∑
j>m

αju`,j) =
∑
j>m

αjλ
−1
j b(λju`,j, G`u)

=
∑
j>m

αjλ
−1
j a(u`,j, G`u) =

∑
j>m

αjλ
−1
j a(u`,j, u)

=
∑
j>m

αj
λ

λj

b(u`,j, u) =
∑
j>m

αj
λ

λj

b(u, u`,j)

= b(u,
∑
j>m

αj
λ

λj

u`,j) = b(u− P`u,
∑
j>m

αj
λ

λj

u`,j).
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Therefore,

dist‖.‖(G`u,W`)
2 ≤ ‖u− P`u‖‖

∑
j>m

αj
λ

λj

u`,j‖

≤ ρ‖u− P`u‖‖v‖ ≤ ρ‖v‖dist‖.‖(u,W`). �

Proposition 3.3. Let (λ, u) denote an exact eigenpair with λ ≤ λ`,m <
λ`,m+1. Then it holds

‖u− u`‖2

2
=

dist‖.‖(u,W`)
2

1 + ‖P`u‖
≤ ‖u−G`u‖2

(1− ρ)2(1 + ‖P`u‖)
.

Proof. Let P`u = ‖P`u‖u∗` for some u∗` ∈ W` with ‖u∗`‖ = 1. Notice
that ‖e`‖2 = ‖e` − P`e`‖2 + ‖P`e`‖2 and ‖e` − P`e`‖2 = ‖u − P`u‖2 =
dist‖.‖(u,W`)

2 as well as ‖P`e`‖2 = ‖P`u− u`‖2 = ‖u`‖2(1− ‖P`u‖)2 =
(1− ‖P`u‖)2 = (1− b(u, u`))

2. Hence

‖e`‖2 = b(u− P`u, u− P`u) + (1− b(u, u`)
2)

= 1 + ‖P`u‖2 − 2b(u, P`u) + 1− 2b(u, u`) + b(u, u`)
2

= 2(1− ‖P`u‖) = 2
1− ‖P`u‖2

1 + ‖P`u‖
= 2

dist‖.‖(u,W`)
2

1 + ‖P`u‖
.

It remains to prove that

dist‖.‖(u,W`) ≤ ‖u−G`u‖/(1− ρ).

For a proof of that, observe b(u, P`u) = ‖P`u‖b(u, u`). By the choice
of a sign,

b(u, u`) = b(u, P`u)/‖P`u‖ = b(P`u, P`u)/‖P`u‖ = ‖P`u‖ ≥ 0.

Moreover, dist‖.‖(u,W`)
2 = 1− ‖P`u‖2 and the triangle inequality

dist‖.‖(u,W`) ≤ ‖u−G`u‖+ dist‖.‖(G`,W`)

together with Proposition 3.2 yield the assertion. �

Remark 3.4. Note that ρ can be estimated a posteriori and

0 ≤ ‖P`u‖ ≤ ‖P`‖‖u‖ ≤ 1

(since u is normalised eigenfunction). Hence the factor in Proposi-
tion 3.3 can be bounded as (1− ρ)−2(1 + ‖P`u‖)−1 ≤ (1− ρ)−2. �

Remark 3.5. In the notation of Knyazev [Kny97], ‖u‖ = 1 leads to

0 ≤ sin](u,W`) = sup
v∈span{u},‖v‖=1

dist‖.‖(v,W`) = dist‖.‖(u,W`). �

Theorem 3.6. For sufficiently small maximal mesh-size

h` := max{hT : T ∈ T`} with hT := diam(T )

there exists 0 < δ` < 1 with

|||u− u`||| ≤ (1− δ`)−1|||Res`|||∗ and lim
h`→0

δ` = 0.
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Proof. Suppose the eigenfunction u satisfies u ∈ H1+s(Ω) ∩ V . The
following convergence estimate holds for the Galerkin projektion G`

‖u−G`u‖H1(Ω) . hs
`‖u‖H1+s(Ω)

for the maximal interior angle ω and 0 < s < π/ω [BS02, Theorem
14.3.3]. Under the assumption, that the problem is H1+s-regular, the
Aubin-Nitzsche duality technique leads to

‖u−G`u‖ . hs
`|||u−G`u||| ≤ Chs|||u− u`|||.

Suppose that h` is sufficiently small such that

δ` := h2s
`

C2(λ+ λ`)

(1− ρ)2(1 + ‖P`u‖)
� 1.

Then Lemma 3.1 together with Proposition 3.3 lead to

|||u− u`||| ≤ (1− δ`)−1|||Res`|||∗. �

Notice that (1− δ`)−1 → 1 as the maximal mesh-size h` → 0.

4. Two A Posteriori Error Estimators

The a posteriori error estimates of this section employ the abstract
framework of [Car05] by estimating the dual norm of the residual
|||Res`|||∗. The first estimator is explicit residual-based and the second
improves the averaging estimator of [MSZ06].

4.1. Residual-Based Error Estimator. The book of Verfürth [Ver96]
summarises a few equivalences of a posteriori error estimates. This
and the following estimate allow for reliable and efficient error es-
timators via other estimators as well. Given any interior edge E,
written E ∈ E`, of length hE and with normal unit vector νE let
[∇u`] := ∇u`|T+ − ∇u`|T− denote he jump of the piecewise constant
gradient across E = ∂T+ ∩ ∂T− from the neighbouring element do-
mains T± ∈ T`.

Theorem 4.1. It holds

|||Res`|||2∗ . η2
` :=

∑
E∈E`

hE‖[∇u`] · νE‖2
L2(E) . |||e|||2.

For sufficiently small mesh-sizes, it holds

|||e||| . |||Res`|||∗.

Proof of reliability. Let v` be the L2 projection of v in V`. The approx-
imation property (iv) of Subsection 2.4 for the edges reads∑

E∈E`

‖h−1/2
E (v − v`)‖2

L2(E) . ‖∇v‖2
L2(Ω).
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The definition of the residual and some elementary algebra yields

Res`(v) = Res`(v − v`) = λ`b(u`, v − v`)− a(u`, v − v`)

= −a(u`, v − v`) =
∑
E∈E`

∫
E

([∇u`] · νE)(v − v`) ds

≤
∑
E∈E`

h
1/2
E ‖[∇u`]·νE‖L2(E)‖h−1/2

E (v − v`)‖L2(E)

≤

(∑
E∈E`

hE‖[∇u`]·νE‖2
L2(E)

)1/2(∑
E∈E`

‖h−1/2
E (v − v`)‖L2(E)

)1/2

. η`‖∇v‖L2(Ω). �

Proof of (global) efficiency. Utilizing the bubble function technique of
Verfürth [Ver96, Lemma 1.3], Durán, Padra, and Rodŕıguez proved
local efficiency for the edge-residuals [DPR03, Lemma 3.4], namely

h
1/2
E ‖[∇u`] · νE‖L2(E) . ‖∇e`‖L2(ωE) + hωE

‖λu− λ`u`‖L2(ωE).

With h` := max{hT : T ∈ T`}, the global version reads

η2
` . |||e`|||2 + h2

`‖λu− λ`u`‖2.

Some elementary algebra in the spirit of Lemma 3.1 shows

‖λu− λ`u`‖2 = (λ` − λ)2 + λλ`‖e`‖2.

Lemma 3.1 yields (λ` − λ)2 ≤ |||e`|||4 and λλ`‖e`‖2 ≤ λ`|||e`|||2. Since λ`

is bounded by λ0 it holds

η2
` . |||e`|||2

even for larger mesh-sizes h` . 1. For sufficiently small mesh-sizes,
Theorem 3.6 yields

|||e`||| . |||Res`|||∗. �

4.2. Averaging Technique for A Posteriori Error Control. Let
A : V d

` → S1(T )d be some local averaging operator. For example,

A(∇u`) :=
∑
z∈N`

1

|ωz|

(∫
ωz

∇u` dx

)
ϕz.

Alternative estimators from [Car03] could be employed as well.

Theorem 4.2. It holds

|||Res`|||2∗ . µ2
` :=

∑
T∈T

‖A(∇u`)−∇u`‖2
L2(T ) . |||e|||2.

Proof. Let v` be the L2 projection of v in V`. Since A(∇u`) is globally
continuous, the divergence theorem is globally applicable. Notice that
for the finite dimensional subspace V` there holds the local inverse
inequality

‖hT div(v`)‖L2(T ) ≤ Cinv‖v`‖L2(T ).
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Together with the the approximation property (iii) of Subsection 2.4,

‖∇v`‖L2(Ω) ≤ Cstab‖∇v‖L2(Ω),

it follows

−
∫

Ω

A(∇u`)∇(v − v`) dx =

∫
Ω

(v − v`) div(A(∇u`)) dx

=
∑

T

∫
T

hT div(A(∇u`))h
−1
T (v − v`) dx

≤
∑

T

‖hT div(A(∇u`)−∇u`)‖L2(T )‖h−1
T (v − v`)‖L2(T )

≤ Cinv

∑
T

‖A(∇u`)−∇u`‖L2(T )‖h−1
T (v − v`)‖L2(T )

. ‖A(∇u`)−∇u`‖L2(Ω)‖∇v‖L2(Ω).

Hence it holds

−
∫

Ω

A(∇u`)∇(v − v`) dx . ‖A(∇u`)−∇u`‖L2(Ω)‖∇v‖L2(Ω).

Using this equation we conclude

Res`(v − v`) = λ`b(u`, v − v`)− a(u`, v − v`) = −a(u`, v − v`)

= −
∫

Ω

A(∇u`)∇(v − v`) +

∫
Ω

(A(∇u`)−∇u`)∇(v − v`)

. µ`‖∇v‖L2(Ω).

Hence we have proved reliability. The efficiency is proved by the known
fact that the averaging estimator is equivalent to the edge-residual
estimator, [Ver96]. Since the edge-residual estimator is efficient, so is
µ`. A direct proof of efficiency for a class of averaging operators follows
as in [Car03]. �

5. AFEM Convergence

The main results are discussed in the first subsection and proven in
the subsequent ones.

5.1. Global Strong Convergence and Contraction Property.
Let k be some fixed positive integer and suppose dimV0 ≥ k. Let
(V`)`=0,1,2,... denote the nested sequence of discrete spaces computed by
the adaptive algorithm based on the residual

Res` := λ`b(u`, .)− a(u`, .)

for the k-th algebraic eigenvalue λ` of the discrete eigenvalue problem
on the level ` with some eigenvector u` ∈ V`. Suppose that V` ⊆
ker(Res`) and ‖u`‖ = 1 and notice that at least the orientation of u` is
arbitrary even if the discrete eigenspan of λ` is one-dimensional. The
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procedure MARK employs the edge-contributions η
(`)
E and computes

M` ⊆ E` (with minimal cardinality) such that

η2
` :=

∑
E∈E`

η
(`)2

E ≤ θ−1
∑

E∈M`

η
(`)2

E

with some global parameter 0 < θ < 1. The global convergence result
will be proved throughout the remaining part of this section.

Theorem 5.1 (global convergence). The sequence of discrete eigenval-
ues (λ`) converges towards some eigenvalue λ of the continuous prob-
lem. Each subsequence (u`j

) of discrete eigenvectors has a further sub-
sequence which converges strongly towards some u in V and u is an
eigenvector of λ.

Theorem 5.1 shows that spurious eigenvalues do not occur: Every ac-
cumulation point of discrete eigenvalues is an exact eigenvalue. More-
over, for a simple eigenvalue λ (i.e., the eigenspan is one-dimensional)
it shows that, up to a proper choice of the sign of ±u`, the complete
sequence converges strongly to the eigenvector ±u of λ.
Notice that there is monotone convergence of the discrete eigenvalues
to an exact eigenvalue λ. The Rayleigh-Ritz principle guarantees that
λ is amongst the exact eigenvalues number k or higher but it remains
open to conclude that λ equals the k-th one. Spurious eigenvalues can-
not appear as any limit is some exact eigenvalue, but, without further
assumptions we cannot guarantee that some exact eigenvalues are left
out. To avoid that, one requires some global assumption such as that
the mesh-size is globally fine enough.

Theorem 5.2 (contraction property). If the triangulation T0 is suffi-
ciently fine, i.e., h0 is sufficiently small, then there exists γ > 0 and
0 < ρ < 1 such that, for all ` = 0, 1, 2, . . .,

γη2
`+1 + |||u− u`+1|||2 ≤ ρ

(
γη2

` + |||u− u`|||2
)
.

An alternative name for the contraction property is Q-linear conver-
gence and this holds for the combination of error and estimator. An
immediate consequence is R-linear convergence of the errors in the
sense that, for all ` = 0, 1, 2, . . ., it holds

|||u− u`|||2 . ρ`.

The proofs of the two theorems will be the content of the subsequent
subsections.

5.2. Strong Convergence of Subsequences. The Raleigh-Ritz prin-
ciple shows for the nested discrete spaces V0 ⊆ V1 ⊆ V2 ⊆ . . . that
(λ`) is monotone decreasing and hence convergent to some reel number
λ∞ > 0 which is even bigger than or equal to the k-th exact eigenvalue.
In particular, (λ`) is a Cauchy sequence. Notice that λ` = |||u`|||2 and
hence (u`) is bounded in the Hilbert space V . Since each bounded
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sequence in V has some subsequence which is weakly convergent in V
and strongly convergent in H towards some element in V , there exist
some subsequence (u`j

) and some weak limit u∞ ∈ V such that

lim
j→∞
‖u∞ − u`j

‖ = 0 while (u`j
) ⇀ u∞ in V.

The arguments from the first part of Lemma 3.1 show for ` ≤ m that

|||um − u`|||2 = λ` − λm + λm‖um − u`‖2

and, for subsequences, the right-hand side tends to zero as `→∞ and
hence (u`j

) is a Cauchy sequence in V . Consequently,

lim
j→∞
|||u∞ − u`j

||| = 0.

In particular, ‖u∞‖ = 1 and the residual Res∞ reads

Res∞ := λ∞b(u∞, .)− a(u∞, .) ∈ V ∗.

It remains to prove Res∞ = 0. The aforementioned convergence prop-
erties show the weak convergence

(Res`j
) ⇀ Res∞ in V ∗.

So it remains to conclude

lim
j→∞
|||Res`j

|||∗ = 0

which will follow from the reliability of Theorem 4.1 and the conver-
gence of the estimators in Lemma 5.4 below. The proof of that follows
from an estimator perturbation result similar to [CKNS07].

Lemma 5.3. There exist some C > 0 and 0 < ρ < 1 such that, for all
non-negative integers ` and m, it holds

η2
`+m ≤ ρη2

` + C|||u`+m − u`|||2.

Proof. For all E ∈ E` we have either E ∈ E`+m or otherwise there exist
E1, . . . , Em ∈ E`+m with E = E1 ∪ . . . ∪ EJ and J ≥ 2. In the second
case E ∈ E` \ E`+m, for any 0 < δ < θ/(2− θ),

J∑
j=1

η
(`+m)2
Ej

=
J∑

j=1

h2
Ej
|[∇u`+m]·νEj

|2

≤
J∑

j=1

h2
Ej

(
(1 + δ)|[∇u`]·νEj

|2 + (1 + 1/δ)|[∇u`+m −∇u`]·νEj
|2
)

≤ (1 + δ)/2 η
(`)2
E + (1 + 1/δ)

J∑
j=1

h2
Ej
|[∇u`+m −∇u`]·νEj

|2.
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Notice that the factor 1/2 results from J > 1 refinements (at least one
bisection) of E ∈ E`\E`+m. Therefore,∑

E∈E`+m
E⊆∪E`

η
(`+m)2
E ≤ (1 + δ)/2

∑
E∈E`\E`+m

η
(`)2
E + (1 + δ)

∑
E∈E`∩E`+m

η
(`)2
E

+ (1 + 1/δ)
∑

E∈E`+m
E⊆∪E`

h2
E|[∇u`+m −∇u`] · νE|2.

For any E ∈ E`+m with E * ∪E`, [∇u`] · νE = 0 on E. Hence

η
(`+m)2
E = h2

E|[∇u`+m −∇u`] · νE|2.

Therefore,

η2
`+m ≤ (1 + δ)/2

∑
E∈E`\E`

η
(`)2
E + (1 + δ)

∑
E∈E`∩E`

η
(`)2
E

+ (1 + 1/δ)
∑

E∈E`+m

h2
E|[∇u`+m −∇u`] · νE|2.

Since ∇u`+m − ∇u` is piecewise constant with respect to the shape
regular triangulation T`+m,

h2
E|[∇u`+m −∇u`] · νE|2 . ‖∇u`+m −∇u`‖L2(ωE)

for the edge patch ωE of E in T`+m. Since there is only a finite overlap
of all edge patches,

η2
`+m ≤ (1 + δ)/2

∑
E∈M`

η
(`)2
E + (1 + δ)

∑
E∈E`\M`

η
(`)2
E + C|||u`+m − u`|||2.

The bulk criterion leads to

1/2
∑

E∈M`

η
(`)2
E +

∑
E∈E`\M`

η
(`)2
E = η2

` − 1/2
∑

E∈M`

η
(`)2
E ≤ (1− θ/2)η2

` .

Since δ < θ/(2− θ), the resulting estimate proves the assertion:

η2
`+m ≤ (1 + δ)(1− θ/2)η2

` + C|||u`+m − u`|||2. �

Lemma 5.4. It holds

lim
`j→∞

η2
`j

= 0.

Proof. Since (u`j
) is a Cauchy sequence and Lemma 5.3 yields

η2
`j+1
≤ ρη2

`j
+ C|||u`j+1

− u`j
|||2 for all j = 1, 2, . . .

one concludes the assertion with some elementary analysis and the
geometric series. �

This concludes the proof of Theorem 5.1 on the global convergence. �
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5.3. Contraction Property. Throughout this section, let (λ, u) de-
note some eigenpair of the continuous eigenvalue problem and (λ`, u`)
denotes some discrete eigenpair with error estimator η`.

Theorem 5.5. There exist constants 0 < % < 1 and γ > 0 such that,
for all ` = 0, 1, 2, . . .,

γη2
`+1 + |||u− u`+1|||2 ≤ %

(
γη2

` + |||u− u`|||2
)

+ 9λ`‖u− u`‖2.

Proof. Let ρ denote the constant in Lemma 5.3 which, for m = 1,
becomes

η2
`+1 ≤ ρη2

` + C|||u`+1 − u`|||2.
This and some algebra (since (λ, u) and (λ`, u`) are eigenpairs)

|||u`+1 − u`|||2 + |||u− u`+1|||2 =|||u− u`|||2

− 2b(λu− λ`+1u`+1, u`+1 − u`)

yield, with the abbreviation e` := u− u` etc., that

γη2
`+1 + |||e`+1|||2 ≤ ργη2

` + |||e`|||2 − 2b(λu− λ`+1u`+1, u`+1 − u`).

Set

ρ < % :=
ργ + Crel

γ + Crel

< 1.

Then

γη2
`+1 + |||e`+1|||2 ≤ %

(
γη2

` + |||e`|||2
)

+ (ρ− %)γη2
` + (1− %)|||e`|||2

− 2b(λu− λ`+1u`+1, u`+1 − u`).
(5.1)

Lemma 3.1 plus Young’s inequality yield

2|||e`|||2 ≤ (λ+λ`)‖e`‖2 +2|||Res`|||∗|||e`||| ≤ (λ+λ`)‖e`‖2 +|||Res`|||2∗+|||e`|||2.

This and the reliability estimate of Theorem 4.1

|||Res`|||2∗ ≤ Crelη
2
`

result in

|||e`|||2 ≤ (λ+ λ`)‖e`‖2 + Crelη
2
` .

The last term in (5.1) reads

−2b(λu−λ`+1u`+1, u`+1 − u`)

= −2λb(u, u`+1 − u`) + 2λ`+1b(u`+1, u`+1 − u`)

= λ‖e`+1‖2 − λ‖e`‖2 + λ`+1‖u`+1 − u`‖2.

Proposition 3.3 yields

‖e`+1‖2 =
2dist‖.‖(u,W`+1)2

1 + ‖P`+1u‖
≤ 2dist‖.‖(u,W`)

2 ≤ 2‖e`‖2.
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This and Young’s inequality for ‖u`+1 − u`‖2 leads to

−2b(λu−λ`+1u`+1, u`+1 − u`)

≤ λ‖e`+1‖2 − λ‖e`‖2 + 2λ`+1‖e`+1‖2 + 2λ`+1‖e`‖2

= (λ+ 2λ`+1)‖e`+1‖2 + (2λ`+1 − λ)‖e`‖2

≤ (λ+ 6λ`+1)‖e`‖2.

Since λ ≤ λ`+1 ≤ λ`,

−2b(λu− λ`+1u`+1, u`+1 − u`) ≤ 7λ`‖e`‖2 and

|||e`|||2 ≤ 2λ`‖e`‖2 + Crelη
2
` .

This and (5.1) lead to

γη2
`+1 + |||e`+1|||2 ≤ %

(
γη2

` + |||e`|||2
)

+ 9λ`‖e`‖2

+ ((ρ− %)γ + Crel(1− %)) η2
` .

By definition of %, (ρ−%)γ+Crel(1−%) ≤ 0. This completes the proof
of Theorem 5.5. �

Proof of Theorem 5.2. For sufficiently small mesh-sizes h` ≤ h0, Propo-
sition 3.3 shows

‖u− u`‖2 � |||u− u`|||2.
Hence Theorem 5.5 yields the contraction property with a constant
< 1. This concludes the proof of Theorem 5.2. �

6. Numerical Experiments

6.1. Numerical Realisation. This section is devoted to four numer-
ical experiments on the square, the L-shape, and the slit domain for
the Laplace operator as well as tuning fork vibrations. The edge-based
residual estimator and the averaging estimator read

η` =

(∑
E∈E

hE‖[∇u`] · νE‖2
L2(E)

)1/2

and(6.1)

µ` =

(∑
T∈T

‖A(∇u`)−∇u`‖2
L2(T )

)1/2

.(6.2)

The numerical examples show that the error estimators are reliable and
efficient and that the remaining term is indeed of higher order when
compared to the estimators.
The MATLAB implementation follows the spirit of [ACF99, ACFK02]
and Figure 6.1 displays the kernel MATLAB function EWP.m of the
computer program utilised in this section.
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function [x,lambda] = EWP(coordinates,elements,dirichlet,k)

A = sparse(size(coordinates,1),size(coordinates,1));

B = sparse(size(coordinates,1),size(coordinates,1));

x = zeros(size(coordinates,1),1);

for j = 1:size(elements,1)

A(elements(j,:),elements(j,:)) = A(elements(j,:),elements(j,:))+...

stima(coordinates(elements(j,:),:));

B(elements(j,:),elements(j,:)) = B(elements(j,:),elements(j,:))+...

det([1,1,1;coordinates(elements(j,:),:)’])*(ones(3)+eye(3))/24;

end

freeNodes = setdiff(1:size(coordinates,1),unique(dirichlet));

[V,D] = eigs(A(freeNodes,freeNodes),B(freeNodes,freeNodes),k,’sm’);

x(freeNodes) = V(:,1);lambda = D(1,1);

function stima=stima(vertices)

P = [ones(1,size(vertices,2)+1);vertices’];

Q = P\[zeros(1,size(vertices,2));eye(size(vertices,2))];

stima = det(P)*Q*Q’/prod(1:size(vertices,2));

Figure 6.1. 17 lines of MATLAB.

6.2. Unit Square. The first example consists of the eigenvalue prob-
lem of the Poisson problem on the unit square with Dirichlet boundary
condition, that means: seek for the first eigenpair

(λ, u) = (2π2, 2 sin(xπ) sin(yπ))

of the Laplace operator in Ω = [0, 1]× [0, 1] with

−∆u = λu in Ω and u = 0 along ∂Ω.

Figure 6.2 shows the convergence history for η` (6.1) and µ` (6.2) for
different choices of θ. Notice that θ = 1 results in uniform refinement
while θ < 1 leads to adaptively refined meshes. One observes that µ`

is asymptotically exact. In Figure 6.3 it is numerically shown that

h.o.t. = λ`‖e‖2/|||e|||

is really of higher order compared to the estimator η` or µ`. Figure 6.4
shows that the constant C with ‖u − u`‖ ≤ C|||u − G`u||| which is
bounded in Proposition 3.3 by (1− ρ)−2 is numerically less than 1 and
the L2-error is of higher order compared to the energy error of the
Galerkin projection as shown in Theorem 3.6.

6.3. L-shaped Domain. Seek for the first eigenpair (λ, u) of the Laplace
operator in Ω = [−1, 1]× [0, 1] ∪ [−1, 0]× [−1, 0].

−∆u = λu in Ω and u = 0 along ∂Ω.
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Figure 6.2. Convergence history for η` (top) and µ`

(bottom) with different choices of θ for the unite square.

Because the first eigenfunction of the L-shaped domain is singular, the
energy error |||e||| is estimated by

|||e|||2 = λ∗ + λ` − λb(u∗, u`),

for some known approximation λ∗ = 9.639723844 to λ with high ac-
curacy and an approximation u∗ to u with second order P2 FEM. Fig-
ure 6.5 shows the convergence history of η` and µ`. Notice that adap-
tive refinement (for θ < 1) is much better than uniform refinement
(for θ = 1). Adaptive refinement results in optimal convergence O(h)
where uniform refinement results in only O(h2/3) convergence. Notice
that µ` is not asymptotically exact for uniform refinement because of
the singularity at the re-entrant corner, but only for the elements at
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Figure 6.4. Size of the constant C with ‖u − u`‖ ≤
C|||u−G`u||| and higher order convergence of the L2-norm
compared to the energy norm for the unite square.

the corner and therefore there is only a small difference. Again in Fig-
ure 6.7 it is shown that the h.o.t. is of higher order. Figure 6.8 shows
that the constant C in ‖u−u`‖ ≤ C|||u−G`u||| is about 1 and that the
L2-error is again of higher order, although the solution is singular.
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Figure 6.5. Convergence history for η` (top) and µ`

(bottom) with different choices of θ for the L-shaped do-
main.

6.4. Slit Domain. Although the slit domain Ω := (−1, 1)2\[0, 1]{0} is
not a Lipschitz (the domain is not on one side of the slit) the benchmark
serves as an extreme example, where one seeks the first eigenpair (λ, u)
of the Laplace. Similar to the L-shaped domain, the first eigenfunction
is singular and the energy error |||e||| is estimated by

|||e|||2 = λ∗ + λ` − λb(u∗, u`),

with λ∗ = 8.371329711 of sufficient accuracy and u∗ is is approximation
to u with second order P2 FEM.
As in the previous example Figure 6.10 shows the convergence his-
tory of η` and µ`. Adaptive refinement results in optimal convergence
O(h) while uniform refinement results in only O(h1/2) convergence.
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Figure 6.6. Adaptive meshes generated with θ = 0.5
for the a posteriori error estimator η` (top) and µ` (bot-
tom) for about 100 and 1000 nodes for the L-shaped do-
main.
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Figure 6.7. Comparison of the estimator and the h.o.t.
for η` and µ` for the L-shaped domain.

Figure 6.12 shows that the h.o.t. = λ`‖e‖2/|||e||| is of higher order. Fig-
ure 6.9 shows that the constant C in ‖u−u`‖ ≤ C|||u−G`u||| is about 1
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Figure 6.8. Size of the constant C with ‖u − u`‖ ≤
C|||u−G`u||| and higher order convergence of the L2-norm
compared to the energy norm for the L-shaped domain.

and that even in this extreme example with poor regularity the L2-error
is of higher order.

6.5. Elastic Vibrations of a Tuning Fork. The harmonic dynamic
of linear elasticity (involves the Lamé operator ∆∗ := divCε for the
linear Green strain ε := sym∇ of the displacement u ∈ V := H1

0 (Ω; R2)
and the density ρ) leads to the eigenvalue problem of the Lamé operator

−∆∗u = λρu in Ω and u = 0 on ∂ΓD.

The domain Ω is displayed with the initial triangulation T0 in Fig-
ure 6.13 where ΓD = ∂Ω ∩ ([−1, 1] × {0}) and the traction vanishes
along ∂Ω\ΓD.
The weak formulation involves the bilinear forms

a(u, v) =

∫
Ω

ε(u) : Cε(v) dx and b(u, v) =

∫
Ω

ρu · v dx for u, v ∈ V.

We refer to [ACFK02] for details on the model and the elasticity tensor
C with Poisson’s ratio 0.3, Young’s modulus E = 214GPa, density
ρ = 1, as well as to the MATLAB simulation tools for the numerical
experiments. The first six eigenforms for the eigenvalues

λ1, . . . , λ6 = 0.0013049, 0.014685, 0.068861, 0.1748, 0.28598, 1.2361

of the tuning fork are shown in Figure 6.14. The convergence history
for the error in the first eigenvalue is displayed in Figure 6.15. The
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C|||u−G`u||| and higher order convergence of the L2-norm
compared to the energy norm for the slit domain.

expected eigenforms give rise to completely different adapted meshes
and seem to correspond reasonably to the eigenmodes.
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