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Abstra
tWe propose a model for phase transformations that are driven by 
hanges inthe temperature. We 
onsider the temperature as a pres
ribed pres
ribed quantitylike an applied load. The model is based on the energeti
 formulation for rate-independent systems and thus allows for �nite-strain elasti
ity. Time-dependentDiri
hlet boundary 
onditions 
an be treated by de
omposing the deformation as a
omposition of a given deformation satisfying the time-dependent boundary 
ondi-tions and a part 
oin
iding with the identity on the Diri
hlet boundary.1 Introdu
tionThe mathemati
al modeling of shape-memory materials has attra
ted a lot of attentionwithin the last twenty-�ve years by quite di�erent series of work. One area was based onmore phenomenologi
al models in one or more spatial dimensions but in
luded a thermo-dynami
ally 
onsistent 
oupling to the energy equation, see [Fal80, CFV90, HM93, SZ93,ACJ96, FM96, BS96, KMS99, RS99, AP04℄. The other area is treating a question ofpossible mi
rostru
tures of equilibria by a 
areful analysis of the underlying mi
ros
opi

rystallographi
 information about the di�erent phases, see [BJ87, Bha93, Mül99, Bha03℄.Only re
ently the latter theory was generalized to des
ribe also the evolution of su
hmi
rostru
ture, yet it remained restri
ted to the rate-independent and isothermal 
ase,see [MT99, MTL02, MR03, Mie04a, KMR05℄. However, there is also some work on rate-dependent systems respe
ting the 
orre
t mi
ros
opi
al data, see [AGR03, KO04℄ and thesurvey [Rou04℄.However, a systemati
 mathemati
al study of temperature-driven phase transformationdoes not exist yet. Here, we want to provide some �rst results in this dire
tion as thereare many engineering appli
ations using the temperature as the main 
ontrol me
hanismfor the shape-memory e�e
t, see e.g. [HM93, KMS99, AP04, SZ06℄ and [BS96, Ch. 5℄.In order to be able to treat the 
ase of �nite-strain elasti
ity, whi
h is modeled by poly-
onvex stored-energy density, we stay in the rate-independent setting, whi
h allows us touse minimization te
hniques (dire
t method in the 
al
ulus of variations). However, thisapproa
h implies that we have to restri
t the temperature �elds to stationary states atea
h time instant t ∈ [0, T ], where t is a slow pro
ess time that moves mu
h slower thanall relaxation pro
esses in the body. In parti
ular, we make the modeling assumptionthat the temperature θ is given a priori as an �applied load� and we write θ = θappl(t, x).Su
h an assumption is often used in engineering, as it is a

eptable if the body is smallin at least one dire
tion like wires or plates. Then, ex
essive or missing heat 
an be1



balan
ed through the environment. Nevertheless, θappl(t, ·) may be a non-
onstant equi-librium of the heat equation, if the temperature is �xed by heating or 
ooling at parts ofthe boundary.Our model 
onsists of a material that 
an be des
ribed by a stored-energy density
W (x,∇ϕ, z, θ), where x ∈ Ω denotes the material point, F = ∇ϕ is the gradient ofthe deformation ϕ : Ω → R

d, and z : Ω → ZM = { (z1, . . . , zM) ∈ [0.1]M |
∑M

1 zj = M }is the phase indi
ator where zj ∈ [0, 1] gives the volume fra
tion of the jth phase. Theenergy potential then takes the form
E(t, ϕ, z) =

∫

Ω

W (x,∇ϕ, z, θappl(t, x))dx+ G(z) − 〈ℓ(t), ϕ〉,where ℓ ∈ C1([0, T ],W1,p(Ω)∗) denotes an applied loading, see (2.3), and G is a regularizingterm su
h that G(z) ∼ ‖z‖p

Wα,p(Ω) for some α ∈ (0, 1/p).In addition, we spe
ify a dissipation distan
e D on Z = L1(Ω;ZM) in the form
D(zold, znew) =

∫

Ω

δ(x, zold(x), znew(x))dx,where δ(x, ·, ·) is a (possibly unsymmetri
) metri
 on ZM , see (2.4). Spe
ifying the set Fas those fun
tion ϕ ∈ W1,p(Ω; Rd) satisfying Diri
hlet boundary data ϕDir at ΓDir ⊂ ∂Ω,we are able to pose our problem as the energeti
 formulation for rate-independent systemsas in [MTL02, MaM05, Mie05℄. For a given initial value (ϕ0, z0) ∈ F ×Z we have to �nda pair (ϕ, z) : [0, T ] → F ×Z with (ϕ(0), z(0)) = (ϕ0, z0) su
h that for all t ∈ [0, T ] theglobal stability (S) and the energy balan
e (E) hold
(S) E(t, ϕ(t), z(t)) ≤ E(t, ϕ̂ẑ) + D(z(t), ẑ) for all (ϕ̂, ẑ) ∈ F ×Z,

(E) E(t, ϕ(t), z(t)) + DissD(z, [0, t]) = E(0, ϕ0, z0) +
∫ t

0
∂sE(s, ϕ(s), z(s))ds,where DissD(z, [s, t]) is de�ned as the supremum of ∑n

j=1 D(z(tj−1), z(tj)) over all �nitepartitions s ≤ t0 < t1 < · · · < tn ≤ t. For short, we 
all any su
h (ϕ, z) : [0, T ] → F ×Zan energeti
 solution asso
iated with E and D.This energeti
 formulation is a weak form for the more familiar di�erential in
lusions forrate-independent systems (
f. [MT04, Mie05℄). Its advantage arises from the fa
t that itis derivative free and thus allows for a wide range of appli
ations. In Se
tion 2 we providemore details on the model and in Se
tion 3 we spe
ify the exa
t assumptions on the
onstitutive fun
tions W and δ. The main point is that the partial derivative ∂tE(t, ϕ, z)has to be de�ned whenever E(t, ϕ, z) <∞. In �nite-strain elasti
ity we have to allow for
E(t, ϕ, z) = +∞, namely if det∇ϕ(x) ≤ 0 on a set of positive measure. Thus, we have
E(t, ϕ, z) = +∞ on a dense set in [0, T ] ×F × Z.In Proposition 4.1 we will derive an estimate of the form

|∂tE(t, ϕ, z)| ≤ cE1 (E(t, ϕ, z) + cE0 ) (1.1)under the assumption thatW satis�es |∂θW (x, F, z, θ)| ≤ cW1 (W (x, F, z, θ)+cW0 ) and that
∂tθappl ∈ L∞([0, T ]×Ω). Using the standard 
oer
ivity and poly
onvexity assumptions we2



then show in Theorem 4.2 that for all stable initial data (ϕ0, z0) energeti
 solution exist.Here, we draw from the abstra
t theory developed in [MaM05, Mie05, FM06℄.Finally, Se
tion 5 treats the 
ase of time-dependent Diri
hlet boundary 
onditions. Forthis we assume that ea
h ϕDir(t, ·) 
an be extended to a di�eomorphism from R
d to R

dsu
h that ϕDir ∈ C2([0, T ]×R
d; R) and ∇ϕDir, (∇ϕDir)

−1 ∈ BC1([0, T ]×R
d; Rd×d). Then,we seek ϕ(t, ·) in the form ϕ(t, x) = ϕDir(t, ψ(t, x)) with ψ(t, ·) ∈ F̃ , where

F̃ = {ψ ∈ W1,p(Ω; Rd) | ψ
∣∣
ΓDir

= id } and Ẽ(t, ψ, z) = E(t, ϕDir(t) ◦ ψ, z).The 
ru
ial observation in [FM06℄ was that ∂tẼ(t, ψ, z) again satis�es an estimate of theform (1.1), if W satis�es an estimate of the form
∣∣∂FW (x, F, z, θ)F T

∣∣ ≤ cK1 (W (x, F, z, θ) + cK0 ). (1.2)The tensor on the left-hand side is 
alled the Kir
hho� stress tensor. Considering F as anelement of the Lie group GL+(Rd) we have to interpret ∂FW as an element of T∗
F GL+(Rd)and ∂FWF T lies in T∗

IGL+(Rd) = gl(Rd)∗. We address some of these Lie group issues,whi
h were initiated in [Mie02, Mie03℄, in the 
ontext of �nite-strain elastoplasti
ity.Using (1.2) and a similar estimate for the se
ond derivative we are then able to transferthe isothermal existen
e result of [FM06℄ into our temperature-driven model, see Theorem5.2.2 The me
hani
al modelWe 
onsider a body with referen
e 
on�guration Ω ⊂ R
d. The body may undergo defor-mations ϕ : Ω → R

d and phase transformations. The latter will be 
hara
terized by theinternal variable z : Ω → ZM , where ZM is the Gibbs simplex
ZM =

{
Z = (z1, . . . , zM) ∈ R

M
∣∣∣ zj ≥ 0,

M∑

m=1

zm = 1
} (2.1)The material behavior also depends on the temperature θ, whi
h will be 
onsidered asa time dependent and possibly spa
e dependent given parameter. Thus, we will notsolve an asso
iated heat equation, we rather treat θ as an �applied load� and hen
e write

θappl : [0, T ] × Ω → R for the given temperature pro�le.This approximation for the temperature is often used in engineering models and has itsjusti�
ation in situations where the 
hanges of the loading are slow and the body is smallin at least one dire
tion su
h that ex
ess heat 
an be transported very fast to the surfa
eand radiated into the environment. Moreover, heating at parts of the body (e.g. one endof a long wire) may give rise to a temperature pro�le that depends on the material points.In fa
t, the same arguments are used for the justi�
ation of isothermal models; hen
ethe present work is a se
ond step into the dire
tion of models taking into a

ount a fullthermo-me
hani
al 
oupling. 3



The stored-energy density W : Ω×R
d×d ×ZM × (0,∞) → R∞ := R∪ {∞} des
ribes thematerial behavior and we obtain the stored-energy fun
tional

E(t, ϕ, z) =

∫

Ω

W (x,∇ϕ(x), z(x), Qappl(t, x))dx+ G(z) − 〈ℓ(t), ϕ〉, (2.2)where ℓ(t) denotes the applied me
hani
al loading in the form
〈ℓ(t), ϕ〉 =

∫

Ω

fappl(t, x) · ϕ(x)dx+

∫

∂Ω

gappl(t, x) · ϕ(x)da. (2.3)The term G(z) denotes some regularizing 
ontribution whi
h introdu
es a length s
ale andthus suppresses very small os
illations of the volume fra
tions z. As for mi
rostru
tures inshape-memory alloys we expe
t jumps in z (e.g. at habit planes where twins of martensitesmeet the austenite) we 
hoose either
G(z) =

∫

Ω

κ|||Dz||| = sup
{
κ

∫

Ω

z · divψdx
∣∣∣ ψ ∈ C1

c(Ω; RM×d), |||ψ(x)|||∗ ≤ 1 on Ω
}(where ||| · |||∗ denotes an arbitrary norm on R

M×d) or
G(z) = κ

∫

Ω×Ω

|z(x) − z(y)|p

|x− y|d+pα
dxdyfor some p ∈ (1,∞) and α ∈ (0, 1/p). These terms are su
h that fun
tions z ∈ Z =

L1(Ω;ZM) with G(z) < ∞ lie in BV(Ω; RM ) or Wα,p(Ω; RM), respe
tively. These spa
esembed 
ompa
tly into L1(Ω; RM ) but still allow for solutions with jumps along su�
ientlyregular hypersurfa
es in Ω. For simpli
ity we restri
t to the 
ase Wα,p(Ω; RM) and referto [Mai06℄ for the 
ase using BV(Ω; RM).For des
ribing the hystereti
 behavior of the phase transformations we use a dissipationdistan
e D de�ned on Z. For this we introdu
e a 
onstitutive fun
tion δ : Ω×ZM ×ZM →
[0,∞), whi
h satis�es for all x ∈ Ω, z1, z2, z3 ∈ ZM the estimates

1
C
|z1 − z2| ≤ δ(x, z1, z2) ≤ C|z1 − z2|,

δ(x, z1, z3) ≤ δ(x, z1, z2) + δ(x, z2, z3).
(2.4)With this we de�ne the dissipation distan
e D : Z × Z → [0,∞) via

D(zold, znew) =

∫

Ω

δ(x, zold(x), znew(x))dx,whi
h then satis�es 1
C
‖zold − znew‖L1(Ω) ≤ D(zold, znew) ≤ C‖zold − znew‖L1(Ω) and thetriangle inequality. Note that we allow for unsymmetry, i.e. D(zold, znew) 6= D(znew, zold)may o

ur.We spe
ify the set of admissible deformations F by 
hoosing a suitable Sobolev spa
e

W1,p(Ω; Rd) and by des
ribing Diri
hlet data at the part ΓDir of ∂Ω:
F = {ϕ ∈ W1,p(Ω; Rd) | (ϕ− ϕDir)

∣∣
ΓDir

= 0 },4



where ϕDir ∈ W1,p(Ω; Rd) is given. Throughout we assume that p ∈ (1,∞),Ω and ΓDirare su
h that there exists CΩ,Dir > 0 so that
∀ϕ ∈ W1,p(Ω; Rd) with ϕ∣∣

ΓDir

= 0 : ‖∇ϕ‖Lp ≥ CΩ,Dir‖ϕ‖W1,p. (2.5)Finally the pro
ess is assumed to be governed by the energeti
 formulation of rate-independent pro
esses as introdu
ed in [MT99, MTL02℄, see also the survey in [Mie05℄.A fun
tion (ϕ, z) : [0, T ] → F ×Z is 
alled an energeti
 solution of the rate-independentsystem asso
iated with E and D if ∂tE(·, ϕ(·), z(·)) ∈ L1([0, T ]) and if for all t ∈ [0, T ] wehave the global stability (S) and the energy balan
e (E):(S) ∀ (ϕ̃, z̃) ∈ F × Z : E(t, ϕ(t), z(t)) ≤ E(t, ϕ̃, z̃) + D(z(t), z̃),(E) E(t, ϕ(t), z(t)) + DissD(z, [0, t]) = E(0, ϕ(0), z(0)) +
∫ t

0
∂sE(s, ϕ(s), z(s))ds,where the dissipation DissD is de�ned via

DissD(z, [r, s]) = sup
{ N∑

j=1

D(z(tj−1), z(tj)
∣∣∣N ∈ N, r ≤ t0 < t1 < · · · < tN ≤ s

}
.We note that this energeti
 formulation redu
es to the 
lassi
al theory of generalizedstandard materials (see [Mie06℄), if we assume that the solutions are su�
iently smoothand δ has the form δ(x, z1, z2) = ∆(x, z2 − z1). Then, (S) and (E) are equivalent to

{
− div ∂FW (x,∇ϕ, z, θappl) = fappl in Ω,

(ϕ− ϕDir)
∣∣
ΓDir

= 0, ∂FW (x,∇ϕ, z, θappl)n = gappl on ∂Ω\ΓDir

0 ∈ ∂ż∆(x, ż) + ∂zW (x,∇ϕ, z, θappl) + DG(z) in Ω,where ż = ∂
∂t
z.3 The mathemati
al assumptionsWe make the assumptions more pre
ise now. For the stored-energy density W we let

D = Ω × R
d×d × ZM × [θmin, θmax] and assume

W : D → R∞ is a normal integrand, (3.1)i.e. for a.a. x ∈ Ω the fun
tion W (x, ·, ·, ·) is lower semi
ontinuous and for all (F, z, θ) thefun
tion W (·, F, z, θ) is measurable. We assume 
oer
ivity as follows:
∃ p > d ∃C > 0 ∀ (x, F, z, θ) ∈ D : W (x, F, z, θ) ≥

1

C
|F |P − C. (3.2)Our 
onditions will be 
ompatible with the 
ondition W (x, F, z, θ) = +∞ for detF ≤ 0and W (x, Fk, z, θ) → +∞ if 0 < detFk → 0. Moreover, they are 
ompatible with frame5



indi�eren
e, namely W (x,RF, z, θ) = W (x, F, z, θ) for all R ∈ SO(Rd). Of 
ourse, we donot need to impose these 
onditions as they are not needed to prove the existen
e resultbelow. However, they are physi
ally desirable and make the mathemati
s mu
h moredi�
ult. The notion of poly
onvexity was developed to handle exa
tly this 
ase, see e.g.[Mül99, Bal02℄.The stored-energy density W is 
alled poly
onvex in F ∈ R
d×d, if W (x, ·, z, θ) 
an bewritten as a 
onvex fun
tion of M(F ) ∈ R

τ(d), the ve
tor of all minors (subdeterminants)of F ∈ R
d×d. For d = 2 we have M(F ) = (F, detF ) with τ(2) = 5 and for d = 3 we have

M(F ) = (F, cof F, detF ) with τ(3) = 19. More pre
isely, we assume
∃ a normal integrand G: Ω × R

τ(d) × ZM × [θmin, θmax] → R∞ :(i) ∀ (x, z, θ) : G(x, ·, z, θ): R
τ(d) → R∞ is 
onvex,(ii) ∀ (x, F, z, θ) ∈ D : W (x, F, z, θ) = G(x,M(F ), z, θ).

(3.3)The �nal 
onditions 
on
ern the temperature dependen
e ofW . The applied temperaturewill insert or extra
t energy a

ording to ∂θW (x,∇ϕ, z, θappl)θ̇appl. To 
ontrol this termwe assume that θappl is smooth enough and that the derivatives ∂j
θW exist for j = 1 and

2 everywhere where W is �nite and that these derivatives are dominated by W itself:
∃ cW0 , c

W
1 > 0 ∀ (x, F, z, θ) ∈ D ∀ j ∈ {1, 2} :

|∂j
θW (x, F, z, θ)| ≤ cW1 (W (x, F, z, θ) + cW0 ).

(3.4)Lemma 3.1 If assumption (3.4) holds, then for all (x, F, z, θ) ∈ D and all θ1 ∈ [θmin, θmax]we have
W (x, F, z, θ1) + cW0 ≤ ecW

1
|θ1−θ|(W (x, F, z, θ) + cW0 ).Proof: We 
onsider (x, F, z) to be �xed and de�ne w(θ) = W (x, F, z, θ) + cW0 . Assump-tion (3.4) simply means |w′(θ)| ≤ cW1 w(θ). Thus, Gronwall's lemma yields the desiredresult w(θ1) ≤ ecW

1
|θ1−θ|w(θ) for all θ, θ1 ∈ [θmin, θmax]. In parti
ular, it is su�
ient to have

w(θ) <∞ at one point to 
on
lude that w is �nite on the whole interval.Before using this 
ondition for the estimate of the time derivative of the stored-energyfun
tion we dis
uss possible 
onstitutive relations that satisfy all our assumptions. Forsimpli
ity we negle
t any dependen
e on the material point x ∈ Ω. In shape-memorymodels it is usual to start from the stored-energy densities of the pure phases, i.e. with
z = ej ∈ R

M for the jth phase or variant of a phase. We assume that ea
h of these phasesis des
ribed by a poly
onvex stored-energy density
Wj :

{
R

d×d × [θmin, θmax] → R∞

(F, θ) 7→ gj(M(F ), θ),where gj(·, θ) is assumed to be 
ontinuous and 
onvex while g(M(F ), ·) ∈ C2([θmin, θmax])or g(M(F ), ·) ≡ +∞. Typi
al examples are of the type Wj(F, θ) = +∞ for detF ≤ 0 and
Wj(F, θ) = aj(θ)|F |

p +
bj(θ)

(detF )r
+ W̃j(F, θ) for detF > 0, (3.5)6



where aj, bj ∈ C2([θmin, θmax]; (0,∞)) and the exponents satisfy r > 0 and p > d. Thefun
tion W̃j : R
d×d×[θmin, θmax] → R is assumed to be poly
onvex in F , twi
e di�erentiablein θ, and of lower order, i.e.

∀ i ∈ {0, 1, 2} ∀F ∈ R
d×d ∀ θ ∈ [θmin, θmax] : |∂i

θW̃j(F, θ)| ≤ C(1 + |F |)epfor some C > 0 and p̃ < p. In parti
ular, the fun
tions W̃j are supposed to 
ontainthe information about the anisotropies of the di�erent phases, see [SN03℄ for suitableanisotropi
 poly
onvex fun
tions.The �nal stored-energy density is now obtained by interpolating between the extremalpure phases. We may either use a linear or an exponential interpolation and in additionwe may add a mixture term for penalizing phase mixtures:
W (F, z, θ) =

M∑

j=1

zjWj(F, θ) + wmix(z, θ), (3.6)or
W (F, z, θ) =

1

β
log

( M∑

j=1

zje
βWj(F,θ)

)
+ wmix(z, θ), (3.7)where, for instan
e, wmix(z, θ) =

∑M

j=1 γjz
rj

j (1−zj)
rj for γj = γj(θ) ≥ 0 and rj = rj(θ) > 0.In both 
ases, the fun
tion W (·, z, θ) inherits poly
onvexity. For (3.7) we may even allowfor β = β(θ) if the leading 
oe�
ients aj and bj for Wj in (3.5) are independent of j.Then, W in (3.7) takes the form

W (F, z, θ) = a(θ)|F |p +
b(θ)

(detF )r
+

1

β(θ)
log

( M∑

j=1

zje
β(θ)fWj(F,θ)

)
+ wmix(z, θ).In 
on
lusion, this shows that based on standard poly
onvex materials it is easily possibleto 
onstru
t stored-energy densities satisfying the above assumptions.4 The main existen
e resultFor a given temperature pro�le θappl and a given external loading ℓ with

θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])) and
ℓ ∈ C1([0, T ]),W1,p(Ω; Rd)∗)

(4.1)we now study the stored-energy fun
tional E as de�ned in (2.2).Proposition 4.1 Under the above assumptions the following holds:(a) If for some (t∗, ϕ, z) ∈ [0, T ] × F × Z we have E(t∗, ϕ, z) < ∞, then E(·, ϕ, z) ∈

C1([0, T ]) and ∂tE(t, ϕ, z) =
∫
Ω
∂θW (∇ϕ, z, θappl(t))θ̇appl(t)dx− 〈ℓ̇(t), ϕ〉.7



(b) There exist 
onstants cE0 , cE1 > 0, su
h that E(t, ϕ, z) < ∞ implies |∂tE(t, ϕ, z)| ≤
cE1 (E(t, ϕ, z) + cE0 ).(
) For ea
h E∗ ∈ R and ε > 0 there exists δ > 0 su
h that E(t1, ϕ, z) ≤ E∗ and
|t1 − t2| < δ imply |∂tE(t1, ϕ, z) − ∂tE(t2, ϕ, z)| < ε.Proof: We �rst use the 
oer
ivity (3.2) to �nd

E(t∗, ϕ, z) ≥
1

C
‖∇ϕ‖p

Lp − C|Ω| − ‖ℓ(t∗)‖‖ϕ‖W1,p .Using (2.5) we obtain c0, C0 > 0 su
h that
E(t∗, ϕ, z) ≥ c0‖ϕ‖

p

W1,p − C0. (4.2)To show di�erentiability with respe
t to t we use θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax]))and 
ondition (3.4). For h 6= 0 and t∗ + h ∈ [0, T ] the mean-value theorem provides some
s ∈ [0, 1] su
h that

1
h
(E(t∗+h, ϕ, z) − E(t∗, ϕ, z)) =

∫
Ω
∂θW (x,∇ϕ, z, θappl(t∗+sh, x))∂tθappl((t∗+sh, x)dx− 〈 1

h
(ℓ(t+h) − ℓ(t)), ϕ〉.Using E(t∗, ϕ, z) < ∞ and Lemma 3.1 we know that |∂θW (x,∇ϕ(x), z(x), θ̃(x))| ≤ g(x),a.e. on Ω for some g̃ ∈ L1(Ω), where θ̃ ∈ L∞(Ω); [θmin, θmax]) is arbitrary. Sin
e ∂tθ ∈

C0([0, T ]; L∞(Ω)) we may pass to the limit h→ ∞ by the Lebesgue theorem and part (a)is proved.For part (b) we use the representation of part (a) and estimate as follows
|∂tE(t, ϕ, z)| ≤

∫

Ω

|∂θW (x,∇ϕ, z)|dx ‖∂tθappl‖∞ + ‖ℓ̇(t)‖∗‖ϕ‖W1,p.Using (3.4) for j = 1 and (4.2) the desired result follows immediately.For part (
) we use (3.4) for j = 2 and (4.1), whi
h implies
‖ℓ̇(t1) − ℓ̇(t2)‖∗ + ‖∂tθ(t1·) − ∂tθ(t2, ·)‖L∞(Ω) ≤ ω(|t1 − t2|), (4.3)where ω: [0,∞) → [0,∞) is a 
ontinuous modulus of 
ontinuity with ω(0) = 0. We obtain

|∂tE(t1, ϕ, z) − ∂tE(t2, ϕ, z)|

≤
∫
Ω
|∂θW (x,∇ϕ, z, θ(t1)) − ∂θW (x,∇ϕ, z, θ(t2))| ‖∂tθ(t1)‖∞dx

+
∫
Ω
|∂θW (x,∇ϕ, z, θ(t2))| ‖∂tθ(t1)−∂tθ(t2)‖∞dx+ ‖ℓ̇(t1)−ℓ̇(t2)‖∗ ‖ϕ‖W1,p

≤
∫
Ω
cW1 [W (x,∇ϕ, z, θ(t1+s(t2−t1))) + c0] ‖θ(t1) − θ(t2)‖∞dx ‖∂tθ‖∞

+C̃(E(t, ϕ, z) + cE0 ) ω(t1 − t2)

≤ Ĉ(E∗ + cE0 )(|t1 − t2| + ω(t1 − t2)).8



Thus, the proposition is established.We now show that the energeti
 formulation (S) & (E) introdu
ed in Se
tion 2 has at leastone solution q = (ϕ, z) : [0, T ] → Q = F × Z, for a given stable initial datum q0 ∈ Q.Here q0 is 
alled stable if it satis�es the (stati
) 
ondition (S) at time t = 0. The existen
etheory relies on the abstra
t framework developed in [MaM05℄ with the re
ent re�nementsderived in [Mie05, FM06℄. These re�nements are based on the sele
tion te
hnique and anapproximation result of Lebesgue integrals via Riemann sums developed in [DFT05℄.Here we do not go into the details of the proof of the abstra
t result. We just mention thatthe theory is based on time-in
remental minimization problems for sequen
es of partitions
0 = tk0 < tk1 < · · · < tkNk−1 < tkNk

= T in the form:(IP)k { Given q0 ∈ Q, �nd iteratively qk
1 , . . . , q

k
Nk

∈ Q su
h that
qk
j minimizes q̃ 7→ E(tkj , q̃) + D(qj−1, q̃).Thus, for ea
h k we may de�ne the pie
ewise 
onstant interpolant qk : [0, T ] → Q with

qk(t) = qk
j for t ∈ [tkj , t

k
j+1) for j = 0, . . . , Nk.Theorem 4.2 Let Q = F × Z be as spe
i�ed above and let E and D satisfy the as-sumptions from above. Then, for ea
h stable q0 ∈ Q there exists an energeti
 solution

q0 : [0, T ] → Q with q(0) = q0. This solution q = (ϕ, z) satis�es
ϕ ∈ L∞([0, T ],W1,p(Ω; Rd)) and
z ∈ L∞([0, T ],Wα,2(Ω; RM) ∩ BV([0, T ]; L1(Ω,Rm)),and it 
an be obtained as the limit of a subsequen
e (qkl)l∈N of the above interpolantsasso
iated with (IP)k as follows:

(i) ∀ t ∈ [0, T ] : zkl(t) ⇀ z(t) in Wα,2(Ω; RM),

(ii) ∀ t ∈ [0, T ] : E(t, qkl(t)) → E(t, q(t))

(iii) ∀ t ∈ [0, T ] : DissD(qkl, [0, t]) → DissD(q, [0, t])

(iv) ∀ t ∈ [0, T ] ∃ subseq. (kt
n)n∈N of (kl)l∈N : ϕkt

n(t) ⇀ ϕ(t) in W1,p(Ω; Rd).The main point in passing to the limit is the use of the weak lower semi
ontinuity of
E(t, ·) on Q 
onsidered as a 
onvex subset of W1,p(Ω; Rd)×Wα,2(Ω; RM). The dissipationbehaves better as it is strongly 
ontinuous in L1(Ω) and hen
e weakly 
ontinuous in
Z = Wα,2(Ω;ZM). Together with the good dependen
e on the time t, whi
h was derivedin Proposition 4.1, we have ful�lled all assumptions of the abstra
t theory in [FM06,Se
t.3℄. This proves our Theorem 4.2.
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5 Time-dependent Diri
hlet 
onditions, 
ompositions,and Lie groupsSo far we have studied the situation that the boundary 
onditions ϕDir on ΓDir ⊂ ∂Ωare independent of time. Hen
e, the spa
e F of admissible deformations 
ould be 
hosenindependent of time as well. Of 
ourse, typi
al pra
ti
al situations lead to 
ases where
ϕDir depends on time.The usual treatments of time-dependent boundary data involve either the additive split
ϕ(t) = ϕDir(t) + u, where u 
an then be 
hosen in a �xed spa
e, or a repla
ement of the�hard 
onstraint� ϕ − ϕDir(t)

∣∣
ΓDir

≡ 0 by the penalization 1
δ

∫
ΓDir

|ϕ − ϕDir(t)|
2 da, whi
his added to the energy fun
tional. The latter method would be appli
able in our 
ase of�nite-strain elasti
ity. However, it has the disadvantage that the treatment of the limit

δ → 0 is not so easy and it is rather awkward to 
ontrol the work done by the 
hangingboundary 
ondition. The additive split ϕ = ϕDir+u does not work here, as in �nite-strainelasti
ity the additive split of the deformation gradient F = ∇ϕ = ∇ϕDir + ∇u is not
ompatible with the blow-up of the stored-energy density W near detF = 0.Instead we follow the approa
h in [FM06, Se
t.5℄ and use the 
omposition
ϕ(t, x) = ϕDir(t, ψ(t, x)) = (ϕDir(t, ·) ◦ ψ(t))(x) (5.1)that leads to a multipli
ative split of the deformation gradient
F = ∇ϕ(t, x) = ∇ϕDir(t, ψ(t, x))∇ψ(t, x). (5.2)To make the following analysis rigorous we assume that ϕDir(t, ·) 
an be smoothly extendedonto all of R

d su
h that it is in fa
t a di�eomorphism. More pre
isely, we assume
ϕDir ∈ C1([0, T ]×R

d; Rd), ∇ϕDir ∈ BC1([0, T ]×R
d; Rd×d),

∇ϕDir(t, x) ∈ GL+(Rd) for all (t, x) and (∇ϕDir)
−1 ∈ BC0([0, T ]×R

d; Rd×d).
(5.3)Clearly, we have ϕ(t, x) = ϕDir(t, x) for x ∈ ΓDir if and only if ψ(t, x) = x for x ∈ ΓDir.Hen
e, we let

F̃ = {ψ ∈ W1,p(Ω; Rd) | (ψ − id)∣∣
ΓDir=0

}With the notations from the previous se
tions we then de�ne Q̃ = F̃ × Z and
Ẽ(t, ψ, z) = E(t, ϕDir(t) ◦ ψ, z)and keep D : Z × Z → [0,∞) as above.The 
ru
ial 
ondition that is needed for 
ontrolling the time derivative ∂tẼ involves theKir
hho� stress tensor

K(x, F, z, θ) = ∂FW (x, F, z, θ)F T ∈ R
d×d.In �nite-strain elasti
ity it is advantageous and illuminating to 
onsider F = ∇ϕ as anelement of the Lie group

GL+(Rd) = {G ∈ R
d×d |G−1 exists and detG > 0 }.10



Then, the Kir
hho� tensor turns out to be the left multipli
ative derivative, viz.,
K(x, F, z, θ)[H ] = lim

ε→0

d

dε
W (x, eεHF, z, θ) = ∂FW (x, F, z, θ)[HF ].In parti
ular, we see thatK(x, F, z, θ) is an element of gl(Rd)∗, where gl(Rd) = TIGL+(Rd)is the Lie algebra of GL+(Rd).Following [FM06℄ (see also [Bal02℄) we assume that in all points (x, F, z, θ) ∈ D with

W (x, F, z, θ) <∞ the fun
tion W is twi
e di�erentiable in F su
h that
∃ cK0 , c

K
1 > 0 ∀ (x, F, z, θ) ∈ D ∀H ∈ R

d×d :

K(x, F, z, θ) ∗ ≤ cK1
(
W (x, F, z, θ)+cK0

)
, (5.4a)

∂FK(x, F, z, θ)[HF ] ∗ ≤ cK1
(
W (x, F, z, θ)+cK0

)
H , (5.4b)where · is an arbitrary norm on gl(Rd) and · ∗ is the dual norm on gl(Rd)∗.To illuminate the (multipli
ative) Lie group stru
ture further, we omit temporarily thevariables x, z, and θ. The following Lemma 5.1 states that 
ondition (5.4a) is equivalentto global Lips
hitz 
ontinuity of log(W+cK0 ): GL+(Rd) → [0,∞) with respe
t to theright-invariant distan
e

dGL(F0, F1)= inf
{ ∫ 1

0

Ġ(t)G(t)−1 dt
∣∣∣ G ∈ C1([0, 1]; GL+(Rd)),

G(0) = F0, G(1) = F1

}
.

(5.5)This de�nition easily gives the right-invarian
e dGL(F0F, F1F ) = dGL(F0, F1) for all
F0, F1, F ∈ GL+(Rd).Lemma 5.1 For W ∈ C1(GL+(Rd),R) the bound in (5.4a) is equivalent to
∀F0, F1 ∈ GL+(Rd) :

∣∣∣ log
(
W (F0) + cK0

)
− log

(
W (F1) + cK0

)∣∣∣ ≤ cK1 dGL(F0, F1). (5.6)Proof: Equation (5.6) follows from (5.4a) by di�erentiating of w(t) = log(W (F (t))+cK0 )with respe
t to time, where t 7→ F (t) is the geodesi
 
onne
ting F0 and F1. Then,
ẇ(t) =

∂FW (F (t))[Ḟ (t)]

W (F (t)) + cK0
=
K(F (t)) : (Ḟ (t)F (t)−1)

W (F ) + cK0
≤ cK1 Ḟ (t)F (t)−1and integration yields (5.6). For the opposite 
on
lusion we use that

1

ε
dGL(F, F+εF̂ ) → F̂F−1 for ε→ 0.With F̂ = HF and (5.6) for F0 = F1 and F1 = F + εF̂ we �nd, after division by ε andtaking the limit ε → 0,

∂FW (F )[HF ]

W (F ) + cK0
≤ cK1 H .11



As H ∈ TF GL+(Rd) is arbitrary, this implies (5.4a).The 
onditions (5.4) are in fa
t satis�ed by many poly
onvex stored-energy densities, forinstan
e for Ogden materials. Consider
W (F ) = α|F |p +

β

(detF )r
with α, β, r > 0 and p ≥ 2.Then, the Kir
hho� tensor takes the form

K(F ) = αp|F |p−2FFT −
βr

(detF )r
Iand it is easy to establish (5.4) with cK0 = 0 and cK1 = max{p, r}.Unfortunately, there is nothing known about the interplay of 
ondition (5.6) and poly
on-vexity. In parti
ular, for appli
ations in �nite-strain elastoplasti
ity (
f. [Mie02, Mie03,Mie04b, MiM06, GM*06℄) it would be interesting to know whether there exists cK1 > 0su
h that the fun
tion

F 7→ ecK
1

dGL(I,F )is poly
onvex on R
d×d, when extended by +∞ outside of GL+(Rd). This question alsoinvolves the 
hoi
e of the norm · on gl(Rd) used in (5.5). The only positive result isbased on the seminorm

ξ = ξ+ξ⊤ F with η 2
F = η:η,see [MiM06℄.It is easy to see that the de�nitions of Q̃ = F̃ × Z, Ẽ : [0, T ] × Q̃ → R∞, and D :

Z × Z → [0,∞) make Ẽ(t, ·) and D weakly lower semi
ontinuous with respe
t to thestrong topology of W1,p(Ω; Rd) × Wα,2(Ω;ZM). Moreover, D is even weakly 
ontinuous.Thus, the remaining properties to be established involve the time derivative of ∂tẼ , i.e. thepower of the external loading whi
h now in
ludes the for
es fappl, gappl, the temperature
θappl, and the Diri
hlet boundary data ϕDir.For the time derivative of W (x, (∇ϕDir)∇ψ, z, θappl(t)) we obtain the old term involving
θ̇appl(t) and a new term involving ∇ϕ̇Dir, namely

∂FW (x,∇ϕDir∇ψ, z, θappl(t)):
[
∇ϕ̇Dir∇ψ

]

=
[
∂FW (x,∇ϕDir∇ψ, z, θappl(t))

(
∇ϕDir∇ψ

)⊤]
:
[
∇ϕ̇Dir∇ψ

(
∇ϕDir∇ψ

)−1
]

= K(x,∇ϕDir∇ψ, z, θappl(t)):[∇ϕ̇Dir(∇ϕDir)
−1]where we have used the identity A:B = (AC⊤):(BC−1). Hen
e, in analogy to Proposition4.1 we obtain the following formula by the help of the assumption (5.4a):

∂tẼ(t, ψ, z) =

∫

Ω

K(x,∇ϕDir∇ψ, z, θappl(t)) :
[
∇ϕ̇Dir(∇ϕDir)

−1
]
dx

+

∫

Ω

∂θW (∇ϕDir∇ψ, z, θappl(t))θ̇appl(t)dx

− 〈ℓ̇(t), ϕDir〉 − 〈ℓ(t), ϕ̇Dir〉,12



where ϕDir,∇ϕDir and ϕ̇Dir = ∂tϕDir are evaluated at (t, ψ(x)). Using (5.3) we �nd
∇ϕ̇Dir(∇ϕDir)

−1 ∈ C0([0, T ] × Ω; Rd×d) and obtain the desired estimate
|∂tẼ(t, ψ, z)| ≤ c̃E1

(
Ẽ(t, ψ, z) + c̃E0

)
.Moreover, employing (5.4b) as in [FM06, Se
t.5℄ and the results of Proposition 4.1 we�nd for ea
h E∗ ∈ R and ea
h ε > 0 a δ > 0 su
h that Ẽ(t1, ψ, z) ≤ E∗ and |t1 − t2| < δimplies |∂tẼ(t1, ψ, z) − ∂tẼ(t2, ψ, z)| < ε. Hen
e, the existen
e result of Se
tion 4 
an begeneralized to the 
ase of time dependent boundary 
onditions as follows without any
hange in the proof.Theorem 5.2 Let Q̃ = F̃ × Z, Ẽ and D be as spe
i�ed above. Let all the assumptionsof Se
tion 3 hold and, additionally, (5.3) and (5.4). Then, for ea
h stable initial state

(ψ0, z0) ∈ Q̃ there exists an energeti
 solution (ψ, z) : [0, T ] → Q̃ asso
iated with thefun
tionals Ẽ and D satisfying (ψ(0), z(0)) = (ψ0, z0).Moreover, this solution satis�es all the properties stated in Theorem 4.2 analogously.6 Dis
ussionWe have shown that the previously developed isothermal models for the hystereti
 behav-ior for phase transformations in shape-memory alloys 
an be transfered to the 
ase wherethe temperature is varying but given in advan
e. The aim was to show that the model isstill 
apable to handle �nite-strain elasti
ity.There are several reasons why a true thermodynami
ally 
onsistent 
oupling to the energyequations is still out of the rea
h of a rigorous mathemati
al treatment. One majorreason is that almost all theory of �nite-strain elasti
ity is related to the dire
t method of
al
ulus of variations. Thus, we do not know whether the 
onstru
ted global minimizersfor poly
onvex materials laws satisfy the equilibrium equations (
f. [Bal02℄) and whetherthey are unique. See [KS84, KTW03, Kno06℄ for a series of uniqueness results in thestati
 and dynami
al 
ase.Using global minimization we have to expe
t that the energeti
 solutions as dis
ussedabove have jumps as fun
tions of time. In a truely 
oupled thermo-me
hani
al modelthis would provide an instant release of energy whi
h 
ould not be 
ontrolled withoutknowing the �jump path�. If suitable uniqueness 
onditions, at least in 
ertain relevantregimes, would be available then it should be possible to show that no jumps o

ur. Infa
t it is the purpose of the mesos
opi
al models using the phase fra
tions z(t, x) ∈ ZM todevise smoother models. In the 
ase of small strains, see e.g., [AP04, SZ06, AMS06℄, thereis mu
h more hope to treat suitable models with 
orre
t 
oupling between temperature
hanges and phase transformations.
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