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Abstract

We propose a model for phase transformations that are driven by changes in
the temperature. We consider the temperature as a prescribed prescribed quantity
like an applied load. The model is based on the energetic formulation for rate-
independent systems and thus allows for finite-strain elasticity. Time-dependent
Dirichlet boundary conditions can be treated by decomposing the deformation as a
composition of a given deformation satisfying the time-dependent boundary condi-
tions and a part coinciding with the identity on the Dirichlet boundary.

1 Introduction

The mathematical modeling of shape-memory materials has attracted a lot of attention
within the last twenty-five years by quite different series of work. One area was based on
more phenomenological models in one or more spatial dimensions but included a thermo-
dynamically consistent coupling to the energy equation, see |Fal80, CFV90, HM93, SZ93,
ACJ96, FM96, BS96, KMS99, RS99, AP04]. The other area is treating a question of
possible microstructures of equilibria by a careful analysis of the underlying microscopic
crystallographic information about the different phases, see [BJ87, Bha93, Miil99, Bha03|.

Only recently the latter theory was generalized to describe also the evolution of such
microstructure, yet it remained restricted to the rate-independent and isothermal case,
see [IMT99, MTLO02, MR03, Mie04a, KMRO05|. However, there is also some work on rate-
dependent systems respecting the correct microscopical data, see [AGR03, KO04| and the
survey [Rou04].

However, a systematic mathematical study of temperature-driven phase transformation
does not exist yet. Here, we want to provide some first results in this direction as there
are many engineering applications using the temperature as the main control mechanism
for the shape-memory effect, see e.g. [HM93, KMS99, AP04, SZ06| and [BS96, Ch. 5.

In order to be able to treat the case of finite-strain elasticity, which is modeled by poly-
convex stored-energy density, we stay in the rate-independent setting, which allows us to
use minimization techniques (direct method in the calculus of variations). However, this
approach implies that we have to restrict the temperature fields to stationary states at
each time instant ¢ € [0, 7], where t is a slow process time that moves much slower than
all relaxation processes in the body. In particular, we make the modeling assumption
that the temperature 6 is given a priori as an “applied load” and we write 6 = G,y (1, ).
Such an assumption is often used in engineering, as it is acceptable if the body is small
in at least one direction like wires or plates. Then, excessive or missing heat can be



balanced through the environment. Nevertheless, f,,01(f, ) may be a non-constant equi-
librium of the heat equation, if the temperature is fixed by heating or cooling at parts of
the boundary.

Our model consists of a material that can be described by a stored-energy density
W(z,V,z,0), where z € Q denotes the material point, F' = Ve is the gradient of
the deformation ¢ : Q — R% and z: Q — Zy = {(21,...,2a) € 0.1JM | 1 2, = M }
is the phase indicator where z; € [0, 1] gives the volume fraction of the jth phase. The
energy potential then takes the form

E(t g, 2) = / W (2, V. 2, Ouper(£,2)) i + G(2) — (£(1). ),

where ¢ € C1([0, T], WHP(2)*) denotes an applied loading, see (2.3), and G is a regularizing
term such that G(z) ~ [|z[[{yaq for some a € (0,1/p).

In addition, we specify a dissipation distance D on Z = LY(); Z) in the form

D(Zolda Znew) = /{; 5($a Zold(x)> Znew(£)) dl’,
where §(z, -, ) is a (possibly unsymmetric) metric on Zy;, see (2.4). Specifying the set F
as those function ¢ € WH?(Q; RY) satisfying Dirichlet boundary data op; at I'p;, C 99,
we are able to pose our problem as the energetic formulation for rate-independent systems
as in [MTL02, MaM05, Mie05]. For a given initial value (©°, 2°) € F x Z we have to find
a pair (p,2): [0,T] — F x Z with (©(0),2(0)) = (¢°, 2°) such that for all ¢ € [0, 7] the
global stability (S) and the energy balance (E) hold

(S) E(t,p(t), 2(t) < E(t,22) + D(2(t),2) for all (§,2) € F x Z,
(B) E(t, (1), 2(t)) + Dissp(z, [0,4]) = £(0,¢%,2°) + [; 0:E(s, ¢(s), 2(s)) ds,

where Dissp(z, [s,1]) is defined as the supremum of 37, D(2(t;1), 2(t;)) over all finite
partitions s < tg < t; < --- < t,, < t. For short, we call any such (p,z): [0,7] - F x Z
an energetic solution associated with € and D.

This energetic formulation is a weak form for the more familiar differential inclusions for
rate-independent systems (cf. [MT04, Mie05]). Its advantage arises from the fact that it
is derivative free and thus allows for a wide range of applications. In Section 2 we provide
more details on the model and in Section 3 we specify the exact assumptions on the
constitutive functions W and §. The main point is that the partial derivative 0,E(t, ¢, 2)
has to be defined whenever £(t, ¢, z) < co. In finite-strain elasticity we have to allow for
E(t,p,z) = +oo, namely if det Vipo(z) < 0 on a set of positive measure. Thus, we have
E(t,p,2) = 400 on a dense set in [0,T] x F X Z.

In Proposition 4.1 we will derive an estimate of the form
(¢, 0. 2)| < T (E(t 0. 2) + i) (1.1)

under the assumption that W satisfies [0,W (x, F, 2,0)| < ¢}V (W (z, F, z,0) +¢}) and that
Otbappr € L([0, T x ). Using the standard coercivity and polyconvexity assumptions we
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then show in Theorem 4.2 that for all stable initial data (¢°, 2°) energetic solution exist.
Here, we draw from the abstract theory developed in [MaM05, Mie05, FMO06].

Finally, Section 5 treats the case of time-dependent Dirichlet boundary conditions. For
this we assume that each ¢pi(t,-) can be extended to a diffeomorphism from R? to R?
such that pp;, € C2([0,7] x R R) and Vpi, (Vpi) 1 € BCH([0,T] x RY; R¥>*?). Then,
we seek o(t,-) in the form @(t, ) = @pi(t, ¥(t, z)) with (¢, -) € F, where

F={¢p e WPQR)|¢[. =id} and E(t,v,2) = E(t, ppult) 0 P, 2).
The crucial observation in [FMO6] was that 9,E(¢,1, z) again satisfies an estimate of the
form (1.1), if W satisfies an estimate of the form

|0pW (2, F, 2, 0) F"| < cff (W (x, F, 2,0) + ¢f). (1.2)

The tensor on the left-hand side is called the Kirchhoff stress tensor. Considering F' as an
element of the Lie group GL, (R?) we have to interpret 9pW as an element of T5GL, (R9)
and OpW ET lies in T;GL,(RY) = gl(RY)*. We address some of these Lie group issues,
which were initiated in |[Mie02, Mie03|, in the context of finite-strain elastoplasticity.

Using (1.2) and a similar estimate for the second derivative we are then able to transfer
the isothermal existence result of [FMO06| into our temperature-driven model, see Theorem
5.2.

2 The mechanical model

We consider a body with reference configuration 2 C R?. The body may undergo defor-
mations ¢ :  — R? and phase transformations. The latter will be characterized by the
internal variable z : Q — Z,;, where Z,; is the Gibbs simplex

M
2 >0, szzl} (2.1)
m=1

The material behavior also depends on the temperature 6, which will be considered as
a time dependent and possibly space dependent given parameter. Thus, we will not
solve an associated heat equation, we rather treat # as an “applied load” and hence write
Oappl © [0, 7] x Q@ — R for the given temperature profile.

ZM:{Z:(zl,...,zM)ERM

This approximation for the temperature is often used in engineering models and has its
justification in situations where the changes of the loading are slow and the body is small
in at least one direction such that excess heat can be transported very fast to the surface
and radiated into the environment. Moreover, heating at parts of the body (e.g. one end
of a long wire) may give rise to a temperature profile that depends on the material points.
In fact, the same arguments are used for the justification of isothermal models; hence
the present work is a second step into the direction of models taking into account a full
thermo-mechanical coupling.



The stored-energy density W : Q x R x 7y, x (0,00) — R, := RU {oo} describes the
material behavior and we obtain the stored-energy functional

Et,p,2) = /QW(l',VSO(x),Z(x),Qappl(t,x))dx+Q(Z) = (€(1), %), (2.2)

where ((t) denotes the applied mechanical loading in the form

(€)= [ fam(t.) 02 dz + [ gu(t,2) - ola)da (2.3
Q 09
The term G(z) denotes some regularizing contribution which introduces a length scale and
thus suppresses very small oscillations of the volume fractions z. As for microstructures in
shape-memory alloys we expect jumps in z (e.g. at habit planes where twins of martensites
meet the austenite) we choose either

G(z) = /QKJ|||DZ||| = sup{ /@/Qz -~divypdr ’ Y € CHO R 1), < 1 on Q }

(where || - ||, denotes an arbitrary norm on R™*9) or
_ P
G(2) = H/ |2(2) Z(y)| dudy
axo |z —y|Htre

for some p € (1,00) and a € (0,1/p). These terms are such that functions z € Z =
LY(Q; Zyy) with G(z) < oo lie in BV(Q; RM) or WeP(Q; RM), respectively. These spaces
embed compactly into L(€; RM) but still allow for solutions with jumps along sufficiently
regular hypersurfaces in €. For simplicity we restrict to the case W*P(Q; R) and refer
to [Mai06| for the case using BV(£2; RM).

For describing the hysteretic behavior of the phase transformations we use a dissipation
distance D defined on Z. For this we introduce a constitutive function d : Q x Zy; X Zy;y —
[0,00), which satisfies for all x € €, 21, 29, 23 € Z); the estimates

é|zl—22| < 6(x, 21, 22) < Clzy — 29, (2.4)
0w, 21, 23) < 8(x, 21, 22) + 0(x, 29, 23).

With this we define the dissipation distance D : Z x Z — [0, 00) via
D(zo1d; Znew) = / 0(2; Zola (), Znew () dz,
Q

which then satisfies %Hzold — Znew||L1@) < D(Zo1d, Znew) < Cl|Zold — Znew||L1() and the
triangle inequality. Note that we allow for unsymmetry, i.e. D(zod, Znew) 7Z D (Znew, Zold)
may OCCULT.

We specify the set of admissible deformations F by choosing a suitable Sobolev space
WP (Q; RY) and by describing Dirichlet data at the part I'p;, of 9Q:

F = {QO € Wl’p(Q;Rd) | (SO - @Dir)}FDir =0 }’
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where ¢p;, € WP(Q; R?) is given. Throughout we assume that p € (1,00),Q and I'p;,
are such that there exists Co piy > 0 so that

VQP c Wl’p(Q;Rd) with SO}FDir =0 : ||V(,0||Lp > CQ,DirHQOHWLP- (25)

Finally the process is assumed to be governed by the energetic formulation of rate-
independent processes as introduced in [MT99, MTLO02|, see also the survey in |Mie05].
A function (¢, z) : [0,T7] — F x Z is called an energetic solution of the rate-independent
system associated with €& and D if 9,E(-, ¢(+), 2(-)) € L}([0,T]) and if for all ¢ € [0,T] we
have the global stability (S) and the energy balance (E):

(5) V(g 2) e FxzZ o &t () 2(t) <& ¢ 2) + D(2(t), 2),
(E) E(t, (1), 2(¢)) + Dissp(z, [0,1]) = £(0,(0), 2(0)) + fy D (s, p(s), 2(s)) ds,

where the dissipation Dissp is defined via

N
Dissp(z, [r, 5]) = sup{ N D(a(tjo),2(t;) [ NEN, r <tg <ty < - <ty <s }
j=1

We note that this energetic formulation reduces to the classical theory of generalized
standard materials (see [Mie06]), if we assume that the solutions are sufficiently smooth
and ¢ has the form §(z, 21, 22) = A(z, 29 — z1). Then, (S) and (E) are equivalent to

{ —div OpW (2, V@, 2, 0appl) = fappt i £,

(¢ — »pir) }pDir =0, IrW(z, Vo, z, eappl)n = YJappl ON Z AV

0€ 0:A(z,2) + 0,W(x, Ve, 2, 0pp) + DG(2) in €,
0

where 2 = 5%

3 The mathematical assumptions

We make the assumptions more precise now. For the stored-energy density W we let
D= Q x R™? x Z11 X [Omin, Omax] and assume

W :D — Ry is a normal integrand, (3.1)

i.e. for a.a. x € Q the function Wz, -, -, -) is lower semicontinuous and for all (F, z, 0) the
function W (-, F, z, 0) is measurable. We assume coercivity as follows:

Sp>d 3C>0 V(2 F,260) eD: W(x,F,z,0)2%|F\P—C. (3.2)

Our conditions will be compatible with the condition W (z, F, z,0) = 400 for det FF < 0
and W (z, Fi, z,0) — +oo if 0 < det F, — 0. Moreover, they are compatible with frame
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indifference, namely W (z, RF, z,0) = W (x, F, z,0) for all R € SO(R?). Of course, we do
not need to impose these conditions as they are not needed to prove the existence result
below. However, they are physically desirable and make the mathematics much more

difficult. The notion of polyconvexity was developed to handle exactly this case, see e.g.
|Miil99, Bal02].

The stored-energy density W is called polyconvex in F € R4 if W(x, -, 2,0) can be
written as a convex function of M(F) € R™@ | the vector of all minors (subdeterminants)
of F € R¥™4, For d = 2 we have M(F) = (F,det F') with 7(2) = 5 and for d = 3 we have
M(F) = (F,cof F,det F') with 7(3) = 19. More precisely, we assume

3 a normal integrand G: Q x R™@ x Z,, x [Omin, Omax] — R :
(i) V(z,2,0): G(x,-,20):R@ - R is convex, (3.3)
(i) V(z,F,z,0) e D: Wiz, F,z0)=G(x,M(F),z0).

The final conditions concern the temperature dependence of W. The applied temperature
will insert or extract energy according to 9yW (x, Vi, 2, 0app1)0appr. To control this term
we assume that 0,5, is smooth enough and that the derivatives dJW exist for j = 1 and

2 everywhere where W is finite and that these derivatives are dominated by W itself:
eV el >0V (z, F,2,0) eDVje{l1,2}:

‘ (3.4)
W (x, F, 2,0)| < V(W (x, F, 2,0) + ).
Lemma 3.1 If assumption (3.4) holds, then for all (x, F,z,0) € D and all 0y € [Omin, Omax]

we have "
W(z, F,2,60,) +cf <ev =W (x F 26)+c)).

Proof: We consider (z, F, 2) to be fixed and define w(f) = W (x, F, z,0) + ¢}/ . Assump-
tion (3.4) simply means |w'(0)] < c/Vw(f). Thus, Gronwall’s lemma yields the desired
result w(6;) < eCW\Gl—le(e) for all 6,01 € [Omin, Omax]- In particular, it is sufficient to have
w(#) < oo at one point to conclude that w is finite on the whole interval. m

Before using this condition for the estimate of the time derivative of the stored-energy
function we discuss possible constitutive relations that satisfy all our assumptions. For
simplicity we neglect any dependence on the material point = € 2. In shape-memory
models it is usual to start from the stored-energy densities of the pure phases, i.e. with
z =e; € RM for the jth phase or variant of a phase. We assume that each of these phases
is described by a polyconvex stored-energy density

RdXd X [9m1n7 Hmax] - Roo
Wj .
(£,0) — g;(M(F),0),

where g;(-,0) is assumed to be continuous and convex while g(M(F),-) € C?([fmin, Omax))
or g(M(F'),-) = 4o0. Typical examples are of the type W;(F,0) = 400 for det F < 0 and

b;(0)

I\ W f _
(et )" + W;(F,0) for det F' > 0, (3.5)

W;(F,0) = a;(0)| F|P +
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where a;,b; € C?([Oimin, Omax]; (0,00)) and the exponents satisfy r > 0 and p > d. The

function W; : R™X [0yin, Omax] — R is assumed to be polyconvex in F', twice differentiable
in 6, and of lower order, i.e.

Vi€ {0,1,2} VF € R™Y0 € [Brin, o) = |05W,(F,0)| < C(1 + |F|)P

for some C' > 0 and p < p. In particular, the functions Wj are supposed to contain
the information about the anisotropies of the different phases, see [SNO3| for suitable
anisotropic polyconvex functions.

The final stored-energy density is now obtained by interpolating between the extremal
pure phases. We may either use a linear or an exponential interpolation and in addition
we may add a mixture term for penalizing phase mixtures:

M
W(F,2,0) =Y zWi(F,0) + w2, 0), (3.6)
j=1
or
1 M
W(F 2, 6) = 5log ( 3 2™ ) + i (2.0), (3.7)

j=1
where, for instance, wpy(z,0) = Zj\il ;25 (1=2;)" for 75 = ;(0) > 0 and r; = r;(0) > 0.
In both cases, the function W (-, z, 0) inherits polyconvexity. For (3.7) we may even allow

for § = B(0) if the leading coefficients a; and b; for W; in (3.5) are independent of j.
Then, W in (3.7) takes the form

b(0) 1

W(E.2.0) = a@IFP + 505+ 5

M
log (Z zjeﬁ(e)wf(F’9)> + Wiix(2, 0).

J=1

In conclusion, this shows that based on standard polyconvex materials it is easily possible
to construct stored-energy densities satisfying the above assumptions.

4 The main existence result

For a given temperature profile 0,,, and a given external loading ¢ with

Oappt € C1([0, T]; L°(; [frnin, Omax])) and

(4.1)
¢ e CY([0,77), WH(; RY)")

we now study the stored-energy functional £ as defined in (2.2).

Proposition 4.1 Under the above assumptions the following holds:

(a) If for some (t.,p,z) € [0,T] x F x Z we have E(t.,,z) < 0o, then E(-,p,2) €

Cl([O,T]) and OE(t, ¢, z) = fQ W (N, 2, Oappl (1)) Oapp (1) dz — (£(2), ).
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(b) There exist constants c&,cF > 0, such that E(t,¢,2) < oo implies |OE(L, ¢, 2)| <
ct (E(t, ¢, 2) + cf).

(¢c) For each E., € R and € > 0 there exists 6 > 0 such that E(t1,¢,2) < E. and
|ty — ta] < 0 imply |0,E(t, ¢, 2) — DE(ta, 0, 2)| < e.

Proof: We first use the coercivity (3.2) to find

1
E(tep,2) 2 GVl = Ol = [l llllellwr.
Using (2.5) we obtain ¢y, Cy > 0 such that

Etss ¢, 2) = aollellyry — Co- (4.2)

To show differentiability with respect to ¢t we use Oapp1 € CH([0, T]; L(€2; [Brnin, Omax)))
and condition (3.4). For h # 0 and ¢, + h € [0, 7] the mean-value theorem provides some
s € [0, 1] such that

S 00TV (2, V0, 2, Bapp (51, 2))0app (-t 5B, 2) o — (E(0(E+R) — L), ).

Using E(t., ¢, 2) < 0o and Lemma 3.1 we know that |0yW (x, Vo(z), 2(z),0(z))| < g(x),
a.c. on € for some § € L(), where § € L®(); [fin, funax]) is arbitrary. Since 9,0 €
CO([0, T]; L>°(£2)) we may pass to the limit h — oo by the Lebesgue theorem and part (a)
is proved.

For part (b) we use the representation of part (a) and estimate as follows

|0E(t, ¢, 2)] S/QI&;W(:U, Vo, 2)| e [|08appilloo + 1Ol llwr.

Using (3.4) for j =1 and (4.2) the desired result follows immediately.
For part (¢) we use (3.4) for j = 2 and (4.1), which implies
16t2) = £(E)l« + 106(t1) — 0B (ta, ) () < w(lts — tal), (4.3)
where w: [0, 00) — [0, 00) is a continuous modulus of continuity with w(0) = 0. We obtain
|0:E (L1, p, 2) — OE(ta, @, 2)]
< Jol0W (z, Ve, 2,0(t1)) — 0W (z, Vp, 2,0(t2))] [|0:0(t1) | oo v
+ Jo [00W (2, Vo, 2, 0(t2))| 0:8(t1)=0:8(t) | oo Az + [[(82)—L(E2) |+ [0l
< Jo ol Wz, Ve, 2,0(t1+5(ta—t1))) + co] [10(t1) = 0(t2)l| o0 A 1| 04|
+C(E(t, 0, 2) 4+ cf) w(ty — t)
< C(E, + &) (|t — ta] + w(ty — t3)).
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Thus, the proposition is established. [

We now show that the energetic formulation (S) & (E) introduced in Section 2 has at least
one solution ¢ = (¢, 2) : [0,7] — Q = F x Z, for a given stable initial datum ¢° € Q.
Here ¢° is called stable if it satisfies the (static) condition (S) at time ¢t = 0. The existence
theory relies on the abstract framework developed in [MaMO05| with the recent refinements
derived in [Mie05, FMO06|. These refinements are based on the selection technique and an
approximation result of Lebesgue integrals via Riemann sums developed in |[DFT05|.

Here we do not go into the details of the proof of the abstract result. We just mention that
the theory is based on time-incremental minimization problems for sequences of partitions
0=th<th<.-. <15§3\7k_1 <t§“vk =T in the form:

(i) Given ¢° € Q, find iteratively ¢F, ..., qf\,k € Q such that
. ¢} minimizes q— E(t%,q) + D(gj-1, ).

Thus, for each k& we may define the piecewise constant interpolant g* : [0,7] — Q with
7(t) = q;‘? fort € [tf,téﬁrl) for j =0,..., N;.

Theorem 4.2 Let Q = F x Z be as specified above and let £ and D satisfy the as-
sumptions from above. Then, for each stable ¢° € Q there exists an energetic solution
@ : [0, 7] — Q with q(0) = ¢°. This solution q = (p, z) satisfies

@ € L=([0, T], WP(Q; RY)) and
z € L([0, T], W (Q; RM) n BV([0, T]; L' (2, R™)),

and it can be obtained as the limit of a subsequence (g™

associated with (IP), as follows:

Jien of the above interpolants

(i) Vtel0,T): zZR(t)— 2(t) in W*2(Q;RM),

(i) Vtelo,T]: E(t7"(1) — £t q(t))

(iii) Vte[0,T]: Dissp(g™,[0,t]) — Dissp(q, [0,1])

(iv) Yt e [0,T] Isubseq. (ki )nen of (k)ien: @ (t) — @(t) in WHP(Q; RY).

The main point in passing to the limit is the use of the weak lower semicontinuity of
E(t,-) on Q considered as a convex subset of WHP(Q; RY) x W2(Q; RM). The dissipation
behaves better as it is strongly continuous in L!'(Q) and hence weakly continuous in
Z = W*2(Q; Zyr). Together with the good dependence on the time ¢, which was derived
in Proposition 4.1, we have fulfilled all assumptions of the abstract theory in [FMOG,
Sect.3]|. This proves our Theorem 4.2,



5 Time-dependent Dirichlet conditions, compositions,
and Lie groups

So far we have studied the situation that the boundary conditions ¢p; on I'p;, C 02
are independent of time. Hence, the space F of admissible deformations could be chosen
independent of time as well. Of course, typical practical situations lead to cases where
vpir depends on time.

The usual treatments of time-dependent boundary data involve either the additive split
©(t) = vpir(t) + u, where u can then be chosen in a fixed space or a replacement of the
“hard constraint” ¢ — goDir(t)}FDir = 0 by the penalization + fr | — wpie(t)|* da, which
is added to the energy functional. The latter method Would be. apphcable in our case of
finite-strain elasticity. However, it has the disadvantage that the treatment of the limit
0 — 0 is not so easy and it is rather awkward to control the work done by the changing
boundary condition. The additive split ¢ = ¢p;, +u does not work here, as in finite-strain
elasticity the additive split of the deformation gradient F' = V¢ = Voyp;, + Vu is not
compatible with the blow-up of the stored-energy density W near det F' = 0.

Instead we follow the approach in [FM06, Sect.5| and use the composition

o(t, z) = ppu(t, ¥(t,2)) = (pour(t, ) 0 ¥(t))(x) (5.1)
that leads to a multiplicative split of the deformation gradient
F= V@(t>$) - V¢Dir(t>w(t>z))vw(t>z>' (52)

To make the following analysis rigorous we assume that pp;, (¢, -) can be smoothly extended
onto all of R? such that it is in fact a diffeomorphism. More precisely, we assume

opir € CH[0, T]xR% RY),  Veopi, € BCH[0, T]xRY; R*d),

5.3
Vopi(t, ) € GL,(R?) for all (t,x) and (Vep;)~! € BC([0, T)xRY; R*4), (5:3)

Clearly, we have ¢(t,z) = ppi(t,x) for x € I'py if and only if ¥(t,x) = x for x € T'py,.
Hence, we let B
F={veW?@r)| (-

ld) }FDirZO }

With the notations from the previous sections we then define é = ]:: x Z and
E(t, ), 2) = E(t, ppin(t) 0 ¢, 2)
and keep D : Z x Z — [0,00) as above.

The crucial condition that is needed for controlling the time derivative 9,€ involves the
Kirchhoff stress tensor

K(z,F, 2,0) = 0pW (2, F, 2,0) FT € R™4,

In finite-strain elasticity it is advantageous and illuminating to consider F' = V¢ as an
element of the Lie group

GL, (R = {G € R | G™! exists and det G > 0}.

10



Then, the Kirchhoff tensor turns out to be the left multiplicative derivative, viz.,
K(z,F,z,0)[H] = lim —W (2, F, 2,0) = 0pW (, F, 2, 0)[HF).

In particular, we see that K (xz, F, z,0) is an element of gl(R?)*, where gl(RY) = T;GL, (R?)
is the Lie algebra of GL, (R%).

Following |[FMO06| (see also |Bal02|) we assume that in all points (z, F,z,6) € D with
W(x, F,z,0) < oo the function W is twice differentiable in F' such that

Fcf, >0 V(2 F2,0) €D VH € R>?:
|K (2, F, 2,0)|. <l (W(m, F,z,0)+cf ) (5.4a)
|0rK (2, F, 2,0)[HF]|. < (W (z, F, z,0)+c) | H], (5.4b)
where | - | is an arbitrary norm on gl(R?) and | - |. is the dual norm on gl(R%)*.
To illuminate the (multiplicative) Lie group structure further, we omit temporarily the
variables x, z, and 6. The following Lemma 5.1 states that condition (5.4a) is equivalent

to global Lipschitz continuity of log(W+cf): GL,(R?) — [0,00) with respect to the
right-invariant distance

daulFo, F)=int {106 ]dt | 6 € (0,1 GLL(RY), s

G(0) = Fy, G(1) = }
This definition easily gives the right-invariance dgr(FoF, F1F) = dgu(Fo, Fy) for all
Fo, i, F € GL, (R9).
Lemma 5.1 For W € CY(GL, (R%),R) the bound in (5.4a) is equivalent to

Y Fy, Fy € GL,(RY) - ‘log W(Fy) + c) — log (W(F) + céf)) < Kdew(Fo, F1). (5.6)

Proof: Equation (5.6) follows from (5.4a) by differentiating of w(t) = log(W (F'(t))+cl*)
with respect to time, where ¢ — F(t) is the geodesic connecting Fy and F;. Then,

o 5FW( OIFD) _ KFQ) :(FOFO™) _ 1

F(t)

and integration yields (5.6). For the opposite conclusion we use that
1
£

doL(F, F4+eF) — |FFY| fore — 0.

With F' = HF and (5.6) for Fy = Fy and Fy, = F + ¢F we find, after division by ¢ and
taking the limit ¢ — 0,
OpW (F)[HF)

K
GET s
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As H € TpGL,(R?) is arbitrary, this implies (5.4a). m

The conditions (5.4) are in fact satisfied by many polyconvex stored-energy densities, for
instance for Ogden materials. Consider

W(F) = alF|P+ (detﬂF)’“ with o, 3,7 > 0 and p > 2.
Then, the Kirchhoff tensor takes the form
K(F) = ap|FIP2FFT — 57|
(F) = aplF| XY

and it is easy to establish (5.4) with c& = 0 and ¢ = max{p,r}.

Unfortunately, there is nothing known about the interplay of condition (5.6) and polycon-
vexity. In particular, for applications in finite-strain elastoplasticity (cf. [Mie02, Mie03,
Mie04b, MiM06, GM*06]) it would be interesting to know whether there exists ¢ > 0
such that the function

F s ect dan(lF)

is polyconvex on R%*¢ when extended by +oo outside of GL,(R?). This question also
involves the choice of the norm | - | on gl(R?) used in (5.5). The only positive result is
based on the seminorm

€] = [e+¢ e with |nfe = n:n,
see |MiMO06|.

It is easy to see that the definitions of Q = F x Z, & : [0,7] x QO — R, and D :
Z x Z — [0,00) make E(t,-) and D weakly lower semicontinuous with respect to the
strong topology of WP(Q; R?) x W*2(Q; Zy;). Moreover, D is even weakly continuous.
Thus, the remaining properties to be established involve the time derivative of 8t§, i.e. the
power of the external loading which now includes the forces fupp1, Gappl, the temperature
Oapp1, and the Dirichlet boundary data ¢p;,.

For the time derivative of W (x, (Vi) V1, 2, 04501(t)) we obtain the old term involving

Oappi(t) and a new term involving V¢py,, namely
OrW (2, Vopie Vi, 2, O (£)): [ Vopi Vi) |
= (06 W (2, Vo0V, 2, B (1) (Vi V8) ¢ ViV (Vioan Vi) ™|
= K(2,Vpir VY, 2, Oappi (1)):[Vpir(Veopir) ']

where we have used the identity A:B = (AC"):(BC~1). Hence, in analogy to Proposition
4.1 we obtain the following formula by the help of the assumption (5.4a):

8tg(t> wa Z) = / K($7 vairvwa Z, eappl(t)) . [VSbDir(VSODir)_l} d!lﬁ'
Q
+ / aGW(V¢Dirv¢u 2, Happl(t>>éappl(t> dx
Q

- <£(t)> @Dir) - <£(t)a ¢Dir>>

12



where ¢pir, Vpir and ¢pi = Oyppir are evaluated at (t,(x)). Using (5.3) we find
Vb (Vepi) ™t € C°([0,T] x Q; R¥*4) and obtain the desired estimate

0.£(t, 0, 2)| < (E(t, b, 2) + ).

Moreover, employing (5.4b) as in [FMO06, Sect.5| and the results of Proposition 4.1 we
find for each E, € R and each ¢ > 0 a § > 0 such that E(t1,v,2) < E, and |t; — t5] < &
implies |0,€ (t1, 1, z) — 0,E(ta,1, 2)| < e. Hence, the existence result of Section 4 can be
generalized to the case of time dependent boundary conditions as follows without any
change in the proof.

Theorem 5.2 Let é = F x Z,g and D be as specified above. Let all the assumptions
of Section 3 hold and, additionally, (5.3) and (5.4). Then, for each stable initial state
(Y0, 2°) € Q there exists an energetic solution (1, z2) : [0,T] — Q associated with the
functionals € and D satisfying (1(0), 2(0)) = (¢°, 2%).

Moreover, this solution satisfies all the properties stated in Theorem 4.2 analogously.

6 Discussion

We have shown that the previously developed isothermal models for the hysteretic behav-
ior for phase transformations in shape-memory alloys can be transfered to the case where
the temperature is varying but given in advance. The aim was to show that the model is
still capable to handle finite-strain elasticity.

There are several reasons why a true thermodynamically consistent coupling to the energy
equations is still out of the reach of a rigorous mathematical treatment. One major
reason is that almost all theory of finite-strain elasticity is related to the direct method of
calculus of variations. Thus, we do not know whether the constructed global minimizers
for polyconvex materials laws satisfy the equilibrium equations (cf. [Bal02]|) and whether
they are unique. See [KS84, KTWO03, Kno06| for a series of uniqueness results in the
static and dynamical case.

Using global minimization we have to expect that the energetic solutions as discussed
above have jumps as functions of time. In a truely coupled thermo-mechanical model
this would provide an instant release of energy which could not be controlled without
knowing the “jump path”. If suitable uniqueness conditions, at least in certain relevant
regimes, would be available then it should be possible to show that no jumps occur. In
fact it is the purpose of the mesoscopical models using the phase fractions z(t,z) € Z); to
devise smoother models. In the case of small strains, see e.g., [AP04, SZ06, AMS06|, there
is much more hope to treat suitable models with correct coupling between temperature
changes and phase transformations.
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