On algebraic multilevel methods for non-symmetric
systems - convergence results

C. Mense * R. Nabben'
February 28, 2008

Abstract

Here we analyze algebraic multilevel methods applied to non-symmetric M-
matrices. We consider two types of multilevel approximate block factorizations.
The first one is related to the AMLI method. The second method is the multi-
plicative counterpart of the AMLI approach which we call multiplicative algebraic
multilevel method, the MAMLI method. The MAMLI method is closely related
to certain geometric and algebraic multigrid methods like the AMGr method. Al-
though these multilevel methods work very well in practice for many problems,
there is not that much known about theoretical convergence properties for non-
symmetric problems. Here, we establish convergence results and comparison re-
sults between AMLI and MAMLI multilevel methods applied to non-symmetric
M-matrices.
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1 Introduction

In many recent papers algebraic multigrid methods or multilevel methods were de-
signed to solve large sparse linear systems by using only information on the matrix
structure and the matrix entries. Among several algebraic methods the algebraic multi-
grid method (AMG) and the multilevel approximate block factorization are best-known.
The pioneering work on algebraic multilevel methods was done by Brandt, McCormick
and Ruge [12] and Ruge and Stiiben [32, 34] by introducing the AMG method in the
eighties, see also [35].

Recently, a theoretical comparison of different algebraic multigrid methods applied to
symmetric positive definite systems was given by Notay in [29]. However, there are
not that many theoretical results known for algebraic multigrid methods applied to
non-symmetric matrices.

Here we analyze algebraic multilevel methods applied to non-symmetric M-matrices.
Algebraic multilevel methods are often used as preconditioners for Krylov subspace
methods. But here we focus on the convergence of these methods used as solvers.
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M-matrices occur in various fields of applied mathematics such as numerical analysis,
probability, economics and operations research [9]. Moreover, Markov chain modeling
became relevant in several applications from computer science such as information re-
trieval [20]. Iterative solvers, like algebraic multigrid methods are used to compute the
steady state solution of a Markov chain, i.e. algebraic multigrid methods are used to
find the solution of a system with non-symmetric M-matrix structure — a non-trivial
task given the size of the Google matrix for example (see e.g. [20]).

Most of the algebraic multilevel methods start with a partitioning of the unknowns into
fine and coarse grid unknowns. Related to this ordering, the n x n system matrix A can
be permuted in a block 2 x 2 form

A A
PAPT = | “FF SFECH
{ Acr Acc

Here F' denotes the set of fine grid unknowns, and C' denotes the set of coarse grid
unknowns with |F| = np and |C] = ne. This process is called coarsing. There are a
lot of different algorithms and strategies to perform the above partitioning, see e.g. [32,
22, 11, 39, 30]. The choice of the partitioning has a major influence on the convergence
behavior of AMG methods. But here we assume that the coarsing is done already in an
arbitrary way. Thus, we assume that A is given by

Arr Arpc }
A= . 1
[ Acr Acc e

If the submatrix App is nonsingular, A can be factorized as

4 Ip 0 Arp 0 Ir AppArpc
| AcrAny Ic 0o S 0 Ic ’

where
S = (A/AFF) = Acc — ACFA;‘}.T‘AFC

is the Schur complement. If we now use an approximation App of App and an ap-
proximation S of .S, or approximations of the inverses of these matrices, we obtain the
matrix M with

Apr 0

M= Ir 0
0 S

. [ Ir ZE%AFC } ) (2)
ACFA;.};‘ Ic

0 Ic

This factorization is known as an approximate two-level block factorization [29]. Various
multilevel methods use this two-level block approximate factorization as a major tool
(see e.g. [4, 5, 2, 27, 7, 33] and references in [29]). One of these methods is the AMLI
method introduced by Axelsson and Vassilevski in [4, 5]. With the use of matrix M in
(2) one can define the stationary iteration given by the iteration matrix

Tanvpr =1 - M'A. (3)

Here the subcript AMLI is chosen with respect to the first use of this approximate block
factorization by Axelsson and Vassilevski in the AMLI method. We point out that the



AMLI method itself contains a lot more ingredients like e.g. polynomial acceleration.
Moreover, the AMLI method is designed originally in the framework of hierarchical
bases to precondition the CG method.

For the iteration matrix T4asrr in (3) we obtain

~ ~ —1
- . IF 0 AFF 0 IF A;;AF‘C
Taser =1 ({ AcrApp Ic} 0 51 [ 0 Ic A
—ATLA c | o= ~_
- 1[ el }Sl[—ACFAF; Ic |4

_{IH,Z;;[IF 0]A.

Using the restriction and prolongation operators

R:= [_ACFAv;‘llU‘ Ic], PT = AFI};AFC , RT .= [ Ig ] 4)
and the matrices
P :=PTS'RA and P,:= RTA;};RA (5)
one obtains
Taypr =1 —PTST'RA— RTALLRA=1—-P, — P,. (6)

Thus, Taprr; can be written as an additive Schwarz method with inexact local solves
(see [41, 19, 36] for details about Schwarz methods).

Hence, on one hand the matrices Taprr and M in (2) are constructed by an inexact
block factorization, i.e. by using a product of matrices. Thus, the iteration given by
Tanrr can be seen as a multiplicative method. Moreover, there are also some other
versions of the original AMLI method. These methods do not use the inexact block
factorization in (2) and are based on a block-diagonal preconditioner. Therefore, these
AMLI versions are called additive methods [1, 3].

But on the other hand T4);r; can be written as an additive Schwarz method. To
avoid confusion here, we will use the terminology AMLI approach for the inexact block
factorization in (2) and the resulting iterative method. Moreover, we consider this AMLI
approach as an additive Schwarz approach.

For some problems it is known that the multiplicative Schwarz method converges faster
than the additive Schwarz method [17, 26]. So it is natural to consider a related mul-
tiplicative approach. The multiplicative version, which we call the MAMLI method or
MAMLI approach [24], is then given by:

Tyvavrr = (I =PI - P)
= (I—-PTST'RA)I — RTALLRA)
—ApLA o -
= (1—[ T Fo ]S 1[ —AcrApp Ic }A) (7)

.(1—[I§]ZF;[IF O]A).



Closely related to the multiplicative version there are two other methods. The first one
is the reverse MAMLI method (RMAMLI method) the other one is the symmetrized
MAMLI method (SMAMLI) [24]. These variants are defined in terms of their iteration
matrices given by

Trvamrr = (I—P)(I - Py)
and
Tsvamrr = (I —P)(I—P)(I — P).

The multiplicative versions are closely related to certain geometric and algebraic multi-
grid methods. The factor I — P, in (7) can be seen as a relaxation or smoothing step,
while I — Py in (7) is a coarse grid correction. In particular, the MAMLI method can be
viewed as a two-level V(1,0) cycle, the RMAMLI method as a two-level V(0,1), and the
SMAMLI method as a two-level V(1,1) cycle with fine-grid only relaxation and special
restriction and coarse grid operators. In the AMLI approach, the smoother and the
coarse grid correction operator are combined in an additive way. While in the MAMLI
approach, this is done in a multiplicative way. Hence, the MAMLI approach is closer to
the original multigrid schemes. Nevertheless, general additive multigrid methods have
been successfully developed in the last decades [10, 18, 37].

There is also a close relationship between the MAMLI techniques and the AMGr method
introduced by MacLachlan, Manteuffel, and McCormick in [21]. AMGr uses fine-grid
only relaxation, similar restriction operators, and Schur complements also. In [21] con-
vergence results and bounds for the rate of convergence are established for the AMGr
method applied to symmetric positive definite matrices.

There exist a lot of theoretical results for the AMLI method used as a solver as well
as used as a preconditioner for the CG method [4, 5, 27, 2, 6, 13, 14]. However, the
theoretical results can be applied to symmetric positive definite matrices only. Notay
gives in [28] some results for the multilevel approximate block factorization applied to
some special non-symmetric M-matrices which arise from a specific discretization of a
certain PDE. But so far a general convergence analysis of the AMLI approach for a
wide class of non-symmetric matrices is still missing. In this paper we give convergence
results for the above mentioned AMLI approach applied to arbitrary non-symmetric
M-matrices.

Moreover, we will establish a detailed convergence theory for the MAMLI, RMAMLI
and SMAMLI methods applied to non-symmetric M-matrices.

By a recursive use of the above described two-level techniques one can easily construct
the corresponding multilevel methods. For these multilevel methods convergence results
are also established in this paper.

Of course, the choice of the coarsing algorithm used to get the partitioning in (1) has
a major influence on the convergence behavior. But in this paper we assume that this
partitioning is done already in an arbitrary way. We want to focus on the convergence
behavior for general partitionings and will compare different multilevel methods starting
with the same partitioning Our convergence results are independent of the coarsing
technique that is used.

Recently, additive and multiplicative Schwarz methods for non-symmetric matrices were
analyzed in [16, 8, 26]. In these papers an algebraic convergence theory for the additive
and multiplicative Schwarz was introduced. This theory yields a lot convergence results



and comparison results. However, this theory includes only special restriction and pro-
longation operators which are used in domain decomposition methods. This theory can
not be applied to multilevel or multigrid methods. In contrast to [16, 8, 26] we use and
analyze more general restriction and prolongation operators, here.

The paper is organized as follows. In the next section we give some notation and well-
known results. Section 3 describes the properties of the approximations that we are
using in the block factorization. In Section 4 we establish convergence and comparison
results for two-level methods, while in Section 5 these results are extended to multilevel
methods.

2 Notation and well-known results

A matrix B is nonnegative (positive), denoted B > 0 (B > 0), if its entries are non-
negative (positive). We say that B > C if B — C > 0, and similarly with the strict
inequality. These definitions carry over to vectors. A matrix A is a Z-matrix if its
off-diagonal elements are non-positive. A Z-matrix A is called a nonsingular M-matrix
if it is monotone, i.e., A~! > 0. It follows that if A and B are nonsingular M-matrices
and A > B, then A=! < B~! [9, 38]. By p(B) we denote the spectral radius of the
matrix B.

We say (M, N) is a splitting of A if A = M — N and M is nonsingular. A splitting
is regular if M1 > 0 and N > 0; it is weak regular of the first type if M~ > 0 and
M~IN >0. |9, 38, 40].

Here, we consider stationary iterative methods to solve Ax = b. These methods start
with a vector z(?) and build a sequence of vectors z(*t1) such that

20D 27 b for i=1,2,.... (8)

The matrix T is called iteration matrix. If p(T') < 1 then, there exists a unique splitting
(M, N) such that T = M~!N. This splitting is given by M = A(I —T)"! and N =
M — A. We say that T is induced by this splitting (M, N).

Related to the partitioning of A in (1), we will denote by I the n x n identity matrix
and with Ir and I¢ the ng X np and ne X ne the identity matrix, respectively.

For A = [a; ;] € R™*" we define the matrices diag(A), triu(A) and tril(A) € R™*™ by

. a; ; for 1=3
iag)i; ={ % g

. - _Joai; for i>j
arit s ={ %" e

. o ;5 for i S_]
rintais ={ % g
Next we recall the definition of the weighted max-norm. Given a positive vector w €
R™, denoted w > 0, the weighted max-norm is defined for any y € R™ as |y|l., =

1
max |—y;|. The corresponding matrix norm is defined as ||T'||, = sup ||Tz|, and
J=1n wj

the following lemma holds.

Z||lw=

Lemma 2.1. Let A € R™ "™, be nonnegative, w € R", w > 0, and v > 0 such that

Aw < yw. 9)



Then, ||Allw < 7. If the inequality in (9) is strict, then the bound on the norm is also
strict. Moreover,

|A]lw = max
1=1...n

Proof: seee.g. [15].

O
Most of our estimates hold for all positive vectors w of the form w = A~'e, where e is
any positive vector, i.e., for any positive vector w such that Aw is positive. In particular
this would hold for an M-matrix A and e = (1,...,1)7 i.e., with w = A~'e being the
row sums of A~!.
Moreover, we need the following well-known properties of M-matrices.

Theorem 2.2. Let A € R™"*"™ be a Z-matriz. A is a nonsingular M -matriz if and only
if one of the following conditions holds

o There ezist two nonsingular monotone matrices Bi, Ba, such that By < A < Bs.
e Fach principal submatriz of A is a nonsingular M-matriz.
Proof. See e.g. [9]. O

Theorem 2.3. Let A € R™*™ be a nonsingular M -matrix partitioned as

A Arr Arc
Acr Acc

where App € R°*° and Acc € R"5*"=5 for some s € {1,...,n — 1}. Then the Schur
complement

(AJApp) = Acc — AcrApp Arc
s a nonsingular M -matriz.

Proof. see e.g. [9]. O

Lemma 2.4. Let A be a nonsingular M-matriz and let (M, N) be a weak regular
splitting of first type. Then
M™t< AT

Proof. see e.g. [40, Theorem 3.2] O
Lemma 2.5. Let A be a nonsingular M-matriz. Let M be a Z-matriz such that

M > A. Then, (M, M — A) is a regular splitting, and therefore a weak regular splitting,
of A.

Proof. Since, M is a Z-matrix and M > A, M is an M-matrix, see [9]. The statement
then follows immediately from the definitions of a weak regular and regular splittings.
([l



3 The approximations

Of course the quality of the approximations A rr of App and S of S used in the inexact
multilevel block factorizations will be important for the convergence behavior. Here we
use the following properties of the approximations to prove convergence of the AMLI
approach.

Assumption 3.1.
Let A be a nonsingular (non-symmetric) M -matriz and let A be partitioned in the fol-
lowing 2 x 2 block structure

A _ AFF AFC
Acr Acc |’

Furthermore, let /Nlpp and S be chosen such that the splittings (EFF,EFF — AFF)
and (§, S — (A/EFF)) are weak reqular of first type, i.e.

AL >0 and Ip— ApLApp >0; (10)
and
S1'>0 and Ic—S 'Y (A/App)>0. (11)
Here (A/App) is defined by (A/Aprp) := Acc — Acr AL Apc.
For the multiplicative versions we use a slightly modified set of approximations.

Assumption 3.2.
Let A be a nonsingular (non-symmetric) M -matriz and let A be partitioned in the fol-
lowing 2 x 2 block structure

A Arr Arc
Acr Acc |’
Furthermore, let flpp and S be chosen such that the splittings (EFF,ZFF — AFF)
and (5, S — EA};T) are weak regular of first type, i.e.

AL >0 and Ip— AphApp > 0; (12)
and
S1'>0 and Ic—S ' (RAPT)>o0, (13)
where R and PT are given as in (4).

Here we point out that these assumptions or properties we require for the approximations
are very weak. We will give examples for these kind of approximations at the end of
this section. Note that no special coarsing or no special partitioning of the matrix A is
needed to find these kind of approximations.

If we compare Assumptions 3.1 and 3.2, we see that the only difference is the condition
for the approximation S.



Using the relation
RAPT = Acc — Acr (QZ;; - Z;;AFFZ;;) Apc (14)

we will see in the following proposition, that Assumption 3.2 is weaker than Assump-
tion 3.1.

Proposition 3.3. Assumption 3.1 implies Assumption 3.2. In other words, if Assump-
tion 8.1 holds than Assumption 3.2 is fulfilled also.

Proof:

We only have to prove, that equation (10) together with equation (11) imply equa-
tion (13).

Hence, let the splittings (ZFF, ZFF — AFF) and (g, S — (A/ZFF)) be weak regular
of first type. Since

RAP" = Acc - Acr (2A5y - AppArrAz)) Arc |

we obtain

Ic — S'RAPT
= Ic-§! (ACC — Acr (221;; - Z;;AFFZ;;) AFC)
Io— 871 (Acc - ACFE}_«“}E'AFC)
+5 1 Acr (Zg; —~ E;;AFFZ;;) Arc

= Ig-51 (A//TFF) + S5 M e (IF - /T;;AFF) Azl Apc.

Using the splitting property of App and S and the sign pattern of the M-matrix A we
obtain

Ic — ST'RAPT > 0.

Hence, the splitting (g, S — EAIBT) is weak regular of first type.

g
Note that in both Assumptions there is a coupling between the approximations Arp
and S, but it is very mild. Indeed, starting with an M-matrix A, the approximations
given by the Jacobi and the Gauss-Seidel methods and the incomplete LU-factorization
are admissible approximations for example. To see this, one has to use Lemma 2.5.
Thus admissible choices for Apr are

App = diag(Arr),
App = tril(App),
App = triu(Apr),
App = LU.

Here, L and U are the factors of an incomplete LU factorization of Arp [23].



We will show in Theorem 5.2 that
-1
> ADT T— —A A C
RAPT = | ~Acr Ay} I}A[ FEAF }
is a nonsingular M-matrix, if (AFF, AFF — Apr) is a weak regular splitting, i.e. one of

the above choices is used as an approximation of Arp.
Hence, the following approximations S fulfill our Assumption 3.2

S = RAPT

S = diag(]TEAﬁT)
S = tril(RAPT)
S = LU

where L and U are the factors of an incomplete LU factorization of RAPT.
Even more, (see Theorem 5.2) S can be chosen as

S = (A/App)
S = Acc
S = diag(Acc)

to fulfill Assumptions 3.1 and 3.2.

Hence, the Assumptions 3.1 and 3.2 allow a wide variety of approximations and all
kind of approximations used in practice seems to be included.

Next, let us compare our approximations with those used at the theoretical analysis
of approximate multilevel block factorization applied to symmetric positive definite
systems. There a frequently used assumption is that

App — App is symmetric positive semidefinite (15)

see e.q. [4, 2, 29]. But this assumptions can be expressed also with the help of splittings
as we did above. Equation (15) implies that the splitting (EFF, App — Afpp) is a P-
regular splitting of App. P-regular splittings are introduced by Ortega in [31] see also
[25]. A splitting A = M — N is called P-regular if M7 + N = M + MT — A is positive
definite. Note that a splitting of a symmetric positive definite matrix A is P-regular if
and only if || — M ~1A||4 < 1, see [42].

4 Two-level convergence-results

We start this section with a fundamental proposition which is the main tool in our
convergence analysis.

Proposition 4.1. Let A € R"*™ be a nonsingular M-matriz. If
o C € R"™ ™ is nonnegative,
e [ — CA is nonnegative,

e C has no zero row,
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then C is nonsingular and the splitting (C~1,C~1 — A) of A is weak regular of first type.
Moreover,

p(I = CA) < |1 = CAlly <1, (16)
where w := A~ 'e for an arbitrary positive vector e € R".

Proof: Let e € R" be an arbitrary positive vector. Then Ce is also positive. Since A
is a nonsingular M-matrix the inverse A~! is nonnegative and has no zero row. So the
vector w := A~ 'e is as well positive. Using these properties we get

0<(I-CAw = w—CAA'e=w—-Ce<w.
Due to Lemma 2.1 this leads to
p(I —=CA) < ||I - CAllw <1. (17)

Now assume, that C is singular. Then, there exists a nonzero vector z with Cz = 0.
Let A='z =y, then
(I-CAy=y—Cz=y.

But this contradicts (17). Hence, C is nonsingular. The splitting properties follow then
directly from the assumptions. O
In the following we consider Tapsr; as given in (6).
Lemma 4.2. Let Assumption 3.1 be satisfied, i.e. A is a nonsingular M-matriz par-
titioned as in (1) and the splittings (EFF,ZFF fAFF) and (§7§, (A/ZFF)) are
weak regular of first type. Then

Tamrr > 0.

Proof: A computation leads to

Tamrr = I_[Ag}r 8][ﬁ§1§ ﬁgg]
_ { _EFI}ZAFC ]51[ —AcrApy Ic } { ﬁgi ﬁgg ]
_ [ Z}};AFF EE%AFC ]
0 0
B A;I};Apc } -1 [ Acr ([F 7;1;}:/1}?1:) (A/ZFF) ]

AzL ApcS—Ack (IF - Z;;AFF) 0
~S'Acp (IF - /T;;AFF) 0
0 —AzlApc (IC ~ 5 (A/ZFF))

1o Io— 81 (A/ZFF)

Using the assumptions on the approximations, App and S and the sign pattern of the
M-matrix A we get that 145/ is nonnegative. O
Lemma 4.2 provide the non-negativity of the AMLI iteration matrix. This powerful
property will be used in the convergence analysis below.
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Theorem 4.3. Let Assumption 3.1 be satisfied, i.e. A is a nonsingular M-matriz par-
titioned as in (1) and the splittings (AFF,AFF fAFF) and (S,Sf (A/AFF)) are
weak regular of first type. Then

p (Tamrr) < |Tamrrllw <1,

where w = A" e for an arbitrary positive vector e. Moreover, Taprrr is induced by a
weak reqular splitting of first type, i.e.

Tamrr =1 —Camrr4,

where Canrr is nonsingular and (Cyp 1, Carir — A) is a weak regular splitting of
first type of A.

Proof: In order to use Proposition 4.1 we first write Tansrr as Tapnr = I —CanmrniA.
We then establish that I — C' 411 A satisfies the assumptions of Proposition 4.1.

By Lemma 4.2, T4 ;1,5 is nonnegative. Thus it suffices to show that C'apsp; is nonneg-
ative and C 47 has no zero row.

Since

Tanrnr =1 — PTST'RA— RTALLRA=1— P, — Py,

the matrix C s is given by PTS™1R + RTZ;};R With

o o1
Mg = RTALR= [ AgF 8 } (18)
i~ L~ _ A1 ~ -~
Mcg = PTS7'R= [ AFIFAFC }S_l [ ~AcrApn Ic } (19)
c
we obtain
Tamrr =1 — (Ms+ Mcg) A=1—-Camrii, (20)

where Cappr := Ms + Meq.
Using the M-matrix and splitting properties, we see that both matrices Mg and M¢cg
are nonnegative._ As a sum of two nonnegative matrices, C'4psr; is also nonnegative.
Since A, and S~! are the inverses of nonsingular matrices they do not have zero rows.
So the first ny rows of N

[ 1]

0 0

are not zero rows. Moreover the last nc rows of

Mcg =

/T;;AfcgflAgFA;}. 7;1;.},:4}70571
~S T AcrApy St
are not zero rows. Since Mcg and Mg are nonnegative and Capyrr = Mcog + Mg, the

matrix Caar; has no zero row.
With Lemma 4.2 and Proposition 4.1 we obtain

p (Tamrr) < |Tamrrllw < 1.
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Starting with an M-matrix A and approximations as in (10) and (11) we proved con-
vergence of the AMLI approach for a wide class of non-symmetric matrices. In the
convergence proof the non-negativity of the iteration matrix T4 ;17 was the major tool.
Next we analyze the MAMLI iteration matrix as given in (7).

Before we consider the product (I — P;)(I — P2) we take a look at each factor separately.
It is worth mentioning that not both factors (I — P;) and (I — P») are nonnegative
in general. This is a major difference to the convergence analysis for special Schwarz
methods given in [16, 8, 26]. While factor I — P» is nonnegative the other factor I — P;
need not to be nonnegative (see Example 4.5).

Proposition 4.4. Let A be a nonsingular M-matriz partitioned as in (1).
If (EFF, App — AFF) is a weak regular splitting of App of first type, then
I— P2 Z 0 ’
=Plw = 1,
where w = A" e for an arbitrary positive vector e.

Proof:
Using the splitting properties and the M-matrix sign pattern, we get that

- [ 8[ d]

0 0 Acr Acc
_ [ Ir— AppApr —AppApc
0 Ic

is nonnegative.
Let e be an arbitrary positive vector. Since A is a nonsingular M-matrix w = A~ e is
also positive. With A1 > 0 we obtain

AzL 0 1 AzL 0
< FF FF < w.
0<(I—-Pw (I { o 0 } A) A7 e=w [ o o lesw

Using Lemma 2.1 we get ||[I — P|l, < 1. But since the last components of (I — Ps)w
and w are the same, it holds that

(I = Pw);

4

= Pollw= sup [[(I = P)alw >[I - P)w]w = max

llzllw=1

> 1

This leads to
[1 — Pallw = 1.

Example 4.5. Consider the matriz

2 -1 0 0
1 2 -1 0 ne
0 -1 2 -1
0 0 -1 2 o
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and partition it as indicated. We use the approxrimations

- [20 s [2 0
AFF|:02] and S{O ]

These approzimations fulfill (10) and (11). Then I — Py is given by

6 0 0 0
1116 -3 2
I_P1_620 0 4
00 30

Although (I — P;) is not nonnegative in general, we are able to establish the non-
negativity of the MAMLI iteration matrix.

Lemma 4.6. Let Assumption 3.2 be satisfied, i.e. A is a nonsingular M-matriz parti-
tioned as in (1) and the splittings (EFF,EFF — AFF) and (§,§— EAﬁT) are weak
reqular of first type. Then

Tryamrer 2 0.

Proof:
A computation leads to

ThiamLr
1—1 ~ -
—AppArc }Sl { AcrAzL e } [ Arr  Arc })

[ Acr Acc
- AzL 0 Apr  Apc
0 0 Acr Acc
A

I [ —AppArr  —AppArc ]
0

[ Arr Arc }

ArpAre  AppArc
0 0

I
~
|
rm

~ - 2 -
T } 5 [ Ack (Ir = ApyApp)  RAPT ]
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_ ;_ | AFFArr AppArc
0 0

[ *12[71 AFC 5—1 ~ 2
-| e §7| Aor (Ir = AphApr) 0
| Arrdre 15T Rapr |

L le

_ [ - ApLArr 0O
0 0

= Pt T-1 2

N A;FAFCS*ACF (IF — A;FAFF) 0
~ ~ 2
—S_IACF (IF — A;;AFF) 0

[ -1 _3-1(paAPpT

N 0 —ApLApc (IC S (RAP ))

0 Io—§! (EAﬁT)

Using the assumption on the approximations App and S and the sign pattern of the
M-matrix A we get that Thsanrr is nonnegative.

O
Due to Proposition 3.3, Assumption 3.1 also leads to a nonnegative matrix Thsanr1-
Next we prove the convergence of the MAMLI method.

Theorem 4.7. Let Assumption 3.2 be satisfied, i.e. A is a nonsingular M-matriz par-
titioned as in (1) and the splittings (ZFF, App — AFF) and (§, S - EAﬁT) are weak
regular of first type. Then

P (Taranrr) < | Tvamrorlle <1,
where w = A~ e for an arbitrary positive vector e. Moreover, Taranrrr 15 induced by a

a weak regular splitting of first type, i.e.

Tyvamrr =1 —CuanmirA,

where Cprannr 18 nonsingular and (CIT/;AMU, C]\}lAMLI — A) is a weak regular splitting

of first type of A.

Proof: As in the proof of Theorem 4.3 we will use Proposition 4.1. So we first write
Taramrnr as Taamnr = I — CyranvnrA. Then we will establish that I — CyramrnrA
satisfies the assumptions of Proposition 4.1. Since with Lemma 4.6 T; 4517 is nonneg-
ative, it suffices to show that Chs a7 is nonnegative and Cay a7 has no zero row.
With
Tayamer = (I—P)(I - P)

where

P =PTS™'RA and P,=RTALLRA,
we easily obtain

Tviamrr = 1 —P—Po+ PP

= I —(Mcg+ Ms— McgAMs)A (21)

= I —-CuamriA.
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where
Cyamvrr = Mcg +Ms — McgAMg

and Mg and Mc¢ are as in (18) and (19).
Next we show that Cyraarrr iS @ nonnegative matrix. As seen in the proof of Theorem
4.3 both matrices Mg and M¢c¢ are nonnegative. For —McgAMg we obtain

—MchMS
_ _ 7;{;;‘14}70 a—1 1 AFF AFC g;ﬂ;‘ 0
B [ Ic S [7ACFAFF Ie } Acr Acc 0 0

g;},AchflACF (IF — AE;AFF) A;llg. 0
*g_lACF (IF — Z;};AFF) Ai;ﬂ;v 0

(22)

Using the M-matrix and splitting properties we obtain that —MogAMg is nonnegative.
Consequently,
Cyvamrr = Mcg + Ms + (—McgAMs) (23)

is also nonnegative.

Next, we prove that Cyraprr has no zero row. We already established that all three
terms of Cpranrrr in (23) are nonnegative. So it suffices to prove that the term Mog +
Mg has no zero row, but this was already done in the proof of Theorem 4.3. Now using
Proposition 4.1, we get that

p (Trvamrr) < |[Tvamrr|le <1.

([
Starting with an M-matrix A and approximations as in (10) and (11) or (12) and (13),
respectively, we proved convergence of the AMLI and the MAMLI method. As far as
we know these are the first convergence results for these methods for a wide class of
non-symmetric matrices.
Next we consider the RMAMLI iteration matrix as given in (8)

Trvamrr = ([ —P)(I—P).
Since
Trviavrr = —Py)(I —P2) and  Tryamrr = (I — P)(I — Pr),

we immediately obtain
p(Trvanvinr) = p(Tamrr). (24)

Thus
Corollary 4.8. If Assumption 3.2 is satisfied, then

p (Trvamrr) <1.

Although the spectral radii of the iteration matrices of the RMAMLI and the MAMLI
method are the same, there are significant differences in the structure of the iteration
matrices. The iteration matrix of the RMAMLI method is not nonnegative in general
as shown in the next example.
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Example 4.9. Consider the matriz used in Example 4.5

-1 0 0
a1 2 1 0 e
a 0 -1 2 -1
0 0 -1 2 ne
Again we use the approximations
~ [20 s [2 0
AFF|:0 2:| and S|:0 2:|
We obtain
1 6 -3 2
T _ 1180 0 4
RMAMLI = 75 | 4 0 8
0 0 6 0

Now we will analyze the SMAMLI iteration matrix as given in (8)
Tsvamvrr = [ —P)(I —P)I - P).
Theorem 4.10. Let Assumption 3.2 be satisfied. Then

Tsmamrr > 0,
p (Tsmamrr) < | Tsmamrrlle < 1

where w = A~ e for an arbitrary positive vector e.

Proof: We easily obtain with Lemma 4.6 and Proposition 4.4
Tspamrr = (I — P)(I = P1)(I — P2) = (I — P2)Tmamrr > 0. (25)
With Theorem 4.7 and Proposition 4.4 we get

p(Tsvranmrr) < || Tsvanvivrllw < N — Pallwl|Tvamrr|le < 1. (26)

O
In the remaining of this section we compare the SMAMLI, MAMLI, and AMLI methods
with respect to the weighted maximum norm of their iteration matrices.

Theorem 4.11. Let Assumption 3.1 be satisfied. Then

I Tsmanmrillw < | Tamamirllw < | Taviorllw <1,

where w = A~ e for an arbitrary positive vector e.

Proof:
The inequality ||Tanrrllw < 1 was proved in Theorem 4.3. As shown in (20) and (21)
we have

Tamrr = I—(Mgs+Mcg)A

Tvamvrr = 11— (Ms+ Mcg — McgAMs) A
= Tamrr +McgAMgA,
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where Mg and Mcq are defined in (18) and (19).

Due to the Lemmata 4.2 and 4.6, both iteration matrices are nonnegative. Since A is a
M-matrix and e is a positive vector, w = A~ 'e is also positive. So both terms Tansrrw
and Ty ap 7w are positive.

As seen in (22) the term —McgAMg is nonnegative. So we obtain that the vec-
tor McgAMge has to be non-positive. Therefore,

T 7
Tvamrrllw = max (MAM
1=1...n w;
—  max (Taripiw + MogAMgAA=e);
== Yo ”
T . .
o e Tl L (Mg AMsAA” )
i=l..n wy i=1..n w,

= |[Tamrrllw + min
1=1l...n w;

IN

1 Tarinrlw-

The remaining inequality ||Tsapraninille < [|Tvanmrrl|w follows directly from inequal-

ity (26). O
In the following we establish a result for the AMLI, MAMLI, RMAMLI and SMAMLI
methods. All these methods coincide if the block App is inverted exactly, i.e. App =
App, independent of the quality of the approximation of the Schur complement S.
This results holds for all system matrices A, symmetric or non-symmetric, and not for
M-matrices only.

Theorem 4.12. Let A be a nonsingular matriz, which is partitioned in the following

2 x 2 block structure
A Arr Arc
Acr Acc |

If App is nonsingular and EFF = App then

Tamvrr =Tvamrr = Trvavnr = Tsmamir-
holds for any approzimation S of (A/AFF).
Proof: We have with (20) and (21)

(Ms+ Mca) A
(Ms+ Mcg — McgAMg) A.

Tamrr I -
- J-

Tyamrr =
Similarly, we obtain for the RMAMLI and the SMAMLI method

(Ms 4+ Mca — MsAMcg) A
(2Ms + Mo — MsAMoc
—MgAMgs — McgAMg
+M5AMchM5) A.

TrRMAMLI I—
- J—

Tsypamrr =
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But a computation leads to
McgAMs = MsAMcg = 0,

and
—1
MgAMg = [ App 0 } = Ms.

Hence,
Tavrr =Tvamrr = Trvavinr = Tsvamrr-

5 Multilevel convergence results

In Section 4 we proved convergence for two-level methods. Here we extend the conver-
gence results to multilevel methods, i.e. the two-level AMLI or MAMLI technique is
used recursively on different levels or different coarse grids. The so called coarse grid
system, the system that involves the Schur complement, is then solved or approximated
by the AMLI or MAMLI approach again.

To prove convergence for the multilevel methods, we need the following preliminary
results.

Lemma 5.1. Let (ZFF, ZFF — AFF) be a weak regular splitting of first type of App.
Then

Byp = 2455 = AppApr Ay
is nonsingular and the splitting
(EFFa Brp — AFF)
of App is weak regular of first type.
Proof. We have

Bpp = 2App — AphAprApy
= Aph+ (1- Aphaps) A7k
N—— N——
>0 >0 >0
> 0.

Thus, By} can be written as a sum of nonnegative terms. Since A} is nonsingular,
ALt has no zero row. Hence, By} has also no zero row.

Moreover,
I—BilApr = I-— (221;; - /T;;AFFZ;;) App
= (I — A7l App (I - Z;;AFF)
>0 >0
> 0

Thus, we have shown that
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>—1 - .
e B, is nonnegative,
S5—1 . .
e [ — Bp,Apr is nonnegative,
-1
e B 5 has no zero row.

Hence, with Proposition 4.1 the matrix E;Il; is nonsingular and (EFF, EFF — AFF)
is a weak regular splitting of first type. |

Theorem 5.2. Let A be a nonsingular M -matrix partitioned as

A Arr Arc
Acr Acc

Let (EFF, ZFF — AFF) be a weak regular splitting of first type Apr. Then

Acc,
(A/ZFF) ;
RAPT = [ —acrdzh 1]4] ~ArkAre }
are nonsingular M -matrices. Moreover,
Acc = (A/AFF) Z [ ~AcrApp T }A{ _ZE};AFC } > (A/Arr) . (27)

Proof. With Theorem 2.2 we have that A¢c is a nonsingular M-matrix.
Next we consider (A/ZFF).

Since (;1 FF, A Fr — AF F) is a weak regular splitting we obtain with Lemma 2.4 that
0< Appp < App.
Using the M-matrix structure of A we get

(A/Arp) = Acc — Acr Anl Arc
=0 >A%;

< Acc— AL AT Aoy = (A/AFF) .

<0

Similarly,

(A/AFF) = Acc — Acr App Arc < Acc
AN
<0 >0 <0

Thus, we get the inequalities
Acc > (A/AVFF) > (A/AFrF) . (28)

By Theorem 2.2 Acc is a nonsingular M-matrix and with Theorem 2.3 (A/ArF) is a
nonsingular M-matrix also. Hence, by Theorem 2.2, we obtain the desired property of

(A/ZFF).
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~ A1
Next consider [ —AcpAzL 1 }A[ AF;IrAFc }

We obtain
[ CderAh T } y [ 7A;'}I:‘AFC ]

= Acc —Acr (;1}}: + App - /T;}:‘AFFZE}?) Arc

= Acc — AcrBppArc

= (4/Ber)
where E;}, = Z}}; + Z}}, - Z}},AFFZ;};
With Lemma 5.1, (EFF, EFF — AFF) is a weak regular splitting of first type. Hence,
replacing Arp by Bpr we can follow the above part of the proof. Therefore, we obtain
that (A/EFF) = [ —~AcrApp I } A [ —AppArc

7 ] is a nonsingular M-matrix.
Thus, we get the inequalities

~ 7~71
Aco > | ~AcrAzh 1 }A{ ArpAre ] > (A/Apr) - (29)

Next we will prove (27). We have

Brp = 2Aph — Ak ApApy = App + (1 - AppArr) Apy = A
—~ —_— T
>0

>0 >0

Since A is an M-matrix, the blocks Acr and Apc are non-positive. Therefore
~_ —A7L Arc
| —Acrdgh T }A[ FE

5—1
= Acc—Acr Bpp Arc
—_— L =~
=0 245520 =0

IN

_ A—1 — A
Acc — Acr App Arc (A/AFF) -
<0 >0 <O

Together with (28) and (29), we then obtain (27)
e - —AqLA
Aco > (A/Apr) > | ~AcpAzh 1 }A[ prre } > (A/Apr) .
([l

Now, we will turn to the multilevel methods. As mentioned in the beginning of this
section, the coarse grid system is solved recursively with an iterative method, namely
the same method as used for the original system. To describe the multilevel methods,
we need also a hierarchy of matrices AV, ..., A where A = A and AP is a n. xn.
matrix, etc.

First we consider the AMLI approach. Similarly to Assumption 3.1 in the two-level
case, we need assumptions for the approximations in the multilevel case.
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Assumption 5.3. Let AV € R™*™ be a nonsingular M-matriz. Forl=1,...,L—1
assume that

o AW s partitioned in the 2 x 2 block structure

l l
Ay Apr

A(l) = l l
Alr ASe

) (Zg)F, gg)F — A;QF) is a weak regular splitting of first type,
o AU+D s given by
~(
AT = (4/A0,) (30)
Moreover (§(L), S A(L)) is a weak regular splitting of first type.

Note that for L. = 2, Assumption 5.3 is nothing else than Assumption 3.1.
We immediately obtain the following Lemma.

Lemma 5.4. If Assumption 5.3 holds, all matrices AV 1 =1,... L are nonsingular
M -matrices.

Proof. The lemma can be proved by induction and Theorem 5.2. |

The multilevel AMLI iteration matrix T44,, ; is then given by

1
T%VILI =1I- CI(AKMIA(U
where for [ =1,..., L —1
: 07 0] [ -A07 a0 ] Lan o
Clurr = Fr + rr Are | o), { AL AR Ie }

0 0 Ic

and C), = 5D
We obtain

Theorem 5.5. Let Assumption 5.3 be satisfied. Then
1
p (Tharer) <1 - Cr A w < 1.

Proof. For level L — 1 we have

L—-1
Clirrer
FL-n-* _ =07t 4(L-1) — _

Since C,(LXL]\ZILI := SO we can apply Theorem 4.3. Thus (é,ngzv)I;lza 6’;6\)4;1[ - A(L)) is

a weak regular splitting of first type, and since A“~1) is an M-matrix (see Lemma 5.4)
the assumptions of Theorem 4.3 are satisfied.
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Thus, by Theorem 4.3, ') is nonsingular and (01(41:”2)[*1’01(&2)[1 — A(L_l)) is a

weak regular splitting of first type.
Repeating this procedure for level L — 2 and all other levels we obtain

1
P (T,%V[LI) < |- 01(4]34LIA(1)||U/ <L
O

Next we consider the MAMLI method. Similarly to Section 4, we can use a weaker
assumption for the approximations used in the MAMLI method.

Assumption 5.6. Let AV € R™*"™ be a nonsingular M-matriz. Forl=1,...,L —1
assume that

o AW is partitioned in the 2 x 2 block structure

l l
Ay Apr

AN —
) )
Acr Acc

) (Zg)F, gg)F — A;QF) is a weak regular splitting of first type,
o AU+D) s given by

- AO7 40
(1+1) O 1 —A A
A = [ —ALAD. T }AU e fre

Moreover, (g(L), S — A(L)) is a weak regular splitting of first type.

Again, note that for L = 2 Assumption 5.6 is nothing else than Assumption 3.2.
We immediately obtain again

Lemma 5.7. If Assumption 5.6 holds, all matrices AW 1 =1,..., L are nonsingular
M -matrices.

Proof. The lemma can be proved by induction and Theorem 5.2. |
The multilevel MAMLI method is then given by the iteration matrix
1
TAj\fAMLI =1- 01(\4)AIV[LIA(1)’
wherefor [ =1,...,L —1

~l71 l
A A,
Ic

l A0 0 I+1 nONs
01(\4)AMLI = [ IE)F 0 CI(VIJ;S&LI[ *A((,Z*)FA%)F IC}
AV o

0 0

~171 1
A Al
Ic

1+1 ~-1
ClBinr | —AB AL 1o ] 40

L —1
and C\ = 5E) ",
We now are able to prove the convergence of the multilevel MAMLI method.
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Theorem 5.8. Let Assumption 5.6 be satisfied. Then

1
P (TJ{\;AMLI) < |- CJ(WLU\/ILIA(UHUJ <1

Proof. The proof is similar to the proof of Theorem 5.5. Note, that with Theorem 5.2
all AU+ are M-matrices. O

In our two level convergence theorems, the assumptions for the approximations of the
coarse grid system, i.e. the Schur complement, are expressed with the use of the original
matrix A. In detail, we used (A/Arr) for the AMLI method and RAPT for the MAMLI
method, see (11) in Assumption 3.1 and (13) in Assumption 3.2.

Thus for the multilevel convergence theorems above, we used the corresponding formu-
lation for building the coarse matrices on each level, i.e.

~(1
A(l 1) = (A/A(F)F')
for the AMLI method, and

~(1 -1 1
A A

(1+1) _ 0 7! )
A= [ 4 AD" 1A .

for the MAMLI method.
However, with similar arguments as in the proofs of the two-level and the multilevel
convergence theorems, one can prove the following results.

Theorem 5.9. Let Assumption 5.3 be satisfied, except that (30) is replaced by
+1) _ 4
AD = Ag).
Then
1
P (T%VILI) <|[I- C,(L!KJLIA(UHW <L

Proof. Obviously, all matrices A+ are nonsingular M-matrices.
The proof for the multilevel method is based on the proof for the two-level method.
Thus, for the two-level method we assume, that Apr and S are chosen such that the

splitting (ﬁ FF, A Fr — Ap F) is weak regular of first type and that the splitting

(5, S — Acc) is weak regular of first type. (32)

We omit the level indices here.

Using I — S~ 1Acc > 0 we get

I-85'A/Arp) = I-5"(Acc - AcrAppArc)
= J— §_1Acc + g_l(ACF/T;‘JlF‘AFC)
> 0.

Thus, (§,§ - (A/ZFF)) is a weak regular splitting. Therefore, the assumptions of
Theorems 4.2 and 4.3 are fulfilled and we can follow their proofs. Hence, we obtain
that the new iteration matrix TA MLI, that is build by using the approximations (32),
is nonnegative. Moreover, we also have p(TA MmrLr) < 1and TA M1 is induced by a weak
regular splitting (Capnrpr—1,Caripr — A)-

We can then follow the proof of Theorem 5.5 to establish the convergence of the multi-

level method.
O
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Moreover, we have for the MAMLI method.
Theorem 5.10. Let Assumption 5.6 be satisfied, except that (31) is replaced by

4SS = A,

or
A0 _ (A/Z;QF) .
Then
p (Tafanirr) < I — Cianrpr AVl < 1.
Proof. The proof is similar to the proof of Theorem 5.9. O

6 Conclusion

In this paper we have analyzed algebraic multilevel methods applied to non-symmetric
M-matrices. We considered two types of AMG methods, the AMLI approach and the
MAMLI method. We establish convergence results for these methods used as solvers
applied to non-symmetric M-matrices. Moreover, some algebraic properties of these
methods and the corresponding iteration matrices and splittings are given.
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