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Propagation of short optical pulses in a nonlinear dispersive medium is considered without the use
of slow envelope and unidirectional propagation approximations. The existence of uniformly moving
solitary solutions is predicted in the anomalous dispersion domain. A four-parametric family of such
solutions is found that contains the classical envelope soliton in the limit of large pulse durations. In
the opposite limit we get another family member, which in contrast to the envelope soliton strongly
depends on nonlinearity model and represents the shortest and the most intense pulse which can
propagate in a stationary manner.

PACS numbers: 42.65.Tg, 42.81.Dp, 05.45.Yv

I. INTRODUCTION

Ultra-short optical pulses have numerous applications
which include measurements of fast relaxation times, pro-
cessing of materials, testing of high-speed devices, trac-
ing of chemical reactions, investigations of light-matter
interactions [1, 2]. In the present paper we consider the
most extreme representatives of ultra-short pulses – the
few-cycle pulses – containing only several oscillations of
the electromagnetic field. We investigate propagation of
such pulses in a transparent medium assuming that the
electric field effectively depends on time and one space
variable like, e.g., in a single-mode fiber.

Description of ultra-short processes requires a modifi-
cation of standard slow varying envelope (SVE) models
based on the nonlinear Schrödinger equation (NSE) [3, 4].
Apart from straightforward numeric solution of Maxwell
equations, two theories of ultra-short pulses are common
in the literature. The first one adds several higher-order
dispersion terms to NSE (higher-order NSE [5, 6]). These
terms are especially important near the so-called zero dis-
persion frequency (ZDF) where the second-order disper-
sion vanishes. Note, that higher-order NSEs still assume
that the pulse spectral width ∆ω is much smaller than
the carrier frequency ω0, so that the SVE approximation
can be used. On the contrary, when considering few-cycle
pulses with ∆ω ∼ ω0 the SVE approximation is not valid.
In the latter case an analog of a higher-order NSE can
be derived [7]. Several improvements of this model were
suggested later [8–13]. These models are also referred
to as higher-order NSEs and are now routinely used to
model short pulses and continuum generation [14].

The second approach to the description of few-cycle
pulses, which does not make use of the pulse envelope
concept, is to derive a simplified model directly for the
wave fields. The first-order evolution equations are ob-
tained under the so-called unidirectional approximation.
In the most simple form it states that

∂2
t − ∂2

z ≈ 2∂t(∂t + ∂z) (1)

for the normalized space-time variables and pulses prop-
agating along the z-axis. Following this approach several
non-envelope models were proposed [15–17]. A relation

between NSE and unidirectional models was discussed in
[18, 19].

Another characteristic feature of ultrashort optical
pulses is that the traditional representation of either re-
sponse function ε(ω) or dispersion relation k(ω) as a Tay-
lor series near ω0 can become invalid. This happens if ∆ω
becomes comparable with the spectral width of the trans-
parency window. Since, due to resonances, ε(ω) always
has singularity points in the complex plane, the conver-
gence radius for any Taylor expansion is finite and deter-
mined by the singularity which is nearest to ω0. There-
fore, an adequate description of material dispersion can-
not be given by the higher-order NSE within the whole
frequency range covered by the ultra-short pulse spec-
trum, whatever the number of terms in the dispersion
operator is [20].

A possible way to overcome this difficulty is to deal
with the full medium description in terms of Bloch equa-
tions. Thereby a modified Korteweg de-Vries (KdV)
equation was derived in the optical transparency limit
and a sine-Gordon type equation in the opposite case (see
[21–26] and references cited therein). In addition, several
phenomenological non-envelope models were developed
where medium polarization was described by introduc-
ing artificial equations for nonlinear oscillators [27–30].

Another possibility to avoid Taylor expansions is to
construct a suitable fit to ε(ω) in the desired spectral
range. For instance, a simple expression with three fit
parameters A,B and ε̄

ε(ω) ≈ ε̄
(

1 +Aω2 − B

ω2

)
(2)

provides an accurate approximation to the dispersion
function in the transparency window between two res-
onances [31]. Using Eq. (2) together with the unidirec-
tional approximation (1) the following reduced model for
the normalized electric field E(z, τ)

∂zE − a∂3
τE + b

τ∫
−∞

Edτ ± E2∂τE = 0 (3)

was derived for a pulse propagating in a Kerr medium
[32]. Here τ = t − β1z corresponds to the coordinate
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frame moving with the group velocity 1/β1, parameters
a and b are proportional to A and B respectively, the
sign of the cubic term is determined by the sign of χ(3).

In the situation when the pulse spectrum is located
above the ZDF the last term in Eq. (2) can be neglected.
In this case b = 0 and Eq. (3) reduces to a modified
KdV model which is completely integrable by the inverse
scattering technique [33]. If, on the other hand, the pulse
spectrum is located below the ZDF the A-term in Eq. (2)
can be dropped and therefore one has a = 0 in Eq. (3).
This particular case of Eq. (3) was introduced recently
[34, 35] and it is referred to as a short pulse equation.
The later is integrable in a full analogy with the stan-
dard NSE, KdV, and sine-Gordon equations [36, 37]. The
model (3) can be considered as a possible replacement of
the higher-order NSE for few-cycle pulses [31, 32].

The most interesting class of solutions of above men-
tioned models corresponds to solitary pulses propagating
uniformly without changing of their average shape as long
as the dissipative effects can be neglected. Several such
solutions are known for the higher-order NSE [38–43].
With a special choice of model parameters even a gen-
eral solution with an arbitrary number of solitons can
be constructed. On the other hand, to our knowledge,
solitary solutions are not known for the modifications of
NSE accounting for the fast envelope evolution.

Solitary solutions of non-envelope equations were re-
ported for the integrable unidirectional models as cited
above and were further obtained for more complex unidi-
rectional models [44]. Many of them do not contain any
internal field oscillations (video pulses). On the other
hand, any localized solution of Eq. (3) with b 6= 0 must
satisfy the area condition

∫ −∞
−∞ E(z, τ)dτ = 0 and there-

fore it contains at least one oscillation. Although oscillat-
ing solitary solutions are usually non-stationary even in
the co-moving frame of reference and therefore are quite
difficult to find, they are natural representatives of ex-
tremely short electromagnetic waves we are interested in.
The oscillating pulses can coexist with the video pulses.
For instance, both breathers and ordinary solitons are
solutions of the modified KdV equation [33]. An oscillat-
ing localized solution of the short pulse equation (Eq. (3)
with a = 0) was reported in [45]. Similar solution for a
circularly polarized short pulse (a two-component gener-
alization of Eq. (3) with a = 0) was found in [46]. All
reported solutions have an important common property
with breathers. Namely, as the number of oscillation in-
creases they become similar to the usual envelope soli-
tons of NSE thus providing a link between two theories
of short pulses.

The goal of our paper is to investigate the transition
between the few-cycle pulses and envelope solitons. The
main result is that both the classical envelope and the
non-envelope solitons reported recently are representa-
tives of the same family of localized solutions. To obtain
this family neither the SVE approximation nor the uni-
directional approximation are necessary. Therefore, by
construction the obtained solitons satisfy the above men-

tioned modifications of NSE. Such solitons exist under
three essential assumptions: (i) anomalous dispersion,
(ii) instantaneous Kerr-like or saturable nonlinearity, and
(iii) negligible dissipation effect for the time-scales of in-
terest. Our solution method uses ideas of the recent pa-
per [46] which is devoted to unidirectional equations.

The paper is organized as follows. The assumptions on
dispersion and nonlinearity are quantified and the model
equations are introduced in the next section. Soliton tails
are analyzed in Section III, where the solution Ansatz
is explained. The full nonlinear problem is posed and
solved in Section IV. Finally, in the Conclusions section,
we summarize the results of our analysis.

II. MODEL EQUATIONS

We assume that the radial dependence of the electric
filed E = (Ex, Ey) is integrated out so that the field
can be described in the 1 + 1 dimensional approximation
E = E(z, t). The approximation is adequate for single-
mode guiding structures for which we write

∂2
tD− c2∂2

zE = 0. (4)

The electric displacement vector D(E) contains both lin-
ear and nonlinear parts. The linear part is given in a
frequency domain as Dlin

ω = ε(ω)Eω. Below we use the
following fit for the responce function

ε(ω) ≈ ε̄
(

1− µ2ω
2
0

ω2

)
(5)

in the anomalous dispersion range. Here ω0 is some refer-
ence frequency within the pulse spectrum. Both ε̄ and µ2

are dimensionless fit parameters. An exemplary fit (5) for
a fluoride glass is shown in Fig. 1 for a frequency interval
where <[ε(ω)] is concave. We have chosen ω0 = 1 PHz,
which is close to the ZDF = 0.9825 PHz, and obtained

ε̄ = 1.552 and µ2 = 0.0121. (6)

Approximation (5) provides a better agreement with
the experimentally measured response function than the
eight order Taylor expansion around the central fre-
quency ω0 (see Fig. 1). More details on the approxi-
mation accuracy can be found in [34]. In the coordinate
space it corresponds to

∂2
tD

lin = ε̄(∂2
tE + µ2ω2

0E).

The physical origin of the dispersion relation (5) was re-
cently discussed in [46].

We assume that the nonlinear part of electric displace-
ment vector is described by an instantaneous self-focusing
Kerr expression Dnonl = 4πχ(3)|E|2E with positive fre-
quency independent χ(3). Inserting D = Dlin+Dnonl into
Eq. (4) we obtain the following basic evolution equation

ε̄(∂2
tE + µ2ω2

0E)− c2∂2
zE + 4πχ(3)∂2

t (|E|2E) = 0.
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FIG. 1: Real part of dispersion function ε(ω) for fluoride
glass (solid line) and an approximation function (5) (dot-
ted line). The approximation parameters ε̄ and µ2 were cho-
sen to provide the best fit between two inflection frequencies
ωmin = 0.2536 PHz and ωmax = 1.6127 PHz (thick points).
For comparison the 8th order Taylor expansion of ε(ω) with
the central frequency ω0 = 1 PHz is also shown (dashed line).

Introducing a wave vector k0 such that ω0/k0 = c/
√
ε̄

and normalized variables

t̄ = ω0t, z̄ = k0z, u =

√
4πχ(3)

ε̄ω2
0

E,

we transform our basic equation to the dimensionless
form

utt − uzz + µ2u + (|u|2u)tt = 0, (7)

where derivatives are denoted by indices and bars are
omitted. Note, that we do not use the unidirectional
approximation in (7). Moreover, the expression |u|2u
in Eq. (7) can be replaced by a more general instanta-
neous nonlinearity f(|u|2)u, accounting for, e.g., satura-
tion effects. Finally, we introduce a complex quantity
ψ = ux + iuy and rewrite the basic model as

ψtt − ψzz + µ2ψ + [f(|ψ|2)ψ]tt = 0, (8)

where

f(ζ) = ζ +O(ζ2) as ζ → 0. (9)

In what follows we study solitary solutions of Eq. (8).
Note, that ψ as opposed by a complex amplitude in NSE
represents the components of the electric field directly.
In the next sections we use also the auxiliary function

F (ζ) =
1
ζ

∫ ζ

0

f(ζ)dζ,

where F (ζ) = ζ/2 +O(ζ2) as ζ → 0.
Finally, we stress that the hyperbolic operator in

Eq. (8) and its unidirectional approximation (1) act al-
most identically on the simplest travelling wave solutions
that are stationary in the co-moving coordinate frame.
Breathers described in this paper are different: they de-
pend on both space and time variables in any frame.

III. SOLITON TAILS

Before proceeding with the nonlinear case let us first
discuss a small amplitude limit of Eq. (8)

ψtt − ψzz + µ2ψ = 0, (10)

which is the Klein-Gordon equation. This equation de-
scribes two decaying tails of any localized solution of the
full model. Let us show that such solutions can exist
only if some necessary conditions are satisfied. First, in-
troducing field amplitude a and phase ϕ

ψ = ux + iuy = aeiϕ, (11)

we replace Eq. (10) with the following system

att − azz + (µ2 − ϕ2
t + ϕ2

z)a = 0, (12)

(a2ϕt)t − (a2ϕz)z = 0. (13)

Next, substituting a usual travelling-wave Ansatz for the
field phase

ϕ = Ω
(
t− z

λ

)
(14)

with Ω and λ being free parameters into Eq. (13) we get
λ(a2)t + (a2)z = 0. This equation immediately suggests
the following Ansatz for the wave amplitude

a = a(ξ), ξ = t− λz. (15)

Note, that the normalized velocities in Eqs. (14) and (15)
are different indicating that the solution is non-stationary
in any moving frame of reference. Finally, due to Eq. (15)
the phase Eq. (13) is satisfied automatically and the am-
plitude Eq. (12) reduces to the form

ä−
(

µ2

λ2 − 1
− Ω2

λ2

)
a = 0, (16)

where an overdot denotes a derivative with respect to ξ.
Decaying soliton tails exist only if

s2 =
µ2

λ2 − 1
− Ω2

λ2
> 0, (17)

which means that the following necessary conditions

λ2 > 1, µ2 >
λ2 − 1
λ2

Ω2 (18)

must be satisfied.
Equations (14) and (15) correspond to the circular po-

larization of electromagnetic field. The scaling param-
eter λ determines the normalized soliton velocity, while
the second parameter Ω is the carrier frequency normal-
ized by ω0. Since our dispersion approximation (5) is
valid for Ω ' 1 and µ2 in Eq. (6) is small, it follows
from (18) that λ2 is only slightly greater than 1. As
we will see, the solitary solution exists in a parameter
range λ2

min < λ2 < λ2
max. Finally, we note that the first

inequality in (18) has a simple interpretation: the dis-
persion curve ω2 = µ2 + k2 of Eq. (10) on (ω, k)-plane
does not intersect the curve ω2 = k2/λ2 corresponding
to (15). This agrees with the general statement obtained
for any soliton in [47].
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IV. NONLINEAR SOLUTION

Now we turn to the solitary solution of the full nonlin-
ear model (8). Using the amplitude-phase representation
(11) we obtain an amplitude equation

[att − aϕ2
t ]− [azz − aϕ2

z] + µ2a

+ [f(a2)a]tt − f(a2)aϕ2
t = 0 (19)

instead of Eq. (12) and a phase equation

[2atϕt + aϕtt]− [2azϕz + aϕzz]

+ 2[f(a2)a]tϕt + f(a2)aϕtt = 0 (20)

instead of Eq. (13). The simplest expression (14) for the
phase should be generalized to account for the last two
terms in Eq. (20). Following [48] we introduce an Ansatz

ϕ = Ω

(
t− z

λ
+
∫ ξ

−∞
g(a)dξ

)
, (21)

where the function g(a) accounting for the nonlinear
phase correction will be specified later. We require
g(0) = 0 such that Eq. (14) from the previous section
can be recovered for the linear case. Inserting Eq. (21)
and Eq. (15) into Eq. (20) we rewrite the phase equation
as an ordinary differential equation for g(a)

[a− fλ(a2)a]g′ + 2[a− fλ(a2)a]′g = 2[fλ(a2)a]′. (22)

Here, a derivative with respect to a is denoted by prime
and the notations

fλ(a2) =
f(a2)
λ2 − 1

, Fλ(a2) =
F (a2)
λ2 − 1

(23)

are introduced. Integrating Eq. (22) and using the con-
dition g(0) = 0 we obtain

g(a) =
fλ(a2)− Fλ(a2)

[1− fλ(a2)]2
+

fλ(a2)
1− fλ(a2)

. (24)

Next, we derive an equation for a(ξ) by inserting Eq. (15)
and Eq. (21) into Eq. (19)

[ä− Ω2(1 + g)2a]− [λ2ä− Ω2(λ−1 + λg)2a] + µ2a

+
d2

dξ2
[f(a2)a]− Ω2(1 + g)2f(a2)a = 0

and rewriting it in the form

d2

dξ2
[a− fλ(a2)a]− s2a

+ Ω2[(1 + g)2fλ(a2)− g2]a = 0, (25)

where s2 is defined by Eq. (17).
The amplitude a(ξ) is completely defined by Eqs. (24)

and (25). The linear part of Eq. (25) is identical to

Eq. (16) and therefore ensures correct soliton asymp-
totics at ξ → ±∞. Equation (25) can be multiplied with
(d/dξ)[a− fλ(a2)a] and integrated once. The result can
be transformed into the form

ȧ2

2
+ U(a) = const (26)

with an effective potential function U(a), which can be
derived by a straightforward integration for any nonlin-
earity function f(a2). The solitary solution of Eq. (8)
corresponds to a homoclinic orbit of Eq. (26). If any, the
orbit must satisfy the equation

ȧ = ±
√

2[U(0)− U(a)].

After U(a) is calculated, it is straightforward to check if
the desired homoclinic orbit exists. Moreover, such an
orbit always exists for the self-focusing nonlinearity (9)
at least for small values of the soliton amplitude. The
solution is equivalent to the classical envelope soliton of
NSE. As the amplitude increases the pulse is shortened
and at some critical amplitude the shortest soliton is ob-
tained. The latter has a non-envelope nature. These
issues are discussed in the reminder of the section.

A. Envelope solitons

In this subsection Eqs. (24) and (25) are considered in
the limiting case

fλ(a2) =
f(a2)
λ2 − 1

� 1 (27)

corresponding to a small but finite solution amplitude.
Since λ2 is usually only slightly greater than 1, inequal-
ity (27) implies a strong restriction on a(ξ). Let us show
that the soliton always exists in this limiting case and has
an universal shape of the NSE soliton. First, omitting the
high order terms in Eq. (24) we get

g(a) = 2fλ(a2)− Fλ(a2).

Next, we reduce Eq. (25) to the form

ä− s2a+ Ω2fλ(a2)a = 0.

Finally, we simplify fλ(a2) using Eq. (9) and obtain

ä− s2a+
Ω2

λ2 − 1
a3 = 0. (28)

Equation (28) has a standard solitary solution

a(ξ) =
√
λ2 − 1

Ω
s
√

2
cosh(sξ)

(29)

similar to that of the NSE. It follows from Eq. (29) that
in order to satisfy the condition (27) we need s � 1.
Therefore, in accord with Eq. (16), the soliton tails are
slowly decaying and contain many oscillations of the car-
rier wave. That is, Eq. (29) describes an envelope soliton.



5

0.2 0.4 0.6 0.8

-0.06

-0.04

-0.02

0.02

0.04

A

B

C

UHbL

b

FIG. 2: The effective potential U(b) from Eq. (30) for Ω = 1
and three values of the parameter s: (A) 8s2 = 0.97; (B)
8s2 = 1; (C) 8s2 = 1.03.

B. Non-envelope solitons

In this subsection we consider a solitary solution of
the full system (24) and (25) with the simplest nonlinear
function f(ζ) = ζ corresponding to the self-focusing Kerr
medium. In accord with Eq. (23) it is helpful to introduce
a new amplitude variable

b(ξ) =
a(ξ)√
λ2 − 1

such that fλ(a2) = b2 and Fλ(a2) = b2/2. Then Eq. (24)
reduces to the form

g(b) =
b2(3− 2b2)
2(1− b2)2

.

Now, the amplitude Eq. (25) takes the form

d2

dξ2
(b− b3)− s2b+ Ω2[(1 + g)2b2 − g2]b = 0

or

d2

dξ2
(b− b3)− s2b+ Ω2 4− 9b2 + 4b4

4(1− b2)3
b3 = 0,

which is a generalization of Eq. (28). After one integra-
tion we obtain

ḃ2

2
− s2 b

2(2− 3b2)
4(1− 3b2)2

+ Ω2 b4(2− 7b2 + 6b4)
8(1− b2)2(1− 3b2)2

= 0 (30)

with the integration constant being zero for a localized
solution.

Equation (30) belongs to the general class (26) with
a rather complicated effective potential U(b). A similar
equation was investigated in [48]. Solitary solutions ex-
ist as long as s2 ≤ Ω2/8. For s2 → 0 they reduce to
the envelope solitons described in the previous section.
In the limit s2 → Ω2/8 we get non-envelope short-pulse
solutions. To understand the behavior of the solution in
this limit, we plot U(b) from Eq. (30) for three different

-20
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ûx

FIG. 3: Normalized electric field ûx = ux(ξ)/
√
λ2 − 1|z=0 and

pulse envelope b(ξ)|z=0 computed from Eq. (30) for Ω = 1 and
different values of the parameter s.

situations: (A) s2 is slightly below Ω2/8, (B) s2 = Ω2/8,
and (C) s2 is slightly above Ω2/8 (see Fig. 2). In the last
case a regular solution for b(ξ) does not exist. Exactly for
s2 = Ω2/8 two singular terms in U(ξ) cancel each other.
This is also evident from the expansion of the potential

U(b)→ Ω2

96(1− 3b2)2
− s2

12(1− 3b2)2
(31)

at b2 → 1/3. The critical value of s2 was actually found
from the expansion (31). At s2 = Ω2/8 Eq. (30) becomes

ḃ2 = Ω2 b
2(2− 3b2)

16(1− b2)2
(32)

and can be solved in quadratures

1
3

√
2− 3b2 − 1√

2
arccosh

( √
2√
3b

)
= ±Ωξ

4
. (33)

Here b2(0) = 2/3 is the normalized pulse peak intensity.
For s2 < Ω2/8 we have a continuous family of pulses.

Figure 3 illustrates how the soliton shape evolves as s2
approaches the critical value. It is interesting to note
that the limiting pulse for s2 ↗ Ω2/8 (the last curve in
Fig. 3) has a cusp-like shape and differs from the exact
solution (33) obtained for s2 = Ω2/8. At the cusp point
we have b2(0) = 1/3.

Thus, the soliton exists if the condition

0 <
(µ/Ω)2

λ2 − 1
− 1
λ2

<
1
8

is fulfilled. This condition defines the range λ2
min < λ2 <

λ2
max of the soliton velocities. Note, that similarly to the

envelope solitons the soliton family found in this paper
depends on four parameters: the velocity 1/λ, carrier
frequency Ω, an arbitrary initial phase and position.
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V. CONCLUSIONS

To summarize, generalizing the results of [46], we have
found a family of ultra-short optical solitons for Eq. (7)
which does not assume slow-envelope and unidirectional
approximations. Instead of a local Taylor expansion,
a global rational fit of the material response function
was used. In addition to neglecting dissipation effects
only two assumptions were made: instantaneous self-
focusing nonlinearity and an anomalous dispersion in the
frequency range of interest.

Our mathematical procedure leads to a qualitatively
simple Eq. (26), which allows for a straightforward anal-
ysis of the solitary solutions. All solitons have a following
universal property: with the increase of the pulse dura-
tion they reduce to a standard envelope soliton. Such

behavior was first predicted in [47]. On the other hand,
when the pulse duration decreases the soliton evolves to a
limiting shape representing the shortest pulse for which
dispersive spreading is still compensated by nonlinear-
ity (Fig. 3). The half-width of this pulse is of order of
the carrier wave period (single-cycle solution). The ap-
pearance of the cusp-like singularity which prevents the
existence of shorter pulses is discussed.
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