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Abstract

We establish theoretical comparison results for algebraic multi-level
methods applied to nonsingular non-symmetric M-matrices. We consider
two types of multi-level approximate block factorizations or AMG meth-
ods, the AMLI and the MAMLI method. We compare the spectral radii of
the iteration matrices of these methods. This comparison shows, that the
spectral radius of the MAMLI method is less than or equal to the spectral
radius of the AMLI method. Moreover, we establish how the quality of
the approximations in the block factorization effects the spectral radii of
the iteration matrices. We prove comparisons results for different approx-
imation of the fine grid block as well as for the used Schur complement.
We also establish a theoretical comparison between the AMG methods
and the classical block Jacobi and block Gauss-Seidel methods.

Keywords. Algebraic multi-level methods, multi-level approximate block fac-
torizations, algebraic multigrid methods, AMLI method
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1 Introduction

In the last decade, algebraic multigrid methods became a powerful tool for
solving nonsingular linear systems of equations

Az = b.

The idea of algebraic multigrid methods is to use only information on the matrix
structure and the matrix entries [25]. Although these algebraic multi-level meth-
ods work very well in practice for many problems, there is not that much known
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about their theoretical convergence properties, especially for non-symmetric
problems. Recently, a theoretical comparison of different algebraic multigrid
methods applied to symmetric positive definite systems was given by Notay in
[21].

In [18] two types of algebraic multi-level methods resulting from approximative
block factorizations are considered, namely additive and multiplicative block fac-
torizations. The first type includes an abstract and basic version of the AMLI
method (algebraic multi-level iteration) introduced by Axelsson and Vassilewski
in [2, 3]. The other type, the multiplicative type, includes the so-called MAMLI
method. This method can be seen as an AMG method with fine grid smoothing
only and special restriction and prolongation operators [16]. A symmetrized
version of the MAMLI method leads to the so-called SMAMLI method [18].
The AMLI and MAMLI methods can be formulated also as additive and multi-
plicative Schwarz methods [5, 26, 18].

In [18] convergence results are established for these AMG methods applied to
non-symmetric matrices. It was shown, that the AMLI and MAMLI method
converge for non-symmetric M-matrices.

M-matrices are used in various fields of applied mathematics such as numerical
analysis, probability, economics and operations research [7]. Moreover, Markov
chain modeling became relevant in several applications from computer science
such as information retrieval [15]. In Markov chain modeling iterative solvers,
like algebraic multigrid methods are used to compute the steady state solution of
a Markov chain, i.e. algebraic multigrid methods are used to find the solution of
a system with non-symmetric M-matrix structure. But, Markov chain problems
usually lead to singular M-matrices. However, the Google matrix, introduced by
Brin and Page (see e.g. [15]) is a non-singular M-matrix, based on a modified
Markov chain model. The size of the Google matrix is equal to the number
of webpages. Hence, solving a linear system with this matrix is a non-trivial
task. Therefore theoretical comparisons of the speed of convergence of iterative
methods help to choose between different methods.

In [18] upper bounds for the spectral radii of the iteration matrices of the AMLI
and MAMLI methods are compared. These upper bounds are given in terms of
weighted max norms.

In this paper, we continue such a comparison in detail. We compare the spectral
radii of the iteration matrices of the abstract AMLI, MAMLI, and SMAMLI
methods. The comparison shows, that the spectral radius of the MAMLI
method is less than or equal to the spectral radius of the AMLI method. This
result is one of few theoretical results that gives a direct comparison of the
asymptotic convergence rates of a multiplicative Schwarz (MAMLI) method
compared with that of the additive Schwarz (AMLI) method [20, 14].
Moreover, we will show theoretically how the quality of the approximations in
the block factorization effects the spectral radii of the iteration matrices of both
the AMLI and the MAMLI method. We will give comparisons for different
approximations of the fine grid block as well as for the used Schur complement.
Our comparison theorems are mainly based on matrix splitting theory intro-
duced by R.S. Varga in the sixties (see [27]). We explain in detail how the
AMG methods are induced by splittings of the system matrix A. The analysis
of these splittings is then the key to our comparison results, since we are using
comparison theorems for basic stationary iterative methods or in other words
for splittings. The first comparison theorem for so called regular splittings was



given by R.S. Varga in [27]. With the help of the splitting theory and the com-
parison results for splittings we are then able to give short and elegant proofs
for the comparisons of the AMG methods described above.

Of course a comparison of spectral radii alone does not determine the advantage
of one method over another. A comparison of the work per iteration is also
needed, but combining both aspects in theory is hard. Nevertheless, we will
show that the work per iteration of the AMLI and MAMLI method is about
the same. Moreover, we will show some numerical results that also compare the
overall performance of the methods we consider.

The paper is organized as follows. In the next section we list some notation
and give some well-known results. Section 3 gives a short introduction into the
multi-level approximate block factorization (AMLI) method and describes the
AMLI, MAMLI, and SMAMLI method. The comparison of the spectral radii
of the iteration matrices of these methods is given in section 4. In Section 5 it
is shown how the quality of the approximations effects the spectral radii. The
comparison between the AMG methods and the classical methods is given in
section 6. Section 7 contains some numerical results.

2 Notation and well-known results

The property of nonnegativity is the major tool in this paper. A matrix 7' is
nonnegative (positive), denoted 7' > 0 (T' > 0), if its entries are nonnegative
(positive). We say that T > S if T — S > 0, and similarly with the strict
inequality. By 7' < S we denote that the matrix T'— S < 0 but T # S. These
definitions carry over to vectors. A matrix A is a non-singular M-matrix if its off-
diagonal elements are non-positive, and it is monotone, i.e., A= > 0. It follows
that if A and B are non-singular M-matrices and A > B, then A~! < B!
[7, 27]. By p(B) we denote the spectral radius of the matrix B.

Definition 2.1. [7, 27, 29] The matriz pair (M, N) is a splitting of A if A =
M — N and M is non-singular. A splitting is called

o regular if M—' >0 and N > 0;

o weak regular of the first type if M—1 >0 and M~'N > 0;

o weak regular of the second type if M—! >0 and NM~! > 0;
o nonnegative if M—1 >0, M—'N >0, and NM~* > 0.

Here, we consider stationary iterative methods to solve Ax = b. These methods
start with a vector z(°) and build a sequence of vectors z**1) such that

) =120 L ¢ for i=1,2,.... (1)
The matrix 7T is called iteration matrix. If p(T) < 1 then, there exists a unique
splitting (M, N) such that "= M ~!N. This splitting is given by M = A(I —
T)™' and N = M — A, see e.g. [6]. We say that T is induced by this splitting
(M,N).

If one wants to compare two different stationary iteration methods in terms
of their speed of convergence, one usually compares the spectral radii of the
iteration matrices, i.e. one compares the different induced splittings.



There are many comparison theorems known for two splittings. The first and
famous result was proved by R.S. Varga (see [27] page 97).

Theorem 2.2. Let A be a non-singular M-matriz. Let (My, N1) and (Ms, Na)
be two regular splittings of A with Ny < Ns. Then

p(M;'Ny) < p(My ' Ny).

This result was generalized in many directions during the last decades, see e.g.
[10, 11, 9, 29]. In this paper we use the following generalization which can be
found in [29].

Theorem 2.3. Let A be a non-singular M-matriz. Let (My, N1) and (Ms, Na)
be two splittings of different types of A with Mfl > M{l. Then

p(Mi'Ny) < p(My ' Ny).

There are also several theorems known that give strict inequality comparisons.
Here we summarize some of them in the next theorem, see also [12].

Theorem 2.4. Assume that A is a mnonsingular matriz such that
A7 > O and let A = M; — Ny, A = My — Ny be two splittings of A. Then
p(M; Ny) < p(M5'Ny) in the following cases:

(i) both splittings are regular, N1 # 0 and My < My or, equivalently, N1 < No
([27])-

(i) both splittings are regular and M; ' > My " ([29], see also [10]).

(iil) both splittings are weak regular splittings of different type and M s My !

(190)-

However, we will see in the next sections that the assumptions of the above

theorem are difficult to fulfill in our comparison of algebraic multigrid methods.

Either, the considered methods do not induce regular splittings or a comparison

as used in (iii) is not realistic since sparse approximations are usually involved

in algebraic multigrid methods. Thus M; ' > M; ' can not be fulfilled for

practical applications.

Next we recall the definition of the weighted max-norm. Given a positive vector

w € R™, denoted w > 0, the weighted max-norm is defined for any y € R™ as

lyllw = max |wiyj| The corresponding matrix norm is defined as ||T'||, =
sup || T w-

llzllw=1

With this norm we can compare two weak regular splittings of the same type.

Theorem 2.5. Let A be a non-singular M-matriz. Let (M, N1) and (Ma, N2)
be two splittings of the same type of A with Ml_1 > M{l. Then

M N[l < ([ M5 Nl

with w = A~ 'e for a positive vector e.

A proof of Theorem 2.5 can be found in [13].



3 The AMLI and the MAMLI approaches

In algebraic multigrid methods a so-called coarsing process is performed before
the iteration starts. During this process, the set {1,...,n} is split into two
disjoint sets ' and C. Having done this, there is a permutation P such that

A A
pAp?T — | AFF Arc |
[ Acr Acc

Note, that in practice this permutation is only implicitly used. In this paper we
assume that the system matrix A is already partitioned in block 2 x 2 form, i.e.
we assume that

Arr Apc
A= . 2
[ Acr Acc ] @)

In the AMG language, F' denotes the set of fine grid unknowns, and C' denotes
the set of coarse grid unknowns with |F| = np and |C| = nc. The sets F' and
C are determined by a so-called coarsing process.

We will denote by I the n x n identity matrix and with Ir and Ic the np X np
and no X no the identity matrix, respectively.

Moreover, we assume that App is non-singular. Then A can be factorized as

A Ir 0 Apr 0 [ Ir AppArc
| AcrAnn Ic 0o S 0 I ’

where

S :=(A/Apr) = Acc — AcrAppArc

is the Schur complement. If we now use an approximation A rr of Arr and an
approximation S of S, or approximations of the inverses of these matrices, we
obtain the matrix M with

Ir 0
M = =
AcrApk IC]

App 0 {IF ApL Apc
0 S 0 Io

This factorization is known as an approximate two-level (multi-level) block fac-
torization [21]. Many multi-level methods use this two-level block approximate
factorization as a major tool (see e.g. [2, 3, 1, 4, 24] and references in [21]). One
of these methods is the AMLI method by Axelsson and Vassilevski [2, 3]. The
AMLI method, in its basic form, can be described as the stationary iteration
with the iteration matrix

Tayprr=1—-M1A.

If the AMLI method is used as a preconditioner for a Krylov subspace method,
the preconditioner is M ~!. For the iteration matrix we obtain



Tavrr = (I—MtA)
- _ 1
_ I_ IF~ 0 Arp 9 Ir A;};AFC A
ACFA;;, Ic 0 S 0 Ic
—A7LA - ~_
_ 1[ i Fc}Sl[—ACFAF}? IC}A 3)

[%}AFHIF 0] A4

Using the following operators

= - ~ —A7LA ~
Rmldorfih 1o, P | THEA g ]
Io 0
we obtain
Taner =1 —PTS'RA - ETZI;}?}A%A. (5)

The operators R and PT are known as restriction and prolongation operators
in algebraic multigrid methods [21]. The term PTS~1RA acts as a coarse grid
correction while }ABTZ;},J%A can be seen as a smoother. Both parts are combined
in an additive way in (5).

The multiplicative version, which is called the MAMLI method, is given by:

7~71 ~ ~
Tvamrr = (I— [ AF;;AFC } S [ *ACFA;}? Ic }A)
1 ~_
(1| WAt 0)a) ©)

— (I—PTS'RA)(I — RTA7LRA).

Comparing the iteration matrices Tansr,r and Tasan 1 in (5) and (6) we observe
that the amount of work for one step in the iteration (1) is about the same for
both methods. Hence, we expect that the time needed for one iteration step is
the same for the AMLI and MAMLI method. This is confirmed by the numerical
results given in Section 7.

Closely related to the MAMLI method is the symmetrized MAMLI method, the
SMAMLI method, given by

Tsypamrr = (I— [ Ig ]g;}?[ Ir 0 ]A)
(P} e 19
.(1_[15*};;;[& o}A) (7)

= (I-RTAZLRA)I - PTS 'RA)(I — RTA;LRA).



The multiplicative AMLI techniques are closely related to certain geometric
and algebraic multigrid methods. As mentioned above, the second factor can
be seen as a relaxation or smoothing step, while the first factor in (6) is a coarse
grid correction. In particular, the MAMLI method can be viewed as a two-level
V(1,0) cycle. The SMAMLI method is a two-level V(1,1) cycle. From a more
abstract point of view, the above methods are subspace correction methods,
i.e. methods that adds different corrections, that act only on a subspace, to
the actual approximation vector (see e.g. [30]). In this terminology, the AMLI
method is a parallel (or additive) subspace correction method, the MAMLI
method is a successive (or multiplicative) subspace correction method. More
details about the MAMLI and SMAMLI method can be found in [18§].

There are different choices for the approximations S of the Schur complement
S. One choice is to simply use the matrix (A/Apr) := Acc — ACFA;}AFC
or use an approximation of (A/Apr), see [21]. Another choice, is to use the
coarse grid matrix or Galerkin matrix RAPT or approximate EA?T, see [23].
In order to differ between these approaches, we call the later variant, a Galerkin
type approach or Galerkin type method.

Of course the quality of the approximations App of App and S of S will be
important for the convergence behavior of all these methods, see Section 5.

In [18] the following assumptions on the approximations are used to prove con-
vergence of the AMLI method.

Assumption 3.1. Let A be a non-singular (non-symmetric) M-matriz and let
A be partitioned as in (2).

Furthermore, let /IFF and S be chosen such that the splittings (/TFF, /~1FF — AFF)
and (5, S — (A/EFF)) are weak regular of the first type.

For the multiplicative versions a slightly modified set of approximations is used
in [18] to study also the Galerkin type MAMLI method.

Assumption 3.2. Let A be a non-singular (non-symmetric) M-matriz and let
A be partitioned as in (2).

Furthermore, let /IFF and S be chosen such that the splittings (ZFF, EFF — AFF)
and (§, S — EAﬁT) are weak reqular of the first type.
Note that

RAPT = Acc — Acr (245} — App ArrAzh) Arc (8)

If we compare these two Assumptions 3.1 and 3.2, we see that the only difference
is on the approximation S.

Using equation (8), it follows that Assumption 3.1 implies Assumption 3.2, in
other words Assumption 3.2 is weaker or more general than Assumption 3.1.
In [18] the following convergence results for the two-level methods are estab-
lished.

Theorem 3.3. Let Assumption 3.1 be satisfied. Then

Tamrr >0,
p (Tamrr) < |Tamrrllw < 1,



where w = A~ e for an arbitrary positive vector e. Moreover,
Tanmrr =1 —CamrrA,
where (Cirrr Carinr — A) s a weak regular splitting of first type of A.

The weaker Assumption 3.2 allows a convergence proof for the Galerkin type
MAMLI method also.

Theorem 3.4. Let Assumption 3.2 be satisfied. Then

Taramrr > 0,
P (Taranrr) < | Tvamrorlle <1,

where w = A" e for an arbitrary positive vector e. Moreover,

Tyvamrer =1 —CramrrA,

where (Cylynirr Cotanins — A) is a weak regular splitting of first type of A.
In order to obtain comparison results for the AMLI and MAMLI method we need
to change the assumptions on the approximations a little bit. In Assumptions
3.1 and 3.2 weak regular splittings of first type are used to specify the approxi-
mations. Moreover, by Theorems 3.3 and 3.4 Tapnsr.r and Ths anrp; are induced
by weak regular splittings. However, Elsner showed in [11], that a comparison
theorem like Theorem 2.2 or Theorem 2.3 does not hold for just two weak regu-
lar splittings. Nevertheless, we are able to prove a comparison theorem for the
AMLI and MAMLI method. But therefore we have to use nonnegative splittings
for the approximations. Of course, using weak regular splittings is more general
than using nonnegative splittings. However, in practice, the use of nonnegative
splittings is not a drawback. All relevant approximations or splittings, like the
Jacobi, the Gauss-Seidel, the ILU and others, are nonnegative splittings or even
more, are regular splittings for M-matrices.

Assumption 3.5. Let A be a non-singular (non-symmetric) M-matriz and let
A be partitioned as in (2). Furthermore, let App and S be chosen such that the

splittings (/TFF,EFF - AFF) and (g,gf (A/ﬁpp)) are nonnegative, i.e.
App
Ip — AppApp > 0,

Ip — AFFZE}V

Y
o

Y
o

and
§—1
Ic — S~ (A/Apr)
Ic — (A/AFF)571

(AVARYS

Y

Assumption 3.6. Let A be a non-singular (non-symmetric) M-matriz and let
A be partitioned as in (2). Furthermore, let App and S be chosen such that the



splittings (ZFF, ZFF — AFF) and (g, S - EAﬁT) are nonnegative, i.e.

App 20,
IF_AV;;AFF > 0,
IF*AFF/T}}: > 0,
and
St >0
Ic — S~Y(RAPT) > o0,
Ic — (RAPT)S™! >

As in the cases considered before, Assumption 3.5 implies Assumption 3.6, hence
Assumption 3.6 is weaker than Assumption 3.5. Moreover, the convergence
results for the AMLI and MAMLI method still hold, since nonnegative splittings
are weak regular splittings. However, now the iteration matrices T4p/r; and
Tsmamrr are induced by nonnegative splittings, see Theorems 3.7 and 3.11
below.

Theorem 3.7. Let Assumption 3.5 be satisfied. Then
Tamrr =1 —CamrrA,
and (Cirrrr Carinr — A) is a nonnegative splitting of A.

Proof:
Since each nonnegative splitting is also a weak regular splitting of first type, we
can use the results in [18, Theorem 4.3] to get, that

F-1 e _ _
Camrr = { ASF 8 } + { AFII;AFC ]S_l [ —AcrApp o }

is nonsingular and (C;y,, 7, Caarrr — A) is a weak regular splitting of first type
of A, i.e.

Camrr > 0,
I—Camrid4 >

To show that (Cya;.;,Carsrr — A) is also a nonnegative splitting of A it is
sufficient to check that I — AC 4,17 is also nonnegative.

But
I —ACamLr
_ Ir — AppAzL 0
- 0 0

(IF - AFFZ;;) ApcS—'AcrAzL 0

+ _ _ 1 -1 1-1
Ic — (A/AFpp)S AcrApp 0
_ _ = G—1
Lo (IF AFFANFF) ArcS
0 Io — (A/AFF)S_I
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is also nonnegative due to the splitting properties of A rr and S and the M-
matrix property of A.
Thus, we get that (Cy1,.;,Caasnr — A) is a nonnegative splitting of A.

O
For the MAMLI method we have the following result which follows directly from
Theorem 3.4.

Theorem 3.8. Let Assumption 3.6 be satisfied. Then

Tyamvrer =1 —CyamiiA,
and (C]\}lAMLI, C]\}lAMLI — A) is a weak regular splitting of first type of A.

Observe, that although we used nonnegative splittings for the approximations,
the MAMLI iteration matrix Ts 417 is not induced by a nonnegative splitting,
i.e. the splitting (Cy/anrnr Crsannr — A) of A satisfying Taranmrr = I —
CymamrrA is in general not a nonnegative splitting. This is demonstrated in
the following example.

Example 3.9. We consider the M-matriz
2 -1 0 0
-1 2 -1 0

0 -1 2 -1
0 0 -1 2

A=

2

and take the upper 2 x 2 diagonal block as block App = [ 1

AVFF = |: :| )
5 - [ ] .
Due to this choice we get the nonnegative splittings (/TFF,/TFF — AFF) and

(5.5 (4/4rr)).

Using these approximations we get the matrices

-1
9 ] . Moreover,

we use the approrimations

onvlw O N
oo N O

6 0 0 O

. 1184 0

MAMLI= 75| 9 4 g ¢

0 0 0 6

and

0 6 0 0 1 8 4 0
1 6 1 0 4 1 6 0 0 O
I*CMAMLIA:E 02 0 8 andI*ACMAMLIZE 300 6
0 0 6 0 2 4 8 0

So the splitting (Cylaninr Coranns — A) is just weak regular of the first type
but not nonnegative.
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In Theorem 3.7 the Assumption 3.5 is required. As mentioned above, Assump-
tion 3.6 is weaker than Assumption 3.5. But the next example shows that
Theorem 3.7 does not hold under Assumption 3.6.

Example 3.10. We consider the following M-matriz
4 -1 0 O
-1 4 -1 0
-1 -1 4 -1
0o 0 -1 4

A=

The first two unknowns are chosen to be fine, i.e. Agl)m = [ 7111 7411 } As an
approzimation of A%l;? we take

~(1 4 0

A0 - [ e } .

By this choice the splitting (;1%11);, Z}l}m - Ag}) is weak regular of first type and
also nonnegative. Moreover, we get

~ ~ L 9
(4/4pr) = Aco — AcrApkAro = | 4 7, }
BSAPT _ -1 ~AppArc | _[ B -1
RAPT = | ~AcpAzk J}A[ 3 = e T

As an approximation S we choose S = RAPT.

So the splitting (S, S — RAPT) is nonnegative and weak regular of first type,
but the splitting (5, S — (A/ZFF)) is neither nonnegative nor weak regular of
first type.

Hence, Assumption 3.5 is fulfilled but not Assumption 3.6. Moreover, we obtain

055 0 0
Ty = L |59 4 -1
220 | 16 16 —4 0

4 4 -1 0

Thus, Theorem 3.7 does not hold using Assumption 3.6.
Next we consider the SMAMLI method.
Theorem 3.11. Let Assumption 3.6 be satisfied. Then

Tspiamvrr =1 —Cspamrr4,

and (Capanrrr> Conannr — A) is a nonnegative splitting of A.

Proof:
Due to the definition of the SMAMLI-method it is clear that
AZL 0
Tsyamrr = (I { gF 0 } A) (I —Crmamrri)

AL AL
= I({ SF 8}+<I[ gF 8]A>CMAIV[LI)A

= I —Csmamriéd
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with
Csyvamrr = Mg+ (I —MgsA)Cyamer, 9)
AzL 0
= . 1
Mg { o7 o ] (10)

A simple computation leads to

CsymamrLr = { Bpp 0 ] + { ~Brpdre }5—1 { ~AcrBpp o } (11)
0 O Ic

with Bl = 2471 — A7 L AppAgL.

Since each nonnegative splitting is also a weak regular splitting of first type we

get with [18, Lemma 5.1] that (EFF, EFF — AFF) is a weak regular splitting

of first type. Furthermore

I — AppBzk I —2AppA7L — AppApL AppAns
(I - AFFZ;;) (I - AFFZ;;)
> 0.

So (EFF, EFF — AFF) is also a nonnegative splitting.
Since (ZFF,EFF — AFF) and (§,§— (A/ZFF)) are nonnegative splittings
and A is an M-matrix we get
I - S7Y(A/Bpr)
= -5} (Acc - ACFEE}mAFc)
(I ~- 5! (Acc - ACFZE}VAFC)) +£c’§ (I - AE}VAFF) @é{g

< <
>0 <0 >0 >0 =0

> 0.

Similarly we get L
—(A/Bpp)S™t > 0.

Thus (§ S — (A/EFF)) is also a nonnegative splitting.

Therefore Cgpra MLI has the same structure as Camrr , with the only differ-
ence belng that A FF is replaced by BFF So we can use Theorem 3.7 to get
that (Cgi;anrnr Corranns — A) is a nonnegative splitting of A. O

4 Comparison of AMLI, MAMLI and SMAMLI

In this section we will compare the convergence rates of the AMLI and MAMLI
methods. We will prove that the spectral radius of the iteration matrix of
the MAMLI method is always less than or equal to the spectral radius of the
iteration matrix of the AMLI method.

As mentioned above, the iteration matrices are induced by splittings. The
matrices Canrr, Cvamrr and Csaranprr can be given explicitely, as seen in
the proofs of Theorem 3.7 and 3.11 and in Theorem 4.7 of [18]. We have



13

Camrr = Ms + Mcg (12a)
Cyvavrr = Ms+ Mcg — McgAMs | (12b)
Csmamrr = Mg+ (I — MsA)Cyramrr (12¢)

where Mg as in (10) and

—AphA o <
Mece = { FIZ Fc]Sl[ACFAFllV IC}-

Moreover, Caprr and Cspranrr are given explicitly in (9) and (11). For
C]MAMLI we obtain

AV71 0 —A\;l Arc | 5.1 ~_
Cvamrr = { gF 0 ] + [ Ff; S { —AcrBpp  Io } )
with Byl = 245% — Aph AppApL.

These explicit formulas of the matrices, allows us to prove a comparison theorem
for the AMLI, the MAMLI and the SMAMLI method.

Theorem 4.1. Consider the AMLI, MAMLI and SMAMLI method and let
Assumption 3.5 hold. Then

p(Tsvraninr) < p(Taamrr) < p(Tanrr).

Proof: _ _ _
Since (AFF,AFF —AFF) is a nonnegative splitting we obtain for B;}; =

245y — AppArr Ak,
Brp — App = Ap — AppAppAgh = (1 - ApkApr ) Ap) > 0.
—_———— T
>0
>0 =

Furthermore, due to the fact that (ZFF, ZFF — AFF) and (g, S — (A/ZFF))
are nonnegative splittings and A is an M-matrix we get

C]\/IAMLI - C'AMLI

— A Arc
~ <0 a1 | —Ack (EI;}? - Z;Ul?) Ic
— >0 = S~ ~—~— ~—
I <~ >0 T >
~— >0 >0
>0

Y
o

Similarly
Csmamrr — Cyvamvpr 20 .
With Theorem 3.7 and Theorem 3.11 we have that (C;1,;;,Car;rr — A) and

(Corrannr Csaranrs — A) are nonnegative splittings. So these splittings are
also weak regular of second type. Furthermore due to Theorem 3.4

-1 -1
(Cyvraner Corannr —A)
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is a weak regular splitting of first type. Hence, by using Theorem 2.3, we obtain

p(Tsmarmnt) < p(Taramrr) < p(Tanvrr)-

O
Thus, the SMAMLI method has the smallest spectral radius among these meth-
ods, if the spectral radii are not the same. But this is not surprising, since
the SMAMLI method uses a pre and a post smoothing step in contrast to the
MAMLI method. However, the spectral radius of the MAMLI iteration matrix
is less than or equal to that of the AMLI method. But both methods use about
the same amount of work. Hence, beside some parallel implementation aspects,
the MAMLI method seems to outperform the AMLI method. Note, that Theo-
rem 4.1 is also one of the few Theorems that clearly states that a multiplicative
combination of subspace corrections do not converges slower (in general faster)
than an additive combination, see also [20, 14].
In Section 7, this theoritical result will be illustrated by numerical examples.

5 Quality of the approximations

Next we establish, how the asymptotic convergence rate behave if the quality of
the approximations varies. To do so, we consider different approximations Arp
and S of App and the Schur complement S. R R
With these approximations the new iteration matrices Tpprrr and Tapanpr are
build as in (3) and (6) but using Arr and S instead of App and S.

Theorem 5.1. Let Assumption 3.5 be satisfied. Let App and S be approrima-
tions of Apr and (A/Arr) such that

/TFF SA\FF (13)

S<3S. (14)

Moreover, let (A\FF,A\FF - AFF) and (:9\,:9\7 (A//Alpp)) be nonnegative split-
tings. N R
Let Tapnrrr be constructed as Taprrr in (3) by using App and S. Then

p(Taner) < P(fAMLI)-

Proof: Since App and S induce nonnegative splittings, we immediately obtain
by (13) and (14) that

—— ——
>0 2“0 >0
§7t-51t = gt (§f§ S1>0.
~—~ ~
2

Moreover A rr and S fulfill the conditions of Assumption 3.5 with A Fr replaced
by AFF .



15

Hence, by Theorem 3.7, T\a 1.7 is induced by a nonnegative splitting (GZJIVI I CA‘Z}M 11—
A). Moreover,

aLbLI = Ms + Mca (15)
where
P 1-1
Ms = { AgF 8 } ;
= —ALA o o~
Mee = { FIZ e ]S 1[ ~AcrApp o

Thus, since A is an M-matrix, we obtain by comparing C';;,;; in (12a) and
Cyt;pp in (15) that

-1 ~—1
Camrer = Canrr
Hence, by Theorem 2.3,

p(Tamrr) < P(fAMLI)-

Il
In Theorem 5.1 it was proved that, the better the approximations are, the
smaller are the spectral radii of the iteration matrices. Note that Theorem 5.1
gives a direct comparison of the spectral radii, not only a comparison of bounds
for the spectral radii.
If one only wants to modify the approximation of the Schur complement, the
statement of Theorem 5.1 can be expressed in the following way. Let S; and

S5 be two approximations of (A/ ZF F) Now denote by Tapnr1(S;) the AMLI

iteration matrices as in (3), using the approximation S;, i = 1, 2.

Corollary 5.2. Let Assumption 3.5 be satisfied. Let S, and Sy be approxima-
tions of (A/ArF) such that

S <8 <8, (16)

Moreover, let (Sy,S2 — (A/Apr)) and (S2,S2 — (A/Apr)) be nonnegative split-
tings. Then

p(Tanrr) < p(Tanrr(S1)) < p(Tanri(S2)).

Next we consider the MAMLI method. As mentioned above, Elsner showed in
[11] that there is no comparison theorem for weak regular splittings similar to
Theorems 2.2 and 2.3. Since the MAMLI method is induced by a weak regular
spitting of first type, comparison theorems like for the AMLI and SMAMLI
method (see below) can not be proved in that way. But we are able to establish
the following results.

Theorem 5.3. Let Assung)tign 3.6 be satisfied. Let XFF and S be other ap-
prozimations of App and RAPT such that

App < EFF, (17)

s < &S (18)
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Moreover, let (EFF, EFF — AFF) and (§, §—I§AlgT) be nonnegative splittings.

Let fMAMU be constructed as Thranrrr in (6) by using the approximations /Alpp
and S. Then

I Tramrrlw < ||fMAMLI||w
with w = A~ 'e for a positive vector e.

Proof: Using the same arguments as in the proof of Theorem 5.1 we obtain
that App and S fulfill the conditions of Assumption 3.6. Hence, by Theorem
3.4, Tayranpr is induced by a weak regular splitting of first type.

In order to use Theorem 2.5 we need to compare the induced splittings of
Trramnr and TMAMU In detail, we want to compare Cyanrrr and C’MAML[,
where

Crramrr = Mog + Mg — MogAMs,

and
_ 1-1
Ms = [ AgF 8 ] ;
— _ATLA _
Mo = [ i Fc},s | ~Aordzy I |,
and
P A Apc S Acp (Ir — A7L App) AL 0
*MCGAMS: FF ( FF ) FF (19)

It was established in the proof of Theorem 5.1 that
Mcg + Mg > ]/W\CG + ]/\4\5.

By using the M-matrix properties of A, using (17) and (18), and using the
structure (19) we get that

—~MogAMg > —MogAMs.
Hence,

Cyvamrr 2 Cvamrr.

Therefore, by Theorem 2.5 we get the desired result.

([l
As for the AMLI method we obtain the following corollary that measures the
quality of the approximation of the Garlerkin product. Therefore, let S; and S
be two approximations of RAPT . By Tayanni(Si) and Tspranrr(S;) we then
denote the MAMLI and SMAMLI iteration matrices as in (6) and (7) using the
approximation S;, i =1, 2.
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Corollary 5.4. Let Assumption 3.6 be satisfied. Let S1 and S> be approzima-
tions of RAPT such that

S <8 <8, (20)
and (S1,S1 — EAIBT) and (Sz,Se — ]?EAIST) are nonnegative splittings. Then
| Taranrtllw < | Taranenr(S1)|lw < 1 Taranirr(S2)]]w-

The Corollaries 5.2 and 5.4 provide some relevant information for the practical
use of AMG methods. Having a good approximation of the block Arp, the
approximation of the Schur complement S or the Galerkin product is somewhat
more difficult. Such an approximation should not be to far away from the orig-
inal but it should be also sparse. The above Theorems or Corollaries indicate,
how the spectral radii or the bounds for them depend on the quality of such
approximations.

Moreover, theoretical statements can now be made between AMG methods that
use approximations of the Schur complement

(A /ZFF)
or approximations of the Galerkin product

= o —AzLA
RAP" = | ~Acpdph T }A{ FEAFC ]
Let
S1 = Acc,
SQ = (A//TFF) y

| —Acrdpy T }A[ */TE;AFC } .

S3
It is shown in [18] that S1,S2 and S5 are nonsingular M-matrices and that
b a —AppA
Aco = (A/Apr) = | ~Acpdzh 1 }A[ rpAre } > (A/Apr) (21)

holds. Due to these inequalities the approximations S; and S; fulfill the con-
ditions of Assumption 3.5 and the approximations S;, S and Ss fulfill the
conditions of Assumption 3.6.

Hence, we obtain the following comparison.

Corollary 5.5. Let Assumption 3.5 be satisfied. Then
P(Tanri(52)) < p(Tarpri(S1)).
Corollary 5.6. Let Assumption 3.6 be satisfied. Then

1Taranenr(S3)lw < | Taranrrr(S2)|lw < | Taranerr(S1)w

with w = A~ 'e for a positive vector e.
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Hence, the Galerkin product approach yields the smallest bound for the spectral
radius. Therefore, we expect that the Galerkin type MAMLI method converges
faster than the other methods.

At the end of this section we return to the SMAMLI method. It is now not hard
to see, that we can get the same comparison theorems for the SMAMLI method
as we proved for the AMLI method. Both methods are induced by nonnegative
splittings. We mention these comparison results but we omit the proofs here.

Theorem 5.7. Let Assumption 3.6 be satisfied. Let App and S be other ap-
prozimation of App and S such that AFF and S are M-matrices and such that

/TFFS
S <

FF,

W) )

Moreover, let (5,58 — RAPT) be a nonnegative splitting of RAPT .
Let TSMAMU be constructed as Tsaranrnr in (7) by using the approzimations
AFF and S. Then

p(Tsararin) < p(Tsaranrnr)-

Corollary 5.8. Let Assumption 3.6 be satisfied. Let S1 and Sy be approrima-
tions of RAPT such that

S <8 <8, (22)
and (S1,S1 — RAPT) and (Ss, S — RAPT) are nonnegative splittings. Then

p(Tsvarint) < p(Tsmanmini(S1)) < p(Tsmamrr(S2)).

Note, that the work per iteration of the SMAMLI method is larger than the
work for the MAMLI and AMLI methods.

As mentioned in Section 2, strict inequality comparison results can be proved for
the algebraic multigrid methods. Therefore we have to use comparison theorems
like Theorem 2.4. But to fulfill the assumptions of this theorem we need to
assume restrictive properties of the approximations A and S. This can be seen
by following the proofs of our comparison theorems.

6 Comparison with classical iterative methods

In this section we compare the multigrid methods with classical iterative meth-
ods like the block Jacobi and block Gauss-Seidel method.

Starting with the block partitioning (2), the exact block Jacobi and block Gauss-
Seidel methods (see e.g. [27]) are given by the following iteration matrices

iy I —-CgjA,
Tpas = I—CpgasA,

where
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A 0
C’BJ = |: PR — :| )
0 Agg
Azl 0
C o FE _
Ms [ AchACFAFllF‘ Aclc }

By using nonsingular approximations App for App and S for Acc we obtain
the corresponding inexact methods and the iteration matrices

Tys = 1—-CasA,
Tys = I—-CusA,
where
AZL 0
CAS = l S'F g,l ] )
AL 0
C = ~ FF_ ~ .
M l S~1AcpAzl 571 ]

We easily obtain

and

0 | 5-1
Tus = (I[IC}S [0 Ic })
Ir | 71 A
(- a0 014).
Note, that T4s and Thss can be seen as abstract inexact non-overlapping addi-

tive and multiplicative Schwarz methods for two domains (see eq. [26, 5]).

Theorem 6.1. Let A be a nonsingular M-matriz partitioned as in (2). Let
Aprp _and S be approzimations of Apr and Acc respectively, such that App
and S are M-matrices with

App > Apr, (23)
S > Acc. (24)
Then
p(Tamrr) < p(Tas),
p(Tapramrr) < p(Tus).
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Proof: It was shown in [5] that if App and S are M-matrices and (23) and
(24) hold then T4s and Ths are induced by nonnegative splittings, so these
splittings are also weak regular of second type

But with these approximations, Assumptions 3.1 and 3.2 are fulfilled. To see
this, one has to use (21). Thus, by Theorems 3.3 and 3.4 the AMLI and the
MAMLI methods using the above approximations, are induced by at least weak
regular splittings of first type.

In order to get the desired result, we will use Theorem 2.3 and the explicit form
of CAMLI and C]MAMLI given in (12)

It was shown in the proof of Theorem 4.1 that —McgAMg > 0.

Hence, using the M-matrix property and (23) and (24) we easily obtain that

Camrr Cas,

>
>

C'MA]\/ILI CMS .

O
Theorem 6.1 clearly states, that a multigrid grid approach gives in general better
asymptotic convergence rates than just using the classical methods.

7 Numerical examples

As a numerical example we consider the problem of calculating the Google?’s

PageRank”™ . Calculating the PageRank can be explained in the following way.
The PageRank is determined entirely by the link structure of the World Wide
Web. Consider surfing the Web, i.e. going from page to page by randomly
choosing an outgoing link from one page to get to the next page. However,
this can lead to dead ends at pages with no outgoing links, or cycles around
cliques of interconnected pages. So, with a certain probability one assume that
a surfer choose a random page from the Web. This model results in a theoretical
random walk that is a Markov chain or Markov process. The state vector x of
this Markov chain is then used for a ranking of the visited webpage. For more
details see e.g. [15, 19].

In detail, the PageRank can then be calculated in the following manner.

Let G be the n x n connectivity matrix of a portion of the Web, that is g;; =1
if there is a hyperlink to page i from page j and zero otherwise. Then the state
vector x containing the PageRank is the solution of the linear system

(I — pGD)x = de , (25)

where p is the probability that the random walk follows a link, D the diagonal
matrix with d;; = >, gi;, € is a vector with all ones, and ¢ is the probability of
jumping from one page to another without following a link, i.e. § = (1 — p)/n.
One can see that as long as p is strictly less than one, the coefficient matrix
I — pGD is a nonsingular M-matrix.

In this paper we used to set up the linear system (25) the algorithm described in
[19, Chapter 2]. We started the random walk on one of the authors homepage!
and restricted us to 1024 webpages. The probability p following a link was set
to 0.85.

1

www.math.tu-berlin.de/ " mense
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To solve the resulting linear system we used the described AMLI, MAMLI and
SMAMLI-methods, using different approximations and coarse grid matrices.
There are several algorithms known to define the fine and coarse unknowns
[23, 17, 8, 28, 22]. Here, we use a coarsing algorithm that simply uses the
strongest neighborhood coupling. The coarser is given in Algorithm 1. The
zero vector was used as a starting vector and we stopped the iteration if the
residuum was smaller than 1075.

(F,U) « SimpleCoarsing(A)

begin
F=0,C=0,U={1,...,n}
while U # () do

(i,j) «— arg max |a;;|

i,jeU,i#]
F— FuU{i}
C—Culj)
U—U\{ij}
end
end

Algorithm 1: Simple Coarsing

For the results given in Table 1 we used as approximations App and S the
diagonal of Arpr and Acc, respectively. The numerical results confirm the
theoretical comparison of the different methods. The spectral radius of the
MAMLI method is between the radii of the AMLI and the SMAMLI methods.
Note that the time per iteration of the AMLI and MAMLI method is about the
same.

AMLI | MAMLI | SMAMLI

spectral radius 0.5348 | 0.5013 0.4803
iterations 27 24 23
iteration time 1.9806 | 1.7619 1.7044

time per iteration step | 0.0734 | 0.0734 0.0741

Table 1: Comparison of the methods

For the experiments given in Table 2 we used different sets of approximations.
The results of the first column related to each method are obtained by using

/~1F r and S as the diagonal of App and (A/ A P F), respectively. The data of
each second column are obtained by using the lower triangular part of Arpr and
(A/ Ap F), respectively. The numerical results confirm the theoretical results

given in first part of Section 5. Better approximations lead to better spectral
radii for each method.
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AMLI MAMLI SMAMLI
spectral radius 0.5284 | 0.3308 | 0.4932 0.3044 | 0.4702 0.2998
iterations 26 16 24 15 22 14
iteration time 1.9102 | 1.2829 | 1.7619 1.2074 | 1.6403 1.1494
time per iter. step | 0.0735 | 0.0802 | 0.0734 0.0805 | 0.0746 0.0821

Table 2: Comparison of the quality of the approximation

In Table 3 we compare approximations of the Schur complement with approxi-
mations of the Galerkin matrix. We used as approximations of Apr and S the
lower triangular part of App and (A/ Ap F), respectively. The results are given
in the first column of each method. Each second column gives the data obtained
by using the lower triangular part of RAPT. Again, the theoretical results are
confirmed.

MAMLI SMAMLI
spectral radius 0.3044 0.2711 | 0.2998 0.2640
iterations 15 14 14 13
iteration time 1.2074 1.1289 | 1.1494 1.0690
time per iter. step | 0.0805 0.0806 | 0.0821 0.0822

Table 3: Comparison of the approximated Schur complement with approximated
Galerkin matrix

8 Conclusion

We established theoretical comparison results for algebraic multi-level methods
applied to non-symmetric M-matrices. These comparisons show, that the spec-
tral radius of the MAMLI method is less than or equal to the spectral radius of
the AMLI method. Moreover, we established how the quality of the approxima-
tions within the AMG methods effects the spectral radii or bounds for spectral
radii of the iteration matrices. We proved comparisons results for different ap-
proximation of the fine grid block as well as for the used Schur complement
or Galerkin type approximations. We also established a theoretical comparison
between the AMG methods and classical Schwarz iterations.
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