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Abstract. A class of optimal control problems for quasilinear elliptic equations is considered,
where the coefficients of the elliptic differential operator depend on the state function. First- and
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1. Introduction. In this paper, we consider optimal control problems for a
quasilinear elliptic equation of the type

—div[a(z, y(@) Vy(@)] + fy(@) = u(z) @m0
{ ylz) = 0 on TI. (1.1)

Equations of this type occur, for instance, in models of heat conduction, where the
heat conductivity a depends on the spatial coordinate x and on the temperature y.
For instance, the heat conductivity of carbon steel depends on the temperature and
also on the alloying additions contained, cf. Bejan [2]. If the different alloys of steel are
distributed smoothly in the domain, then a = a(z,y) should depend in a sufficiently
smooth way on (x,y). Similarly, the heat conductivity depends on (z,y) in the growth
of silicon carbide bulk single crystals, see Klein et al. [20].

If a is independent of x, then the well known Kirchhoff transformation is helpful
to solve (1.1) uniquely. In the more general case a = a(x,y), in spite of the non
monotone character of the equation, there exists a celebrated comparison principle
proved by Douglas, Dupont and Serrin [13] that leads to the uniqueness of a solution
of (1.1); for a more recent paper, extending this result the reader is referred to Krizek
and L. Liu [19]. We will use the approach of [19] to deduce that (1.1) is well posed
under less restrictive assumptions than those considered by the previous authors.

For other classes of quasilinear equations, in particular for equations, in which a
depends on the gradient of y, we refer, for instance, to Lions [21] and Necas [24].

As optimization is concerned, there exists a rich literature on the optimal control
of semilinear elliptic and parabolic equations. For instance, the Pontryagin principle
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was discussed for different elliptic problems in [5], [4], [1], while the parabolic case was
investigated in [6] or [26]. Problems with quasilinear equations with nonlinearity of
gradient type were considered by [8] or [9]. This list on first-order necessary optimality
conditions is by far not exhaustive.

Moreover, quite a number of contributions to second-order necessary and/or suf-
ficient optimality conditions were published. We mention only [3], [11], or the state-
constrained case in [10], [12], [25].

However, the state equation (1.1) has not yet been investigated in the context of
optimal control. The theory of optimality conditions of associated control problems
is the main issue of our paper that is organized as follows:

First, we discuss the well-posedness of this equation in different spaces. Next, the
differentiability properties of the control-to-state mapping are investigated. Based on
these results, the Pontryagin maximum principle is derived. Moreover, second-order
necessary and sufficient optimality conditions are established.

Notations. By By (z,r) we denote the open ball in a normed space X with radius
r centered at x, by Bx (,r) its closure. In some formulas, the partial derivative 0/ O0x;
is sometimes abbreviated by 0;. By ¢ (without index), generic constants are denoted.
Moreover, (-, -) stands for the pairing between H}(Q) and H~1(Q).

2. Study of the quasilinear equation.

2.1. Existence, uniqueness and regularity of solutions. The proof of the
existence and uniqueness of a solution of (1.1) relies on the following assumptions:

(A1) Q CR" is an open bounded set with a Lipschitz boundary T.

(A2) The functions a : @ x R — R and f : @ x R — R are Carathéodory, f is
monotone non-decreasing with respect to the second variable for almost all
T €,

Jay > 0 such that a(z,y) > ap for a.e. x € Q and all y € R. (2.1)

The function a(-,0) € L*(2) and for any M > 0 there exist a constant
Cyn > 0 and a function ¢y € L9(QY), with ¢ > pn/(n + p) and n < p, such
that for all |y, ly;| < M

la(x,y2) —a(z,y1)| < Cymly2 — 1| and |f(z,9)|] < pp(z) for ae. z € Q. (2.2)

In the rest of the paper ¢ and p € (n,+o00) will be fixed. Let us remark that ¢ >
pn/(n+p) >n/2.

THEOREM 2.1. Under the assumptions (A1) and (A2), for any element u €
W=1P(Q) problem (1.1) has a unique solution y, € Hg(2) N L>°(Q2). Moreover there

exists p € (0,1) independent of u such that y, € CH(Q) and for any bounded set
UcWw-tr(Q)

yullzp ) + Yullon@ < Cu YueU (2.3)

for some constant Cy > 0. Finally, if up — u in W=LP(Q), then yu, — yu in
HY Q)N CH(Q).
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Proof. Ezxistence of a Solution. Depending on M > 0, we introduce the truncated
function ap; by

a(z,y), yl < M
aM(xvy): a(x,—|—M), Y > +M
alz,-M), y < —M.

In the same way, we define the truncation fy; of f. Let us prove that the equation

{—dz‘v[aM(x,y)Vy]JrfM(%y; - :;51} (2.4)

admits at least one solution y € H(Q). We define, for fixed u € W=1P(Q) and
M > 0, a mapping F : L?(Q) — L?(Q) by F(z) =y, where y € H(Q) is the unique
solution to

{ —div]ap(z,2) Vy] + fu(z,2) = w in Q

y = 0 onTI. (2.5)

Thanks to assumption (A2), (2.2), we have

[fu (@, 2)| < b ()

and ¢y € LI(Q) C H7(Q). Therefore, (2.5) is a linear equation and u — fas(, 2)
belongs to H1(£2), hence (2.5) admits a unique solution yy; € H(2) and F is well
defined. Furthermore, we have

1
lyaellmr o) < o (llull =10y + lléallm-1()) - (2.6)

Using this estimate and the fact that H'(€) is compactly embedded into L?(Q), it is
easy to apply the Schauder theorem to prove the existence of a fixed point yy; € H(Q)
of F. Obviously, ys is a solution of (2.4).

Since ¢ > np/(n+ p) we have that L(Q) C W~1P(Q). Now an application of the
Stampacchia truncation method yields

lyarllzoe (@) < oo llu— £(+ 0)[[w-1.p(0), (2.7)

where ¢, depends only on the coercivity constant ag given in (2.1) but neither on
llars (s Ym) || Lo () nor on far (-, yar). For the idea of this method, the reader is referred
to Stampacchia [27] or to the exposition for semilinear elliptic equations in Troltzsch
[29, Theorem 7.3]. By taking

M > coo |lu— f(-,0)[[w-1r(0)

(2.7) implies that ap(x, ypr(z)) = alz, ypr(x)) and far(z,yp(2)) = f(z, ya(x)) for
a.e. x € , therefore yyy € HE(Q) N L>®(Q) is a solution of (1.1). The Holder
regularity follows as usual; see, for instance, Gilbarg and Trudinger [16, Theorem
8.29]. The inequality (2.3) follows from (2.6), (2.7) and the estimates in [16, Theorem
8.29]. Finally, the convergence property can be deduced from (2.3) easily once the
uniqueness is proved.
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Uniqueness of a Solution. Here we follow the method by Kiizek and Liu [19]. Let us
assume that y; € Hj(Q) N L>®(Q), i = 1,2, are two solutions of (1.1). The regularity
results proved above imply that y; € C(£2), ¢ = 1,2. Let us define the open sets

Qo ={z € Q:ya(z) —y1(z) > 0}
and for every € > 0
Q. ={z € Q:ya2(x) —pi(z) > e}
No we take z.(z) = min{e, (y2(x) — y1(z)) "}, which belongs to H}(Q) and |z.| < e.

Multiplying the equations corresponding to y; by z. and doing the usual integration
by parts we get

/ {a(m, yz)VszZa + f(x7yz)za} dr = <’U,, Zs>7 1= 17 2.
Q

By subtracting both equations, using the monotonicity of f, (2.1) and (2.2) and the
fact that Vz.(z) = 0 for a.a. © & Qp\Qe and in view of Vz. = V(y2—y1)T = V(y2—y1)
a.e. in Qg \ Q. we get

aol| Veellf20) < /{a(ayz)\V%\Q +[f(@,92) = fz,91)] 2 Y
Q

- / (@, 92)V (g2 — 92) Ve + (2, 2) — F(, 1))z }da

and, invoking the weak formulation of the equation for y,

— / lae,10) Vs — a(e, y2) ViV de = / (ala,1) Vs — ale, y2) Vi |V de
Q Qo\ Q%

< Cumllyz = yille @o\ao VULl L2000 IV 2e | 2 (00000

< OumellVyill e oo I Vel 22 (o\00) -

From this inequality, along with Friedrich’s inequality, we get
1zell2(0) < ClIVzellL2) < C'ell VyrllLzoa.)- (2.8)

Now by lime|o |20 \ 2¢] = 0 and (2.8) we deduce

Q| = 572/ g2 <e™? /Q 2| < C"[[VinllZ2(o0\0.) — O

Q.

which implies that |Qp| = lim._0|Q:| = 0 and hence y5 < y;. In the same way, we
prove that y; < yo O

REMARK 2.2. Let us remark that the Lipschitz property of a with respect to y
assumed in (A2) was only necessary to prove the uniqueness of a solution of (1.1), but
it was not needed to establish existence and reqularity. We can get multiple solutions of
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(1.1) if the Lipschitz property (2.2) fails; see Hlavdcek et al. [18] for a one-dimensional
example.

By assuming more regularity on a, f, I' and u, we can obtain higher regularity of
the solutions of (1.1).

THEOREM 2.3. Let us suppose that (A1) and (A2) hold. We also assume that
a: QxR — R is continuous and T is of class Ct. Then, for anyu € W=1P(Q) (1.1)
has a unique solution y,, € Wol’p(Q). Moreover, for any bounded set U C W~1P(Q),
there exists a constant Cy > 0 such that

||yu||W&»P(Q) < CU Yu € U. (29)

If up — u in W=EP(Q) then y,, — yu strongly in Wol’p(Q).

The proof of this theorem follows from Theorem 2.1 and the W1 (§2)-regularity
results for linear elliptic equations; see Giaquinta [15, Cap. 4, pag. 73] or Morrey
[22, pp. 156-157]. It is enough to remark that the function a(x) = a(z,y,(z)) is
continuous in  and u — f(-,y,) belongs to W=12(Q).

Let us state some additional assumptions leading to W?24({2)-regularity for the
solutions of (1.1).

(A3) For all M > 0, there exists a constant cp; > 0 such that the following local
Lipschitz property is satisfied:

la(z1,91) — a(xe, y2)| < ear {|z1 — @2| + Y1 — Y2} (2.10)

for all z; € Q, y; € [-M, M], i =1,2.

THEOREM 2.4. Under the hypotheses (A1)-(A3) and assuming that T is of class
CYY, for any u € L4(Q), equation (1.1) has one solution y, € W29(Q). Moreover,
for any bounded set U C L1(Q), there exists a constant Cy > 0 such that

Yullw2.a) < Cu YueU. (2.11)

Proof. (i) From Sobolev embedding theorems, cf. Necas [23, Theorem 3.4], it
follows

LI(Q) — W L35 (Q), if 1<q<n, (2.12)
LYQ) — W 1>2(Q), if n<q< oo (2.13)

Since L4(2) C W=1P(Q), we can apply Theorem 2.3 to get the existence of at least
one solution in Wol’p(Q), for every 1 < p < o0 if ¢ > n, and for p = n"—fq if g <n. We
have to prove the W24(Q) regularity. To this aim, we distinct between two cases in
the proof.

(ii,a) Case ¢ > n: We have that y € Wol’p(Q) for any p < oo, in particular in
Wg’Qq(Q). By using assumption (A3), expanding the divergence term of the PDE
(1.1) and dividing by a we find that

1 " da
“Ay= o {u— fC)+ Y daley) Gy + 5 Vol (2.14)
T j:lH’_/v Y~~~
N q s La ~  La

Lo oo
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hence the right-hand side of (2.14) is in L?(2). Notice that g—’; € L follows from

(2.10) and the boundedness of y. The C%! smoothness of I' permits to apply a
well-known result by Grisvard [17] on maximal regularity and to get y € W24(Q).

(ii,b) Case n/2 < q < n: Notice that y € WOI”_"’(Q) It follows that |Vy|? €
LT (©2). A simple calculation confirms that

nq
2(n —q)

since this is equivalent to ¢ > n/2, consequence of our assumption on q. Therefore,
it holds that |Vy|? € L(Q) and once again the right hand side of (2.14) belongs to
L4(2). We apply again the regularity results by Grisvard [17] to obtain y € W?24().
a

> q, (2.15)

COROLLARY 2.5. Suppose that the assumptions of Theorem 2.4, except the regu-
larity hypothesis of T, are satisfied with ¢ = 2. Then, if Q@ C R™ is an open, bounded
and convex set, n = 2 orn = 3, there exists one solution of (1.1) y € H2(Q)NHZ ().

Proof. This is a simple extension of Theorem 2.4 for ¢ = 2. Notice that we have
assumed n < 3 so that ¢ > n/2 is true. The CY! smoothness of T' is not needed for
convex domains, since maximal regularity holds there, cf. [17]. O

2.2. Differentiability of the control-to-state mapping. In order to derive
the first- and second-order optimality conditions for the control problem, we need to
assume some differentiability of the functions involved in the control problem. In this
section, we will analyze the differentiability properties of the states with respect to
the control. To this aim, we require the following assumption.

(A4) The functions a and f are of class C? with respect to the second variable and,
for any number M > 0, there exists a constant Djy; > 0 such that

da o7

2
f
> 8—yﬂ(x’y)‘+‘8—yﬂ(x’y) < Dy forae. z€Q and all |y| < M.

Jj=1

Now we are going to study the differentiability of the relation control-state. As
a first step we study the linearized equation of (1.1) around a solution y,. The
reader should remark that the well-posedness of the linearized equation is not obvious
because of the linear operator is not monotone.

THEOREM 2.6. Given y € WHP(Q) for any v € H1(Q) the linearized equation

—div a(x,y)Vz—i-%(x,y)sz —I—g(x,y)z = v inQ

Ay Ay (2.16)
0 onT

z

has a unique solution z, € Hg ().

REMARK 2.7. As a consequence of the open mapping theorem, assuming that
(A2) and (A4) hold, we know that the relation v — z, defined by (2.16) is an
isomorphism between H(Q2) and HL(Q). Indeed, it is enough to note that the linear
mapping

. da af
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is continuous from HL(Q) to H=1(Q). To werify this, we notice first that a(z,y),
g—“(x, y) and g—f(x, y) are bounded functions because of our assumptions and the bound-
Y y

edness of y, which follows from the fact that y € Wg’p(ﬂ) c C(Q) forp >mn. The
only delicate point is to check that

Oa 9 m
a*y("y)ZVy € LA ()"

This property follows from the Hélder inequality

9 1/2
d <D P \%
I) = MHZHL%(Q)H ZJHLp(Q)

and the fact that

HY Q) c L72(Q) C L2 (Q) if n > 2,

Hi(Q) C L™(Q) for all r < oo if n =2,

where we have used that

REMARK 2.8. The reader can be easily check that the proof of Theorem 2.6 can
be modified in the very obvious way to state that the equation

—div a(x,yl)Vz—i—g—Z(x,yl)szg +g—£(x,y3)z = v inQ
z = 0 onl

has a unique solution in z € HE(Q) for any elements y; € Wol’p(Q), 1=1,2,3.
Proof of Theorem 2.6. First we prove the uniqueness and then the existence.

Uniqueness of solution of (2.16). We follow the same approach used to prove the
uniqueness of a solution of (1.1). Let us take v = 0 and assume that z € HJ(Q) is
solution of (2.16), then the goal is to prove that z = 0. Thus we define the sets

Q={zeN:2(z) >0} and Q. ={z e Q:2(x)> e}

Now we set z.(z) = min{e, 2" (x)}, so that z. € H}(Q), |2.| < e, z2. > 0, 2Vz, =
2.Vz. and VzVz. = |Vz.|?. Then multiplying the equation corresponding to z by z.
and performing an integration by parts we get

da

af
2, Oa a5 2 _
/Q{a(x,y)|Vz5| + ay(w,y)ZEVszg-i- ay(m,y)zg}d:c ,

then, by the monotonicity of f and (A2),

0
olVacleo < | {a(x,ynwué(m)zz}dx
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oa oa
=— | —(2,9)2.VyVz.dz = —/ —(2,9)2:.VyVz. dz
/Q oy V) 2\Q oy "V

< OumlIVyllr oo I V2ell 2 () -

From here it follows an inequality analogous to (2.8) and continuing the proof as
there we conclude that || = lime_,o [2:] = 0, therefore z < 0 in 2. But —z is also a
solution of (2.16), by the same arguments we deduce that —z < 0 in ), and therefore
z=0.

Ezistence of solution of (2.16). For every t € [0,1] let us consider the equation

—div a(x,y)Vz—l—t@(x,y)szu +(‘;_]yf

9y (r,y)z = v inQ

z = 0 onlT.

(2.17)

For t = 0, the resulting linear equation is monotone and by an obvious application of
the Lax-Milgram Theorem we know that there exists a unique solution zo € Hg(£2)
for every v € H=1(). Let us denote by S the set of points t € [0,1] for which the
equation (2.17) defines an isomorphism between H}(Q2) and H~1(2). S is not empty
because 0 € S. Let us denote by t,,4, the supremum of S. We will prove first that
tmaez € S and then we will see that t,,,, = 1, which concludes the proof of existence.

Let us take a sequence {t}72, C S such that ¢y — ¢4, when k — oo and let us
denote by zj the solutions of (2.17) corresponding to the values ¢;. Multiplying the
equation of zj by z; and integrating by parts, using assumptions (A1) and (A2) we
get

9
ol Valta < [ {atwnivar+ st fa
Q )
= (v, z) — tk/ %(x,y)szszk dx
o Oy

< (1ol + 0Dl Vol llal, 2, ) ) 190000,

which implies

19ty < € (Tollasgor + el s, ) (2.18)

—2(Q)
In principle it seems that there are two possibilities: either {2z}, is bounded in
L2 (€2) or it is not. In the first case (2.18) implies that {zj }32 ; is bounded in H(£2),
then we can extract a subsequence, denoted in the same way, such that z; — 2z weakly
in H}(Q2) and strongly in L%(Q) because of the compactness of the embedding
H}(Q) C LP%(Q) for p > n. Therefore we can pass to the limit in (2.17), with
t = tg, and check that z is a solution of (2.17) for t = t,,4., therefore ¢,,q,, € S as we
wanted to prove.
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Let us see that the second possibility is not actually a correct assumption. Indeed,

let us assume that ||zk||L 2 o — 00, taking a subsequence if necessary. We define
=

1

el 22,

Pk — 0 and Zx = ppzk.

Then from 2.18 we deduce

IViellr2@) < C (PkHUHHl(Q) + HékHL;—pz(Q)) =C (prllvll—r@+1).  (2.19)

Moreover Zj satisfies the equation

. X ) R 0 R .
—div {a(a@,y)vzk +tk8_;t(x’y)zk Vy} + a—;(x,y)% = pv in € (2.20)

z = 0 onl.

From (2.19) we know that we can extract a subsequence, denoted once again in
2
the same way, such that 2, — 2 weakly in HJ(f2) and strongly in L72(Q). Then

||2||L_2—% @ 1 and passing to the limit in (2.20) we have that £ satisfies the equation
—div |a(z,y)VZ+ tmaxg—(;(aj, Y)ZVy| + g—zjj(x,y)é = 0 inQ
z = 0 onT.

But we have already proved the uniqueness of solution of (2.16), the fact of including
tmaz I the equation does not matter for the proof, therefore Z = 0, which contradicts

the fact that its norm in L72 () is one.

Finally we prove that t,,,, = 1. If it is false, then let us consider the operators
T., Trnax € L(HY(Q), H1(Q)), for any € > 0 with tpa, + € < 1, defined by

. Oa of
T.z=— ’ max T ¢y 3, Ly
z div [a(m YVz+ (tmaz + €) a9y (x,y)z Vy] + By (z,y)z

Tnazz = —div {a(az, y)vz + tmaw%(xa y)sz} + %(z,y)z

Then we have

7. — TmaxHﬁ(H[}(Q),H—l(Q)) = sup  [[(T: — Tmam)zHH*I(Q)

<1
”ZHHfl)(Q)_

<Dy sup elz]| 2 [[VyllLr(a) < Ce.
21l g3 () <1 Lr=2(Q) @
0
Since Tinqz. is an isomorphism, if Ce < 1, then T, is also an isomorphism, which
contradicts the fact that ¢,,4, is the supremum of S. O

THEOREM 2.9. Let us suppose that (A1), (A2) and (A4) hold. We also assume
that a : Q x R — R is continuous and ' is of class C*. Then the control-to-state
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mapping G : W=LP(Q) — Wy P(Q), G(u) = yu, is of class C*. Moreover, for any
v,v1,v2 € WEP(Q) the functions z, = G'(u)v and zy, v, = G"(u)v1,v2] are the

unique solutions in Wol’p(Q) of the equations

—div [a(ac,yu)v,z + g—Z(ac,yu)z Vyu} + g—i(as,y) z = v inQ (2.21)
z = 0 onT
and
2

—div {a(m,yu)vz + g_cyl(xyyu)zvyuil + g_z(x7yu) z = _g—yé(mvyu)zvlzv2

_ [0a 0%a , (2.22)
+diw L‘?y(x’ Yu) (20, Vzu, + Vg, 20,) + 8—y2($, Yu) 2wy Zog VYu | 0§
z2=0 onT.

respectively, where z; = G'(u)v;, i = 1,2.
Proof. We introduce the mapping F : W, ?(Q) x W~1P(Q) — W~12(Q) by

F(y,u) = —diva(-,y)Vyl + f(-,y) — u.

Because of the assumptions (A2) and (A4), it is obvious that F' is well defined, of
class C2 and F(y,,u) = 0 for every u € W, ?(Q). If we prove that

oF
a*(yu,u) LW P(Q) — WP (Q)
Y
is an isomorphism, then we can apply the implicit function theorem to deduce the
theorem, getting (2.21) and (2.22) by simple computations. Let us remark that

OF 0 0

a—y(yuv U)Z = —div [a(l‘v yu)vz + 8—3(1‘7 yu)ZVyu} + 8_‘5(1‘) yu) .
According to Theorem 2.6, for any v € H~!(Q), there exists a unique element z €
H}(Q) such that

8—F( u)z = v

dy Yu, =v.

It is enough to prove that z € Wy(Q), if v € W1P(Q) ¢ H~(€). More precisely,
this means that the unique solution of (2.16) in Hg () belongs to W, *(£2). First of
all, let us note that

0 0
o) € (), o)V € L, G() € L) and v e W10(@)
Therefore, we can apply a result by Stampacchia [27, Theorem 4.1 and Remark 4.2]
about L>(2)-estimates of solutions of linear equations to get that z € L>°(£2). Now
we have that

—diV[a(x,yu)Vz} =v+ dlv[g—Z(x,yu)szu} - g_.?};(x;yu)z € W_LP(Q)
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and = — a(z, y,(x)) is a continuous real-valued function defined in Q2. Finally, as in the
proof of Theorem 2.3, we can use the WO1 P(Q)-regularity results for linear equations,
see [15, Chpt. 4, pag. 73] or [22, pp. 156-157], to deduce that z € Wol’p(Q). d

From Theorem 2.4 we know that the states y corresponding to controls u €
L1(Q), with ¢ > n/2, can have an extra regularity under certain assumptions. In
this situation, a natural question arises. Can we prove a result analogous to Theorem
2.9 with G : L4(Q) — W24(Q)? The answer is positive if we assume some extra
regularity of the function a.

(A5) For all M > 0, there exists a constant dp; > 0 such that the following inequality
is satisfied:

&a da

a_yj(xlayl) - @(3?273&) <dn {|r1 — 22| + [y1 — yel} (2.23)
forall z; € Q, y; € [-M,M],i=1,2 and j = 1,2.

THEOREM 2.10. Suppose that (A1)-(AS5) hold and T is of class C**. Then the
control-to-state mapping G : LY(Q) — W24(Q), G(u) = yu, is of class C%. For any
v,v1,v2 € L1(Q), the functions z, = G'(w)v and 2y, », = G (u)[v1,v2] are the unique
solutions in W24(Q) N W, %(Q) of the equations (2.21) and (2.22), respectively.

Proof. The proof follows the same steps than in the previous theorem with obvious
modifications. Let us comment the main differences. This time, the function F' is
defined by the same expression as above and acts from (W29(Q) N W,*9(Q)) x L()
to LI(€2). We have to check that F' is well defined and we must determine the first-
and second-order derivatives. By using the assumptions (A3)-(A5), we have for
j=0,1,2 and y € W29(Q2) N W,9(Q) that

o9 o9 §it1
div a—j(x,y@))w(x)} - [v@} (@y(@) - V(o) + 5 (o) Vo)

o
oy’

We have used the fact that (87a/dy?) is Lipschitz in x and y, therefore differentiable
a.e. and that the chain rule is valid in the framework of Sobolev spaces.

On the other hand, (A2) and (A4) imply that
s
oyJ

(z,y(z))Ay(x) € LI(). (2.24)

(y) € LYQ) for j=0,1,2.

From these remarks, it is easy to deduce that F is of class C?. Let us prove that (2.16)
has a unique solution z € W24(Q)NWy*(2) for any v € L4(Q2). The uniqueness is an
immediate consequence of the uniqueness of solution in H}(Q) N L*°(Q). It remains
to prove the W29-regularity. We argue similarly to the proof of Theorem 2.3. From
(2.16) we get

da

By Viy-Vz

1 . [0a, _ 1 of, _
—Az—{v—l—dlv[a—y(x,y)sz}—8—y(x,y)z+v}+vxa.Vz+

of , _ Oa 0% o Oa _
{v—8—y(m,y)z+vza—yz~Vy+a—y22|Vy| +a—sz-Vy

a
1
a
da

sz}—i—Vszz—l—Vz-Vﬂ.
Ay

| da
dy
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The right-hand side is an element of L4(2). To verify this, consider, for instance, the
term with the lowest regularity, i.e. the term Vy - Vz:

([1vatervetas)’ < ([ iwaran)* ([ 192

Q Q Q

q

n—
ng ngq
n—q dl‘)

n—gq

< c( e da:) P n
<o 1)
Q

< c[|gllw2.a() HZHWOLn“fq @’

n

where we have used that z € VVO1 "79(Q), which is a consequence of the embedding
L4(€) € W~1777(Q) along with Theorem 2.9. Notice that we have assumed ¢ > n/2.
This inequality is equivalent to ng/(n —¢) > n and is also behind the estimate of the
integral containing Vy. O

REMARK 2.11. If ¢ = 2, then Theorem 2.10 remains true forn = 2 orn = 3,

if we replace the C*'-reqularity of T by the convexity of Q. This is a consequence of
the H2-regularity for the elliptic problems in convex domains.

3. The control problem. Associated to the state equation (1.1), we introduce
the following control problem

min.](u):/QL(ac,yu(x),u(ar))dx

(P)Y wer=@)
a(z) <wu(z) < B(z) for a.e. x €,

where L : Q x (R x R) — R is a Carathéodory function, p > n, and a, 8 € L (),
with B(z) > a(x) for a.e. x € Q. First of all, we study the existence of a solution for
problem (P).

THEOREM 3.1. Let us assume that (A1) and (A2) hold. We also suppose that
L is convez with respect to u and, for any M > 0, there exists a function 1y € L*(Q)
such that

|L(z,y,u)| < yp(x) forae xze€Q and |y|,|ul < M.

Then (P) has at least one optimal solution .

Proof. Let {ux}2, C L*(Q2) be a minimizing sequence for (P). Since {ux}72,
is bounded in L>(Q) ¢ W~1P(Q), Theorem 2.3 implies that {y,, }3°, is bounded in
WO1 (Q) and, taking a subsequence, denoted in the same way, we get ur — @ weakly™
in L°°(9), hence strongly in W~12(£2). Therefore, y,, — 7. in Wy ?(Q). Moreover,
it is obvious that o < @ < 3, hence @ is a feasible control for (P). Let us denote by
§ the state associated to 4. Now we prove that @ is a solution of (P). It is enough
to use the convexity of L with respect to u along with the continuity with respect to
(y,u) and the Lebesgue dominated convergence theorem as follows

J(a) = /QL(,T,:U(:L‘),Q(CL')) dx <liminf | L(z,y(z),ux(x))dx

k—oo Jo

< limsup /Q L, 5(@), 0 (@) — L(, v (2), ui ()| da

k—o0
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+limsup/ L(z, Y, (x),ug(z)) de = klirn J(uy) = inf(P).
Q — 00

k—oo

O

Our next goal is to derive the first-order optimality conditions. We get the opti-
mality conditions satisfied by @ from the standard variational inequality J'(@)(u—a) >
0 for any feasible control u. To argue in this way, we need the differentiability of .J,
which requires the differentiability of L with respect to u and y. Since we also wish to
derive second-order optimality conditions, we require the existence of the second-order
derivatives of L. More precisely, our assumption is the following.

(A6) L: Q2 x (R xR) — R is a Carathéodory function, of class C* with respect
to the last two variables and, for all M > 0, there exist a constant Cr ps > 0 and
functions ¥, p € L*(Q) and v, ar € LY(Q), such that

< vym(@), D30 L@y, w)ll < Cru,

oL
)

oL
< ¢U,M(I)a ’ay(xa y7u)

D3,y L, y2, ug) — D, Lz, y1,un) | < O (Jy2 — val + [uz — ual),

for a.e. x € Q and |y, |yil, |ul, |ui] < M, i = 1,2, where D(Qy )L denotes the second

derivative of L with respect to (y,u), i.e. the associated Hessian matrix.

By applying the chain rule and introducing the adjoint state as usual, an elemen-
tary calculus leads to the following result.

THEOREM 3.2. Let us assume that a : Q x R — R is continuous, T' is of class
C! and (A1), (A2), (A4) and (A6). Then the function J : L°°(2) — R is of class
C?. Moreover, for every u,v,vy,ve € L=(Q), we have

' (w)y = /Q (g—i(x,yu,u) —l—apu) vdz (3.1)

and

0%L 0*L
J" (u)vyvy = /Q {(:zr,yu,u)zvlzv2 + m(x,yu,u)(zmvg + 2y, 01)

Oy?
O%L 02
+W(I7yuvu)vlv2 - ﬁpuaizﬂ(xayu)zvlzvz (3'2)
Oa 0%a
V. {a—y(x,yu)(zvl Vzy, + Vg, 2o,) + a—yz(x,y)zvleVyu] } dx

where @, € Wy P(2) is the unique solution of the problem

da af oL .
a_y(xayu)vyu : V‘P + 6_y($7yu)(p = 8_3/(96’ yuau) in Q
p=0o0onT
(3.3)

—div[a(z,y,) V] +

where z,, = G'(u)v; is the solution of (2.21) for y =1y, andv =1v;, i =1,2.

The only delicate point in the proof of the previous theorem is the existence and
uniqueness of a solution of the adjoint state equation (3.3). To prove this, let us
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denote consider the linear operator T' € L(WyP (), W~1P(Q)) given by

0 0
Tz = —div |a(z,y)Vz+ a—Z(ac,y)z Vy| + a—ch(x, Y) 2.
In the proof of Theorem 2.9 we proved that T is bijective. Since T is continuous,

we have that it is an isomorphism and its adjoint operator is also an isomorphism
T* € L(W,P(Q), W=1P(2)) given by

da

o af
T p = le[a(fc,yu)VwH6y(w,yu)Vyu V@+ay(x,yu)<ﬁ~

This is exactly equivalent to the well-posedness of the adjoint equation (3.3) in
WO1 P(Q). Finally Theorem 2.1 along with assumption (A6) implies that the adjoint
state ,, belongs to the space VVO1 P(Q) as claimed in the previous theorem.

REMARK 3.3. By using the expression given by (3.2) for J"(u), it is obvious that
J"(u) can be extended to a continuous bilinear form J"(u) : L*() x L?(2) — R.

By using the inequality J'(@)(u — @) > 0 and the differentiability of J given by
(3.1) and (3.3) we deduce the first order optimality conditions.

THEOREM 3.4. Under the assumptions of Theorem 3.2, if u is a local minimum
of (P), then there exists @ € Wy'* () such that

da, . Of oL,

p=0o0onT

—diwv|a(z,y)Vo| + (3.4)

/ (gi(x,y(x),ﬂ(x)) + @(m)) (u(z) —u(x))de >0 foralla <u<p, (3.5)
Q
where § is the state associated to u.

From (3.5) we get as usual

a(r) ifd(z) >0 5 = e
N 1 _) Z e
() { B8(z) if d(z) <0 and d(z) <0 ifalz)=p(x) (3.6)
for almost all x € 2, where
- oL, _ i i
d(z) = o~ (2, 5(x), u(2)) + ¢(2). 3.7)
We finish this section by studying the regularity of the optimal solutions of (P).
THEOREM 3.5. Under the assumptions of Theorem 3.4 and assuming that

oL

B0 Q x (R x R) — R is continuous, (3.8)
U
0’L 9
JAL > 0 such that W(m,y,u) > AL forae xz€Q andVy,ueR*, (3.9)
U

then the equation

oL, _

o~ (2, 9(x), 1) + ¢(x) =0 (3.10)

ou
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has a unique solution t = 5(x) for every x € Q. The function 5 : Q — R is continuous
and is related to @ by the formula

u(r) = Projia(z),5(x))(8(z)) = max{min{3(x), 5(x)}, a(x)}. (3.11)

Moreover, if o, 3 are contained in C(2), then @ belongs to C(12), too. Finally, if T" is
CY1, (A8) holds, q > n is taken in the assumptions (A2) and (A6), o, 3 € C*(Q),
and for every M > 0 there exists a constant Cr_pr > 0 such that

oL oL
%(xg,y,u) - %(xl,y,u) < Cp m|ze — 21| Vo, € Q and Y]y, |u| < M, (3.12)

then 3,4 € C%(Q).
Proof. Given z € Q, let us define the function g : R — R by

o(0) = 92 (0, @), 1) + ().

Then g is of class C* and from (3.9) we know that it is strictly increasing and

lim ¢(t) = —o0 and lim g(t) = +oo.

t——oo t—-+oo

Therefore, there exists a unique element ¢ € R such that g(#) = 0.

Taking d as defined by (3.7) and using (3.6) along with the strict monotonicity of
(0L/0u) with respect to the third variable, we obtain

if d(z) > 0, then a(z) = u(x) > 5(z)
if d(z) < 0, then B(z) = u(x) < 5(z)
if d(z) =0, then u(x) = 5(z),

which implies (3.11).

Let us prove that § is a bounded function. By using the mean value theorem
along with (3.8), (3.9) and (3.10) it comes

Aals(o)] < |G o), sta) = G (o). 0)| = o) + G960, 0).
hence
s(0)] < - ma[ (o) + G50, 0)| < o

The continuity of 5 at every point x € Q follows easily from the continuity of % and
(OL/0u) by using the following inequality

Adls(o) = s(0/) = |G ta!)5(0) = G 5007)|
<o) = o) + | G g 5(0) - Shlnghs@)]. (313
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If o, 8 € C(Q), then the identity (3.11) and the continuity of 5 imply the conti-
nuity of @ in .

Finally, if ' is 1!, (A3) and (A6) hold with ¢ > n, then 3, € W29(Q) C
C%1(Q). Then we can get from the inequality (3.13), the boundedness of 5 and (3.12)
that 5 € C%1()). Once again, (3.11) allows to conclude that 4 € C%1(Q) assuming
that a and 3 are also Lipschitz in Q. Indeed, it is enough to realize that

|a(w2) — a(w1)] < max{|B(z2) — B(x1)], |a(z2) — a(z1)], [5(22) — 5(z1)[}

<max{Lg, La, Ls}xs — x1],
where Lg, L, and Lz are the Lipschitz constants of «, 3 and 5 respectively. O

4. Pontryagin’s Principle. The goal of this section is to derive the Pontrya-
gin’s principle satisfied by a local solution of (P). For this purpose, we will make the
following assumption.

(A7) L: Qx (R xR) — R is a Carathéodory function of class C! with respect to
the second variable and, for all M > 0, there exists a function ¥y, € L(Q), with
q > pn/(p + n), such that

‘8L < p(x) for ae. z € Q, |ul < M and |y| < M.

8_y(x7y7 u)

Associated with the control problem (P), we define the Hamiltonian as usual by

H(l'vyaua 50) = L(x,y,u) + Sﬁ[u - f(wvy)]
The Pontryagin’s principle is formulated as follows.

THEOREM 4.1. Let @ be a local solution of (P). We assume that a : Q x R — R
is continuous, I is of class C' and (A1), (A2), (A4) and (A7) hold. Then there
exists @ € WyP(Q) satisfying (3.4) and

H(z,g(x),u(z), p(x)) = se[as,r(ralci)r.lﬁs,(x)] H(z,g(x),s,g(x)) forae xzeQ, (4.1)

where
e, () = max{a(x),a(z) —ez} and O, (z) = max{B(x),u(x) — ez},
eg > 0 is the radius of the L™ () ball where J achieves the minimum value at 4

among all feasible controls.

To prove this theorem, we will use the following lemma whose proof is given in
the annex of the paper. Though a shorter proof can be done by using Lyapunov’s
theorem, we have preferred to give a constructive proof of the lemma.

LEMMA 4.2. For every 0 < p < 1, there exists a sequence of Lebesgue measurable
sets {Ep}2, C Q such that

1
|Ex| = p|Q] and ;XEk —1 4n L™(Q) weakly”, (4.2)

where | - | denotes the Lebesgue measure.
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PROPOSITION 4.3. Under the assumptions of Theorem 4.1, for any u € L*°(2)
there exist a number 0 < p < 1 and measurable sets E, C Q, with |E,| = p|Q| for all
0 < p < p, that have the following properties: If we define

_Joa(z) ifzxeQ\E,
u”(x)_{u(:ﬂ) ifxeFE, ’

then
_ .1
Yp =Y+ pz+Tp, gI{%EHTP”WOLP(Q) =0 (4.3)
1
— 7(7 04,0 1imy ~1,.0] —
J(up) = J(a) + pz° +1,, ’];I{I(l)p"l“p‘ 0 (4.4)

hold true, where §j and y, are the states associated to u and y, respectively, z is the
unique element of Wol’p(Q) satisfying the linearized equation

. _ da, _ B of , . .
—div {a(m,y)Vz—l—a—y(x,y)sz —i—a—y(x,y)z—u—u n Q (4.5)

oL, _, . _ _ PN
20 = /Q {8—y(x,y(x), a(z))z(z) + Lz, g(z), u(x)) — L(x,y(x),u(x))} de.  (4.6)

Proof. Let us define the function g € L'(Q) by

9(z) = L(z,y(x), u(z)) — Lz, y(z), u(z)).

Given p € (0,1), we take a sequence {F;}7°, as in Lemma 4.2. Since L>(Q) is
compactly embedded in W~17(Q), there exists k, such that

/Q (1 B %XEk (33)) g(x) dx

Let us denote E, = Ej,. Let us introduce z, = (y, — 9)/p. By subtracting the
equations satisfied by y, and ¢ and dividing by p we get

1
I = X )= Dl sy < p o=k (47)

P p

—div [a(x’g)vzp + a(xayp) - a(x,gj) Vyp] + f(xayp) — f(x’y) Up —u in Q.

Now setting

Yoa o 9 j 9
opla) = [ G aa) + O, () ~ gla)
fole) = [ Z—i@ 3(z) + 0y, (z) — () do

we deduce from the above identity

—div [a(2, )20+ 4,(0)z Vi + £p(0)z = ~xg, (=) n Q. (@48)
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Let us define T, T, : Wy*(Q) — W~12(Q) by

. _ da, _ _ of . _
T¢ = —div |a(z,§)VE + a—y(w,y)f Vgl + a—y(;my)g
T, = —div [a(z, 1) VE + ap(2) Vy,] + fo(x)E.
Since y, — § in Wy () € C(Q), we deduce from our assumptions on a and f that

a,(xz) — g—;(:mgj(:v)) and f,(z) — g—z(a:,gj(x)) uniformly in Q, (4.9)

and consequently

||Tp - T”g(w[}vp(g),w—l,p(g)) <cC {H?/p - ?jHW(}m(Q)

Fllap(z) — %Z(%?(@)HC(Q) + /o) = g—z(%y(ﬂf))llc@} — 0. (4.10)

Since T is an isomorphism, by taking p small enough, we have that T}, is also an
isomorphism and 7,' — T~' in L(W=1P(Q), W, P(R)) too. Taking into account
(4.7), we obtain

_ _ 1,1 _
HZ — Zp||W01’p(Q) = HT l(u — u) — Tp I[EXEP (u — u)]HWDl’P(Q)

_ 1 _ _ _ _
< U1 = S, = )y + 1T = T ) = 0) oy

1 _ _ _ _
< CIA=2xe,) =) lw =@ HIT ™ =T, gy wrnay llu—llw-1n(@) = 0.

Now it is enough to notice that, by definition of 2z, and the convergence z, — z in
WyP(€), we have

hence y, = y+ pz + pe,. By putting r, = pe, we get (4.3). Finally, let us prove (4.4).
Similarly to the definitions of a, and f,, we introduce

Ly(x) = / 2—5@, §(z) + 0(y,(x) — 5(x), u,(x)) db.

Then we have

J(uy) = J(u) :/ L(z, yp(2), up(2)) — L(z, y(z), u(2)) ,
p Q P

T

T

:/ L(a:,yp(a:),up(x))—L(x,g](x),up(ac))d
Q p
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+/ L(z, y(2), up(2)) — Lz, 5(2), u(z)) ,
Q P

T

:/Lp(:r)zp(x) dz+/ EXE,,(I)[L(M(x),u(x)) = L(z,y(z), u(z))]de —
Q QP

oL, _, . _ _ o
— ., 6—y(a¢, g(x),u(x))z(x) de + /Q[L(:zc7 y(x),u(z)) — Lz, y(x), u(z))]dr = 2°,

which implies (4.4). O

Proof of Theorem 4.1. Since @ is a local solution of (P), there exists ez > 0
such that J achieves the minimum at @ among all feasible pairs of BLoo(Q) (,eq).
Let us take u € Bre(q)(t,cq) with a(z) < u(z) < B(z) ae x € Q. Following
Proposition 4.3, we consider the sets {E,},>0} such that (4.3) and (4.4) hold. Then
Uy € Bre(q)(t,eq) and therefore, (4.4) leads to

0 < lim M = 0
PN\O p
By using (4.5) and the adjoint state given by (3.4), we get from the previous inequality
after an integration by parts

0< /Q {p(2)(u(x) —u(z)) + L(z,y(x), u(z)) — L(z, y(z), u(x))} dz

:/Q[H(I,ﬂ(I)W(SC),@(x))—H(Sc,ﬂ(x)yﬂ(z)@(x))]dz- (4.11)

Since u is an arbitrary feasible control in the ball By q)(, ez), taking into account
the definitions of a, and 3., given in the statement of Theorem 4.1, we deduce from
(4.11

)
/Q H(z,§(x), (z), 5(x)) dz =  min /Q (H(z, 5(2), u(z), §(z)) dv.  (4.12)

Qey SUSﬂEﬁ

To conclude the proof, we will show that (4.12) implies (4.1). Let the sequence {g;}32,
exhaust the rational numbers contained in [0, 1]. For every j we set u; = gja., + (1 —
¢;)Be,- Then every function u; belongs to L>(Q) and a., (z) < u;(z) < B, (z) for
every x € ). Now we introduce functions Fy, F; : Q — R by

Fo(z) = H(z,y(z),a(z), p(x)) and Fj(z) = H(z,y(z),uj(z),@(x)), j=1,...,00.

Associated to these integrable functions we introduce the set of Lebesgue regular
points Ep and {£;}52,, which are known to satisfy |E;| = |Q] for j = 0,1,..., 00, and

1
i

im ———— Fj(x)dx = Fj(x0) Vzo € E;, j=0,1,...,00, (4.13)
™0 By (z0)| JB,(z0) ! !

where B,(zo) is the Euclidean ball in R™ of center zy and radius r. Let us set
E = N2y Ej, then it is obvious that |[E| = || and (4.13) holds for every zo € E.
Given zg € E and r > 0 we define

) = w(r) if z & Br(zg)
U ( ){ u;(z) ifa:eBT(q;g), j=1,..., 00.
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From (4.12) and the above definition we deduce

A H(z,y(x), u(x), p(x)) de < ; H(z,y(x), ujr(x), o(x)) dz,

therefore

! 7 — _
T o H ..

1 = —
= B0 g, oy TS ) Pl

and passing to the limit when r — 0 we get

H (o, y(0), u(x0), p(0)) < H(z0,Y(20), uj(20), P(T0)).

Since the function s — H(zq,y(0), s, ¢(20)) is continuous and {u;(z0)}32, is dense
n [ae, (%0), Be, (T0)], we get

H(x07 gj(xo), ’U,(l‘o), @(Jﬁo)) < H(x()v gj(aso), S, @(Jﬁo)) Vs € [asa (370)7 Ba,a (330)]

Finally, (4.1) follows from the previous inequality and the fact that z( is an arbitrary
point of E. O

REMARK 4.4. If we consider that @ is a global solution or even a local solutions
of (P) in the sense of the LP(Q)) topology, then (4.1) holds with ez = 0, more precisely

H(z,y(x),u(x), p(x)) = _ min  H(z,y(z),s,p(x)) forae e
s€la(z),B(x)]

The proof is the same. The only point we have to address is that the functions u,
defined in Proposition 4.3 corresponding to feasible controls u satisfy

up — @l e (o) = (/
E

<18 — | L= (o |7

1/p
lu(z) — u(z)|” dw) < =l oo o | B,

P

Therefore for p small enough the functions u, are in the corresponding ball of LP(2)
where u ts the minimum.

5. Second-order optimality conditions. The goal of this section is to prove
first necessary and next sufficient second-order optimality conditions. For it we will
assume that (A1),(A2), (A4) and (A6) hold, the function a : & x R — R is
continuous, and T is of class C1.

If @ is a feasible control for problem (P) and there exists @ € W, * () satisfying
(3.4) and (3.5), then we introduce the cone of critical directions

()

>0 ifa(z)=a
B(x) for ae. € Q} (5.1)
0

Ca={heLl?(Q):h(z) =4 <0 ifu(z)

=0 ifd(a:);«:é
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where d is defined by (3.7). In the previous section, we introduced the Hamiltonian
H associated to the control problem. It is easy to check that

0H

In the sequel, we will use the notation

H() = 0 (2,5(2), 5(2), 5(0)) and H(2) = 5 5 (2, 5(2), 1(2), 2(2).

Now we prove the necessary second-order optimality conditions.

THEOREM 5.1. Let us assume that @ is a local solution of (P) and let 3 € W, (Q)
be the adjoint state given by (3.4). Then the following inequalities hold

J"(@)h? >0 Yhe Cy
(5.2)

Hyu() >0 for a.a. x with H,(z) = 0.

Proof. Let us take h € Cy arbitrarily and 0 < € < €5. Then we define

ho(e) { 0 if a(z) <a(z) < a(z)+eor B(z) —e < a(r) < B(z)

max{—1, min{+1, h(z)}} otherwise.
It is clear that h. € Cyz N L>°(Q) and h. — h in L?(Q). Moreover, we have
a(z) < a(z) +the(z) < f(z) forae z€Q and 0 <t < e’
Therefore, if we define g. : [0,€2] — R by g.(t) = J(@ + th.), we have

9:(0) = min, 9e(t).

From our assumptions it is clear that g. is a C? function. From the fact h. € Cy we
deduce that

9(0) = J'(a)he = /QHu(x)hE(x) dz = 0.

Now, an elementary calculus and Theorem 3.2 yield

9L 9L
< " _ M\ B2 — _ N2 _
0<520) = @i = [ {0 + 20 L pwane
0’L, _O*f,
+au2 (J?, Y, u)h? - @a—yQ(xvy)Z}%E (53)
B Oa, _ 0%a, _
-Vo- [28—y($7y)ZhEVZhE + a—yg(%y)zisvig]} dz,

where 2, € H(€) is the solution of (2.16) corresponding to v = h.. Moreover, the
convergence h. — h in L?(£2) implies that z,_ — zj, in H}(Q2), where z, is the solution
of (2.16) for v = h; see Remark 2.7. Now we estimate the terms of (5.3). Arguing as
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in Remark 2.7, taking into account the embedding H{ () C Lt (©) and assumption
(A4), we get

_ da, _ _
[ 1V(0) - 5o 0)on, (@) V2. @] do < DurlIVlanea lenl, s, o V50, 1200

< CDMlIBll ey llzn (2)11203 -

Analogously we have

82
V(z)

L va N2 - — 2 -
i gy D3R @)V da < DV @lvn o 2 ze, | [VFlivcay <

CDy H@HWOL”(Q) 12, (x)HiIS(Q) ||?3||W01=P(Q)'

The rest of the terms in the integral (5.3) are easy to estimate with the help of
the assumptions (A4) and (A6). Therefore, we can pass to the limit in (5.3) and
deduce

0 < lim J"(@)h? = J" (u)h?.
E—

This proves the first inequality of (5.2). Finally, the second inequality is an obvious
consequence of (4.1). Indeed, it is a standard conclusion of (4.1) that

>0 ifa(z) =a(z)
Hy(z)=<{ <0 ifa(r)=p6(z) for a.e. z € Q
=0 if a(z) <a(x) < B(x)
and
Hyu(z) >0 if H,(z) =0 for a.e. z € Q.
o

Let us consider the Lagrangian function associated to the control problem (P)
L:L=(Q) x WyP(Q) x Wy P(Q) — R

given by the expression

L(u,y,¢) =T (y,u) + /Q {olu — f(x,y)] — a(x,y)Ve - Vy} dx

:/Q{H(Ivy(x),U(I)yw(x)) —a(z,y(2))Ve(z) - Vy(z)} de,
where we denote

T(y.u) = / Lz, y(x), u()) de.
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Defining Hy, Hyy and ﬁyu similarly to H, and H,,, after obvious modifications, we
can write the first and second order derivatives of £ with respect to (y,u) as follows

Dy L(4,5,9)(2,h) {H Vz(z) + Hy(z }dx

V() {a<x, )V + S, y(m))z(xwym} dr.

Q

If we assume that z is the solution of (2.16) associated to v = h, then by using the
adjoint state (3.4) we get

Dy £(,7,7) (2, h) = /Q Ho(2)h(z) de, (5.4)
Moreover, we find

D2, L(a,5,5)( / [y (2)22(2) + 2y () 2(2)h(2) + Hos()h?(2) }

da

/W {a 5 (z,9(x)) Q(x)Vy(x)+2a—y(x,y(x))z(x)vz(x)}d$,

Once again if we take z as the solution of (2.16) associated to v = h we deduce from
(3.2)

J"(w)h? = D}, LU, 7, ) (2, h)*. (5.5)

Therefore the necessary optimality conditions (5.2) can be written as follows

{ D(2 w4, 7, @)(2 h)2 >0 V(z,h) € H}(Q) x Cy satisfying (2.16) (5.6)
5.6
0 if H

v,
Hyu () > H,(x) =0 forae z€Q

We finish this section by establishing the sufficient second-order optimality con-
ditions.

THEOREM 5.2. Let us assume that u is a feasible control for the problem (P) and
there exists @ € Wy'*(Q) satisfying (3.4) and (3.5). If, in addition, there exist u > 0
and T > 0 such that

J"(@)h? > 0 Yh € Oy \ {(0,0)}

_ _ 5.7
Huyu(z) > p if |Hy(z) <7 for ae. x€Q, (5.7)
then there exist € > 0 and 6 > 0 such that
., 0 _
J(@) + 5 llu— U720 < J(u) (5.8)

for every feasible control u € L>(2) for (P) such that ||u — @l g (o) < €.
REMARK 5.3.
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1.- If we compare the first inequality of (5.7) with the analogous of (5.2), we see that the
gap is minimal between the necessary and sufficient conditions, as it is usual in finite
dimension. However, the second inequality of (5.7) is stronger than the corresponding
one of (5.2). This is a consequence of the infinite number of constraints on the control:
one constraint for every point of Q. In general we cannot take T = 0. The reader is
referred to Dunn [14] for a simple example proving the impossibility of taking 7 = 0.

2.- Let us recall that H,,(x) = (0°L/0u?)(z,y(x), i(x)). Therefore, the second con-
dition of (5.7) is satisfied if we assume that the second derivative of L with respect to
u s strictly positive. A standard example is given by the function

N
L(z,y,u) = Lo(x,y) + 5u2, with N > 0.

3.- The sufficient optimality conditions (5.7) can be written as follows
D(2y’u)£(ﬁ,gj,c,Z?)(z,h)2 >0 Y(z,h) € (HL(Q) x Cy) \ {(0,0)} verifying (2.16)
Hyu(z) > pif |Hy(z)| <71 for ace. x € Q.

Once again this is an obvious consequence of (5.5).

Proof. Step 1: Preparations. We will argue by contradiction. Let us assume that
there exists a sequence of feasible controls for (P), {u,}72, C L*™(1), such that

_ 1 1 _
|ur — @l Lo (o) < % and J(u)+ %Huk - u||2L2(Q) > J(ug). (5.9)
Let us define

_ _ _ 1 _
yr = G(ur) = Yu,., ¥ = G(@) = Ya, pr = |lur—tl|2(0) and vy = p_k(uk_u)’ (5.10)

then
khﬁrgo 1y —ﬂHWDl,p(Q) =0, leI&pk =0 and |lvg|lr2@ =1 Vk. (5.11)

By taking a subsequence, if necessary, we can assume that v, — v weakly in L?((Q).
We will prove that v € Cy. Next, we will use (5.7). In this process we will need the
following result

1
lim —(yr, —9) =2z in H(), (5.12)
k—oo Pk
where z € H} () is the solution of (2.16) corresponding to the state 3. Let us prove
it. We will set 2z, = (yxr — §)/pr. By subtracting the state equations satisfied by
(yx,ur) and (g, @), dividing by pi and applying the mean value theorem we get

) 0 B _ 0 _ _
—div [a(aj,yk)Vzk—i—a—Z(a:,y+9k(yk—y))szy]—l—a—ch(a:,y—l—l/k(yk—y))zk =vg. (5.13)

Taking into account that z, € W, ? (), we can multiply the equation (5.13) by z
and make an integration by parts to get with the aid of (2.1) and (5.11) that

ao/ |Vzk(a:)|2dx§/a(w,yk)|Vzk(x)|2dx
Q Q
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0 da
= / Vg2 — —f(ffaﬂ + k(e — 9))7k — - (2,5 + Ok (ye — §))2 V2 VY p do
Q dy Ay

< vkl z2@)llzrll L20) + CllzkHLp_aLQ(Q)HVﬂlle(sz)||V2k:HL2(sz)-

We have used that the term —0f/dy 27 is non-positive. Therefore,
< 1 P .
Vsl < € {1+l o b

As in the proof of Theorem 2.6, {zj}7° ; must be bounded in Lv2 (), otherwise we
could obtain a non zero solution of (2.16). Then, the above inequality leads to the
boundedness of {zj}72; in Hj(£2). Therefore we can extract a subsequence, denoted

in the same way, such that z;, — z weakly in H}(Q2) and strongly in L (©). Thanks
to this convergence and to (5.10), we get the strong convergences in L?(£2)

S 4= )V — g @)V and S gm0 — G @)%
Therefore we can pass to the limit in (5.13) and deduce

0 0
—div [a(z,§)Vz + a—Z(m,g)zV@] + a—g(as,gj)z = . (5.14)
Moreover by using (5.13), (5.14), and the uniform convergence y; — ¢ it is easy to
prove that

/a(x,y)\Vzk|2dx—>/a(x,y)\Vz\de.
Q Q

This fact, along with the weak convergence of {z;}?%, in H} (), implies the strong
convergence 2z — z in Hg ().

Step 2: v € Cy. Since a(z) < ug(z) < B(z) a.e., we have that vi(x) > 0 if
(z) = a(z) and vi(z) < 0 if a(z) = B(z) a.e. Since the set of functions satisfying
these sign conditions is convex and closed in L?(Q), then it is weakly closed, therefore
the weak limit v of {vy}32, satisfies the sign condition too. It remains to prove that

v(z) = 0 for almost all x such that d(z) # 0. From (5.9), by using the mean value
theorem we obtain

e L Jw) = J@)
T luk — tll72(q) > o
OL _ N _
= [ (@, 0+ 0k(yr — 9), 0+ O (up — )z dz
o Yy

oL
+/ a—(x,y+9k(yk—gj),ﬁ+9k(uk—ﬁ))vkda:.
o ou

Taking limits in both sides of the inequality, using (3.4), (5.14), the already proved
convergence 2z, — 2z in Hi () and integrating by parts we get

oL oL
> — 1/ 1, — T T p—
o/ﬁ{ayu,y,mw 8u<x,y,u>v}dx
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/Q{ gy e >>}”dw— /ch@)v(x)dx: /Q [d(@)][v(@)] de,

the last equality being a consequence of proved signs for v and (3.6). The previous
inequality implies that |d(x)v(x)| = 0 holds almost everywhere, hence v(x) = 0 if
d(x) # 0 as we wanted to prove.

Step 3: v = 0. The next step consists of proving that v does not satisfy the first
condition of (5.7). This will lead to the identity v = 0. By using (5.9), the definition
of £ and the fact that (y,u) and (yx, ur) satisfy the state equation we get

_ _ 1 _
L(ug, yr, p) = T (Y, ur) < J (g, 4) + %Huk — l|72 0

o 1 _
= L(,5,¢) + 7 llur — all72(0)- (5.15)
Performing a Taylor expansion up to the second order, we obtain

L(ug, Yy, p) = L(U+ prvk, Y + przi, ) = L(4, Y, ) + pr Dy ) L(8, U, P) 2k, Vk)

pk D2 o) £(U + Okprv, § + Ok przr, @) (2k, )2
This equality, along with (5.15) and (5.9), leads to
2 1 2 Pi
PED (yu) £(U, T, @) (2, Vk) + Pk D, L(wi, g, ) (20, k) < E|Uk: —ullz2 ) < 7
where we have put & = §+ 0 przr and wi, = u+ Ok prvg. It is obvious that £ — ¢ in

WOI’I’(Q) and wy, — @ in L°°(Q). Dividing the previous inequality by p? and taking
into account the expressions obtained for the derivatives of £ we obtain

1 H,(z)vg(z) do + = / { +2H (@) 2k () v () + HE, (2)v7 () } de
Pk JO
0 9a
_;/9{82(58 &)V + —5 052 5 (2 €k)sz£k} Vgdr < %, (5.16)
where

HE (2) = Hyy (2, & (2), wi(@), 3()),

with analogous definitions for H¥, and H;ju It is easy to check that

|Hy, ()| + [Hy, (2)] + |Hy, (2)] < C

for a.e. z € Q.

for some constant C' < co. We also have the following convergence properties

da da
= (2,5)2V@, j=1,2
a7 ogs T 9Ve I =1,

Vzr — Vz and 2z, V&, — 2VYy

(2, 86) 2 VP — in LQ(Q)n.
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Using these properties we can pass to the limit in (5.16) as follows

lim sup { / H,(z)v(x) dz + = / da:}
k—oo Pk

+% L[ﬁyy(x)%(x) +2H,,, (2)z(z)v(z))] do

1 Oa d%a 2
_Z < .
5 /Q {8y (x,9)2Vz+ — 09 5 (2,9)2 Vy} Vedr <0. (5.17)

The rest of the proof is devoted to verify that the above upper limit is bounded
from below by 3 [, Hyyv} dx. If this is proved, then from (5.17) and (5.5) we deduce
that J”(u)v? = D(Qy’u L(4,5,¢)(z,v)? < 0. According to (5.7) this is possible only
if v = 0. The proof og the mentioned lower estimate is quite technical, which makes
an important difference with respect to the finite dimension. In our framework the
difficulty is due to the fact that we only have a weak convergence vy, — v. To overcome
this difficulty we use a convexity argument. In order to achieve this goal the essential
tool is the second condition of (5.7).

From (A4) and (A6) we get
| Huw — Hipll o) < C {110 — ykllz= (o) + 1@ — uk| 1) } — 0.

Using this property, [[vg||r2(q) = 1, and the identity H,(z)v(z) = [Hy()||ve(z)| we

obtain
. 1 i 1 k 2
limsupq — [ Hy(x)vg(x)de+ = | H.,(x)vi(x)dzx
k—oo Pk JO 2 Ja

—timsup { - [ @)@l do + 5 [ Hunlohte)de}

. 1 _ 1 9
> hlrcrl—?ip{pk/{ﬁu(z)bT} |:|Hu(x)||vk(x) + 5 uu(x)vk(x)] dz

1 _
—l—*/ ) Hyo(7)03 () d:c} (5.18)
2 J{if.@)<r}
where 7 is given by (5.7).
Remembering that py|[ve| Lo (o) = [[ur — | L) < 1/k, we deduce the existence

of an integer kg > 0 such that

| Huull Lo @y prllvellLe@) [ HuullLe(o)
<
T kT

<1 Vk > ko,
therefore

pl|vk(x)| > || Hu || oo ()02 () for ace. € Q Yk > k.
k
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Then we have with the help of the second condition of (5.7)

1 _ 1_ 1 _
lim sup —/ {Hu||vk| + —Huuvi} dz + —/ Hy v da
k—oo | Pk J{|Hu|>7} 2 2 J{ia. <0}
: . 1] ., 1 o,
> lim sup . | HuyullLoo @) + 5 Huu | vEdo + 5 | H,, v dx
k—o0 {\Hu\>7} 2 2 {\Hu\gr}

_ 1 - 1 _ 1 —
> / {llHuule(n) + 5 uu:| v? dx + —/ Hy,0* dx > —/ H,,0* dz.
{1a.1>7} 2 2 [ <r) 2 Jo
(5.19)
Combining (5.18) and (5.19) we get the searched lower estimate.

Step 4: Final contradiction. Using that [lvk|z2(q) = 1 along with (5.16), (5.17),
(5.18), (5.19), the second condition of (5.7) and the fact that v = 0 we deduce

_ 1 1 =
0 > limsup {/ ) |:||Huu|Loc(Q) + 3 uu] vidr + 5/ ) H,, v} dx}
k—o0 {|Hu\>7'} {|Hu\§7'}

Huu oo
> lim sup m / vidr + L / vt dx
k—oo0 2 {18.|>7} 2 J{ia, <}

i ]r[uu > ?
. min{|| 2||L (), 1} limsup/ vjp da =
Q

k—oo

min{ || Hyuull Lo ),
{ll 2||L (Q) M}>07

providing the contradiction that we were looking for. O

We finish this section by formulating a different version of the sufficient second
order optimality conditions which is equivalent to (5.7); see [7, Theorem 4.4] for the
proof of this equivalence. This formulation is very useful for numerical purposes.

THEOREM 5.4. Let us assume that u is a feasible control for problem (P). We
also assume that there exists g € WP () satisfying (3.4) and (3.5). Then (5.7) holds
if and only there exist §,0 > 0 such that

J"(w)h* > 6||h||72q) YheCY (5.20)
where
>0 if u(z)=ax)
C?={hecL*(Q):hx)={ <0 if u(x)=p(x) forae xcQ}

6. Annex. Proof of Lemma 4.1.

Step 1. Construction of the sets Ej. First, we cover Q by the smallest n-cube
with edges parallel to the coordinate axis and split it into small sub-cubes of equal
size. This is done as follows:
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For 1 <j <nlet m; : R"™ — R be the j-th projection 7;(x) = z,;. We set

Aj =min7;(z) and B; =maxm;(z), j=1,...,n.
e zEN

For every integer k > 1 we define

1—1

a’ :Aj+T(Bj —Aj), i=1,...k+1, j=1,...,n.
For any multi-index a € {1,...,k}"™ let us consider the n-cubes
;a1
Qa = H[ajo'ijkvazjk-i_ ]
j=1

The following properties are obvious

H?:1(Bj - Aj).

Q= U Qo QunQu=Difara, |Qu==110

ac{l,... k}n
Let us denote

Fo=Q,NQ, and I, = {a € {1,...,k}" : |Fy| > 0}.

For any « € I, we consider a measurable subset E,, C}(T)‘a, with |E,| = p|Fy|. Finally

we set
By = | Pa
acly

then

Bkl = > [Eal=p Y [Fal = p|].

acly acly

Step 2. (1/p)xE, — 1 in L>=(Q) weakly*. Since {(1/p)xE,}7>; is bounded in
L>°(€) and the step functions are dense in L'(f2), it is sufficient to prove that

Jim (1 - %XEk (w)) s(z)dz = 0

k—oo Jq

for every step function s € L'(Q2). Then the previous convergences hold if and only if
1
= lim |AN Eg| = |A| (6.1)
p k—oo

for every Lebesgue measurable set A C €. This proof is split into four parts.

Part I. A= C is a closed n-cube. Let kg be large enough so that
1
diameter(Q,,) < §distance(C, ) Vae{l,...,n}" and k > ko.

Notice that distance(C,T) is positive, since A C © and A is closed. For every k > ko
the above inequality implies that

QaNC#0=QaCQ=Qn=F,.
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It is obvious that the number of sets Q, such that Q, N C # 0 and Q, ¢ C is of

order O(k™~!) when k — oo.
On the other hand

"B, — A, diameter(Q)"
|Qa|:H Jk ]S kn()

Va € I,
j=1

therefore
1
> Q=00
QaNC#0D, QagC

As a consequence we have

> Els Y Q=00

EaNC#0, QagC QaNC#D, QugC

Using (6.2) and (6.3) we obtain

Cl= 3 1QunCl= Y 1Qul +0()

a€ly Q.CC

1 1 1 1
- > |Bal +0(3) = p > |Ba N C|+0(7)-

Q.CC acly
Combining (6.3) and (6.4) we deduce
.1 .1
IC] = lim = > |E,NC|= lim ~|E,NC],
k—oo p aels k—oo p

hence (6.1) is proven for closed sets A.

(6.4)

(6.5)

Part II. A=V is an open set. Let us consider a sequence of closed n-cubes {C;}52,

whose sides are parallel to the axes such that

v=_JC and CinCi=0 if i#].

Jj=1

Any open and bounded set can be exhausted in this way, see, for instance, Stein [28].

Let € > 0 be arbitrary. Then there exists a non-negative integer k. such that

o0

> ExNGCy <e.

j=ke+1

(6.6)

The equation (6.5) was proven for an arbitrary closed n-cube C, hence it holds true

for all C}, too. By using (6.5) we get from the above inequality

o] k

1 1 1
limsup —|E; N V| = lim sup — E |Er N C;| < limsup — E |Ex N Cy| + <
P k P k— P P

k—oo —00 j=1 o] j=1
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i 1 € e € €
= Zlimsup—|Ek NCjl+—-= Z ICi|+ = < |V|+ -,
= koo P Pt p p

where we made use of (6.5) in the last equality. Since ¢ is arbitrary, we deduce from
the previous inequalities

1
limsup —|Ex NV| < |V]. (6.7)
p

k—o0

Let us prove the opposite inequality. Once again we take € > 0 arbitrary. Since

VI =>1C5l,
j=1

there exists k. such that

V] < i|0j‘ +e Vk> k..
j=1
From this inequality and identity (6.5), we obtain
S 1 - o
V| < ;klggo;wk NCj|+¢= k{%;wkﬂ[gcju te< hkrgloréf;wk NV|+e.

Since € is arbitrary we deduce
1

V| < likminf ;\Ek nvi. (6.8)
Combining (6.7) and (6.8) we get

1 1

|V| <liminf —|E, N V| <limsup —|E, NV| < |V],
k—oco p k—oo P

which implies

1
lim —|E.NV]=|V]| (6.9)
k—oo p

Part I1I. A = K is a compact set. Taking into account that the complementary set
of K in Q, denoted by 2\ K, is open, using (6.9) and remembering that |Ej| = p|€|,
we deduce

o1 .1
|K|:\Q|—|Q\K|:|Q\—k1LH;O;|Ekﬂ(Q\K)|:|Q\—k1LH;O;[IEk|—|EkﬂK|]
— 10— 1im (|0 = LB 0 K] = lim LB, 0 K| (6.10)
N el ok Ttk ' '

Part IV. A is a Lebesgue measurable set. Given € > 0, it is known that there exist an
open set V C Q and a compact set K C €2 such that K C A C V and

Al —e < K[ < |A] < V] < [A] +e.
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Then

1 1
|A| —e < |K| = lim —|Ey N K| < liminf —|Ef N A]
k—oo p k—oo p

1 1
<limsup —|E; N 4] < likminff|Ek NV=|V| <Al +e.
p —oo p

k—o0

Finally, since ¢ is arbitrary we get (6.1) from the above inequalities. O
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