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1. Introduction. In this paper, we consider optimal control problems for a
quasilinear elliptic equation of the type

{
−div [a(x, y(x))∇y(x)] + f(x, y(x)) = u(x) in Ω

y(x) = 0 on Γ.
(1.1)

Equations of this type occur, for instance, in models of heat conduction, where the
heat conductivity a depends on the spatial coordinate x and on the temperature y.
For instance, the heat conductivity of carbon steel depends on the temperature and
also on the alloying additions contained, cf. Bejan [2]. If the different alloys of steel are
distributed smoothly in the domain, then a = a(x, y) should depend in a sufficiently
smooth way on (x, y). Similarly, the heat conductivity depends on (x, y) in the growth
of silicon carbide bulk single crystals, see Klein et al. [20].

If a is independent of x, then the well known Kirchhoff transformation is helpful
to solve (1.1) uniquely. In the more general case a = a(x, y), in spite of the non
monotone character of the equation, there exists a celebrated comparison principle
proved by Douglas, Dupont and Serrin [13] that leads to the uniqueness of a solution
of (1.1); for a more recent paper, extending this result the reader is referred to Kř́ıžek
and L. Liu [19]. We will use the approach of [19] to deduce that (1.1) is well posed
under less restrictive assumptions than those considered by the previous authors.

For other classes of quasilinear equations, in particular for equations, in which a
depends on the gradient of y, we refer, for instance, to Lions [21] and Nečas [24].

As optimization is concerned, there exists a rich literature on the optimal control
of semilinear elliptic and parabolic equations. For instance, the Pontryagin principle
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†Dpto. de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Tele-
comunicación, Universidad de Cantabria, 39005 Santander, Spain, e-mail: eduardo.casas@unican.es

‡Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany, e-mail:
troeltzsch@math.tu-berlin.de

1



2 E. CASAS AND F. TRÖLTZSCH

was discussed for different elliptic problems in [5], [4], [1], while the parabolic case was
investigated in [6] or [26]. Problems with quasilinear equations with nonlinearity of
gradient type were considered by [8] or [9]. This list on first-order necessary optimality
conditions is by far not exhaustive.

Moreover, quite a number of contributions to second-order necessary and/or suf-
ficient optimality conditions were published. We mention only [3], [11], or the state-
constrained case in [10], [12], [25].

However, the state equation (1.1) has not yet been investigated in the context of
optimal control. The theory of optimality conditions of associated control problems
is the main issue of our paper that is organized as follows:

First, we discuss the well-posedness of this equation in different spaces. Next, the
differentiability properties of the control-to-state mapping are investigated. Based on
these results, the Pontryagin maximum principle is derived. Moreover, second-order
necessary and sufficient optimality conditions are established.

Notations. ByBX(x, r) we denote the open ball in a normed spaceX with radius
r centered at x, by B̄X(x, r) its closure. In some formulas, the partial derivative ∂/∂xj

is sometimes abbreviated by ∂j . By c (without index), generic constants are denoted.
Moreover, 〈· , ·〉 stands for the pairing between H1

0 (Ω) and H−1(Ω).

2. Study of the quasilinear equation.

2.1. Existence, uniqueness and regularity of solutions. The proof of the
existence and uniqueness of a solution of (1.1) relies on the following assumptions:

(A1) Ω ⊂ R
n is an open bounded set with a Lipschitz boundary Γ.

(A2) The functions a : Ω × R → R and f : Ω × R → R are Carathéodory, f is
monotone non-decreasing with respect to the second variable for almost all
x ∈ Ω,

∃α0 > 0 such that a(x, y) ≥ α0 for a.e. x ∈ Ω and all y ∈ R. (2.1)

The function a(·, 0) ∈ L∞(Ω) and for any M > 0 there exist a constant
CM > 0 and a function φM ∈ Lq(Ω), with q ≥ pn/(n + p) and n < p, such
that for all |y|, |yi| ≤M

|a(x, y2) − a(x, y1)| ≤ CM |y2 − y1| and |f(x, y)| ≤ φM (x) for a.e. x ∈ Ω. (2.2)

In the rest of the paper q and p ∈ (n,+∞) will be fixed. Let us remark that q ≥
pn/(n+ p) > n/2.

Theorem 2.1. Under the assumptions (A1) and (A2), for any element u ∈
W−1,p(Ω) problem (1.1) has a unique solution yu ∈ H1

0 (Ω) ∩ L∞(Ω). Moreover there
exists µ ∈ (0, 1) independent of u such that yu ∈ Cµ(Ω̄) and for any bounded set
U ⊂W−1,p(Ω)

‖yu‖H1
0 (Ω) + ‖yu‖Cµ(Ω̄) ≤ CU ∀u ∈ U (2.3)

for some constant CU > 0. Finally, if uk → u in W−1,p(Ω), then yuk
→ yu in

H1
0 (Ω) ∩ Cµ(Ω̄).
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Proof. Existence of a Solution. Depending on M > 0, we introduce the truncated
function aM by

aM (x, y) =







a(x, y), |y| ≤ M
a(x,+M), y > +M
a(x,−M), y < −M.

In the same way, we define the truncation fM of f . Let us prove that the equation

{
−div [aM (x, y)∇y] + fM (x, y) = u in Ω

y = 0 on Γ
(2.4)

admits at least one solution y ∈ H1
0 (Ω). We define, for fixed u ∈ W−1,p(Ω) and

M > 0, a mapping F : L2(Ω) → L2(Ω) by F (z) = y, where y ∈ H1
0 (Ω) is the unique

solution to

{
−div [aM (x, z)∇y] + fM (x, z) = u in Ω

y = 0 on Γ.
(2.5)

Thanks to assumption (A2), (2.2), we have

|fM (x, z)| ≤ φM (x)

and φM ∈ Lq(Ω) ⊂ H−1(Ω). Therefore, (2.5) is a linear equation and u − fM (·, z)
belongs to H−1(Ω), hence (2.5) admits a unique solution yM ∈ H1

0 (Ω) and F is well
defined. Furthermore, we have

‖yM‖H1(Ω) ≤
1

α0

(
‖u‖H−1(Ω) + ‖φM‖H−1(Ω)

)
. (2.6)

Using this estimate and the fact that H1(Ω) is compactly embedded into L2(Ω), it is
easy to apply the Schauder theorem to prove the existence of a fixed point yM ∈ H1

0 (Ω)
of F . Obviously, yM is a solution of (2.4).

Since q ≥ np/(n+p) we have that Lq(Ω) ⊂W−1,p(Ω). Now an application of the
Stampacchia truncation method yields

‖yM‖L∞(Ω) ≤ c∞ ‖u− f(·, 0)‖W−1,p(Ω), (2.7)

where c∞ depends only on the coercivity constant α0 given in (2.1) but neither on
‖aM (·, ym)‖L∞(Ω) nor on fM (·, yM ). For the idea of this method, the reader is referred
to Stampacchia [27] or to the exposition for semilinear elliptic equations in Tröltzsch
[29, Theorem 7.3]. By taking

M ≥ c∞ ‖u− f(·, 0)‖W−1,p(Ω),

(2.7) implies that aM (x, yM (x)) = a(x, yM (x)) and fM (x, yM (x)) = f(x, yM (x)) for
a.e. x ∈ Ω, therefore yM ∈ H1

0 (Ω) ∩ L∞(Ω) is a solution of (1.1). The Hölder
regularity follows as usual; see, for instance, Gilbarg and Trudinger [16, Theorem
8.29]. The inequality (2.3) follows from (2.6), (2.7) and the estimates in [16, Theorem
8.29]. Finally, the convergence property can be deduced from (2.3) easily once the
uniqueness is proved.
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Uniqueness of a Solution. Here we follow the method by Kř́ıžek and Liu [19]. Let us
assume that yi ∈ H1

0 (Ω) ∩ L∞(Ω), i = 1, 2, are two solutions of (1.1). The regularity
results proved above imply that yi ∈ C(Ω̄), i = 1, 2. Let us define the open sets

Ω0 = {x ∈ Ω : y2(x) − y1(x) > 0}

and for every ε > 0

Ωε = {x ∈ Ω : y2(x) − y1(x) > ε}.

No we take zε(x) = min{ε, (y2(x) − y1(x))
+}, which belongs to H1

0 (Ω) and |zε| ≤ ε.
Multiplying the equations corresponding to yi by zε and doing the usual integration
by parts we get

∫

Ω

{a(x, yi)∇yi∇zε + f(x, yi)zε} dx = 〈u, zε〉, i = 1, 2.

By subtracting both equations, using the monotonicity of f , (2.1) and (2.2) and the
fact that ∇zε(x) = 0 for a.a. x 6∈ Ω0\Ωε and in view of ∇zε = ∇(y2−y1)

+ = ∇(y2−y1)
a.e. in Ω0 \ Ωε we get

α0‖∇zε‖
2
L2(Ω) ≤

∫

Ω

{a(x, y2)|∇zε|
2 + [f(x, y2) − f(x, y1)]zε}dx

=

∫

Ω

{a(x, y2)∇(y2 − y1)∇zε + [f(x, y2) − f(x, y1)]zε}dx

and, invoking the weak formulation of the equation for y1,

=

∫

Ω

[a(x, y1)∇y1 − a(x, y2)∇y1]∇zε dx =

∫

Ω0\Ωε

[a(x, y1)∇y1 − a(x, y2)∇y1]∇zε dx

≤ CM‖y2 − y1‖L∞(Ω0\Ωε)‖∇y1‖L2(Ω0\Ωε)‖∇zε‖L2(Ω0\Ωε)

≤ CMε‖∇y1‖L2(Ω0\Ωε)‖∇zε‖L2(Ω0\Ωε).

From this inequality, along with Friedrich’s inequality, we get

‖zε‖L2(Ω) ≤ C‖∇zε‖L2(Ω) ≤ C ′ε‖∇y1‖L2(Ω0\Ωε). (2.8)

Now by limε↓0 |Ω0 \ Ωε| = 0 and (2.8) we deduce

|Ωε| = ε−2

∫

Ωε

ε2 ≤ ε−2

∫

Ω

|zε|
2 ≤ C ′′‖∇y1‖

2
L2(Ω0\Ωε) → 0,

which implies that |Ω0| = limε→0 |Ωε| = 0 and hence y2 ≤ y1. In the same way, we
prove that y1 ≤ y2

Remark 2.2. Let us remark that the Lipschitz property of a with respect to y
assumed in (A2) was only necessary to prove the uniqueness of a solution of (1.1), but
it was not needed to establish existence and regularity. We can get multiple solutions of
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(1.1) if the Lipschitz property (2.2) fails; see Hlaváček et al. [18] for a one-dimensional
example.

By assuming more regularity on a, f , Γ and u, we can obtain higher regularity of
the solutions of (1.1).

Theorem 2.3. Let us suppose that (A1) and (A2) hold. We also assume that
a : Ω̄×R −→ R is continuous and Γ is of class C1. Then, for any u ∈W−1,p(Ω) (1.1)
has a unique solution yu ∈ W 1,p

0 (Ω). Moreover, for any bounded set U ⊂ W−1,p(Ω),
there exists a constant CU > 0 such that

‖yu‖W 1,p
0 (Ω) ≤ CU ∀u ∈ U. (2.9)

If uk → u in W−1,p(Ω) then yuk
→ yu strongly in W 1,p

0 (Ω).

The proof of this theorem follows from Theorem 2.1 and the W 1,p(Ω)-regularity
results for linear elliptic equations; see Giaquinta [15, Cap. 4, pag. 73] or Morrey
[22, pp. 156-157]. It is enough to remark that the function â(x) = a(x, yu(x)) is
continuous in Ω̄ and u− f(·, yu) belongs to W−1,p(Ω).

Let us state some additional assumptions leading to W 2,q(Ω)-regularity for the
solutions of (1.1).

(A3) For all M > 0, there exists a constant cM > 0 such that the following local
Lipschitz property is satisfied:

|a(x1, y1) − a(x2, y2)| ≤ cM {|x1 − x2| + |y1 − y2|} (2.10)

for all xi ∈ Ω̄, yi ∈ [−M,M ], i = 1, 2.

Theorem 2.4. Under the hypotheses (A1)-(A3) and assuming that Γ is of class
C1,1, for any u ∈ Lq(Ω), equation (1.1) has one solution yu ∈ W 2,q(Ω). Moreover,
for any bounded set U ⊂ Lq(Ω), there exists a constant CU > 0 such that

‖yu‖W 2,q(Ω) ≤ CU ∀u ∈ U. (2.11)

Proof. (i) From Sobolev embedding theorems, cf. Nečas [23, Theorem 3.4], it
follows

Lq(Ω) →֒W−1, nq
n−q (Ω), if 1 < q < n, (2.12)

Lq(Ω) →֒W−1,∞(Ω), if n ≤ q <∞. (2.13)

Since Lq(Ω) ⊂ W−1,p(Ω), we can apply Theorem 2.3 to get the existence of at least
one solution in W 1,p

0 (Ω), for every 1 < p <∞ if q ≥ n, and for p = nq
n−q if q < n. We

have to prove the W 2,q(Ω) regularity. To this aim, we distinct between two cases in
the proof.

(ii,a) Case q ≥ n: We have that y ∈ W 1,p
0 (Ω) for any p < ∞, in particular in

W 1,2q
0 (Ω). By using assumption (A3), expanding the divergence term of the PDE

(1.1) and dividing by a we find that

−∆y =
1

a
︸︷︷︸

L∞

{

u− f(·, y)
︸ ︷︷ ︸

Lq

+

n∑

j=1

∂ja(x, y)
︸ ︷︷ ︸

L∞

∂jy
︸︷︷︸

Lq

+
∂a

∂y
︸︷︷︸

L∞

|∇y|2
︸ ︷︷ ︸

Lq

}

, (2.14)
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hence the right-hand side of (2.14) is in Lq(Ω). Notice that ∂a
∂y ∈ L∞ follows from

(2.10) and the boundedness of y. The C1,1 smoothness of Γ permits to apply a
well-known result by Grisvard [17] on maximal regularity and to get y ∈W 2,q(Ω).

(ii,b) Case n/2 < q < n: Notice that y ∈ W
1, nq

n−q

0 (Ω). It follows that |∇y|2 ∈

L
nq

2(n−q) (Ω). A simple calculation confirms that

nq

2(n− q)
> q, (2.15)

since this is equivalent to q > n/2, consequence of our assumption on q. Therefore,
it holds that |∇y|2 ∈ Lq(Ω) and once again the right hand side of (2.14) belongs to
Lq(Ω). We apply again the regularity results by Grisvard [17] to obtain y ∈W 2,q(Ω).

Corollary 2.5. Suppose that the assumptions of Theorem 2.4, except the regu-
larity hypothesis of Γ, are satisfied with q = 2. Then, if Ω ⊂ R

n is an open, bounded
and convex set, n = 2 or n = 3, there exists one solution of (1.1) y ∈ H2(Ω)∩H1

0 (Ω).

Proof. This is a simple extension of Theorem 2.4 for q = 2. Notice that we have
assumed n ≤ 3 so that q > n/2 is true. The C1,1 smoothness of Γ is not needed for
convex domains, since maximal regularity holds there, cf. [17].

2.2. Differentiability of the control-to-state mapping. In order to derive
the first- and second-order optimality conditions for the control problem, we need to
assume some differentiability of the functions involved in the control problem. In this
section, we will analyze the differentiability properties of the states with respect to
the control. To this aim, we require the following assumption.

(A4) The functions a and f are of class C2 with respect to the second variable and,
for any number M > 0, there exists a constant DM > 0 such that

2∑

j=1

∣
∣
∣
∣

∂ja

∂yj
(x, y)

∣
∣
∣
∣
+

∣
∣
∣
∣

∂jf

∂yj
(x, y)

∣
∣
∣
∣
≤ DM for a.e. x ∈ Ω and all |y| ≤M.

Now we are going to study the differentiability of the relation control-state. As
a first step we study the linearized equation of (1.1) around a solution yu. The
reader should remark that the well-posedness of the linearized equation is not obvious
because of the linear operator is not monotone.

Theorem 2.6. Given y ∈W 1,p(Ω) for any v ∈ H−1(Ω) the linearized equation






−div

[

a(x, y)∇z +
∂a

∂y
(x, y)z∇y

]

+
∂f

∂y
(x, y) z = v in Ω

z = 0 on Γ
(2.16)

has a unique solution zv ∈ H1
0 (Ω).

Remark 2.7. As a consequence of the open mapping theorem, assuming that
(A2) and (A4) hold, we know that the relation v 7→ zv defined by (2.16) is an
isomorphism between H−1(Ω) and H1

0 (Ω). Indeed, it is enough to note that the linear
mapping

z 7→ −div [a(x, y)∇z +
∂a

∂y
(x, y)z∇y] +

∂f

∂y
(x, y) z
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is continuous from H1
0 (Ω) to H−1(Ω). To verify this, we notice first that a(x, y),

∂a
∂y (x, y) and ∂f

∂y (x, y) are bounded functions because of our assumptions and the bound-

edness of y, which follows from the fact that y ∈ W 1,p
0 (Ω) ⊂ C(Ω̄) for p > n. The

only delicate point is to check that

∂a

∂y
(·, y)z∇y ∈ L2(Ω)n.

This property follows from the Hölder inequality

(
∫

Ω

∣
∣
∣
∣

∂a

∂y
(·, y)z∇y

∣
∣
∣
∣

2

dx

)1/2

≤ DM‖z‖
L

2p
p−2 (Ω)

‖∇y‖Lp(Ω)

and the fact that

H1
0 (Ω) ⊂ L

2n
n−2 (Ω) ⊂ L

2p
p−2 (Ω) if n > 2,

H1
0 (Ω) ⊂ Lr(Ω) for all r <∞ if n = 2,

where we have used that

p > n⇒
2n

n− 2
>

2p

p− 2
.

Remark 2.8. The reader can be easily check that the proof of Theorem 2.6 can
be modified in the very obvious way to state that the equation







−div

[

a(x, y1)∇z +
∂a

∂y
(x, y1)z∇y2

]

+
∂f

∂y
(x, y3) z = v in Ω

z = 0 on Γ

has a unique solution in z ∈ H1
0 (Ω) for any elements yi ∈W 1,p

0 (Ω), i = 1, 2, 3.

Proof of Theorem 2.6. First we prove the uniqueness and then the existence.

Uniqueness of solution of (2.16). We follow the same approach used to prove the
uniqueness of a solution of (1.1). Let us take v = 0 and assume that z ∈ H1

0 (Ω) is
solution of (2.16), then the goal is to prove that z = 0. Thus we define the sets

Ω0 = {x ∈ Ω : z(x) > 0} and Ωε = {x ∈ Ω : z(x) > ε}.

Now we set zε(x) = min{ε, z+(x)}, so that zε ∈ H1
0 (Ω), |zε| ≤ ε, zzε ≥ 0, z∇zε =

zε∇zε and ∇z∇zε = |∇zε|
2. Then multiplying the equation corresponding to z by zε

and performing an integration by parts we get

∫

Ω

{

a(x, y)|∇zε|
2 +

∂a

∂y
(x, y)zε∇y∇zε +

∂f

∂y
(x, y)z2

ε

}

dx = 0,

then, by the monotonicity of f and (A2),

α0‖∇zε‖
2
L2(Ω) ≤

∫

Ω

{

a(x, y)|∇zε|
2 +

∂f

∂y
(x, y)z2

ε

}

dx
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= −

∫

Ω

∂a

∂y
(x, y)zε∇y∇zε dx = −

∫

Ω0\Ωε

∂a

∂y
(x, y)zε∇y∇zε dx

≤ CM‖∇y‖Lp(Ω0\Ωε)‖∇zε‖L2(Ω).

From here it follows an inequality analogous to (2.8) and continuing the proof as
there we conclude that |Ω0| = limε→0 |Ωε| = 0, therefore z ≤ 0 in Ω. But −z is also a
solution of (2.16), by the same arguments we deduce that −z ≤ 0 in Ω, and therefore
z = 0.

Existence of solution of (2.16). For every t ∈ [0, 1] let us consider the equation







−div

[

a(x, y)∇z + t
∂a

∂y
(x, y)z∇yu

]

+
∂f

∂y
(x, y) z = v in Ω

z = 0 on Γ.
(2.17)

For t = 0, the resulting linear equation is monotone and by an obvious application of
the Lax-Milgram Theorem we know that there exists a unique solution z0 ∈ H1

0 (Ω)
for every v ∈ H−1(Ω). Let us denote by S the set of points t ∈ [0, 1] for which the
equation (2.17) defines an isomorphism between H1

0 (Ω) and H−1(Ω). S is not empty
because 0 ∈ S. Let us denote by tmax the supremum of S. We will prove first that
tmax ∈ S and then we will see that tmax = 1, which concludes the proof of existence.

Let us take a sequence {tk}
∞
k=1 ⊂ S such that tk → tmax when k → ∞ and let us

denote by zk the solutions of (2.17) corresponding to the values tk. Multiplying the
equation of zk by zk and integrating by parts, using assumptions (A1) and (A2) we
get

α0‖∇zk‖
2
L2(Ω) ≤

∫

Ω

{

a(x, y)|∇zk|
2 +

∂f

∂y
(x, y)z2

k

}

dx

= 〈v, zk〉 − tk

∫

Ω

∂a

∂y
(x, y)zk∇y∇zk dx

≤

(

‖v‖H−1(Ω) + tkDM‖∇y‖Lp(Ω)‖zk‖
L

2p
p−2 (Ω)

)

‖∇zk‖L2(Ω),

which implies

‖∇zk‖L2(Ω) ≤ C

(

‖v‖H−1(Ω) + ‖zk‖
L

2p
p−2 (Ω)

)

. (2.18)

In principle it seems that there are two possibilities: either {zk}
∞
k=1 is bounded in

L
2p

p−2 (Ω) or it is not. In the first case (2.18) implies that {zk}
∞
k=1 is bounded in H1

0 (Ω),
then we can extract a subsequence, denoted in the same way, such that zk ⇀ z weakly

in H1
0 (Ω) and strongly in L

2p
p−2 (Ω) because of the compactness of the embedding

H1
0 (Ω) ⊂ L

2p
p−2 (Ω) for p > n. Therefore we can pass to the limit in (2.17), with

t = tk, and check that z is a solution of (2.17) for t = tmax, therefore tmax ∈ S as we
wanted to prove.
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Let us see that the second possibility is not actually a correct assumption. Indeed,
let us assume that ‖zk‖

L
2p

p−2 (Ω)
→ ∞, taking a subsequence if necessary. We define

ρk =
1

‖zk‖
L

2p
p−2 (Ω)

→ 0 and ẑk = ρkzk.

Then from 2.18 we deduce

‖∇ẑk‖L2(Ω) ≤ C

(

ρk‖v‖H−1(Ω) + ‖ẑk‖
L

2p
p−2 (Ω)

)

= C
(
ρk‖v‖H−1(Ω) + 1

)
. (2.19)

Moreover ẑk satisfies the equation







−div

[

a(x, y)∇ẑk + tk
∂a

∂y
(x, y)ẑk ∇y

]

+
∂f

∂y
(x, y)ẑk = ρkv in Ω

z = 0 on Γ.
(2.20)

From (2.19) we know that we can extract a subsequence, denoted once again in

the same way, such that ẑk ⇀ ẑ weakly in H1
0 (Ω) and strongly in L

2p
p−2 (Ω). Then

‖ẑ‖
L

2p
p−2 (Ω)

= 1 and passing to the limit in (2.20) we have that ẑ satisfies the equation







−div

[

a(x, y)∇ẑ + tmax
∂a

∂y
(x, y)ẑ∇y

]

+
∂f

∂y
(x, y)ẑ = 0 in Ω

z = 0 on Γ.

But we have already proved the uniqueness of solution of (2.16), the fact of including
tmax in the equation does not matter for the proof, therefore ẑ = 0, which contradicts

the fact that its norm in L
2p

p−2 (Ω) is one.

Finally we prove that tmax = 1. If it is false, then let us consider the operators
Tε, Tmax ∈ L(H1

0 (Ω), H−1(Ω)), for any ε > 0 with tmax + ε ≤ 1, defined by

Tεz = −div

[

a(x, y)∇z + (tmax + ε)
∂a

∂y
(x, y)z∇y

]

+
∂f

∂y
(x, y)z

Tmaxz = −div

[

a(x, y)∇z + tmax
∂a

∂y
(x, y)z∇y

]

+
∂f

∂y
(x, y)z.

Then we have

‖Tε − Tmax‖L(H1
0 (Ω),H−1(Ω)) = sup

‖z‖
H1

0(Ω)
≤1

‖(Tε − Tmax)z‖H−1(Ω)

≤ DM sup
‖z‖

H1
0(Ω)

≤1

ε‖z‖
L

2p
p−2 (Ω)

‖∇y‖Lp(Ω) ≤ Cε.

Since Tmax is an isomorphism, if Cε < 1, then Tε is also an isomorphism, which
contradicts the fact that tmax is the supremum of S.

Theorem 2.9. Let us suppose that (A1), (A2) and (A4) hold. We also assume
that a : Ω̄ × R 7→ R is continuous and Γ is of class C1. Then the control-to-state
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mapping G : W−1,p(Ω) → W 1,p
0 (Ω), G(u) = yu, is of class C2. Moreover, for any

v, v1, v2 ∈ W−1,p(Ω) the functions zv = G′(u)v and zv1,v2
= G′′(u)[v1, v2] are the

unique solutions in W 1,p
0 (Ω) of the equations







−div

[

a(x, yu)∇z +
∂a

∂y
(x, yu)z∇yu

]

+
∂f

∂y
(x, y) z = v in Ω

z = 0 on Γ
(2.21)

and






−div

[

a(x, yu)∇z +
∂a

∂y
(x, yu)z∇yu

]

+
∂f

∂y
(x, yu) z = −

∂2f

∂y2
(x, yu)zv1

zv2

+div

[
∂a

∂y
(x, yu)(zv1

∇zv2
+ ∇zv1

zv2
) +

∂2a

∂y2
(x, yu)zv1

zv2
∇yu

]

in Ω

z = 0 on Γ.

(2.22)

respectively, where zi = G′(u)vi, i = 1, 2.

Proof. We introduce the mapping F : W 1,p
0 (Ω) ×W−1,p(Ω) →W−1,p(Ω) by

F (y, u) = −div [a(·, y)∇y] + f(·, y) − u.

Because of the assumptions (A2) and (A4), it is obvious that F is well defined, of
class C2 and F (yu, u) = 0 for every u ∈W 1,p

0 (Ω). If we prove that

∂F

∂y
(yu, u) : W 1,p

0 (Ω) −→W−1,p(Ω)

is an isomorphism, then we can apply the implicit function theorem to deduce the
theorem, getting (2.21) and (2.22) by simple computations. Let us remark that

∂F

∂y
(yu, u)z = −div [a(x, yu)∇z +

∂a

∂y
(x, yu)z∇yu] +

∂f

∂y
(x, yu) z.

According to Theorem 2.6, for any v ∈ H−1(Ω), there exists a unique element z ∈
H1

0 (Ω) such that

∂F

∂y
(yu, u)z = v.

It is enough to prove that z ∈ W 1,p
0 (Ω), if v ∈ W−1,p(Ω) ⊂ H−1(Ω). More precisely,

this means that the unique solution of (2.16) in H1
0 (Ω) belongs to W 1,p

0 (Ω). First of
all, let us note that

a(·, yu) ∈ L∞(Ω),
∂a

∂y
(·, yu)∇yu ∈ Lp(Ω)n,

∂f

∂y
(·, yu) ∈ L∞(Ω) and v ∈W−1,p(Ω).

Therefore, we can apply a result by Stampacchia [27, Theorem 4.1 and Remark 4.2]
about L∞(Ω)-estimates of solutions of linear equations to get that z ∈ L∞(Ω). Now
we have that

−div[a(x, yu)∇z] = v + div[
∂a

∂y
(x, yu)z∇yu] −

∂f

∂y
(x, yu)z ∈W−1,p(Ω)
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and x 7→ a(x, yu(x)) is a continuous real-valued function defined in Ω̄. Finally, as in the
proof of Theorem 2.3, we can use the W 1,p

0 (Ω)-regularity results for linear equations,
see [15, Chpt. 4, pag. 73] or [22, pp. 156-157], to deduce that z ∈W 1,p

0 (Ω).

From Theorem 2.4 we know that the states y corresponding to controls u ∈
Lq(Ω), with q > n/2, can have an extra regularity under certain assumptions. In
this situation, a natural question arises. Can we prove a result analogous to Theorem
2.9 with G : Lq(Ω) → W 2,q(Ω)? The answer is positive if we assume some extra
regularity of the function a.

(A5) For all M > 0, there exists a constant dM > 0 such that the following inequality
is satisfied:

∣
∣
∣
∣

∂ja

∂yj
(x1, y1) −

∂ja

∂yj
(x2, y2)

∣
∣
∣
∣
≤ dM {|x1 − x2| + |y1 − y2|} (2.23)

for all xi ∈ Ω̄, yi ∈ [−M,M ], i = 1, 2 and j = 1, 2.

Theorem 2.10. Suppose that (A1)-(A5) hold and Γ is of class C1,1. Then the
control-to-state mapping G : Lq(Ω) → W 2,q(Ω), G(u) = yu, is of class C2. For any
v, v1, v2 ∈ Lq(Ω), the functions zv = G′(u)v and zv1,v2

= G′′(u)[v1, v2] are the unique

solutions in W 2,q(Ω) ∩W 1,q
0 (Ω) of the equations (2.21) and (2.22), respectively.

Proof. The proof follows the same steps than in the previous theorem with obvious
modifications. Let us comment the main differences. This time, the function F is
defined by the same expression as above and acts from (W 2,q(Ω)∩W 1,q

0 (Ω))×Lq(Ω)
to Lq(Ω). We have to check that F is well defined and we must determine the first-
and second-order derivatives. By using the assumptions (A3)-(A5), we have for
j = 0, 1, 2 and y ∈W 2,q(Ω) ∩W 1,q

0 (Ω) that

div

[
∂ja

∂yj
(x, y(x))∇y(x)

]

=

[

∇x
∂ja

∂yj

]

(x, y(x)) · ∇y(x) +
∂j+1a

∂yj+1
(x, y(x))|∇y(x)|2

+
∂ja

∂yj
(x, y(x))∆y(x) ∈ Lq(Ω). (2.24)

We have used the fact that (∂ja/∂yj) is Lipschitz in x and y, therefore differentiable
a.e. and that the chain rule is valid in the framework of Sobolev spaces.

On the other hand, (A2) and (A4) imply that

∂jf

∂yj
(·, y) ∈ Lq(Ω) for j = 0, 1, 2.

From these remarks, it is easy to deduce that F is of class C2. Let us prove that (2.16)
has a unique solution z ∈W 2,q(Ω)∩W 1,q

0 (Ω) for any v ∈ Lq(Ω). The uniqueness is an
immediate consequence of the uniqueness of solution in H1

0 (Ω) ∩ L∞(Ω). It remains
to prove the W 2,q-regularity. We argue similarly to the proof of Theorem 2.3. From
(2.16) we get

−∆z =
1

a

{

v + div
[∂a

∂y
(x, ȳ) z ∇ȳ

]

−
∂f

∂y
(x, ȳ) z + v

}

+ ∇xa · ∇z +
∂a

∂y
∇ȳ · ∇z

=
1

a

{

v −
∂f

∂y
(x, ȳ) z + ∇x

∂a

∂y
z · ∇ȳ +

∂2a

∂y2
z |∇ȳ|2 +

∂a

∂y
∇z · ∇ȳ

+
∂a

∂y
z∆ȳ

}

+ ∇xa · ∇z +
∂a

∂y
∇z · ∇ȳ.
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The right-hand side is an element of Lq(Ω). To verify this, consider, for instance, the
term with the lowest regularity, i.e. the term ∇ȳ · ∇z:

(∫

Ω

|∇ȳ|q|∇z|qdx
) 1

q

≤
(∫

Ω

|∇ȳ|ndx
) 1

n
(∫

Ω

|∇z|
nq

n−q dx
)n−q

nq

≤ c
(∫

Ω

|∇ȳ|
nq

n−q dx
)n−q

nq

‖z‖
W

1,
nq

n−q
0 (Ω)

≤ c‖ȳ‖W 2,q(Ω) ‖z‖
W

1,
nq

n−q
0 (Ω)

,

where we have used that z ∈ W
1, nq

n−q

0 (Ω), which is a consequence of the embedding

Lq(Ω) ⊂W−1, nq
n−q (Ω) along with Theorem 2.9. Notice that we have assumed q > n/2.

This inequality is equivalent to nq/(n− q) > n and is also behind the estimate of the
integral containing ∇ȳ.

Remark 2.11. If q = 2, then Theorem 2.10 remains true for n = 2 or n = 3,
if we replace the C1,1-regularity of Γ by the convexity of Ω. This is a consequence of
the H2-regularity for the elliptic problems in convex domains.

3. The control problem. Associated to the state equation (1.1), we introduce
the following control problem

(P)







min J(u) =

∫

Ω

L(x, yu(x), u(x)) dx

u ∈ L∞(Ω)
α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω,

where L : Ω × (R × R) → R is a Carathéodory function, p > n, and α, β ∈ L∞(Ω),
with β(x) ≥ α(x) for a.e. x ∈ Ω. First of all, we study the existence of a solution for
problem (P).

Theorem 3.1. Let us assume that (A1) and (A2) hold. We also suppose that
L is convex with respect to u and, for any M > 0, there exists a function ψM ∈ L1(Ω)
such that

|L(x, y, u)| ≤ ψM (x) for a.e. x ∈ Ω and |y|, |u| ≤M.

Then (P) has at least one optimal solution ū.

Proof. Let {uk}
∞
k=1 ⊂ L∞(Ω) be a minimizing sequence for (P). Since {uk}

∞
k=1

is bounded in L∞(Ω) ⊂W−1,p(Ω), Theorem 2.3 implies that {yuk
}∞k=1 is bounded in

W 1,p
0 (Ω) and, taking a subsequence, denoted in the same way, we get uk ⇀ ū weakly⋆

in L∞(Ω), hence strongly in W−1,p(Ω). Therefore, yuk
→ ȳu in W 1,p

0 (Ω). Moreover,
it is obvious that α ≤ ū ≤ β, hence ū is a feasible control for (P). Let us denote by
ȳ the state associated to ū. Now we prove that ū is a solution of (P). It is enough
to use the convexity of L with respect to u along with the continuity with respect to
(y, u) and the Lebesgue dominated convergence theorem as follows

J(ū) =

∫

Ω

L(x, ȳ(x), ū(x)) dx ≤ lim inf
k→∞

∫

Ω

L(x, ȳ(x), uk(x)) dx

≤ lim sup
k→∞

∫

Ω

|L(x, ȳ(x), uk(x)) − L(x, yuk
(x), uk(x))| dx
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+ lim sup
k→∞

∫

Ω

L(x, yuk
(x), uk(x)) dx = lim

k→∞
J(uk) = inf(P ).

Our next goal is to derive the first-order optimality conditions. We get the opti-
mality conditions satisfied by ū from the standard variational inequality J ′(ū)(u−ū) ≥
0 for any feasible control u. To argue in this way, we need the differentiability of J ,
which requires the differentiability of L with respect to u and y. Since we also wish to
derive second-order optimality conditions, we require the existence of the second-order
derivatives of L. More precisely, our assumption is the following.

(A6) L : Ω × (R × R) −→ R is a Carathéodory function, of class C2 with respect
to the last two variables and, for all M > 0, there exist a constant CL,M > 0 and
functions ψu,M ∈ L2(Ω) and ψy,M ∈ Lq(Ω), such that

∣
∣
∣
∣

∂L

∂u
(x, y, u)

∣
∣
∣
∣
≤ ψu,M (x),

∣
∣
∣
∣

∂L

∂y
(x, y, u)

∣
∣
∣
∣
≤ ψy,M (x), ‖D2

(y,u)L(x, y, u)‖ ≤ CL,M ,

‖D2
(y,u)L(x, y2, u2) −D2

(y,u)L(x, y1, u1)‖ ≤ CL,M (|y2 − y1| + |u2 − u1|),

for a.e. x ∈ Ω and |y|, |yi|, |u|, |ui| ≤ M , i = 1, 2, where D2
(y,u)L denotes the second

derivative of L with respect to (y, u), i.e. the associated Hessian matrix.

By applying the chain rule and introducing the adjoint state as usual, an elemen-
tary calculus leads to the following result.

Theorem 3.2. Let us assume that a : Ω̄ × R 7→ R is continuous, Γ is of class
C1 and (A1), (A2), (A4) and (A6). Then the function J : L∞(Ω) → R is of class
C2. Moreover, for every u, v, v1, v2 ∈ L∞(Ω), we have

J ′(u)v =

∫

Ω

(
∂L

∂u
(x, yu, u) + ϕu

)

v dx (3.1)

and

J ′′(u)v1v2 =

∫

Ω

{
∂2L

∂y2
(x, yu, u)zv1

zv2
+

∂2L

∂y∂u
(x, yu, u)(zv1

v2 + zv2
v1)

+
∂2L

∂u2
(x, yu, u)v1v2 − ϕu

∂2f

∂y2
(x, yu)zv1

zv2

−∇ϕu

[
∂a

∂y
(x, yu)(zv1

∇zv2
+ ∇zv1

zv2
) +

∂2a

∂y2
(x, y)zv1

zv2
∇yu

]}

dx

(3.2)

where ϕu ∈W 1,p
0 (Ω) is the unique solution of the problem







−div [a(x, yu)∇ϕ] +
∂a

∂y
(x, yu)∇yu · ∇ϕ+

∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu, u) in Ω

ϕ = 0 on Γ

(3.3)
where zvi

= G′(u)vi is the solution of (2.21) for y = yu and v = vi, i = 1, 2.

The only delicate point in the proof of the previous theorem is the existence and
uniqueness of a solution of the adjoint state equation (3.3). To prove this, let us
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denote consider the linear operator T ∈ L(W 1,p
0 (Ω),W−1,p(Ω)) given by

Tz = −div

[

a(x, y)∇z +
∂a

∂y
(x, y)z∇y

]

+
∂f

∂y
(x, y) z.

In the proof of Theorem 2.9 we proved that T is bijective. Since T is continuous,
we have that it is an isomorphism and its adjoint operator is also an isomorphism
T ∗ ∈ L(W 1,p

0 (Ω),W−1,p(Ω)) given by

T ∗ϕ = −div [a(x, yu)∇ϕ] +
∂a

∂y
(x, yu)∇yu · ∇ϕ+

∂f

∂y
(x, yu)ϕ.

This is exactly equivalent to the well-posedness of the adjoint equation (3.3) in
W 1,p

0 (Ω). Finally Theorem 2.1 along with assumption (A6) implies that the adjoint
state ϕu belongs to the space W 1,p

0 (Ω) as claimed in the previous theorem.

Remark 3.3. By using the expression given by (3.2) for J ′′(u), it is obvious that
J ′′(u) can be extended to a continuous bilinear form J ′′(u) : L2(Ω) × L2(Ω) −→ R.

By using the inequality J ′(ū)(u − ū) ≥ 0 and the differentiability of J given by
(3.1) and (3.3) we deduce the first order optimality conditions.

Theorem 3.4. Under the assumptions of Theorem 3.2, if ū is a local minimum
of (P), then there exists ϕ̄ ∈W 1,p

0 (Ω) such that






−div [a(x, ȳ)∇ϕ̄] +
∂a

∂y
(x, ȳ)∇ȳ · ∇ϕ̄+

∂f

∂y
(x, ȳ)ϕ̄ =

∂L

∂y
(x, ȳ, ū) in Ω

ϕ̄ = 0 on Γ
(3.4)

∫

Ω

(
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x)

)

(u(x) − ū(x)) dx ≥ 0 for all α ≤ u ≤ β, (3.5)

where ȳ is the state associated to ū.

From (3.5) we get as usual

ū(x) =

{
α(x) if d̄(x) > 0
β(x) if d̄(x) < 0

and d̄(x) =







≥ 0 if ū(x) = α(x)
≤ 0 if ū(x) = β(x)
= 0 if α(x) < ū(x) < β(x)

(3.6)

for almost all x ∈ Ω, where

d̄(x) =
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x). (3.7)

We finish this section by studying the regularity of the optimal solutions of (P).

Theorem 3.5. Under the assumptions of Theorem 3.4 and assuming that

∂L

∂u
: Ω̄ × (R × R) → R is continuous, (3.8)

∃ΛL > 0 such that
∂2L

∂u2
(x, y, u) ≥ ΛL for a.e. x ∈ Ω and ∀y, u ∈ R

2, (3.9)

then the equation

∂L

∂u
(x, ȳ(x), t) + ϕ̄(x) = 0 (3.10)
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has a unique solution t̄ = s̄(x) for every x ∈ Ω̄. The function s̄ : Ω̄ → R is continuous
and is related to ū by the formula

ū(x) = Proj[α(x),β(x)](s̄(x)) = max{min{β(x), s̄(x)}, α(x)}. (3.11)

Moreover, if α, β are contained in C(Ω̄), then ū belongs to C(Ω̄), too. Finally, if Γ is
C1,1, (A3) holds, q > n is taken in the assumptions (A2) and (A6), α, β ∈ C0,1(Ω̄),
and for every M > 0 there exists a constant CL,M > 0 such that

∣
∣
∣
∣

∂L

∂u
(x2, y, u) −

∂L

∂u
(x1, y, u)

∣
∣
∣
∣
≤ CL,M |x2 − x1| ∀xi ∈ Ω and ∀|y|, |u| ≤M, (3.12)

then s̄, ū ∈ C0,1(Ω̄).

Proof. Given x ∈ Ω̄, let us define the function g : R → R by

g(t) =
∂L

∂u
(x, ȳ(x), t) + ϕ̄(x).

Then g is of class C1 and from (3.9) we know that it is strictly increasing and

lim
t→−∞

g(t) = −∞ and lim
t→+∞

g(t) = +∞.

Therefore, there exists a unique element t̄ ∈ R such that g(t̄) = 0.

Taking d̄ as defined by (3.7) and using (3.6) along with the strict monotonicity of
(∂L/∂u) with respect to the third variable, we obtain







if d̄(x) > 0, then α(x) = ū(x) > s̄(x)
if d̄(x) < 0, then β(x) = ū(x) < s̄(x)
if d̄(x) = 0, then ū(x) = s̄(x),

which implies (3.11).

Let us prove that s̄ is a bounded function. By using the mean value theorem
along with (3.8), (3.9) and (3.10) it comes

ΛL|s̄(x)| ≤

∣
∣
∣
∣

∂L

∂u
(x, ȳ(x), s̄(x)) −

∂L

∂u
(x, ȳ(x), 0)

∣
∣
∣
∣
=

∣
∣
∣
∣
ϕ̄(x) +

∂L

∂u
(x, ȳ(x), 0)

∣
∣
∣
∣
,

hence

|s̄(x)| ≤
1

ΛL
max
x∈Ω̄

∣
∣
∣
∣
ϕ̄(x) +

∂L

∂u
(x, ȳ(x), 0)

∣
∣
∣
∣
<∞.

The continuity of s̄ at every point x ∈ Ω̄ follows easily from the continuity of ȳ and
(∂L/∂u) by using the following inequality

ΛL|s̄(x) − s̄(x′)| ≤

∣
∣
∣
∣

∂L

∂u
(x′, ȳ(x′), s̄(x)) −

∂L

∂u
(x′, ȳ(x′), s̄(x′))

∣
∣
∣
∣

≤ |ϕ̄(x′) − ϕ̄(x)| +

∣
∣
∣
∣

∂L

∂u
(x′, ȳ(x′), s̄(x)) −

∂L

∂u
(x, ȳ(x), s̄(x))

∣
∣
∣
∣
. (3.13)
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If α, β ∈ C(Ω̄), then the identity (3.11) and the continuity of s̄ imply the conti-
nuity of ū in Ω̄.

Finally, if Γ is C1,1, (A3) and (A6) hold with q > n, then ȳ, ϕ̄ ∈ W 2,q(Ω) ⊂
C0,1(Ω). Then we can get from the inequality (3.13), the boundedness of s̄ and (3.12)
that s̄ ∈ C0,1(Ω̄). Once again, (3.11) allows to conclude that ū ∈ C0,1(Ω̄) assuming
that α and β are also Lipschitz in Ω̄. Indeed, it is enough to realize that

|ū(x2) − ū(x1)| ≤ max{|β(x2) − β(x1)|, |α(x2) − α(x1)|, |s̄(x2) − s̄(x1)|}

≤ max{Lβ , Lα, Ls̄}|x2 − x1|,

where Lβ , Lα and Ls̄ are the Lipschitz constants of α, β and s̄ respectively.

4. Pontryagin’s Principle. The goal of this section is to derive the Pontrya-
gin’s principle satisfied by a local solution of (P). For this purpose, we will make the
following assumption.

(A7) L : Ω × (R × R) −→ R is a Carathéodory function of class C1 with respect to
the second variable and, for all M > 0, there exists a function ψM ∈ Lq(Ω), with
q ≥ pn/(p+ n), such that

∣
∣
∣
∣

∂L

∂y
(x, y, u)

∣
∣
∣
∣
≤ ψM (x) for a.e. x ∈ Ω, |u| ≤M and |y| ≤M.

Associated with the control problem (P), we define the Hamiltonian as usual by

H(x, y, u, ϕ) = L(x, y, u) + ϕ[u− f(x, y)].

The Pontryagin’s principle is formulated as follows.

Theorem 4.1. Let ū be a local solution of (P). We assume that a : Ω̄ × R 7→ R

is continuous, Γ is of class C1 and (A1), (A2), (A4) and (A7) hold. Then there
exists ϕ̄ ∈W 1,p

0 (Ω) satisfying (3.4) and

H(x, ȳ(x), ū(x), ϕ̄(x)) = min
s∈[αεū (x),βεū (x)]

H(x, ȳ(x), s, ϕ̄(x)) for a.e. x ∈ Ω, (4.1)

where

αεū
(x) = max{α(x), ū(x) − εū} and βεū

(x) = max{β(x), ū(x) − εū},

εū > 0 is the radius of the L∞(Ω) ball where J achieves the minimum value at ū
among all feasible controls.

To prove this theorem, we will use the following lemma whose proof is given in
the annex of the paper. Though a shorter proof can be done by using Lyapunov’s
theorem, we have preferred to give a constructive proof of the lemma.

Lemma 4.2. For every 0 < ρ < 1, there exists a sequence of Lebesgue measurable
sets {Ek}

∞
k=1 ⊂ Ω such that

|Ek| = ρ|Ω| and
1

ρ
χEk

⇀ 1 in L∞(Ω) weakly⋆, (4.2)

where | · | denotes the Lebesgue measure.
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Proposition 4.3. Under the assumptions of Theorem 4.1, for any u ∈ L∞(Ω)
there exist a number 0 < ρ̂ < 1 and measurable sets Eρ ⊂ Ω, with |Eρ| = ρ|Ω| for all
0 < ρ < ρ̂, that have the following properties: If we define

uρ(x) =

{
ū(x) if x ∈ Ω \ Eρ

u(x) if x ∈ Eρ
,

then

yρ = ȳ + ρz + rρ, lim
ρց0

1

ρ
‖rρ‖W 1,p

0 (Ω) = 0 (4.3)

J(uρ) = J(ū) + ρz0 + r0ρ, lim
ρց0

1

ρ
|r0ρ| = 0 (4.4)

hold true, where ȳ and yρ are the states associated to ū and yρ respectively, z is the

unique element of W 1,p
0 (Ω) satisfying the linearized equation

−div

[

a(x, ȳ)∇z +
∂a

∂y
(x, ȳ)z∇ȳ

]

+
∂f

∂y
(x, ȳ) z = u− ū in Ω (4.5)

and

z0 =

∫

Ω

{
∂L

∂y
(x, ȳ(x), ū(x))z(x) + L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x))

}

dx. (4.6)

Proof. Let us define the function g ∈ L1(Ω) by

g(x) = L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x)).

Given ρ ∈ (0, 1), we take a sequence {Ek}
∞
k=1 as in Lemma 4.2. Since L∞(Ω) is

compactly embedded in W−1,p(Ω), there exists kρ such that

∣
∣
∣
∣

∫

Ω

(

1 −
1

ρ
χEk

(x)

)

g(x) dx

∣
∣
∣
∣
+ ‖(1 −

1

ρ
χEk

)(u− ū)‖W−1,p(Ω) < ρ ∀k ≥ kρ. (4.7)

Let us denote Eρ = Ekρ
. Let us introduce zρ = (yρ − ȳ)/ρ. By subtracting the

equations satisfied by yρ and ȳ and dividing by ρ we get

−div

[

a(x, ȳ)∇zρ +
a(x, yρ) − a(x, ȳ)

ρ
∇yρ

]

+
f(x, yρ) − f(x, ȳ)

ρ
=
uρ − ū

ρ
in Ω.

Now setting

aρ(x) =

∫ 1

0

∂a

∂y
(x, ȳ(x) + θ(yρ(x) − ȳ(x)) dθ

fρ(x) =

∫ 1

0

∂f

∂y
(x, ȳ(x) + θ(yρ(x) − ȳ(x)) dθ

we deduce from the above identity

−div [a(x, ȳ)∇zρ + aρ(x)zρ ∇yρ] + fρ(x)zρ =
1

ρ
χEρ

(u− ū) in Ω. (4.8)
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Let us define T, Tρ : W 1,p
0 (Ω) 7→W−1,p(Ω) by

Tξ = −div

[

a(x, ȳ)∇ξ +
∂a

∂y
(x, ȳ)ξ∇ȳ

]

+
∂f

∂y
(x, ȳ)ξ

Tρξ = −div [a(x, ȳ)∇ξ + aρ(x)ξ∇yρ] + fρ(x)ξ.

Since yρ → ȳ in W 1,p
0 (Ω) ⊂ C(Ω̄), we deduce from our assumptions on a and f that

aρ(x) →
∂a

∂y
(x, ȳ(x)) and fρ(x) →

∂f

∂y
(x, ȳ(x)) uniformly in Ω̄, (4.9)

and consequently

‖Tρ − T‖L(W 1,p
0 (Ω),W−1,p(Ω)) ≤ C

{

‖yρ − ȳ‖W 1,p
0 (Ω)

+‖aρ(x) −
∂a

∂y
(x, ȳ(x))‖C(Ω̄) + ‖fρ(x) −

∂f

∂y
(x, ȳ(x))‖C(Ω̄)

}

→ 0. (4.10)

Since T is an isomorphism, by taking ρ̂ small enough, we have that Tρ is also an

isomorphism and T−1
ρ → T−1 in L(W−1,p(Ω),W 1,p

0 (Ω)) too. Taking into account
(4.7), we obtain

‖z − zρ‖W 1,p
0 (Ω) = ‖T−1(u− ū) − T−1

ρ [
1

ρ
χEρ

(u− ū)]‖W 1,p
0 (Ω)

≤ ‖T−1
ρ [(1 −

1

ρ
χEρ

)(u− ū)]‖W 1,p
0 (Ω) + ‖(T−1 − T−1

ρ )(u− ū)‖W 1,p
0 (Ω)

≤ C‖(1−
1

ρ
χEρ

)(u−ū)‖W−1,p(Ω)+‖T−1−T−1
ρ ‖L(W 1,p

0 (Ω),W−1,p(Ω))‖u−ū‖W−1,p(Ω) → 0.

Now it is enough to notice that, by definition of zρ and the convergence zρ → z in

W 1,p
0 (Ω), we have

ερ =
yρ − ȳ

ρ
− z → 0,

hence yρ = ȳ+ ρz+ ρερ. By putting rρ = ρερ we get (4.3). Finally, let us prove (4.4).
Similarly to the definitions of aρ and fρ, we introduce

Lρ(x) =

∫ 1

0

∂L

∂y
(x, ȳ(x) + θ(yρ(x) − ȳ(x), uρ(x)) dθ.

Then we have

J(uρ) − J(ū)

ρ
=

∫

Ω

L(x, yρ(x), uρ(x)) − L(x, ȳ(x), ū(x))

ρ
dx

=

∫

Ω

L(x, yρ(x), uρ(x)) − L(x, ȳ(x), uρ(x))

ρ
dx
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+

∫

Ω

L(x, ȳ(x), uρ(x)) − L(x, ȳ(x), ū(x))

ρ
dx

=

∫

Ω

Lρ(x)zρ(x) dx+

∫

Ω

1

ρ
χEρ

(x)[L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x))]dx→

→

∫

Ω

∂L

∂y
(x, ȳ(x), ū(x))z(x) dx+

∫

Ω

[L(x, ȳ(x), u(x))− L(x, ȳ(x), ū(x))]dx = z0,

which implies (4.4).

Proof of Theorem 4.1. Since ū is a local solution of (P), there exists εū > 0
such that J achieves the minimum at ū among all feasible pairs of B̄L∞(Ω)(ū, εū).
Let us take u ∈ BL∞(Ω)(ū, εū) with α(x) ≤ u(x) ≤ β(x) a.e x ∈ Ω. Following
Proposition 4.3, we consider the sets {Eρ}ρ>0} such that (4.3) and (4.4) hold. Then
uρ ∈ BL∞(Ω)(ū, εū) and therefore, (4.4) leads to

0 ≤ lim
ρց0

J(uρ) − J(ū)

ρ
= z0.

By using (4.5) and the adjoint state given by (3.4), we get from the previous inequality
after an integration by parts

0 ≤

∫

Ω

{ϕ̄(x)(u(x) − ū(x)) + L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x))} dx

=

∫

Ω

[H(x, ȳ(x), u(x), ϕ̄(x)) −H(x, ȳ(x), ū(x), ϕ̄(x))]dx. (4.11)

Since u is an arbitrary feasible control in the ball BL∞(Ω)(ū, εū), taking into account
the definitions of αεū

and βεū
given in the statement of Theorem 4.1, we deduce from

(4.11)
∫

Ω

H(x, ȳ(x), ū(x), ϕ̄(x)) dx = min
αεū≤u≤βεū

∫

Ω

[H(x, ȳ(x), u(x), ϕ̄(x)) dx. (4.12)

To conclude the proof, we will show that (4.12) implies (4.1). Let the sequence {qj}
∞
j=1

exhaust the rational numbers contained in [0, 1]. For every j we set uj = qjαεū
+(1−

qj)βεū
. Then every function uj belongs to L∞(Ω) and αεū

(x) ≤ uj(x) ≤ βεū
(x) for

every x ∈ Ω. Now we introduce functions F0, Fj : Ω 7→ R by

F0(x) = H(x, ȳ(x), ū(x), ϕ̄(x)) and Fj(x) = H(x, ȳ(x), uj(x), ϕ̄(x)), j = 1, . . . ,∞.

Associated to these integrable functions we introduce the set of Lebesgue regular
points E0 and {Ej}

∞
j=1, which are known to satisfy |Ej | = |Ω| for j = 0, 1, . . . ,∞, and

lim
rց0

1

|Br(x0)|

∫

Br(x0)

Fj(x) dx = Fj(x0) ∀x0 ∈ Ej , j = 0, 1, . . . ,∞, (4.13)

where Br(x0) is the Euclidean ball in R
n of center x0 and radius r. Let us set

E = ∩∞
j=0Ej , then it is obvious that |E| = |Ω| and (4.13) holds for every x0 ∈ E.

Given x0 ∈ E and r > 0 we define

uj,r(x) =

{
ū(x) if x 6∈ Br(x0)
uj(x) if x ∈ Br(x0), j = 1, . . . ,∞.
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From (4.12) and the above definition we deduce

∫

Ω

H(x, ȳ(x), ū(x), ϕ̄(x)) dx ≤

∫

Ω

H(x, ȳ(x), uj,r(x), ϕ̄(x)) dx,

therefore

1

|Br(x0)|

∫

Br(x0)

H(x, ȳ(x), ū(x), ϕ̄(x)) dx

≤
1

|Br(x0)|

∫

Br(x0)

H(x, ȳ(x), uj(x), ϕ̄(x)) dx,

and passing to the limit when r → 0 we get

H(x0, ȳ(x0), ū(x0), ϕ̄(x0)) ≤ H(x0, ȳ(x0), uj(x0), ϕ̄(x0)).

Since the function s → H(x0, ȳ(x0), s, ϕ̄(x0)) is continuous and {uj(x0)}
∞
j=1 is dense

in [αεū
(x0), βεū

(x0)], we get

H(x0, ȳ(x0), ū(x0), ϕ̄(x0)) ≤ H(x0, ȳ(x0), s, ϕ̄(x0)) ∀s ∈ [αεū
(x0), βεū

(x0)].

Finally, (4.1) follows from the previous inequality and the fact that x0 is an arbitrary
point of E.

Remark 4.4. If we consider that ū is a global solution or even a local solutions
of (P) in the sense of the Lp(Ω) topology, then (4.1) holds with εū = 0, more precisely

H(x, ȳ(x), ū(x), ϕ̄(x)) = min
s∈[α(x),β(x)]

H(x, ȳ(x), s, ϕ̄(x)) for a.e. x ∈ Ω.

The proof is the same. The only point we have to address is that the functions uρ

defined in Proposition 4.3 corresponding to feasible controls u satisfy

‖up − ū‖Lp(Ω) =

(
∫

Eρ

|u(x) − ū(x)|p dx

)1/p

≤ ‖u− ū‖L∞(Ω)|Eρ|
1/p

≤ ‖β − α‖L∞(Ω)|Ω|1/pρ1/p.

Therefore for ρ small enough the functions uρ are in the corresponding ball of Lp(Ω)
where ū is the minimum.

5. Second-order optimality conditions. The goal of this section is to prove
first necessary and next sufficient second-order optimality conditions. For it we will
assume that (A1),(A2), (A4) and (A6) hold, the function a : Ω̄ × R −→ R is
continuous, and Γ is of class C1.

If ū is a feasible control for problem (P) and there exists ϕ̄ ∈ W 1,p
0 (Ω) satisfying

(3.4) and (3.5), then we introduce the cone of critical directions

Cū = {h ∈ L2(Ω) : h(x) =







≥ 0 if ū(x) = α(x)
≤ 0 if ū(x) = β(x)
= 0 if d̄(x) 6= 0

for a.e. x ∈ Ω} (5.1)
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where d̄ is defined by (3.7). In the previous section, we introduced the Hamiltonian
H associated to the control problem. It is easy to check that

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) = d̄(x).

In the sequel, we will use the notation

H̄u(x) =
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) and H̄uu(x) =

∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)).

Now we prove the necessary second-order optimality conditions.

Theorem 5.1. Let us assume that ū is a local solution of (P) and let ϕ̄ ∈W 1,p
0 (Ω)

be the adjoint state given by (3.4). Then the following inequalities hold

{
J ′′(ū)h2 ≥ 0 ∀h ∈ Cū

H̄uu(x) ≥ 0 for a.a. x with H̄u(x) = 0.
(5.2)

Proof. Let us take h ∈ Cū arbitrarily and 0 < ε < εū. Then we define

hε(x) =

{
0 if α(x) < ū(x) < α(x) + ε or β(x) − ε < ū(x) < β(x)

max{−1
ε ,min{+1

ε , h(x)}} otherwise.

It is clear that hε ∈ Cū ∩ L∞(Ω) and hε → h in L2(Ω). Moreover, we have

α(x) ≤ ū(x) + thε(x) ≤ β(x) for a.e. x ∈ Ω and 0 ≤ t < ε2.

Therefore, if we define gε : [0, ε2] −→ R by gε(t) = J(ū+ thε), we have

gε(0) = min
t∈[0,ε2]

gε(t).

From our assumptions it is clear that gε is a C2 function. From the fact hε ∈ Cū we
deduce that

g′ε(0) = J ′(ū)hε =

∫

Ω

H̄u(x)hε(x) dx = 0.

Now, an elementary calculus and Theorem 3.2 yield

0 ≤ g′′ε (0) = J ′′(ū)h2
ε =

∫

Ω

{
∂2L

∂y2
(x, ȳ, ū)z2

hε
+ 2

∂2L

∂y∂u
(x, ȳ, ū)zhε

hε

+
∂2L

∂u2
(x, ȳ, ū)h2

ε − ϕ̄
∂2f

∂y2
(x, ȳ)z2

hε

−∇ϕ̄ ·

[

2
∂a

∂y
(x, ȳ)zhε

∇zhε
+
∂2a

∂y2
(x, ȳ)z2

hε
∇ȳ

]}

dx,

(5.3)

where zhε
∈ H1

0 (Ω) is the solution of (2.16) corresponding to v = hε. Moreover, the
convergence hε → h in L2(Ω) implies that zhε

→ zh in H1
0 (Ω), where zh is the solution

of (2.16) for v = h; see Remark 2.7. Now we estimate the terms of (5.3). Arguing as
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in Remark 2.7, taking into account the embedding H1
0 (Ω) ⊂ L

2p
p−2 (Ω) and assumption

(A4), we get

∫

Ω

|∇ϕ̄(x) ·
∂a

∂y
(x, ȳ)zhε

(x)∇zhε
(x)| dx ≤ DM‖∇ϕ̄‖Lp(Ω)‖‖zhε

‖
L

2p
p−2 (Ω)

‖∇zhε
‖L2(Ω)

≤ CDM‖ϕ̄‖W 1,p
0 (Ω)‖‖zhε

(x)‖2
H1

0 (Ω).

Analogously we have

∫

Ω

|∇ϕ̄(x) ·
∂2a

∂y2
(x, ȳ)z2

hε
(x)∇ȳ(x)| dx ≤ DM‖∇ϕ̄‖Lp(Ω)‖‖zhε

‖2

L
2p

p−2 (Ω)
‖∇ȳ‖Lp(Ω) ≤

CDM‖ϕ̄‖W 1,p
0 (Ω)‖‖zhε

(x)‖2
H1

0(Ω)‖ȳ‖W 1,p
0 (Ω).

The rest of the terms in the integral (5.3) are easy to estimate with the help of
the assumptions (A4) and (A6). Therefore, we can pass to the limit in (5.3) and
deduce

0 ≤ lim
ε→0

J ′′(ū)h2
ε = J ′′(ū)h2.

This proves the first inequality of (5.2). Finally, the second inequality is an obvious
consequence of (4.1). Indeed, it is a standard conclusion of (4.1) that

H̄u(x) =







≥ 0 if ū(x) = α(x)
≤ 0 if ū(x) = β(x)
= 0 if α(x) < ū(x) < β(x)

for a.e. x ∈ Ω

and

H̄uu(x) ≥ 0 if H̄u(x) = 0 for a.e. x ∈ Ω.

Let us consider the Lagrangian function associated to the control problem (P)

L : L∞(Ω) ×W 1,p
0 (Ω) ×W 1,p

0 (Ω) −→ R

given by the expression

L(u, y, ϕ) = J (y, u) +

∫

Ω

{ϕ[u− f(x, y)] − a(x, y)∇ϕ · ∇y} dx

=

∫

Ω

{H(x, y(x), u(x), ϕ(x))− a(x, y(x))∇ϕ(x) · ∇y(x)} dx,

where we denote

J (y, u) =

∫

Ω

L(x, y(x), u(x)) dx.
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Defining H̄y, H̄yy and H̄yu similarly to H̄u and H̄uu, after obvious modifications, we
can write the first and second order derivatives of L with respect to (y, u) as follows

D(y,u)L(ū, ȳ, ϕ̄)(z, h) =

∫

Ω

{
H̄y(x)z(x) + H̄u(x)h(x)

}
dx

−

∫

Ω

∇ϕ̄(x) ·

{

a(x, ȳ(x))∇z(x) +
∂a

∂y
(x, ȳ(x))z(x)∇ȳ(x)

}

dx.

If we assume that z is the solution of (2.16) associated to v = h, then by using the
adjoint state (3.4) we get

D(y,u)L(ū, ȳ, ϕ̄)(z, h) =

∫

Ω

H̄u(x)h(x) dx, (5.4)

Moreover, we find

D2
(y,u)L(ū, ȳ, ϕ̄)(z, h)2 =

∫

Ω

{
H̄yy(x)z2(x) + 2H̄yu(x)z(x)h(x) + H̄uu(x)h2(x)

}
dx

−

∫

Ω

∇ϕ̄(x) ·

{
∂2a

∂y2
(x, ȳ(x))z2(x)∇ȳ(x) + 2

∂a

∂y
(x, ȳ(x))z(x)∇z(x)

}

dx.

Once again if we take z as the solution of (2.16) associated to v = h we deduce from
(3.2)

J ′′(ū)h2 = D2
(y,u)L(ū, ȳ, ϕ̄)(z, h)2. (5.5)

Therefore the necessary optimality conditions (5.2) can be written as follows

{
D2

(y,u)L(ū, ȳ, ϕ̄)(z, h)2 ≥ 0 ∀(z, h) ∈ H1
0 (Ω) × Cū satisfying (2.16)

H̄uu(x) ≥ 0 if H̄u(x) = 0 for a.e. x ∈ Ω
(5.6)

We finish this section by establishing the sufficient second-order optimality con-
ditions.

Theorem 5.2. Let us assume that ū is a feasible control for the problem (P) and
there exists ϕ̄ ∈ W 1,p

0 (Ω) satisfying (3.4) and (3.5). If, in addition, there exist µ > 0
and τ > 0 such that

J ′′(ū)h2 > 0 ∀h ∈ Cū \ {(0, 0)}

H̄uu(x) ≥ µ if |H̄u(x)| ≤ τ for a.e. x ∈ Ω,
(5.7)

then there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2
‖u− ū‖2

L2(Ω) ≤ J(u) (5.8)

for every feasible control u ∈ L∞(Ω) for (P) such that ‖u− ū‖L∞(Ω) ≤ ε.

Remark 5.3.
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1.- If we compare the first inequality of (5.7) with the analogous of (5.2), we see that the
gap is minimal between the necessary and sufficient conditions, as it is usual in finite
dimension. However, the second inequality of (5.7) is stronger than the corresponding
one of (5.2). This is a consequence of the infinite number of constraints on the control:
one constraint for every point of Ω. In general we cannot take τ = 0. The reader is
referred to Dunn [14] for a simple example proving the impossibility of taking τ = 0.

2.- Let us recall that H̄uu(x) = (∂2L/∂u2)(x, ȳ(x), ū(x)). Therefore, the second con-
dition of (5.7) is satisfied if we assume that the second derivative of L with respect to
u is strictly positive. A standard example is given by the function

L(x, y, u) = L0(x, y) +
N

2
u2, with N > 0.

3.- The sufficient optimality conditions (5.7) can be written as follows

D2
(y,u)L(ū, ȳ, ϕ̄)(z, h)2 > 0 ∀(z, h) ∈ (H1

0 (Ω) × Cū) \ {(0, 0)} verifying (2.16)

H̄uu(x) ≥ µ if |H̄u(x)| ≤ τ for a.e. x ∈ Ω.

Once again this is an obvious consequence of (5.5).

Proof. Step 1: Preparations. We will argue by contradiction. Let us assume that
there exists a sequence of feasible controls for (P), {uk}

∞
k=1 ⊂ L∞(Ω), such that

‖uk − ū‖L∞(Ω) <
1

k
and J(ū) +

1

k
‖uk − ū‖2

L2(Ω) > J(uk). (5.9)

Let us define

yk = G(uk) = yuk
, ȳ = G(ū) = yū, ρk = ‖uk−ū‖L2(Ω) and vk =

1

ρk
(uk−ū), (5.10)

then

lim
k→∞

‖yk − ȳ‖W 1,p
0 (Ω) = 0, lim

k→∞
ρk = 0 and ‖vk‖L2(Ω) = 1 ∀k. (5.11)

By taking a subsequence, if necessary, we can assume that vk ⇀ v weakly in L2(Ω).
We will prove that v ∈ Cū. Next, we will use (5.7). In this process we will need the
following result

lim
k→∞

1

ρk
(yk − ȳ) = z in H1

0 (Ω), (5.12)

where z ∈ H1
0 (Ω) is the solution of (2.16) corresponding to the state ȳ. Let us prove

it. We will set zk = (yk − ȳ)/ρk. By subtracting the state equations satisfied by
(yk, uk) and (ȳ, ū), dividing by ρk and applying the mean value theorem we get

−div [a(x, yk)∇zk +
∂a

∂y
(x, ȳ+θk(yk− ȳ))zk∇ȳ]+

∂f

∂y
(x, ȳ+νk(yk− ȳ))zk = vk. (5.13)

Taking into account that zk ∈ W 1,p
0 (Ω), we can multiply the equation (5.13) by zk

and make an integration by parts to get with the aid of (2.1) and (5.11) that

α0

∫

Ω

|∇zk(x)|2 dx ≤

∫

Ω

a(x, yk)|∇zk(x)|2 dx
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=

∫

Ω

{

vkzk −
∂f

∂y
(x, ȳ + νk(yk − ȳ))z2

k −
∂a

∂y
(x, ȳ + θk(yk − ȳ))zk∇zk∇ȳ

}

dx

≤ ‖vk‖L2(Ω)‖zk‖L2(Ω) + C‖zk‖
L

2p
p−2 (Ω)

‖∇ȳ‖L2(Ω)‖∇zk‖L2(Ω).

We have used that the term −∂f/∂y z2
k is non-positive. Therefore,

‖∇zk‖L2(Ω) ≤ C

{

1 + ‖zk‖
L

2p
p−2 (Ω)

}

.

As in the proof of Theorem 2.6, {zk}
∞
k=1 must be bounded in L

2p
p−2 (Ω), otherwise we

could obtain a non zero solution of (2.16). Then, the above inequality leads to the
boundedness of {zk}

∞
k=1 in H1

0 (Ω). Therefore we can extract a subsequence, denoted

in the same way, such that zk ⇀ z weakly in H1
0 (Ω) and strongly in L

2p
p−2 (Ω). Thanks

to this convergence and to (5.10), we get the strong convergences in L2(Ω)

∂a

∂y
(x, ȳ+θk(yk− ȳ))zk∇ȳ →

∂a

∂y
(x, ȳ)z∇ȳ and

∂f

∂y
(x, ȳ+νk(yk− ȳ))zk →

∂f

∂y
(x, ȳ)z.

Therefore we can pass to the limit in (5.13) and deduce

−div [a(x, ȳ)∇z +
∂a

∂y
(x, ȳ)z∇ȳ] +

∂f

∂y
(x, ȳ)z = v. (5.14)

Moreover by using (5.13), (5.14), and the uniform convergence yk → ȳ it is easy to
prove that

∫

Ω

a(x, ȳ)|∇zk|
2 dx→

∫

Ω

a(x, ȳ)|∇z|2 dx.

This fact, along with the weak convergence of {zk}
∞
k=1 in H1

0 (Ω), implies the strong
convergence zk → z in H1

0 (Ω).

Step 2: v ∈ Cū. Since α(x) ≤ uk(x) ≤ β(x) a.e., we have that vk(x) ≥ 0 if
ū(x) = α(x) and vk(x) ≤ 0 if ū(x) = β(x) a.e. Since the set of functions satisfying
these sign conditions is convex and closed in L2(Ω), then it is weakly closed, therefore
the weak limit v of {vk}

∞
k=1 satisfies the sign condition too. It remains to prove that

v(x) = 0 for almost all x such that d̄(x) 6= 0. From (5.9), by using the mean value
theorem we obtain

ρk

k
=

1

kρk
‖uk − ū‖2

L2(Ω) >
J(uk) − J(ū)

ρk

=

∫

Ω

∂L

∂y
(x, ȳ + θk(yk − ȳ), ū+ θk(uk − ū))zk dx

+

∫

Ω

∂L

∂u
(x, ȳ + θk(yk − ȳ), ū+ θk(uk − ū))vk dx.

Taking limits in both sides of the inequality, using (3.4), (5.14), the already proved
convergence zk → z in H1

0 (Ω) and integrating by parts we get

0 ≥

∫

Ω

{
∂L

∂y
(x, ȳ, ū)z +

∂L

∂u
(x, ȳ, ū)v

}

dx =
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∫

Ω

{

ϕ̄+
∂L

∂u
(x, ȳ, ū))

}

v dx =

∫

Ω

d̄(x)v(x) dx =

∫

Ω

|d̄(x)||v(x)| dx,

the last equality being a consequence of proved signs for v and (3.6). The previous
inequality implies that |d̄(x)v(x)| = 0 holds almost everywhere, hence v(x) = 0 if
d̄(x) 6= 0 as we wanted to prove.

Step 3: v = 0. The next step consists of proving that v does not satisfy the first
condition of (5.7). This will lead to the identity v = 0. By using (5.9), the definition
of L and the fact that (ȳ, ū) and (yk, uk) satisfy the state equation we get

L(uk, yk, ϕ̄) = J (yk, uk) < J (ȳ, ū) +
1

k
‖uk − ū‖2

L2(Ω)

= L(ū, ȳ, ϕ̄) +
1

k
‖uk − ū‖2

L2(Ω). (5.15)

Performing a Taylor expansion up to the second order, we obtain

L(uk, yk, ϕ̄) = L(ū+ ρkvk, ȳ + ρkzk, ϕ̄) = L(ū, ȳ, ϕ̄) + ρkD(y,u)L(ū, ȳ, ϕ̄)(zk, vk)

+
ρ2

k

2
D2

(y,u)L(ū+ θkρkvk, ȳ + θkρkzk, ϕ̄)(zk, vk)2.

This equality, along with (5.15) and (5.9), leads to

ρkD(y,u)L(ū, ȳ, ϕ̄)(zk, vk) +
ρ2

k

2
D2

(y,u)L(wk, ξk, ϕ̄)(zk, vk)2 <
1

k
|uk − ū‖2

L2(Ω) ≤
ρ2

k

k
,

where we have put ξk = ȳ+ θkρkzk and wk = ū+ θkρkvk. It is obvious that ξk → ȳ in
W 1,p

0 (Ω) and wk → ū in L∞(Ω). Dividing the previous inequality by ρ2
k and taking

into account the expressions obtained for the derivatives of L we obtain

1

ρk

∫

Ω

H̄u(x)vk(x) dx+
1

2

∫

Ω

{
Hk

yy(x)z2
k(x) + 2Hk

yu(x)zk(x)vk(x) +Hk
uu(x)v2

k(x)
}
dx

−
1

2

∫

Ω

{
∂a

∂y
(x, ξk)zk∇zk +

∂2a

∂y2
(x, ξk)z2

k∇ξk

}

∇ϕ̄ dx <
1

k
, (5.16)

where

Hk
yy(x) = Hyy(x, ξk(x), wk(x), ϕ̄(x)),

with analogous definitions for Hk
uu and Hk

yu. It is easy to check that

{
(Hk

yy(x), Hk
yu(x), Hk

uu(x)) → (H̄yy(x), H̄yu(x), H̄uu(x))

|Hk
yy(x)| + |Hk

yu(x)| + |Hk
uu(x)| ≤ C

for a.e. x ∈ Ω.

for some constant C <∞. We also have the following convergence properties






∂ja

∂yj
(x, ξk)zk∇ϕ̄→

∂ja

∂yj
(x, ȳ)z∇ϕ̄, j = 1, 2

∇zk −→ ∇z and zk∇ξk −→ z∇ȳ

in L2(Ω)n.
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Using these properties we can pass to the limit in (5.16) as follows

lim sup
k→∞

{
1

ρk

∫

Ω

H̄u(x)vk(x) dx+
1

2

∫

Ω

Hk
uu(x)v2

k(x) dx

}

+
1

2

∫

Ω

[H̄yy(x)z2(x) + 2H̄yu(x)z(x)v(x)] dx

−
1

2

∫

Ω

{
∂a

∂y
(x, ȳ)z∇z +

∂2a

∂y2
(x, ȳ)z2∇ȳ

}

∇ϕ̄ dx ≤ 0. (5.17)

The rest of the proof is devoted to verify that the above upper limit is bounded
from below by 1

2

∫

Ω
H̄uuv

2
k dx. If this is proved, then from (5.17) and (5.5) we deduce

that J ′′(ū)v2 = D2
(y,u)L(ū, ȳ, ϕ̄)(z, v)2 ≤ 0. According to (5.7) this is possible only

if v = 0. The proof of the mentioned lower estimate is quite technical, which makes
an important difference with respect to the finite dimension. In our framework the
difficulty is due to the fact that we only have a weak convergence vk ⇀ v. To overcome
this difficulty we use a convexity argument. In order to achieve this goal the essential
tool is the second condition of (5.7).

From (A4) and (A6) we get

‖H̄uu −Hk
uu‖L∞(Ω) ≤ C

{
‖ȳ − yk‖L∞(Ω) + ‖ū− uk‖L∞(Ω)

}
→ 0.

Using this property, ‖vk‖L2(Ω) = 1, and the identity H̄u(x)vk(x) = |H̄u(x)||vk(x)| we
obtain

lim sup
k→∞

{
1

ρk

∫

Ω

H̄u(x)vk(x) dx+
1

2

∫

Ω

Hk
uu(x)v2

k(x) dx

}

= lim sup
k→∞

{
1

ρk

∫

Ω

|H̄u(x)||vk(x)| dx+
1

2

∫

Ω

H̄uu(x)v2
k(x) dx

}

≥ lim sup
k→∞

{

1

ρk

∫

{|H̄u(x)|>τ}

[

|H̄u(x)||vk(x)| +
1

2
H̄uu(x)v2

k(x)

]

dx

+
1

2

∫

{|H̄u(x)|≤τ}
H̄uu(x)v2

k(x) dx

}

(5.18)

where τ is given by (5.7).

Remembering that ρk‖vk‖L∞(Ω) = ‖uk − ū‖L∞(Ω) < 1/k, we deduce the existence
of an integer k0 > 0 such that

‖H̄uu‖L∞(Ω)ρk‖vk‖L∞(Ω)

τ
<

‖H̄uu‖L∞(Ω)

kτ
< 1 ∀k ≥ k0,

therefore

τ

ρk
|vk(x)| ≥ ‖H̄uu‖L∞(Ω)v

2
k(x) for a.e. x ∈ Ω ∀k ≥ k0.
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Then we have with the help of the second condition of (5.7)

lim sup
k→∞

{

1

ρk

∫

{|H̄u|>τ}

[

|H̄u||vk| +
1

2
H̄uuv

2
k

]

dx+
1

2

∫

{|H̄u|≤τ}
H̄uuv

2
k dx

}

≥ lim sup
k→∞

{
∫

{|H̄u|>τ}

[

‖H̄uu‖L∞(Ω) +
1

2
H̄uu

]

v2
k dx+

1

2

∫

{|H̄u|≤τ}
H̄uuv

2
k dx

}

≥

∫

{|H̄u|>τ}

[

‖H̄uu‖L∞(Ω) +
1

2
H̄uu

]

v2 dx+
1

2

∫

{|H̄u|≤τ}
H̄uuv

2 dx ≥
1

2

∫

Ω

H̄uuv
2 dx.

(5.19)

Combining (5.18) and (5.19) we get the searched lower estimate.

Step 4: Final contradiction. Using that ‖vk‖L2(Ω) = 1 along with (5.16), (5.17),
(5.18), (5.19), the second condition of (5.7) and the fact that v = 0 we deduce

0 ≥ lim sup
k→∞

{
∫

{|H̄u|>τ}

[

‖H̄uu‖L∞(Ω) +
1

2
H̄uu

]

v2
k dx+

1

2

∫

{|H̄u|≤τ}
H̄uuv

2
k dx

}

≥ lim sup
k→∞

{

‖H̄uu‖L∞(Ω)

2

∫

{|H̄u|>τ}
v2

k dx+
µ

2

∫

{|H̄u|≤τ}
v2

k dx

}

≥
min{‖H̄uu‖L∞(Ω), µ}

2
lim sup

k→∞

∫

Ω

v2
k dx =

min{‖H̄uu‖L∞(Ω), µ}

2
> 0,

providing the contradiction that we were looking for.

We finish this section by formulating a different version of the sufficient second
order optimality conditions which is equivalent to (5.7); see [7, Theorem 4.4] for the
proof of this equivalence. This formulation is very useful for numerical purposes.

Theorem 5.4. Let us assume that ū is a feasible control for problem (P). We
also assume that there exists ϕ̄ ∈W 1,p

0 (Ω) satisfying (3.4) and (3.5). Then (5.7) holds
if and only there exist δ, σ > 0 such that

J ′′(ū)h2 ≥ δ‖h‖2
L2(Ω) ∀h ∈ Cσ

ū (5.20)

where

Cσ
ū = {h ∈ L2(Ω) : h(x) =







≥ 0 if ū(x) = α(x)
≤ 0 if ū(x) = β(x)
= 0 if |d̄(x)| > σ

for a.e. x ∈ Ω}.

6. Annex. Proof of Lemma 4.1.

Step 1. Construction of the sets Ek. First, we cover Ω by the smallest n-cube
with edges parallel to the coordinate axis and split it into small sub-cubes of equal
size. This is done as follows:
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For 1 ≤ j ≤ n let πj : R
n −→ R be the j-th projection πj(x) = xj . We set

Aj = min
x∈Ω̄

πj(x) and Bj = max
x∈Ω̄

πj(x), j = 1, . . . , n.

For every integer k ≥ 1 we define

ai
j,k = Aj +

i− 1

k
(Bj −Aj), i = 1, . . . , k + 1, j = 1, . . . , n.

For any multi-index α ∈ {1, . . . , k}n let us consider the n-cubes

Qα =

n∏

j=1

[a
αj

j,k, a
αj+1
j,k ].

The following properties are obvious

Q =
⋃

α∈{1,...,k}n

Qα,
o

Qα ∩
o

Qα′= ∅ if α 6= α′, |Qα| =

∏n
j=1(Bj − Aj)

kn
.

Let us denote

Fα = Qα ∩ Ω, and Ik = {α ∈ {1, . . . , k}n : |Fα| > 0}.

For any α ∈ Ik we consider a measurable subset Eα ⊂
o

Fα, with |Eα| = ρ|Fα|. Finally
we set

Ek =
⋃

α∈Ik

Eα,

then

|Ek| =
∑

α∈Ik

|Eα| = ρ
∑

α∈Ik

|Fα| = ρ|Ω|.

Step 2. (1/ρ)χEk
⇀ 1 in L∞(Ω) weakly⋆. Since {(1/ρ)χEk

}∞k=1 is bounded in
L∞(Ω) and the step functions are dense in L1(Ω), it is sufficient to prove that

lim
k→∞

∫

Ω

(

1 −
1

ρ
χEk

(x)

)

s(x) dx = 0

for every step function s ∈ L1(Ω). Then the previous convergences hold if and only if

1

ρ
lim

k→∞
|A ∩ Ek| = |A| (6.1)

for every Lebesgue measurable set A ⊂ Ω. This proof is split into four parts.

Part I. A = C is a closed n-cube. Let k0 be large enough so that

diameter(Qα) <
1

2
distance(C,Γ) ∀α ∈ {1, . . . , n}n and k ≥ k0.

Notice that distance(C,Γ) is positive, since A ⊂ Ω and A is closed. For every k ≥ k0

the above inequality implies that

Qα ∩ C 6= ∅ ⇒ Qα ⊂ Ω ⇒ Qα = Fα.
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It is obvious that the number of sets Qα such that Qα ∩ C 6= ∅ and Qα 6⊂ C is of
order O(kn−1) when k → ∞.

On the other hand

|Qα| =
n∏

j=1

Bj −Aj

k
≤

diameter(Ω)n

kn
∀α ∈ Ik,

therefore

∑

Qα∩C 6=∅, Qα 6⊂C

|Qα| = O(
1

k
). (6.2)

As a consequence we have

∑

Eα∩C 6=∅, Qα 6⊂C

|Eα| ≤
∑

Qα∩C 6=∅, Qα 6⊂C

|Qα| = O(
1

k
). (6.3)

Using (6.2) and (6.3) we obtain

|C| =
∑

α∈Ik

|Qα ∩ C| =
∑

Qα⊂C

|Qα| +O(
1

k
)

=
1

ρ

∑

Qα⊂C

|Eα| +O(
1

k
) =

1

ρ

∑

α∈Ik

|Eα ∩ C| +O(
1

k
). (6.4)

Combining (6.3) and (6.4) we deduce

|C| = lim
k→∞

1

ρ

∑

α∈Ik

|Eα ∩ C| = lim
k→∞

1

ρ
|Ek ∩ C|, (6.5)

hence (6.1) is proven for closed sets A.

Part II. A = V is an open set. Let us consider a sequence of closed n-cubes {Cj}
∞
j=1

whose sides are parallel to the axes such that

V =

∞⋃

j=1

Cj and
o

Ci ∩
o

Cj= ∅ if i 6= j.

Any open and bounded set can be exhausted in this way, see, for instance, Stein [28].
Let ε > 0 be arbitrary. Then there exists a non-negative integer kε such that

∞∑

j=kε+1

|Ek ∩ Cj | < ε. (6.6)

The equation (6.5) was proven for an arbitrary closed n-cube C, hence it holds true
for all Cj , too. By using (6.5) we get from the above inequality

lim sup
k→∞

1

ρ
|Ek ∩ V | = lim sup

k→∞

1

ρ

∞∑

j=1

|Ek ∩ Cj | ≤ lim sup
k→∞

1

ρ

kε∑

j=1

|Ek ∩ Cj | +
ε

ρ
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=

kε∑

j=1

lim sup
k→∞

1

ρ
|Ek ∩ Cj | +

ε

ρ
=

kε∑

j=1

|Cj | +
ε

ρ
≤ |V | +

ε

ρ
,

where we made use of (6.5) in the last equality. Since ε is arbitrary, we deduce from
the previous inequalities

lim sup
k→∞

1

ρ
|Ek ∩ V | ≤ |V |. (6.7)

Let us prove the opposite inequality. Once again we take ε > 0 arbitrary. Since

|V | =
∞∑

j=1

|Cj |,

there exists kε such that

|V | ≤
k∑

j=1

|Cj | + ε ∀k ≥ kε.

From this inequality and identity (6.5), we obtain

|V | ≤
kε∑

j=1

lim
k→∞

1

ρ
|Ek ∩ Cj | + ε = lim

k→∞

1

ρ
|Ek

⋂

[

kε⋃

j=1

Cj ]| + ε ≤ lim inf
k→∞

1

ρ
|Ek ∩ V | + ε.

Since ε is arbitrary we deduce

|V | ≤ lim inf
k→∞

1

ρ
|Ek ∩ V |. (6.8)

Combining (6.7) and (6.8) we get

|V | ≤ lim inf
k→∞

1

ρ
|Ek ∩ V | ≤ lim sup

k→∞

1

ρ
|Ek ∩ V | ≤ |V |,

which implies

lim
k→∞

1

ρ
|Ek ∩ V | = |V |. (6.9)

Part III. A = K is a compact set. Taking into account that the complementary set
of K in Ω, denoted by Ω \K, is open, using (6.9) and remembering that |Ek| = ρ|Ω|,
we deduce

|K| = |Ω| − |Ω \K| = |Ω| − lim
k→∞

1

ρ
|Ek ∩ (Ω \K)| = |Ω| − lim

k→∞

1

ρ
[|Ek| − |Ek ∩K|]

= |Ω| − lim
k→∞

[|Ω| −
1

ρ
|Ek ∩K|] = lim

k→∞

1

ρ
|Ek ∩K|. (6.10)

Part IV. A is a Lebesgue measurable set. Given ε > 0, it is known that there exist an
open set V ⊂ Ω and a compact set K ⊂ Ω such that K ⊂ A ⊂ V and

|A| − ε ≤ |K| ≤ |A| ≤ |V | ≤ |A| + ε.
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Then

|A| − ε ≤ |K| = lim
k→∞

1

ρ
|Ek ∩K| ≤ lim inf

k→∞

1

ρ
|Ek ∩A|

≤ lim sup
k→∞

1

ρ
|Ek ∩A| ≤ lim inf

k→∞

1

ρ
|Ek ∩ V | = |V | ≤ |A| + ε.

Finally, since ε is arbitrary we get (6.1) from the above inequalities.
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