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Abstract. The main focus of this paper is on an a-posteriori analysis for the
method of proper orthogonal decomposition (POD) applied to optimal control
problems governed by parabolic and elliptic PDEs. Based on a perturbation
method it is deduced how far the suboptimal control, computed on the basis
of the POD model, is from the (unknown) exact one. Numerical examples il-
lustrate the realization of the proposed approach for linear-quadratic problems
governed by parabolic and elliptic partial differential equations.

1 Introduction

Optimal control problems for partial differential equation are often hard to tackle
numerically because their discretization leads to very large scale optimization prob-
lems. Therefore, different techniques of model reduction were developed to approx-
imate these problems by smaller ones that are tractable with less effort. Among
them, the method of proper orthogonal decomposition (POD) and the balanced
truncation method seem to be most widely used.

Recently, both approaches have received increasing attention; we refer, e.g., to
[2, 3, 10, 20, 23] for proper orthogonal decomposition and to [4, 18, 25, 29] for
balanced truncation.

Proper orthogonal decomposition is based on projecting the dynamical system
onto subspaces of basis elements that express characteristics of the expected solu-
tion. This is in contrast to, e.g., finite element techniques, where the elements are
not correlated to the physical properties of the system they approximate.

In our present work, POD is applied to linear-quadratic optimal control prob-
lems. Linear-quadratic problems are interesting in several respects; in particular,
they occur in each level of sequential quadratic programming (SQP) methods; see,
e.g., [22].

In contrast to methods of balanced truncation type, the POD method is somehow
lacking a reliable a-priori error analysis. Unless its snapshots are generating a
sufficiently rich state space, it is not a-priorily clear how far the optimal solution of
the POD problem is from the exact one. On the other hand, the POD method is a
universal tool that is applicable also to problems with time-dependent coefficients
or to nonlinear equations. Moreover, by generating snapshots from the real (large)
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model, a space is constructed that inhibits the main and relevant physical properties
of the state system. This, and its ease of use makes POD very competitive in
practical use, despite of a certain heuristic flavor.

In this paper, we again address the problem of error analysis. Our main focus
is on an a-posteriori analysis. We use a fairly standard perturbation method to
deduce how far the suboptimal control, computed on the basis of the POD model,
is from the (unknown) exact one. This idea turned out to be very efficient in our
examples. It is able to compensate for the lack of a priori analysis for POD methods.
We also briefly discuss a priori error estimates. This analysis needs certain strong
assumptions. Nevertheless, we include these results to show that there is a real
chance to decrease the error up to zero by taking more snapshots, provided the
assumptions are fulfilled.

In contrast to [15] the POD basis will be fixed during the numerical algorithm.
Only the number of the utilized POD ansatz functions is increased, if necessary.

The paper is organized as follows: In Section 2, we introduce the linear-quadratic
optimal control problem of parabolic type and review first-order necessary optimal-
ity conditions. The a-posteriori error analysis is carried out in Section 3, and the
POD method is explained in Section 4. Moreover, an associated convergence anal-
ysis is carried out there. In Section 5, numerical test examples are presented.

2 The linear-quadratic parabolic optimal control problem

In this section, we introduce a class of linear-quadratic parabolic optimal control
problems and recall the associated first-order necessary optimality conditions.

2.1 Problem formulation. Let V and H be real, separable Hilbert spaces and
suppose that V is dense in H with compact embedding. By 〈· , ·〉H we denote the
inner product in H . The inner product in V is given by a symmetric bounded,
coercive, bilinear form a : V × V → R:

〈ϕ, ψ〉V = a(ϕ, ψ) for all ϕ, ψ ∈ V (2.1)

with associated norm ‖ · ‖V =
√

a(· , ·). By identifying H and its dual H ′ it follows
that V →֒ H = H ′ →֒ V ′, each embedding being continuous and dense.

Recall that for T > 0 the space W (0, T )

W (0, T ) =
{
ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)

}

is a Hilbert space endowed with the common inner product (see, for example, [6,
p. 473]). It is well-known that W (0, T ) is continuously embedded into C([0, T ];H),
the space of continuous functions from [0, T ] to H .

Let I be an open and bounded subset of Rd with d ∈ N. By Uad ⊂ L2(I) we
define the closed, convex and bounded subset

Uad =
{
u ∈ L2(I) |ua(s) ≤ u(s) ≤ ub(s) for almost all (f.a.a.) s ∈ I

}

with ua, ub ∈ L2(I) satisfying ua ≤ ub almost everywhere (a.e.) in I. For y0 ∈ H ,
r ∈ L2(0, T ;V ′) and u ∈ Uad we consider the linear evolution problem

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) = 〈(r + Bu)(t), ϕ〉V ′,V f.a.a. t ∈ [0, T ], ∀ϕ ∈ V, (2.2a)

〈y(0), ϕ〉H = 〈y0, ϕ〉H ∀ϕ ∈ V, (2.2b)

where B : L2(I) → L2(0, T ;V ′) is a continuous, linear operator.
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Example 2.1. Let us present an example for (2.2). Suppose that Ω ⊂ Rd, d ∈
{1, 2, 3}, is an open and bounded domain with Lipschitz-continuous boundary Γ =
∂Ω. The boundary is split into two measurable disjoint parts ΓC ⊂ Γ and ΓN =
Γ \ ΓC . For T > 0 we set Q = (0, T ) × Ω, Σ = (0, T ) × Γ, ΣC = (0, T ) × ΓC and
ΣN = (0, T ) × ΓN . Let H = L2(Ω), V = H1(Ω) and I = (0, T ). Then, for given
control u ∈ L2(0, T ) we consider the linear heat equation

yt(t,x) − ∆y(t,x) + y(t,x) = f(t,x) f.a.a. (t,x) ∈ Q (2.3a)

together with the inhomogeneous Neumann boundary condition

∂y

∂n
(t, s) = u(t)b(t, s) f.a.a. (t, s) ∈ ΣC ,

∂y

∂n
(t, s) = g(t,x) f.a.a. (t, s) ∈ ΣN

(2.3b)

and with the initial condition

y(0,x) = y0(x) f.a.a. x ∈ Ω, (2.3c)

where y0 ∈ H is given. In (2.3) we suppose that f ∈ L2(0, T ;V ′), g ∈ L2(ΣC),
b ∈ L∞(0, T ;L2(ΓC)), and y0 ∈ H . Introducing the bilinear form a : V × V → R

by

a(ϕ, ψ) =

∫

Ω

∇ϕ · ∇ψ + ϕψ dx for ϕ, ψ ∈ V,

the linear, bounded functional r ∈ L2(0, T ;V ′) by

〈r(t), φ〉V ′,V =

∫

Ω

f(t, ·)φdx +

∫

ΓN

g(t, ·)φds for φ ∈ V, t ∈ (0, T ) a.e.

and B : L2(0, T ) → L2(0, T ;V ′) as

〈(Bu)(t), φ〉V ′,V = u(t)

∫

ΓC

b(t, ·) ds for φ ∈ V, t ∈ (0, T ) a.e.

it follows that the weak formulation of (2.3) can be expressed in the form (2.2). ♦

It is well-known (see, e.g., [6]) that for every r ∈ L2(0, T ;V ′), u ∈ L2(I) and
y0 ∈ H there exists a unique weak solution y ∈ W (0, T ) satisfying (2.2) and

‖y‖W (0,T ) ≤ C
(
‖u‖L2(I) + ‖y0‖H + ‖r‖L2(0,T ;V ′)

)
(2.4)

with a constant C > 0 independent of y.

Remark 2.2. Let ŷ0 ∈ W (0, T ) be the unique solution to

d

dt
〈ŷ0(t), ϕ〉H + a(ŷ0(t), ϕ) = 〈r(t), ϕ〉V ′,V f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈ŷ0(0), ϕ〉H = 〈y0, ϕ〉H ∀ϕ ∈ V.

Moreover, we introduce the linear and bounded operator S : L2(I) → W (0, T ) as
follows: ỹ = Su ∈W (0, T ) is the unique solution to

d

dt
〈ỹ(t), ϕ〉H + a(ỹ(t), ϕ) = 〈(Bu)(t), ϕ〉V ′,V f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈ỹ(0), ϕ〉H = 0 ∀ϕ ∈ V.

Then, y = ŷ0 + Su is the weak solution to (2.2). ♦
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Next we introduce the cost functional J : W (0, T )× L2(I) → R by

J(y, u) =
α1

2
‖Cy − z1‖2

W1
+
α2

2
‖Dy(T )− z2‖2

W2
+
σ

2
‖u‖2

L2(I), (2.5)

where W1, W2 are Hilbert spaces, C : L2(0, T ;H) → W1 and D : H → W2 are
bounded linear operators, and (z1, z2) ∈ W1 ×W2 holds. Furthermore, α1, α2 are
nonnegative parameters and σ > 0.

Remark 2.3. In the context of Example 2.3 we choose α1 = 0, α2 = 1, W2 =
L2(Ω), z2 ∈ L2(Ω), D = id auf L2(Ω), and I = (0, T ). Then, (2.5) yields the cost
functional

J(y, u) =

∫

Ω

(
y(T,x) − z2(x)

)2
dx +

σ

2

∫ T

0

(
u(t)

)2
dt

for (y, u) ∈ W (0, T )× L2(I). ♦

The optimal control problem is given by

min J(y, u) s.t. (y, u) ∈W (0, T )× Uad solves (2.2). (P)

Applying standard arguments (see [19], for instance) one can prove that there exists
a unique optimal solution x̄ = (ȳ, ū) to (P).

2.2 First-order optimality conditions. First-order necessary optimality condi-
tions for our parabolic optimal control problem are well known. We briefly recall
them, because they are needed for our subsequent error analysis.

Suppose that x̄ = (ȳ, ū) is the optimal solution to (P) (in the paper, a bar
indicates optimality). Then there exists a unique Lagrange-multiplier p̄ ∈W (0, T )
satisfying together with x̄ the first-order necessary optimality conditions, which
consist of the state equations (2.2), the adjoint equations in [0, T ]

− d

dt
〈p̄(t), ϕ〉H + a(p̄(t), ϕ) = α1 〈z1 − Cȳ, Cϕ〉W1

f.a.a. t ∈ [0, T ], ∀ϕ ∈ V, (2.6a)

〈p̄(T ), ϕ〉H = α2〈z2 −Dȳ(T ),Dϕ〉W2
∀ϕ ∈ V, (2.6b)

and of the variational inequality

〈σū− B⋆p̄, u− ū〉L2(I) ≥ 0 ∀u ∈ Uad. (2.7)

Here, the linear and bounded operator B⋆ : L2(0, T ;V ) → L2(I)′ ∼ L2(I) stands
for the dual operator of B satisfying

〈Bu, ϕ〉L2(0,T ;V ′),L2(0,T ;V ) = 〈B⋆ϕ, u〉L2(I) ∀(u, ϕ) ∈ L2(I) × L2(0, T ;V ).

In Remark 2.2 the linear and bounded operator S has been defined. The associ-
ated dual S⋆ : W (0, T )′ → L2(I) is defined as

〈S⋆f, u〉L2(I) = 〈f,Su〉W (0,T )′,W (0,T ) ∀(f, u) ∈ W (0, T )′ × L2(I). (2.8)

We will make use of the following lemma that is a variant of Lemma 4.1 in [12].
For its proof we refer the reader to the Appendix.

Lemma 2.4. Suppose that z1 ∈ L2(0, T ;H), z2 ∈ H and ȳ = ŷ0 + Sū ∈ W (0, T )
with given optimal control ū ∈ L2(I), where ŷ0 has been defined in Remark 2.2.
Moreover, let p̄ ∈ W (0, T ) denote the unique solution to the adjoint system (2.6).
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Furthermore, Θ : W (0, T ) → W (0, T )′ and Ξ : L2(0, T ;H) × H → W (0, T )′ are

defined by

〈Θ(χ), φ〉W (0,T )′,W (0,T ) = α1 〈Cχ, Cφ〉W1
+ α2 〈Dχ(T ),Dφ(T )〉W2

, (2.9)

〈Ξ(χ1, χ2), ϕ〉W (0,T )′,W (0,T ) = α1 〈χ1, Cϕ〉W1
+ α2 〈χ2,Dϕ(T )〉W2

(2.10)

for χ, φ, ϕ ∈W (0, T ) and (χ1, χ2) ∈W1 ×W2. Then it follows that

B⋆p̄ = S⋆
(

Ξ(z1, z2) − Θ(ȳ)
)

∈ L2(I).

Remark 2.5. We continue the discussion of Example 2.3 and Remark 2.3. The
adjoint equations (2.6) are given by

−p̄t(t,x) − ∆p̄(t,x) + p̄(t,x) = 0 f.a.a. (t,x) ∈ Q,

∂p̄

∂n
(t, s) = 0 f.a.a. (t, s) ∈ Σ,

p(T,x) = z2(x) − ȳ(T,x) f.a.a. x ∈ Ω.

Moreover, the variational inequality (2.7) has the form
∫ T

0

(

σū(t) −
∫

ΓC

b(t, s)p̄(t, s) ds

)
(
u(t) − ū(t)

)
dt ≥ 0 for all u ∈ Uad

and B⋆p̄ ∈ L2(I) is given by (B⋆p̄)(t) =
∫

ΓC

b(t, s)p̄(t, s) ds f.a.a. t ∈ [0, T ]. ♦

2.3 The reduced control problem. Utilizing the solution operator S (see Re-
mark 2.2) we introduce the so-called reduced cost functional as

Ĵ(u) = J(ŷ0 + Su, u).
Then, we can express (P) as the reduced problem

min Ĵ(u) s.t. u ∈ Uad. (P̂)

It follows that Ĵ ′(ū) = σū − B⋆p̄ ∈ L2(I) is the gradient of Ĵ at ū, where p̄ solves
the dual sytem (2.6) for ȳ = ŷ0 + Sū. Moreover, the variational inequality (2.7) is
equivalent to

ū(s) = P[ua(s),ub(s)]

(
1

σ

(
B⋆p̄

)
(s)

)

f.a.a. s ∈ I, (2.11)

where P[a,b] : R → [a, b] denotes the projection operator onto the convex interval
[a, b] ⊂ R.

3 A-posteriori error analysis

In principle, this section contains the main idea underlying our a-posteriori error
analysis. Suppose that up is an arbitrary control of Uad. Our goal is to estimate
the difference

‖ū− up‖L2(I)

without the knowledge of the optimal solution ū. The associated idea is not new.
For instance, it was used by Malanowski et al. [21] in the context of error estimates
for the optimal control of ODEs. It was extended later to elliptic optimal control
problems in [1] and [5]. Let us explain this basic idea here.
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If up 6= ū then up does not satisfy the necessary (and by convexity sufficient)
optimality conditions (2.7) respectively (2.11). However, there exists a function
ζ ∈ L2(I) such that

〈σup − B⋆pp + ζ, u− up〉L2(I) ≥ 0 ∀u ∈ Uad, (3.1)

where pp ∈W (0, T ) solves the adjoint equation associated with up

− d

dt
〈pp(t), ϕ〉H + a(pp(t), ϕ) = α1〈z1 − Cyp, Cϕ〉W1

f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈pp(T ), ϕ〉H = α2〈z2 −Dyp(T ),Dϕ〉W2
∀ϕ ∈ V,

(3.2)

and yp = ŷ + Sup is the state corresponding to up. Therefore, up satisfies the
optimality condition of a perturbed parabolic optimal control problem with “per-
turbation” ζ. We refer, e.g., to [1]. The smaller ζ is, the closer up is to ū.

The computation of ζ is possible on the basis of the known data up, yp, and
pp. We carry out this construction below in Proposition 3.2. First, however, we
estimate ‖ū− up‖L2(I) in terms of ‖ζ‖L2(I). Choosing u = up in (2.7) and u = ū in
(3.1) we obtain

0 ≤ 〈σū− B⋆p̄, up − ū〉
L2(I) + 〈σup − B⋆pp + ζ, ū− up〉L2(I)

= 〈σū− B⋆p̄, up − ū〉
L2(I) − 〈σup − B⋆pp + ζ, up − ū〉

L2(I)

= σ 〈ū− up, up − ū〉
L2(I) − 〈B⋆(p̄− pp), up − ū〉

L2(I) − 〈ζ, up − ū〉
L2(I)

= −σ ‖ū− up‖2
L2(I) + 〈B⋆(pp − p̄), up − ū〉

L2(I) − 〈ζ, up − ū〉
L2(I).

(3.3)

Lemma 2.4 yields

B⋆p̄ = S⋆
(

Ξ(z1, z2) − Θ(ȳ)
)

with ȳ = ŷ0 + Sū.

Analogously, we obtain

B⋆pp = S⋆
(

Ξ(z1, z2) − Θ(yp)
)

with yp = ŷ0 + Sup.

Thus,

〈B⋆(pp − p̄), up − ū〉
L2(I)

=
〈
S⋆

(

Ξ(z1, z2) − Θ(yp)
)

− S⋆
(

Ξ(z1, z2) − Θ(ȳ)
)

, up − ū
〉

L2(I)

=
〈
Θ(ȳ) − Θ(yp),S(up − ū)

〉

L2(I)
= −

〈
Θ(yp − ȳ), yp − ȳ

〉

L2(I)

= −α1 ‖C(yp − ȳ)‖2
W1

− α2 ‖D(yp − ȳ)‖2
W2

≤ 0.

Therefore we conclude from (3.3) that

σ ‖ū− up‖2
L2(I) ≤ −〈ζ, up − ū〉

L2(I) ≤ ‖ζ‖L2(I)‖ū− up‖L2(I),

which gives easily

‖ū− up‖L2(I) ≤
1

σ
‖ζ‖L2(I).

Summarizing we have proved the following theorem.

Theorem 3.1. Let ū be the optimal solution to (P), ȳ the associated optimal

state, and p̄ the associated Lagrange multiplier. Suppose that up ∈ Uad is chosen

arbitrarily, yp = ŷ + Sup, and pp is the solution to (3.2). Then it follows that

‖ū− up‖L2(I) ≤
1

σ
‖ζ‖L2(I),
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where ζ is chosen such that (3.1) holds.

We proceed by constructing the function ζ. Suppose that we have up and the
associated adjoint state pp solving to (3.2). The goal is to determine ζ ∈ L2(I)
satisfying (3.1). We distinguish between three different cases.

1) Case up(s) = ua(s) for fixed s ∈ I: Then, u(s) − up(s) = u(s) − ua(s) ≥ 0
for all u ∈ Uad. Hence, ζ(s) has to satisfy

(
σup − B⋆pp

)
(s) + ζ(s) ≥ 0. (3.4)

Setting

ζ(s) = [(σup − B⋆pp)(s)]− = −min
(
0, (σup − B⋆pp)(s)

)

=
1

2

(
|(σup − B⋆pp)(s)| − (σup − B⋆pp)(s)

)

the value ζ(s) satisfies (3.4). Here, [s]− = −min(0, s) denotes the negative
part function.

2) Case up(s) = ub(s) for fixed s ∈ I: Now, u(s) − up(s) = u(s) − ub(s) ≤ 0
for all u ∈ Uad. Analogously to the first case we define

ζ(s) = [(σup − B⋆pp)(s)]+ = max
(
0, (σup − B⋆pp)(s)

)

=
1

2

(
(σup − B⋆pp)(s) + |(σup − B⋆pp)(s)|

)

to ensure (3.4), where, [s]+ = max(0, s) denotes the positive part function.
3) Case ua(s) < up(s) < ub(s) for fixed s ∈ I: Consequently, (σup−B⋆pp)(s)+

ζ(s) = 0 holds so that ζ(s) = −(σup − B⋆pp)(s) guarantees (3.4).

Clearly, ζ ≡ 0 holds in the case, where up satisfies the first-order necessary opti-
mality conditions.

Proposition 3.2. Suppose that the hypotheses of Theorem 3.1 are satisfied. Define

ζ ∈ L2(I) as follows:

ζ(s) =







[
(σup − B⋆pp)(s)

]

−
on A− =

{
s ∈ I

∣
∣up(s) = ua(s)

}
,

[
(σup − B⋆pp)(s)

]

+
on A+ =

{
s ∈ I

∣
∣up(s) = ub(s)

}
,

−(σup − B⋆pp)(s) on J = I \
(
A− ∪ A+

)
.

(3.5)

Then, the estimate

‖ū− up‖L2(I) ≤
1

σ
‖ζ‖L2(I) (3.6)

is satisfied.

We will call (3.6) an a-posteriori error estimate, since, in the next section, we
shall apply it to suboptimal controls up that have already been computed from a
POD model. After having computed up, we determine the associated state yp and
adjoint state (Lagrange multiplier) pp. Then we can determine ζ and its L2-norm
and (3.6) gives an upper bound for the distance of up to ū. In this way, the error
caused by the POD method can be estimated a-posteriorily. If the error is too
large, then we have to include more POD basis functions in our Galerkin ansatz;
see Section 4.6. This approach compensates the lack of a-priori error estimates for
the POD method.
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Remark 3.3. Similar arguments can be used to derive an analogous error estimate
(as in (3.6)) for linear-quadratic optimal control problems governed by linear elliptic
problems; see Section 5, Run 2. ♦

4 The POD Galerkin discretization

In this section we briefly introduce the POD method and derive the reduced-order
model. To keep the notation simple, we apply only a spatial discretization with
POD basis functions, but no time integration by, e.g., an implicit Euler method.
Therefore, in the analysis we utilize a continuous POD. Let us mention the work
[8], where convergence of POD Galerkin approximations for evolution problems is
analyzed using also a continuous version of POD.

4.1 The POD method. Let an arbitrary u ∈ L2(I) be chosen such that the
corresponding state variable y = ŷ0 + Su ∈W (0, T ) belongs to C([0, T ];V ). Then,

V = span
{
y(t) | t ∈ [0, T ]

}
⊆ V. (4.1)

If y0 6= 0 holds, then span {y0} ⊂ V and d = dimV ≥ 1, but V may have infinite
dimension. We define a bounded linear operator Y : L2(0, T ) → V by

Yϕ =

∫ T

0

ϕ(t)y(t) dt for ϕ ∈ L2(0, T ).

Its Hilbert space adjoint Y⋆ : V → L2(0, T ) satisfying

〈Yϕ, z〉V = 〈ϕ,Y⋆z〉L2(0,T ) for (ϕ, z) ∈ L2(0, T ) × V

is given by
(
Y⋆z

)
(t) = 〈z, y(t)〉V for z ∈ V and f.a.a. t ∈ [0, T ].

The bounded linear operator R = YY⋆ : V → V ⊆ V has the form

Rz =

∫ T

0

〈z, y(t)〉V y(t) dt for z ∈ V. (4.2)

Moreover, let K = Y⋆Y : L2(0, T ) → L2(0, T ) be defined by

(
Kϕ

)
(t) =

∫ T

0

〈y(s), y(t)〉V ϕ(s) ds for ϕ ∈ L2(0, T ).

First we observe that the linear and bounded operator R is self-adjoint. Since
y ∈ W (0, T ) ⊂ L2(0, T ;V ) the kernel of K is square integrable over (0, T )× (0, T ),
so that the integral operator is Hilbert-Schmidt and therefore compact. This implies
that R is compact as well. Moreover, R is non-negative. From the Hilbert-Schmidt
theorem [24, p. 203] it follows that there exists a complete orthonormal basis {ψi}di=1

for V = range (R) and a sequence {λi}di=1 of real numbers such that

Rψi = λiψi for i = 1, . . . , d and λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. (4.3)

Remark 4.1. 1) By the Riesz-Schauder theorem the spectrum of R is a pure
point spectrum except for possibly 0; see [24, p. 203].

2) To obtain a complete orthonormal basis in the separable Hilbert space V
we need an orthonormal basis for (range (R))⊥. This can be done by the
Gram-Schmidt procedure. Hence, we suppose in the following that {ψi}∞i=1

is a complete orthonormal basis for V .
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3) If 1 ≤ d = dimV < ∞ holds and {ψi}∞i=1 is as described in Part 2), it
follows that λi > 0 for 1 ≤ i ≤ d and Rψi = 0 for all i > d.

4) Analogously to the theory of singular value decompositions for matrices,
we find that the linear, bounded, compact and self-adjoint operator K has
the same eigenvalues {λi}i∈N as the operator R. For all λi > 0 the corre-
sponding eigenfunctions of K are given by

vi(t) =
1√
λi

(
Y∗ψi

)
(t) =

1√
λi

〈ψi, y(t)〉V f.a.a. t ∈ [0, T ] and 1 ≤ i ≤ ℓ.

♦

In the following proposition we formulate properties of the eigenvalues and eigen-
functions of R. Therefore, for given ℓ ∈ N we introduce the mapping

J : V × . . .× V
︸ ︷︷ ︸

ℓ−times

→ R, J(ψ1, . . . , ψℓ) :=

∫ T

0

∥
∥
∥y(t) −

ℓ∑

i=1

〈y(t), ψi〉V ψi
∥
∥
∥

2

V
dt.

Note that

J(ψ1, . . . , ψℓ) =

∫ T

0

∥
∥
∥y(t) − Pℓy(t)

∥
∥
∥

2

V
dt. (4.4)

Proposition 4.2. Suppose that V is a separable Hilbert space, y ∈ C([0, T ];V )
holds and V is given as in (4.1). Let the linear operator R : V → V be defined as

in (4.2). Then, R is bounded, self-adjoint, compact and non-negative, and there

exists {λi}i∈N and {ψi}i∈N satisfying (4.3). Moreover, for any ℓ ≤ d = dimV the

elements {ψi}ℓi=1 solve the minimization problem

min J(ψ̃1, . . . , ψ̃ℓ) s.t. 〈ψ̃j , ψ̃i〉V = δij for 1 ≤ i, j ≤ ℓ (4.5)

and

J(ψ1, . . . , ψℓ) =

∞∑

i=ℓ+1

λi. (4.6)

For a proof we refer to [13, Section 3], [24, Sections II and VI] and [27], for
instance.

4.2 The discrete POD method. In real computations, we do not have the whole
trajectory y(t) for all t ∈ [0, T ]. For that purpose let 0 = t1 < t2 < . . . < tn = T
be a given grid in [0, T ] and let yj = y(tj) denote approximations for y at time
instance tj , j = 1, . . . , n. We set Vn = span {y1, . . . , yn} with dn = dimVn ≤ n.
Then, for given ℓ ≤ n we consider the minimization problem

min

n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ψni 〉V ψni
∥
∥
∥

2

V
s.t. 〈ψni , ψnj 〉V = δij for 1 ≤ i, j ≤ ℓ (4.7)

instead of (4.5). In (4.7) the αj ’s stand for the trapezoidal weights

α1 =
t2 − t1

2
, αj =

tj+1 − tj−1

2
for 2 ≤ j ≤ n− 1, αn =

tn − tn−1

2
.

The solution to (4.7) is given by the solution to the eigenvalue problem

Rnψni =

n∑

j=1

αj 〈yj , ψni 〉V yj = λni ψ
n
i , i = 1, . . . , ℓ,
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where Rn : V → Vn ⊂ V is a linear, bounded, compact, self-adjoint and non-
negative operator. Thus, there exists an orthonormal set {ψni }d

n

i=1 of eigenfunctions
and corresponding non-negative eigenvalues {λni }d

n

i=1 satisfying

Rnψni = λni ψ
n
i , λn1 ≥ λn2 ≥ . . . ≥ λndn > 0. (4.8)

We refer to [17], where the relationship between (4.3) and (4.8) is investigated.

4.3 POD Galerkin scheme for the state equation. The analysis worked out
in Sections 4.3-4.6 is not needed to understand the main principle of our a-posteriori
error estimation. This has already been explained in the preceding section and the
reader might proceed with Theorem 4.11. However, this analysis shows that there
is a real chance to decrease the error by increasing the number of snapshots used
by the POD method, provided that some natural assumptions are satisfied. First,
we derive an error estimate for the state equation, where the control u is fixed.

Let y = ŷ0 + Su be the state associated with some control u ∈ L2(I), and let V

be given as in (4.1). We fix ℓ with ℓ ≤ dimV and compute the first ℓ POD basis
functions ψ1, . . . , ψℓ ∈ V by solving either Rψi = λiψi or Kvi = λvi for i = 1, . . . , ℓ
(see Remark 4.1). Then we define the finite dimensional linear space

V ℓ = span
{
ψ1, . . . , ψℓ

}
⊂ V.

Endowed with the topology in V it follows that V ℓ is a Hilbert space. Let Pℓ denote
the orthogonal projection Pℓ of V onto V ℓ defined by

Pℓϕ =

ℓ∑

i=1

〈ϕ, ψi〉V ψi for ϕ ∈ V. (4.9)

Combining (4.4) and (4.5) we obtain that

J(ψ1, . . . , ψℓ) =

∫ T

0

∥
∥y(t) − Pℓy(t)

∥
∥

2

V
dt =

∥
∥y − Pℓy

∥
∥

2

L2(0,T ;V )
=

∞∑

i=ℓ+1

λi. (4.10)

The POD Galerkin scheme for the state equation (2.2) leads to the following

linear problem: determine a function yℓ =
∑ℓ

i=1 yi(t)ψi such that

d

dt
〈yℓ(t), ψ〉H + a(yℓ(t), ψ) = 〈(r + Bu)(t), ψ〉V ′,V f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ, (4.11a)

〈yℓ(0), ψ〉H = 〈y0, ψ〉H ∀ψ ∈ V ℓ. (4.11b)

For every r ∈ L2(0, T ;V ′), u ∈ L2(I), y0 ∈ H and for every ℓ ∈ N problem (4.11)
admits a unique solution yℓ ∈ H1(0, T ;V ℓ); see [12, Proposition 3.4]. From V ℓ →֒ V
it follows that yℓ ∈W (0, T ) holds.

Let ŷℓ0 ∈ H1(0, T ;V ℓ) be the solution to (4.11) for u ≡ 0. Analogously to
Remark 2.2 we introduce the linear operator Sℓ : L2(I) → H1(0, T ;V ℓ) for fixed
ℓ: For given u ∈ L2(I) the element ỹℓ = Sℓu solves (4.11) with r ≡ 0 and y0 ≡ 0.
Thus, yℓ is given by yℓ = ŷℓ0 + ỹℓ. It follows from [12, Proposition 3.4] that the
operator Sℓ is bounded independently of ℓ.

Proposition 4.3. For given r ∈ L2(0, T ;V ′), u ∈ L2(I), and y0 ∈ H we suppose

that y = ŷ + Su belongs to y ∈ C([0, T ];V ). Suppose that, for ℓ ≤ dim V, the
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elements {ψi}ℓi=1 solve (4.5). Then, there exists a constant C > 0 such that

‖y − yℓ‖2

W (0,T ) ≤ C

(
∥
∥yℓ(0) − Pℓy0

∥
∥

2

H
+

∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
+

∞∑

i=ℓ+1

λi

)

,

where the linear projector Pℓ : V → V ℓ is given by (4.9) and yℓ = ŷℓ0 +Sℓu denotes

the unique solution to (4.11).

Proof. Proceeding similarly as in the proof of Proposition 4.7 in [12] it follows that
∥
∥y − yℓ

∥
∥

2

W (0,T )
≤ C

(∥
∥yℓ(0) − Pℓy0

∥
∥

2

H
+

∥
∥y − Pℓy

∥
∥

2

W (0,T )

)

, (4.12)

see in the Appendix. Utilizing
∥
∥y − Pℓy

∥
∥

2

W (0,T )
=

∥
∥y − Pℓy

∥
∥

2

L2(0,T ;V )
+

∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)

and (4.10) we obtain the claim. �

Proposition 4.3 permits to show that the POD approximations yℓ converge to y
in the W (0, T )-norm:

Proposition 4.4. For given r ∈ L2(0, T ;V ′), u ∈ L2(I), and y0 ∈ V we suppose

that y = ŷ + Su belongs to y ∈ H1(0, T ;V ). Suppose that, for ℓ ≤ dim V, the

elements {ψi}ℓi=1 solve (4.5). Then, it follows that

lim
ℓ→∞

∥
∥y − yℓ

∥
∥
W (0,T )

= 0,

where yℓ = ŷℓ0 + Sℓu denotes the unique solution to (4.11).

Proof. By assumption, yt(t) ∈ V holds for almost all t ∈ [0, T ]. As {ψi}i∈N is a
complete orthonormal basis in the separable Hilbert space V , we have

yt(t) =

∞∑

i=1

〈yt(t), ψi〉V ψi f.a.a. t ∈ [0, T ]

and
∫ T

0

∞∑

i=1

∣
∣〈yt(t), ψi〉V

∣
∣
2
dt =

∫ T

0

‖yt(t)‖2
V dt. (4.13)

This follows from the Lebesgue dominated convergence theorem [24, p. 24], since
‖yt(·)‖2

V ∈ L1(0, T ) holds. Moreover, V is continuously embedded into V ′ (via the
identification H = H ′). Thus, there exists a constant C > 0 satisfying

∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
≤ C

∫ T

0

∥
∥yt(t) − Pℓyt(t)

∥
∥

2

V
dt

= C

∫ T

0

∞∑

i=ℓ+1

∣
∣〈yt(t), ψi〉V

∣
∣
2
dt.

(4.14)

We proceed by proving that the right hand side in (4.14) tends to zero as ℓ → ∞:
For any ℓ ∈ N, define the mapping Fℓ : [0, T ] → R by

Fℓ(t) =

∞∑

i=ℓ+1

∣
∣〈yt(t), ψi〉V

∣
∣
2

f.a.a. t ∈ [0, T ]

From (4.13) it follows that Fℓ ∈ L1(0, T ) for all ℓ ∈ N. Moreover,

lim
ℓ→∞

Fℓ(t) = 0 and
∣
∣Fℓ(t)

∣
∣ ≤ ‖yt(t)‖2

V f.a.a. t ∈ [0, T ]
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and

Fℓ(t) ≤ ‖yt(t)‖2
V f.a.a. t ∈ [0, T ] with ‖yt(·)‖2

V ∈ L1(0, T ).

Now it follows from (4.14) and the Lebesgue dominated convergence theorem [24,
p. 24] that

∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
→ 0 as ℓ→ ∞. (4.15)

From (4.11b) we obtain 〈yℓ(0) − y0, ψ〉H = 0 for all ψ ∈ V ℓ. As y0 ∈ V by
assumption, we have Pℓy0 ∈ V ℓ and

y0 =

∞∑

i=1

〈y0, ψi〉V ψi. (4.16)

Choosing ψ = yℓ(0) − Pℓy0 ∈ V ℓ it follows that

0 = 〈yℓ(0) − y0, y
ℓ(0) − Pℓy0〉H = 〈yℓ(0) − Pℓy0 + Pℓy0 − y0, y

ℓ(0) − Pℓy0〉H
=

∥
∥yℓ(0) − Pℓy0

∥
∥

2

H
+ 〈Pℓy0 − y0, y

ℓ(0) − Pℓy0〉H .

Hence,
∥
∥yℓ(0) − Pℓy0

∥
∥

2

H
= 〈y0 − Pℓy0, yℓ(0) − Pℓy0〉H ≤

∥
∥y0 − Pℓy0

∥
∥
H

∥
∥yℓ(0) − Pℓy0

∥
∥
H
,

which gives
∥
∥yℓ(0) − Pℓy0

∥
∥
H

≤
∥
∥y0 − Pℓy0

∥
∥
H
. (4.17)

Thus, using (4.16) we arrive at

0 ≤ lim
ℓ→∞

∥
∥yℓ(0) − Pℓy0

∥
∥
H

≤ lim
ℓ→∞

∥
∥y0 − Pℓy0

∥
∥
H

= lim
ℓ→∞

∥
∥
∥
∥

∞∑

i=ℓ+1

〈y0, ψi〉H ψi
∥
∥
∥
∥
H

= 0.
(4.18)

From Proposition 4.3, (4.14) and (4.18) the claim follows. �

Remark 4.5. 1) Due to the continuous embedding of W (0, T ) into the space
C([0, T ];H), Proposition 4.4 implies yℓ → y in C([0, T ];H) as ℓ → ∞. In
particular, yℓ(T ) converges to y(T ) in H as ℓ tends to ∞.

2) Let us mention that the convergence result in Proposition 4.4 is true for
any fixed u provided that the system {ψi}∞i=1 computed from the snapshots
associated with u is complete. ♦

4.4 POD Galerkin scheme for the adjoint equation. It is more or less clear
that the convergence result yℓ → y implies an associated one for the adjoint states,
i.e. pℓ → p as ℓ→ ∞. This is expressed in the next result.

We turn to the POD Galerkin scheme for the adjoint system (2.6a). For that
purpose let u ∈ L2(I) be arbitrarily given, {ψ1, . . . , ψℓ} the associated POD basis
of rank ℓ, and let yℓ ∈ H1(0, T ;V ℓ) denote the unique solution to (4.11). Then,

pℓ =
∑ℓ

i=1 pi(t)ψi satisfies the linear system

− d

dt
〈pℓ(t), ψ〉H + a(pℓ(t), ψ) = α1〈z1 − Cyℓ, Cψ〉W1

f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ, (4.19a)

〈pℓ(T ), ψ〉H = α2〈z2 −Dyℓ(T ),Dψ〉W2
∀ψ ∈ V ℓ. (4.19b)
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Analogously to the arguments for the solvability of (4.11) it follows that for any
(z1, z2) ∈ W1 ×W2 there exists a unique solution pℓ ∈ H1(0, T ;V ℓ) to (4.19); see
[12, Proposition 3.5]. Furthermore, we find that

B⋆pℓ = S⋆ℓ
(
Ξ(z1, z2) − Θ(yℓ)

)
, (4.20)

compare Lemma 4.3 in [12] and Lemma 2.4 above.

Proposition 4.6. For given r ∈ L2(0, T ;V ′), u ∈ L2(I), y0 ∈ H suppose that

y = ŷ + Su belongs to H1(0, T ;V ). Suppose that for ℓ ≤ dim V the elements

{ψi}ℓi=1 solve (4.5). Let yℓ = ŷℓ0 + Sℓu, p, and pℓ be the solutions to (4.11), (2.6)
and (4.19), respectively. Then there exists a constant C > 0 depending on α1, α2,

C, and D
∥
∥p− pℓ

∥
∥
L2(0,T ;V )

≤ C
(∥
∥p(T ) − Pℓp(T )

∥
∥
H

+
∥
∥p− Pℓp‖W (0,T )

)

+ C
(∥
∥y(T ) − yℓ(T )

∥
∥
H

+
∥
∥y − yℓ

∥
∥
L2(0,T ;H)

)

.
(4.21)

where the linear projector Pℓ : V → V ℓ is given by (4.9). If, in addition, y0 ∈ V
and p ∈ H1(0, T ;V ) hold, then lim

ℓ→∞
‖p− pℓ‖L2(0,T ;V ) = 0 holds.

Proof. Proceeding as in the proof of Proposition 4.7 in [12] we find (4.21). Since
W (0, T ) and L2(0, T ;H) are continuously embedded into C([0, T ];H) there exists
a constant CE > 0 such that

∥
∥y(T ) − yℓ(T )

∥
∥
H

+
∥
∥y − yℓ

∥
∥
L2(0,T ;H)

≤ CE
∥
∥y − yℓ

∥
∥
W (0,T )

.

Thus, if y0 ∈ V holds, we infer limℓ→0 ‖y − yℓ‖W (0,T ) = 0 from Propositions 4.3
and 4.8. The reminder of the proof is a variant of the proof of Proposition 4.8. For
the details we refer the reader to the Appendix. �

Remark 4.7. Arguing as in Remark 4.5-2) we derive that the convergence result of
Proposition 4.6 remains true if the POD basis is computed using an input ũ ∈ L2(I)
that differs from u. Of course, the convergence rate of pℓ to p as ℓ → ∞ depends
on the approximation properties of the POD basis for the adjoint variable p; see
[7, 12]. ♦

4.5 POD approximation of (P̂). The Galerkin projection of (P̂) leads to the
discretized optimal control problem

min Ĵℓ(u) s.t. u ∈ Uad, (P̂ℓ)

where Ĵℓ(u) = J(yℓ(u), u) is the reduced objective function and yℓ(u) denotes the

solution to (4.11) associated with u ∈ Uad . We call (P̂ℓ) a reduced-order model for

(P̂).

Problem (P̂ℓ) admits a unique optimal solution ūℓ that is interpreted as a sub-

optimal solution to (P̂). First-order necessary optimality conditions for (P̂ℓ) are
given by

〈σūℓ − B⋆p̄ℓ, u− ūℓ〉L2(I) ≥ 0 for all u ∈ Uad, (4.22)

where, ȳℓ ∈ H1(0, T ;V ℓ) denotes the optimal state solving (4.11) with u = ū and
p̄ℓ ∈ H1(0, T ;V ℓ) is the adjoint state for the POD model.
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4.6 Convergence of the suboptimal controls. We proceed similarly as in [12,
Section 4]. However, an essential difference is that we derive convergence results
utilizing a POD basis of rank ℓ that is not necessarily related to the optimal control
ū as an input function for the generation of the snapshots.

Proposition 4.8. Suppose that the POD basis of rank ℓ is computed using an

arbitrarily chosen u ∈ L2(I). Let ū and ūℓ be the optimal solutions to (P̂) and

(P̂ℓ), respectively. Moreover, p̄ ∈ W (0, T ) denotes the adjoint state associated with

ū. Then,

‖ū− ūℓ‖L2(I) ≤ c ‖p̄− p̂ℓ‖L2(0,T ;V ), (4.23)

where p̂ℓ solves

− d

dt
〈p̂ℓ(t), ψ〉H + a(p̂ℓ(t), ψ) = α1〈z1 − Cŷℓ, Cψ〉W1

f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ,

〈p̂ℓ(T ), ψ〉H = α2〈z2 −Dŷℓ(T ),Dψ〉W2
∀ψ ∈ V ℓ

(4.24)

and ŷℓ is the solution to

d

dt
〈ŷℓ(t), ψ〉H + a(ŷℓ(t), ψ) = 〈(r + Bū)(t), ψ〉V ′,V f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ,

〈ŷℓ(0), ψ〉H = 〈y0, ψ〉H ∀ψ ∈ V ℓ.
(4.25)

Proof. The proof is a variant of the proof of Theorem 4.5 in [12]. For more details
we refer to the Appendix. �

Notice that p̂ℓ is the POD-approximate associated with ŷℓ and ŷℓ = ŷℓ0 + Sℓū.
Therefore, both ŷℓ and p̂ℓ are associated with the same optimal control ū so that
we can apply Proposition 4.3 and Proposition 4.6 to estimate the difference ȳ − ŷℓ

and p̄ − p̂ℓ, respectively. In contrast to this, ȳℓ = ŷℓ0 + Sℓūℓ corresponds to the
suboptimal control ūℓ, which we estimate in the next theorem.

Theorem 4.9. Suppose that the POD basis of rank ℓ is computed using an arbi-

trarily chosen u ∈ L2(I). Let ū and ūℓ be the optimal solutions to (P̂) and (P̂ℓ),
respectively. Moreover, let ȳ and p̄ denote the optimal state and adjoint, respec-

tively, associated with ū. Then there exists a constant C > 0 not depending on ℓ
such that

∥
∥ū− ūℓ

∥
∥
L2(I)

≤ C

(
∥
∥ȳ − Pℓȳ

∥
∥
W (0,T )

+
∥
∥ȳℓ(0) − Pℓy0

∥
∥
H

+
∥
∥p̄− Pℓp̄

∥
∥
W (0,T )

)

,
(4.26)

where the linear projector Pℓ : V → V ℓ is given in (4.9).
If, in addition, y◦ ∈ V and ȳ, p̄ ∈ H1(0, T ;V ) hold and {ψi}∞i=1 is a complete

orthonormal basis for V , then

lim
ℓ→∞

∥
∥ū− ūℓ

∥
∥
L2(I)

= 0.

Proof. Combining (4.21) and (4.23) we find

‖ū− ūℓ‖L2(I) ≤ cC
(∥
∥p̄(T ) − Pℓp̄(T )

∥
∥
H

+
∥
∥p̄− Pℓp̄‖W (0,T )

)

+ C
(∥
∥ȳ(T ) − yℓ(T )

∥
∥
H

+
∥
∥ȳ − yℓ

∥
∥
L2(0,T ;H)

)

.
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Since W (0, T ) is contiunuously embedded into C([0, T ];H) we derive

‖ū− ūℓ‖L2(I) ≤ C̃
(∥
∥p̄− Pℓp̄‖W (0,T ) +

∥
∥ȳ − yℓ

∥
∥
W (0,T )

)

for a constant C̃ > 0. Now the claim follows from Propositions 4.3, 4.4, and 4.6. �

Remark 4.10. Let us consider the following idealized situation [12]: Let ū be the

optimal solution to (P̂). Moreover, let ȳ, p̄ ∈ H1(0, T ;V ) denote the optimal state
and adjoint state, respectively, associated with ū and let y0 ∈ V . Then we consider
the minimization problem

min
ψ1,...,ψℓ

‖ȳ − Pℓȳ‖2

H1(0,T ;V ) + ‖p̄− Pℓp̄‖2

H1(0,T ;V ) s.t. 〈ψi, ψj〉V = δij , 1 ≤ i, j ≤ ℓ.

Its solution {ψ̄i}ℓi=1 of rank ℓ satisfies the eigenvalue problem

R̄ψ̄i = λ̄iψ̄i, 1 ≤ i ≤ ℓ,

where the linear, bounded, non-negative and self-adjoint operator R̄ is defined as

R̄z =

∫ T

0

〈ȳ(t), z〉V y(t) + 〈ȳt(t), z〉V ȳt(t) + 〈p̄(t), z〉V p̄(t) + 〈p̄t(t), z〉V p̄t(t) dt

for z ∈ V . Then, (4.26) can be replaced by

∥
∥ū− ūℓ

∥
∥

2

L2(I)
≤ C̄

(
∥
∥ȳℓ(0) − Pℓy0

∥
∥

2

H
+

∞∑

i=ℓ+1

λ̄i

)

with a constant C̄ > 0. Now we can estimate the decay of the norms ‖ȳ−Pℓȳ‖W (0,T )

and ‖p̄ − Pℓp̄‖W (0,T ) in (4.26) in terms of the eigenvalues λ̄i and obtain an error

estimate with respect to the remainder
∑∞
i=ℓ+1 λ̄i. In contrast to this, the decay of

the eigenvalues λi can only be used to bound ‖ȳ − Pℓȳ‖L2(0,T ;V ) from above, but

not the expression ‖ȳt − Pℓȳt‖L2(0,T ;V ′) + ‖p̄− Pℓp̄‖W (0,T ). ♦

4.7 A-posteriori error estimate for the POD approximation. In this sub-
section, we complete the discussion of the a-posteriori estimate by combining The-
orem 4.9 and Proposition 3.2. The proposition permits to estimate ‖ū− ūℓ‖ by the
norm of an appropriate ζ, while Theorem 4.9 will be used to show that ζ tends to
zero as ℓ→ ∞, since it ensures convergence of ūℓ to the optimal solution ū of (P̂).

For any ℓ let ūℓ ∈ Uad be the optimal solution to (P̂ℓ). This optimal ūℓ is taken

as a suboptimal up for (P̂), i.e. in Proposition 3.2 we take up := ūℓ.

Theorem 4.11. 1) Let ℓ ≤ d be arbitrarily given and ūℓ ∈ Uad be the optimal

solution to (P̂ℓ). Denote by ỹ = ỹ(ūℓ) = ŷ0 +Sūℓ the solution to (2.2) with

u = ūℓ and let p̃ = p̃(ūℓ) solve the associated adjoint equation

− d

dt
〈p̃(t), ϕ〉H + a(p̃(t), ϕ) = α1 〈z1 − Cỹ, Cϕ〉W1

f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈p̃(T ), ϕ〉H = α2〈z2 −Dỹ(T ),Dϕ〉W2
∀ϕ ∈ V.

(4.27)

Define, according to (3.5), the function ζℓ ∈ L2(I) by

ζℓ(s) =







[
(σūℓ − B⋆p̃(ūℓ))(s)

]

−
on Aℓ

− =
{
s ∈ I

∣
∣ ūℓ(s) = ua(s)

}
,

[
(σūℓ − B⋆p̃(ūℓ))(s)

]

+
on Aℓ

+ =
{
s ∈ I

∣
∣ ūℓ(s) = ub(s)

}
,

−(σūℓ − B⋆p̃ℓ(ūℓ))(s) on Jℓ = I \ (Aℓ
− ∪ Aℓ

+).

(4.28)
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Then

‖ū− ūℓ‖L2(I) ≤
1

σ
‖ζℓ‖L2(I).

2) If all hypotheses of Proposition 4.6 and Theorem 4.9 are satisfied, in par-

ticular {ψi}∞i=1 is a complete orthonormal basis for V , then the sequences

{ūℓ}ℓ∈N and {B⋆p̂ℓ}ℓ∈N converge to ū respectively B⋆p̄ in L2(I) as ℓ → ∞
and

‖ζℓ‖L2(I) → 0.

Proof. By Theorem 4.9, the sequences {ūℓ}ℓ∈N and {B⋆p̄ℓ}ℓ∈N converge to ū respec-
tively B⋆p̄ in L2(I). There exist subsequences {ūℓk}k∈N and {B⋆p̄ℓk}k∈N satisfying

lim
k→∞

ūℓk(s) = ū(s) and lim
k→∞

B⋆p̄ℓk(s) = B⋆p̄(s) f.a.a. s ∈ I.

Next we consider the active and inactive sets for ū.

1) Let s ∈ J = {s ∈ I |ua(s) < ū(s) < ub(s)}. For k◦ = k◦(s) ∈ N sufficiently
large, ūℓk(s) ∈ (ua(s), ub(s)) for all k ≥ k◦ and f.a.a. s ∈ J. Thus, σūℓk(s)−
B⋆p̄ℓk(s) = 0 for all k ≥ k◦(s) in J a.e. This implies

ζℓk(s) = 0 ∀k ≥ k◦(s) and f.a.a. s ∈ J (4.29)

2) Suppose that s ∈ A− = {s ∈ I |ua(s) = ū(s)}. From σū(s)−B⋆p̄(s) ≥ 0 in
A− a.e. we deduce

lim
k→∞

ζℓk(s) =
[
(σūℓ − B⋆p̄ℓ)(s)

]

−
= 0 f.a.a. s ∈ A−. (4.30)

3) Suppose that s ∈ A+ = {s ∈ I |ub(s) = ū(s)}. Analogously to part 2) we
find

lim
k→∞

ζℓk(s) =
[
(σūℓ − B⋆p̄ℓ)(s)

]

+
= 0 f.a.a. s ∈ A−. (4.31)

Combining (4.29)-(4.31) we conclude that limk→∞ ζℓk = 0 a.e. in (0, T ). Utilizing
the dominated convergence theorem [24, p. 24] we have

lim
k→∞

∥
∥ζℓk

∥
∥
L2(I)

= 0.

Since all subsequences contain a subsequence converging to zero, the claim follows
from a standard argument. �

Remark 4.12. 1) Notice that ỹ and p̃ must be taken as the solutions to the
(full) state and adjoint equation, respectively, not of their POD-appro-
ximations.

2) Part 2) of Theorem 4.11 shows that ‖ζℓ‖L2(I) can be expected smaller than
any ε > 0 provided that ℓ is taken sufficiently large. Motivated by this
result, we set up the Algorithm 1. ♦

Remark 4.13. In the numerical realization of Algorithm 1, Step 6 requires the
solution of the state as well as of the adjoint equation by, e.g., a finite element or
finite differerence scheme. In Section 5, Run 1, we will see that the main part of
the CPU time for Algorithm 1 is consumed by step 6. ♦
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Algorithm 1 POD reduced-order method with a-posteriori estimator.

1: Choose an input u ∈ Uad, an initial number ℓ for POD ansatz functions, a
maximal number ℓmax > ℓ of POD ansatz functions, and a stopping tolerance
ε > 0; compute y = ŷ0 + Su.

2: Determine a POD basis of rank ℓ utilizing the state y = ŷ0 +Su and derive the
reduced-order model (P̂ℓ).

3: repeat
4: Establish the discretized optimal control problem (P̂ℓ).

5: Calculate the optimal solution ūℓ of (P̂ℓ).
6: Evaluate ỹ(ūℓ) = ŷ0 + Sūℓ and compute the solution p̃(ūℓ) to (4.27) as well

as ζℓ from (4.28).
7: if ‖ζℓ‖L2(I) < ε or ℓ = ℓmax then

8: Return ℓ and suboptimal control ūℓ and STOP.
9: else

10: Set ℓ = ℓ+ 1.
11: end if
12: until ℓ > ℓmax

5 Numerical experiments

In this section we present two numerical test examples, where the first one is
a parabolic problem as in Example 2.3, while the second one is of elliptic type
and demonstrates that our method applies also to other types of problems (see
Remark 3.3-2). All coding is done in Matlab using routines from the Femlab 2.2

package for the finite element (FE) implementation.

Run 1 (Parabolic example). Let Ω = (0, 1)× (0, 1) be the open unit square, T = 1
and Q = (0, T ) × Ω. We set

ΓN =
{
(x1, x2) |x1 ∈ {0, 1} and x2 ∈ [0, 1]

}
and ΓC = Γ \ ΓN .

We consider the minimization problem

min
1

2

∫

Ω

(
y(T,x) − 20

)2
dx +

1

400

∫ T

0

u(t)2 dt

subject to the heat equation

yt(t,x) − ∆y(t,x) = 0 f.a.a. (t,x) ∈ Q,

∂y

∂n
(t,x) = 0 f.a.a. (t,x) ∈ ΣN = (0, T ) × ΓN ,

∂y

∂n
(t,x) = u(t) f.a.a. (t,x) ∈ ΣC = (0, T ) × ΓC ,

y(0,x) = 30 f.a.a. x ∈ Ω

and to the bilateral control constraints

−6 ≤ u(t) ≤ 1 f.a.a. t ∈ (0, T ).

We discretize the domain Ω by a uniform rectangular triangulation with mesh-size
h = 1/39; see Figure 1. For the time integration we apply an implicit Euler method
with step size τ = 1/300. Since we do not know the exact optimal control ū, we take

the FE solution ūh,τ to (P̂) as a substitute, considering the mesh with h = 1/39
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Figure 1. Run 1: Domain Ω (left plot) and optimal FE control
with lower and upper bound(right plot).

as sufficiently fine; see Figure 1. The reduced optimal control problem (P̂) as well

as its low-order approximation (P̂ℓ) are solved by a primal-dual active set strategy,
cf. [11], where the linear systems in each level of the algorithm are treated by
the preconditioned conjugate gradient method. According to Theorem 4.11, we
compare the error ūh,τ − ūℓ with the norm of ζℓ for different values of ℓ in Table 1.
It turns out that the norms decay with increasing ℓ. Moreover, σ−1‖ζℓ‖L2(0,T ) is

ℓ ‖ūh,τ − ūℓ‖L2(0,T )
1
σ
‖ζℓ‖L2(0,T )

2 0.079670 3.361904
3 0.016831 0.065327
4 0.001876 0.002951
5 0.000943 0.002229

Computation part CPU time

FE optimizer 1611 s
Step 1 8 s
Step 2 with ℓmax = 10 5 s
Step 4 for ℓ = 6 ≪ 1 s
Step 5 for ℓ = 6 3 s
Step 6 for ℓ = 6 18 s

Table 1. Run 1: Norms ‖ūh,τ − ūℓ‖L2(0,T ) and σ−1‖ζℓ‖L2(0,T )

for different ℓ (left table); CPU times for different parts needed to
carry out Algorithm 1.

an upper bound for ‖ūh,τ − ūℓ‖L2(0,T ) as stated in Theorem 3.1. For the CPU
times refer to Table 1. Note that for h = 1/39 and τ = 1/300 we expect that
‖ūh,τ − ū‖L2(0,T ) ∼ c · 9e-5. Starting Algorithm 1 with u = 1 ∈ Uad, ℓ = 2,

ℓmax = 10, and choosing the tolerance ε = 10−2 the method stops after 50 seconds
— compared to 1611 seconds needed for the FE optimization solver. ♦

Run 2 (Elliptic example). In this numerical example we consider a problem mo-
tivated by acoustic applications in vehicle simulations [9, 10, 28]. Furthermore,
this example is constructed in such a way that the exact optimal control is known.
Suppose that the interior of the car is simplified by the two-dimensional domain Ω
plotted in Figure 2. The boundary Γ = ∂Ω is split into two measurable disjunct
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Figure 2. Run 2: Interior Ω of the vehicle, where the boundary
part ΓR consists in parts 4 and 5 (left plot); impedance values
Z = Zℜ + Zℑ for Melamin with 50mm width in the frequency
range from 200 to 400Hz (right plot).

parts ΓR and ΓN . For given complex impedance Z 6= 0 (see Figure 2) the associated
sound pressure p : Ω → C is governed by the Helmholtz equation

∆p(x) + k2p(x) = ub(x) for all x = (x, y) ∈ Ω, (5.1a)

together with the boundary conditions



̺◦ω

∂p(x)

∂n
=
p(x)

Z
for all x ∈ ΓR, (5.1b)



̺◦ω

∂p(x)

∂n
= 0 for all x ∈ ΓN . (5.1c)

In (5.1a) the constant c = 343.799
[
m
s

]
denotes the sound of speed, ̺◦ = 1.19985

[
kg
m3

]

is an ambient density, f stands for the frequency, ω = 2πf is the circle frequency
and k = ω/c is the wave number. The right-hand side is a simplified model for a
source at xq = (0.21, 1.28) (e.g., a loudspeaker) with the intensity |u|, u ∈ C, and
shape function

b(x) =
1

10
exp

(

− 1

0.02

(
(x − 0.21)2 + (y − 1.28)2

)
)

for x = (x, y) ∈ Ω.

For the normal impedance boundary condition (5.1b) let  be the imaginary unit
and ∂

∂n
denote the derivative in the outward normal direction. All other parts on

the boundary are assumed to be perfectly rigid, see (5.1c). We suppose that for all
values of Z ∈ C, plotted in Figure 2, and for all f in the frequency range from 200
to 400 [Hz], problem (5.1) admits a unique solution. Due to the Fredholm theory,
[24], we can ensure existence of a solution provided k2 is not an eigenvalue of −∆
considered on Ω with Neumann and Robin boundary conditions on ΓN respectively
ΓR.

Now we define the data such that the optimal solution is known in advance. To
this aim, let u◦(f) = 2 cos(π(f−200)/50)+2 sin(π(f−200)/50) (see Figure 3) and
let p◦ = p◦(f) be the unique solution to (5.1) for the choice u = u◦(f) in (5.1a).
We set pm

i = p◦(xi), i = 1, . . . , 10, with 10 different observation points xi ∈ Ω∪ΓN ,
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Figure 3. Run 2: Input function u◦ for the frequencies from 200
to 400Hz (left plot); observation points in Ω ∪ ΓN (right plot).

1 ≤ i ≤ 10; see Figure 3. Introducing the quadratic cost functional

J(p, u) =
1

200

10∑

i=1

∣
∣p(xi) − pm

i

∣
∣
2

+
1

2

∣
∣u− u◦

∣
∣
2
, (5.2)

where un = u◦, and |u| is the absolute modulus of the convex number u, we consider
the optimal control problem

min J(p, u) subject to (p, u) solves (5.1) (5.3)

over the frequency range from 200 to 400 [Hz]. Notice that (p◦, u◦) must be the
optimal solution to (5.3). The optimality conditions to (5.3) consist of the state
equation, the adjoint system

∆λ◦(x) + k2λ◦(x) =
1

100

10∑

i=1

(pm
i − p◦(xi))δxi

(x), for all x ∈ Ω,



̺◦ω

∂λ◦(x)

∂n
= −λ◦(x)

Z
for all x ∈ ΓR,



̺◦ω

∂λ◦(x)

∂n
= 0 for all x ∈ ΓN

(5.4)

and the equation

(
u◦ − un

)
−

∫

Ω

b(x)λ◦(x) dx = 0 in C, (5.5)

where δxi
denotes the Dirac delta distribution satisfying

〈δxi
, ϕ〉 = ϕ(xi) for ϕ ∈ C(Ω ∪ ΓN ) and i = 1, . . . , 10.

Remark 5.14. The functional J contains point observations, hence the problem
– besides the fact that the state equation is of different type than in the sections
before – does formally not fit in our theory. Nevertheless, the perturbation analysis
can be extended, and the numerical results show the efficiency of our approach. ♦

The domain Ω is discretized utilizing a standard piecewise linear FE discretiza-
tion with m = 2108 degrees of freedom. To generate the snapshot ensemble we
compute the FE solution pjh to (5.1) for the frequencies f = 200, 201, . . . , 400 and
for u = 1, . Thus, we have n = 402 snapshots. Recall that also ω, k, and Z depend
on f . In the context of Section 4.2 we choose the real part yj = ℜe(pjh) ∈ H1(Ω)
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Figure 4. Run 2: Decay of the largest 40 normalized eigenvalues

λi/
∑d
i=1 λi for the real and the imaginary part of the snapshots.

of pjh, 1 ≤ j ≤ n, and compute the solution to the eigenvalue problem 4.8. For the
decay of the largest 40 eigenvalues we refer to Figure 4. Setting

Eℜe(ℓ) =

∑ℓ
i=1 λi

∑d
i=1 λi

(real part) and Eℑm(ℓ) =

∑ℓ
i=1 λi

∑d
i=1 λi

(imaginary part)

we found that Eℜe(ℓ) and Eℑm(ℓ) are approximately 1 − 4 · 10−10, i.e., very close
to one. Hence, we determine a POD basis of rank 40. By {ψi}ℓi=1 we denote the

POD basis of rank ℓ for the real part. For the imaginary part ℑm(pjh) of pjh we

proceed analogously. The obtained POD basis is denoted by {φi}ℓi=1 and the largest
ℓmax = 40 eigenvalues are shown in the right plot of Figure 4. For simplicity of the
representation, we choose the same number of POD ansatz functions for the real
and the imaginary parts which is not necessary. Now we make the POD Galerkin
ansatz

pℓ(x; f) =

ℓ∑

i=1

aiψi + biφi, ai, bi ∈ R, x ∈ Ω, 200 [Hz] ≤ f ≤ 400 [Hz]

with 3 ≤ ℓ ≤ ℓmax and derive the reduced-order model for (5.3). Then, we apply
Algorithm 2. In Figure 5 the change of the number ℓ of POD basis functions
depending on the frequencies is plotted.

200 250 300 350 400

5

10

15
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35

40

frequency

Number of POD ansatz functions

Figure 5: Change of the number ℓ of POD
basis functions.

ℓ |ūh,τ − ūℓ|C 1
σ
|ζℓ|C

15 1.765e-1 1.770e-1
20 1.709e-2 1.714e-2
25 2.054e-3 2.060e-3
30 8.634e-5 8.660e-5
35 1.751e-6 1.756e-6
40 8.555e-8 8.581e-8

Table 3: |ū − ūℓ|C and 1
σ
|ζℓ|C

for different ℓ and fixed fre-
quency f = 400 [Hz].
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Algorithm 2 Solver for (5.3) with POD a-posteriori estimator.

1: Choose ℓ = 3, ℓmax = 40, and ε = 10−3. Set flag fl = 0.
2: for i = 0 to 200 do
3: repeat
4: Set the frequency f = 200 + i and the number ℓ = max(3, ℓ− 2).
5: Calculate the solution ūℓ ∈ C to the reduced-order model for (5.3).
6: Evaluate the solution p̂ = p̂(ūℓ) to (5.1) for u = ūℓ and compute the

solution λ̂ = λ̂(ūℓ) to (5.4), where we replace p◦ by p̂.

7: Due to (5.5) set ζℓ = (ūℓ − un) −
∫

Ω
b(x)λ̂(x) dx.

8: if ‖ζℓ‖C < ε or ℓ = ℓmax then
9: Set fl = 1.

10: Return fl, ℓ and suboptimal control ūℓ and STOP.
11: else
12: Set ℓ = ℓ+ 2.
13: end if
14: until ℓ > ℓmax

15: if fl = 0 then
16: Increase ℓmax and restart the algorithm.
17: BREAK.
18: end if
19: end for

The decay of the error |u◦ − ūℓ|C and the estimator |ζℓ|C are presented in Table 3
for fixed frequency f = 400 [Hz]. It turns out that in this example the estimate is
very close to the actual error in the optimal control. For other frequencies f in the
frequency range from 200 to 400 [Hz] the convergence behavior is similar. ♦

Appendix

Proof of Lemma 2.4. Let v ∈ L2(I) be chosen arbitrarily. The claim is proven
if we show

〈
S⋆(Ξ(z1, z2) − Θ(ȳ)), v

〉

L2(I)
= 〈B⋆p̄, v〉L2(I). (A.1)

Setting w = Sv ∈ W (0, T ) we infer w(0) = 0. From (2.2), (2.6), (2.8)-(2.10) and
w(0) = 0 it follows that

〈
S⋆(Ξ(z1, z2) − Θ(ȳ)), v

〉

L2(I)

=
〈
Ξ(z1, z2) − Θ(ȳ),Sv

〉

W (0,T )′,W (0,T )
= 〈Ξ(z1, z2) − Θ(ȳ), w〉W (0,T )′,W (0,T )

= α1 〈z1 − Cȳ, Cw〉W1
+ α2 〈z2 −Dȳ(T ),Dw(T )〉W2

=

∫ T

0

−〈p̄t(t), w(t)〉V ′,V + a(p̄(t), w(t)) dt + 〈p̄(T ), w(T )〉H

=

∫ T

0

〈wt(t), p̄(t)〉V ′,V + a(w(t), p̄(t)) dt+ 〈w(0), p̄(0)〉H

=

∫ T

0

〈(Bv)(t), p̄(t)〉V ′,V dt = 〈Bv, p̄〉L2(0,T ;V ′),L2(0,T ;V ) = 〈B⋆p̄, v〉L2(I)

so that (A.1) holds. �
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Proof of Proposition 4.3. For almost all t ∈ [0, T ] let

yℓ − y(t) = yℓ(t) − Pℓy(t) + Pℓy(t) − y(t) = ϑℓ(t) + ̺ℓ(t)

where ϑℓ(t) = yℓ(t) − Pℓy(t) ∈ V ℓ and ̺ℓ(t) = Pℓy(t) − y(t). From (4.6) we have

∥
∥̺ℓ

∥
∥

2

W (0,T )
=

∫ T

0

∥
∥y(t) − Pℓy(t)

∥
∥

2

V
+

∥
∥yt(t) − Pℓyt(t)

∥
∥

2

V ′
dt

=

∞∑

i=ℓ+1

λi +
∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
.

(A.2)

Using (2.2) and (4.11) we obtain

d

dt
〈ϑℓ(t), ψ〉H + a(ϑℓ(t), ψ) = 〈yt(t) − Pℓyt(t), ψ〉V ′,V (A.3)

for all ψ ∈ V ℓ and almost all t ∈ [0, T ]. From choosing ψ = ϑℓ(t), (2.1) and Young’s
inequality we find

1

2

d

dt

∥
∥ϑℓ(t)

∥
∥

2

H
+

∥
∥ϑℓ(t)

∥
∥

2

V
≤

∥
∥yt(t) − Pℓyt(t)

∥
∥
V ′

∥
∥ϑℓ(t)

∥
∥
V

≤ 1

2

∥
∥yt(t) − Pℓyt(t)

∥
∥

2

V ′
+

1

2

∥
∥ϑℓ(t)

∥
∥

2

V

which easily gives

d

dt

∥
∥ϑℓ(t)

∥
∥

2

H
+

∥
∥ϑℓ(t)

∥
∥

2

V
≤

∥
∥yt(t) − Pℓyt(t)

∥
∥

2

V ′
(A.4)

for almost all t ∈ [0, T ]. Integrating (A.4) over the interval (0, T ), t ∈ [0, T ], and
using (4.6) we arrive at

∥
∥ϑℓ(t)

∥
∥

2

H
+

∫ t

0

∥
∥ϑℓ(s)

∥
∥

2

V
ds ≤

∥
∥ϑℓ(0)

∥
∥

2

H
+

∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
(A.5)

for almost all t ∈ [0, T ]. From ϑℓ(0) = yℓ(0)−Pℓy(0) = yℓ(0)−Pℓy0 and (A.5) we
have

∥
∥ϑℓ

∥
∥

2

L2(0,T ;V )
≤

∥
∥yℓ(0) − Pℓy0

∥
∥

2

H
+

∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
. (A.6)

Utilizing (A.3) we find

〈ϑℓt(t), ψ〉V ′,V = 〈yt(t) − Pℓyt(t), ψ〉V ′,V − a(ϑℓ(t), ψ)

for all ψ ∈ V ℓ and almost all t ∈ [0, T ]. Hence, from (2.1) and Cauchy-Schwarz
inequality we derive

∥
∥ϑℓ

∥
∥
L2(0,T ;V ′)

=

∫ T

0

sup
‖ϕ‖V =1

〈ϑℓt(t), ϕ〉V ′,V dt

≤
∫ T

0

(∥
∥yt(t) − Pℓyt(t)

∥
∥
V ′

+
∥
∥ϑℓ(t)

∥
∥
V

)

dt

≤
√
T

(∥
∥yt − Pℓyt

∥
∥
L2(0,T ;V ′)

+
∥
∥ϑℓ

∥
∥
L2(0,T ;V )

)

.
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Using (A.6) we find

∥
∥ϑℓ

∥
∥

2

L2(0,T ;V ′)
≤ T

(∥
∥yt − Pℓyt

∥
∥
L2(0,T ;V ′)

+
∥
∥ϑℓ

∥
∥
L2(0,T ;V )

)2

≤ 2T
(∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
+

∥
∥ϑℓ

∥
∥

2

L2(0,T ;V )

)

≤ 2T
(

2
∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
+

∥
∥yℓ(0) − Pℓy0

∥
∥

2

H

)

.

Hence
∥
∥ϑℓ

∥
∥

2

L2(0,T ;V ′)
≤ 4T

(∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
+

∥
∥yℓ(0) − Pℓy0

∥
∥

2

H

)

. (A.7)

Consequently, (A.2), (A.6) and (A.7) imply that

∥
∥y − yℓ

∥
∥

2

W (0,T )
≤ 2

(∥
∥ϑℓ

∥
∥

2

L2(0,T ;V )
+

∥
∥ϑℓ

∥
∥

2

L2(0,T ;V ′)
+

∥
∥̺ℓ

∥
∥

2

W (0,T )

)

= C

(
∥
∥yℓ(0) − Pℓy0

∥
∥

2

H
+

∥
∥yt − Pℓyt

∥
∥

2

L2(0,T ;V ′)
+

∞∑

i=ℓ+1

λi

)

with C = 4(2T + 1), so that the claim follows. �

Proof of Proposition 4.6. As in the proof of Proposition 4.3 we write

pℓ(t) − p(t) = pℓ(t) − Pℓp(t) + Pℓp(t) − p(t) = θℓ(t) + ρℓ(t)

for almost all t ∈ [0, T ], where θℓ(t) = pℓ(t)−Pℓp(t) ∈ V ℓ and ρℓ(t) = Pℓp(t)−p(t)
hold. From (2.6) and (4.19) we obtain

− d

dt
〈θℓ(t), ψ〉H + a(θℓ(t), ψ) = 〈C(y − yℓ)(t), Cψ〉W1

+ 〈pt(t) − Pℓpt(t), ψ〉V ′,V

for all ψ ∈ V ℓ and almost all t ∈ [0, T ]. Applying similar arguments as in the proof
of Proposition 4.3 we arrive at

∥
∥θℓ

∥
∥

2

L2(0,T ;V )
≤

∥
∥θℓ(T )

∥
∥

2

H
+ c21

∥
∥y − yℓ

∥
∥

2

L2(0,T ;H)
+

∥
∥pt − Pℓpt‖2

L2(0,T ;V ′),

where c1 = supϕ 6=0 ‖Cϕ‖W1
/‖ϕ‖L2(0,T ;H). Utilizing p(T ) = α2D⋆(z2 −Dy(T )) ∈ H

we derive

0 = 〈pℓ(T ) − α2D⋆(z2 −Dyℓ(T )), pℓ(T ) − Pℓp(T )〉H
= 〈pℓ(T ) − Pℓp(T ) + Pℓp(T )− α2D⋆(z2 −Dyℓ(T )), pℓ(T ) − Pℓp(T )〉H
=

∥
∥pℓ(T ) − Pℓp(T )

∥
∥

2

H
+ 〈Pℓp(T ) − p(T ), pℓ(T ) − Pℓp(T )〉H

+ 〈α2D⋆D(yℓ(T ) − y(T )), pℓ(T ) − Pℓp(T )〉H
whivh gives

∥
∥pℓ(T ) − Pℓp(T )

∥
∥

2

H

= 〈p(T ) − Pℓp(T ) + α2D⋆D(y(T ) − yℓ(T )), pℓ(T ) − Pℓp(T )〉H
≤

(∥
∥p(T )− Pℓp(T )

∥
∥
H

+ α2c
2
2

∥
∥y(T ) − yℓ(T )

∥
∥
H

) ∥
∥pℓ(T ) − Pℓp(T )

∥
∥
H

with c2 = supχ6=0 ‖Dχ‖W2
/‖χ‖H . Hence,

∥
∥θℓ(T )

∥
∥
H

=
∥
∥pℓ(T ) − Pℓp(T )

∥
∥
H

≤
∥
∥p(T ) − Pℓp(T )

∥
∥
H

+ α2c
2
2

∥
∥y(T ) − yℓ(T )

∥
∥
H
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Consequently, there exists a constant C > 0 such that

∥
∥θℓ

∥
∥

2

L2(0,T ;V )
≤ C

(∥
∥p(T ) − Pℓp(T )

∥
∥

2

H
+

∥
∥pt − Pℓpt‖2

L2(0,T ;V )

)

+ C
(∥
∥y(T ) − yℓ(T )

∥
∥

2

H
+

∥
∥y − yℓ

∥
∥

2

L2(0,T ;H)

)

so that (4.21) follows. By assumption, p ∈ H1(0, T ;V ) holds. Analogously to (4.14)
and (4.15) we find

lim
ℓ→∞

∥
∥p− Pℓp

∥
∥

2

W (0,T )
=

∥
∥p− Pℓp

∥
∥

2

L2(0,T ;V )
+

∥
∥pt − Pℓpt

∥
∥

2

L2(0,T ;V ′)

≤ C lim
ℓ→∞

∫ T

0

∞∑

i=ℓ+1

(∣
∣〈p(t), ψi〉V

∣
∣
2

+
∣
∣〈pt(t), ψi〉V

∣
∣
2
)

dt = 0.

From Proposition 4.4, Remark 4.5 and (4.21) we have lim
ℓ→∞

‖p−pℓ‖L2(0,T ;V ) = 0. �

Proof of Proposition 4.8. Let ū and ūℓ be the optimal solutions to (P̂) and

(P̂ℓ), respectively. From (2.7) and (4.22) we find

〈σū − B⋆p̄, ūℓ − ū〉L2(I) ≥ 0 and 〈σūℓ − B⋆p̄ℓ, ū− ūℓ〉L2(I) ≥ 0.

Adding both inequalities we deduce

〈
σ
(
ū− ūℓ

)
+ B⋆

(
p̄ℓ − p̄

)
, ūℓ − ū

〉

L2(I)
≥ 0.

Applying Lemma 2.4 and (4.20) it follows that

σ ‖ū− ūℓ‖2

L2(I) ≤
〈
B⋆

(
p̄ℓ − p̄

)
, ūℓ − ū

〉

L2(I)

=
〈
(Sℓ)⋆

(
Ξ(z1, z2) − Θ(ȳℓ)

)
− S⋆

(
Ξ(z1, z2) − Θ(ȳ)

)
, ūℓ − ū

〉

L2(I)

=
〈(

(Sℓ)⋆ − S⋆
)
Ξ(z1, z2) + S⋆Θ(ȳ) − (Sℓ)⋆Θ(ȳℓ), ūℓ − ū

〉

L2(I)
.

Recall that ȳ = ŷ0 + Sū and ȳℓ = ŷℓ0 + Sℓūℓ holds. Since Θ is a linear operator, we
obtain

〈
S⋆Θ(ȳ) − (Sℓ)⋆Θ(ȳℓ), ūℓ − ū

〉

L2(I)
=

〈
S⋆Θ(ŷ0) − (Sℓ)⋆Θ(ŷℓ0), ū

ℓ − ū
〉

L2(I)

+
〈
S⋆Θ(Sū) − (Sℓ)⋆Θ(Sℓūℓ), ūℓ − ū

〉

L2(I)
.

From

〈
S⋆Θ(Sū) − (Sℓ)⋆Θ(Sℓūℓ), ūℓ − ū

〉

L2(I)

=
〈
S⋆Θ(Sū) − (Sℓ)⋆Θ(Sℓū), ūℓ − ū

〉

L2(I)
+

〈
S⋆ℓΘ(Sℓū) − (Sℓ)⋆Θ(Sℓūℓ), ūℓ − ū

〉

L2(I)

and

〈
S⋆ℓΘ(Sℓū) − (Sℓ)⋆Θ(Sℓūℓ), ūℓ − ū

〉

L2(I)
= −

〈
Θ

(
Sℓ(ū− ūℓ)

)
, (Sℓ)⋆

(
ū− ūℓ

)〉

L2(I)

= −α1

∥
∥C(Sℓ)⋆(ū− ūℓ)

∥
∥

2

W1

− α2

∥
∥D(Sℓ)⋆(ū− ūℓ)(T )

∥
∥

2

W2

≤ 0
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we conclude that

σ ‖ū− ūℓ‖2

L2(I) ≤
〈
S⋆

(
Θ(ȳ) − Ξ(z1, z2)

)
, ūℓ − ū

〉

L2(I)

+
〈
(Sℓ)⋆

(
Ξ(z1, z2) − Θ(ŷℓ0 + Sℓū)

)
, ūℓ − ū

〉

L2(I)

=
〈
B⋆(p̄− p̂ℓ), ūℓ − ū

〉

L2(I)

≤ ‖B‖L(L2(I),L2(0,T ;V ))

∥
∥p̄− p̂ℓ

∥
∥
L2(0,T ;V )

∥
∥ū− ūℓ

∥
∥
L2(I)

,

(A.8)

where p̂ℓ solves (4.24) and ŷℓ is the solution to (4.25). Thus, (A.8) implies that

‖ū− ūℓ‖L2(I) ≤ c ‖p̄− p̂ℓ‖L2(0,T ;V ).

with the constant c = ‖B‖L(L2(I),L2(0,T ;V ))/σ. �
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