
On the computation of invariant measures in random
dynamical systems∗

Peter Imkeller
Institut für Mathematik

Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin
Germany

Peter Kloeden
Fachbereich Mathematik

J-W von Goethe-Universität
Postfach 11 19 32

60054 Frankfurt am Main
Germany

May 27, 2003

Abstract

Invariant measures of dynamical systems generated e. g. by difference equa-
tions can be computed by discretizing the originally continuum state space, and
replacing the action of the generator by the transition mechanism of a Markov
chain. In fact they are approximated by stationary vectors of these Markov
chains. Here we extend this well known approximation result and the underlying
algorithm to the setting of random dynamical systems, i.e. dynamical systems
on the skew product of a probability space carrying the underlying stationary
stochasticity and the state space, a particular non-autonomous framework. The
systems are generated by difference equations driven by stationary random pro-
cesses modelled on a metric dynamical system. The approximation algorithm
involves spatial discretizations and the definition of appropriate random Markov
chains with stationary vectors converging to the random invariant measure of
the system.
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1 Introduction

Computational methods are a basic tool in the investigation of dynamical systems, both
to explore what may happen and to approximate specific dynamical features such as
limit cycles or attractors and, more generally, invariant measures; see, e.g., [5, 20, 23].

Given the intrinsic discreteness of the arithmetic field in a computer, such calcula-
tions inevitably lead to the spatial discretization of the dynamical system, although
this is not always taken into account. However, even simple dynamical structures such
as equilibria may not be replicated under a spatial discretization or spurious dynamics
may be introduced; see, e.g., the example of the Hénon attractor under spatial dis-
cretization in [10]. These specific considerations as well as many others indicate that
invariant measures are often the more natural and technically robust dynamical feature
to approximate.

Invariant measures are a central concept in the theory of dynamical systems, both
deterministic and random, and their investigation has been closely intertwined with
developments in ergodic theory, see, e.g., [9, 18]. Just how one can approximate or
compute an invariant measure of deterministic systems has mathematical roots in er-
godic theory oriented papers from at least the 1970s, e.g., [22], or [15] dealing with the
approximation of shift invariant measures by invariant probabilities written on finite
alphabets in the context of Krieger’s [19] finite generator theorem (see also Denker
[7]). A variety of methods have since been proposed and implemented for computing
invariant measures, see, e.g., [5, 6, 11, 17] and the references cited therein.

Thinking in terms of spatial discretization, though this may not be per se the
aim of a particular investigation, one approximates a mapping on a continuum with a
transition matrix on the discretized state space. Since the original generator may not
map the discretized state space onto itself, one may have to choose randomly between
several potential nearest grid points. In this way one approximates the original deter-
ministic dynamical system given essentially by a difference equation on the continuum
state space by a Markov chain moving between finitely many states obtained from a
spatial discretization, even though the original system is purely deterministic. This
idea was used by Diamond et al [12] to construct sequences of stationary probability
vectors of such Markov chains to approximate an invariant measure of a deterministic
discrete time dynamical system. In fact, they showed that the measures which could be
approximated in this way were precisely the semi-invariant measures of the dynamical
system, these coinciding with the invariant measures if the mapping generating the
system is continuous.

Our aim here is to establish the analogous result for discrete time random dynamical
systems [1], generated by a difference equation on a compact state space X which is
driven by a random process modelled as a metric dynamical system, i.e. a measurable
mapping θ defined on a probability space (Ω,F ,P). θ is P-invariant. We further as-
sume it to be invertible and continuous in both time directions. Although the resulting
skew product system can be considered as a measurable autonomous semi-dynamical
system, the results in [12] cannot be applied directly since the driving system compo-
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nent remains unchanged and is not subjected to spatial discretization. However, the
general thrust of the proof in [12] does carry over in the process of spatial discretiza-
tion, i.e., introduction of approximating Markov chains on the state space X of the
random mapping. Now our objects of interest are random measures, random Markov
chains and random probability vectors, all evolving under the influence of the driving
metric dynamical system. In the end our results seem just to be “ω”-wise counterparts
of those in the deterministic case, and essentially we extend the deterministic Markov
chain approximation fibre by fibre to a trivial fibred system in the sense of [9]. To justify
this, careful measure theoretic arguments are needed throughout. For this reason, we
follow closely the structure of the proof in [12].

Further extensions of our results under weaker assumptions than the ones we employ
are easily conceivable. Firstly, one can think of relaxing the structure hypothesis of our
system. Instead of considering skew products living on the product of an underlying
probability space Ω and a fixed state space X, one could pass to fibred systems (see
[9]) in which instead of being identical to a fixed X the fibres may depend on ω ∈ Ω.
This is the setting of the random extension of the thermodynamic formalism of Ruelle
[21], in the framework of which Markovian transfer operators may be analyzed using
methods of ergodic and information theory. See the thesis of Bogenschütz [2] and the
subsequent papers [3], [4]. These transfer operators also play a crucial role if another of
the properties we use here is relaxed: the invertibility of the transformation θ. In case of
finite-to-one expanding maps θ for example Ruelle’s theorem for transfer operators, via
the Perron-Frobenius theory, provides positive eigenfunctions and dually, probability
eigenmeasures with common positive eigenvalues. In this and generalized contexts,
variational principles for pressure functionals yield relative equilibrium measures which
may replace the invariant Markov measures in the fibres by which in our framework
we are able to approximate, and which in a more generalized setting might not exist.
For concepts and results along these lines see [8].

Here is an outline of the organization of the paper. We describe and formulate
our problem in the next section. In section 3 we introduce and obtain results for
“intervals” of random stochastic matrices, which we need in the proof of our main
Theorem. Section 4 presents a number of key properties of the weak topology of
random measures. They are helpful in the proof of our main result (Theorem 5.3),
which we state and prove in section 5.

2 Formulation of the problem

The invariant measures we shall compute are associated with random dynamical sys-
tems. These objects are thought of being generated by random difference equations
(RDE) of the form

xn+1(ω) = f(θnω, xn(ω)), n ∈ Z+, ω ∈ Ω, (1)

where (Ω,F ,P) is a probability space, with respect to which θ : Ω → Ω is a bi-
measurable P−invariant mapping with inverse θ−1, and

f : Ω×X → X
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is a measurable mapping on the compact metric space (X, d). In terms of Arnold [1] we
are therefore facing a discrete time random dynamical system (θ, φ) defined over the
metric dynamical system (Ω,F ,P, θ) if we define recursively

φ(ω, 0)x = x,

φ(ω, n + 1)x = f(θnω, φ(θnω, x)),

for x ∈ X,ω ∈ Ω, n ∈ Z+. π = (θ, φ) is also a skew product flow over Ω × X. The
random mapping f induces an operator f ∗ on the set of random probability measures
on F⊗B(X), where B(X) is the σ-algebra of Borel subsets of X. For such a probability
measure µ it is defined by

f ∗µ(C) = µ
(
F−1(C)

)
, C ∈ F ⊗ B(X) (2)

where F : Ω×X → Ω×X is defined by F (ω, x) = (θω, f(ω, x)). The disintegrations
of µ are given by the family of random probabilities µω on B(X) satisfying

µ(C) =
∫

Ω
µω(Cω)dP(ω), C ∈ F ⊗ B(X).

In terms of the disintegrations µω, f ∗µω, ω ∈ Ω, of the two measures the property (2)
is expressed by

(f ∗µ)θω(B) = µω(f−1(ω, B)), for B ∈ B(X)

for P−a.e. ω ∈ Ω, or, more stringently, due to the invariance of θ by

(f ∗µ)θn+1ω(B) = µθnω(f−1(θnω, B)), for all B ∈ B(X), n ∈ N,

for P−a.e. ω ∈ Ω. A random probability measure µ on F ⊗ B(X) is called invariant
measure for the random dynamical system π if f ∗µ = µ, in other terms if

µ(π−1(C)) = µ(C), C ∈ F ⊗ B(X).

We consider an invariant measure µ of π. We first remark that the invariance property
has a popular counterpart in terms of the disintegrations µω, ω ∈ Ω, of µ. They have
to satisfy the invariance property

µω(φ−1(ω, 1)(B)) = µω(f(ω, ·)−1(B)) = µθω(B), B ∈ B(X),

for P−a.e. ω ∈ Ω. Note that this is equivalent to the property

µω(f(θnω, ·)−1(B)) = µθn+1ω(B), B ∈ B(X), n ∈ N,

for P−a.e. ω ∈ Ω.
To compute a fixed invariant measure µ of π, let us consider a finite discretization

sequence (XM)M∈N of X, given by

XM = {x(M)
1 , · · · , x(M)

M } ⊂ X,
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with maximal step size
hM = sup

x∈X
d(x,XM),

with
d(x,A) = inf

y∈A
d(x, y)

for A ⊂ X, M ∈ N. We shall actually approximate µ by means of invariant stochastic
vectors associated with random Markov chains based on transitions between the states
given by the discretizations XM . Hence we are dealing with random M ×M matrices,
i. e. measurable mappings

pM : Ω → SM ,

where SM denotes the set of M × M nonrandom stochastic matrices satisfying the
property

pn
M(θmω)pm

M(ω) = pm+n
M (ω), ω ∈ Ω, m, n ∈ Z+, (3)

where, for convenience, matrices in power 0 correspond to the unit matrix. Let ΣM ⊂
RM the subset of all M−dimensional stochastic vectors, i.e. non-negative vectors
whose components sum up to 1. The discrete counterpart of our invariant measure is
given by a measurable mapping

p : Ω → ΣM

which will be called pM−invariant provided it satisfies the equation

pM(ω)p(ω) = p(θω), for P− a.e. ω ∈ Ω.

Then the basic problem we face in this paper can be formulated as follows.

Suppose the random cocycle generated by f possesses an invariant measure µ. Does
there exist a sequence of random Markov chains (pM)M∈N converging to f as N →
∞ and hM → 0 such that pM possesses a random invariant probability vector pM

converging to µ as N →∞?

Of course, to tackle this problem, we first have to say what we mean by the two
types of convergences appearing in the statement. Defining for fixed ω ∈ Ω the distance
between the Markov chain pM(ω) and the mapping f(ω, ·) we recall that we have to
imagine pM(ω) as a randomization of f(ω, ·) the Markovian character of which relates
to the flow property of the dynamical system generated by f. To measure the distance
between random probability measures on F ⊗ B(X) we use the Prokhorov distance ρ
defined for probability measures on our compact space (X, d) (usually defined, more
generally, on a Polish space)

ρ(µ1, µ2) = inf{ε > 0 : µ1(Gε(B)) ≤ µ2(B)− ε for all B ∈ B(X)}

(see Ethier and Kurtz [13]), where Gε(S) stands for the ε−neighborhood of some set
S ⊂ X, i.e.

Gε(S) = ∪x∈SGε(x),
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and Gε(x) is the ball of radius ε centered at x ∈ X. So for random probability measures
µ, ν on F ⊗ B(X) with ω−disintegrations µ·, ν· we define

R(µ, ν) = E (ρ(µ·, ν·)) =
∫

Ω
ρ (µω, νω) P(dω) (4)

In the associated topology, due to the invariance of θ, a sequence of random probability
measures (µ(k))k∈N converges to µ iff the sequence of random variables (ρ(µ

(k)
θn·, µθn·))k∈N

converges to 0 in L1(Ω,F ,P) for all n ∈ Z. In a similar way we define the distance of
a random Markov chain p : Ω → SM and the generator f of our random dynamical
system. We let

D(p, f) =
M∑

i,j=1

E
(
pij(·)distX×X((x

(M)
i , x

(M)
j ), Grf(·, ·))

)
, (5)

where the distance on the random graph is given by

distX×X((x, y), Grf) = inf
z∈X

max{d(x, z), d(y, f(·, z))}, x, y ∈ X,

and also write D(p(ω), f(ω, ·)) to measure the distance between matrices and mappings
for fixed ω ∈ Ω, by erasing the expectation from the above formula. With respect to
this notion, a sequence of Markov chains (p(k))k∈N converges to f iff for all n ∈ Z we
have (p(k)(θn·))k∈N converges to f(θn·, ·) in L1(Ω,F ,P), and the ω−wise convergence
is in the sense of [12]. In this case we call the sequence of random Markov chains ap-
proximating sequence for the random dynamical system φ. We shall often have to state
equations or inequalities between random variables or vectors. If not made precise,
this is always tacitly assumed to mean P−a.s. equality or inequality.

Remark: Instead of random difference equations of the form (1) one is often inter-
ested in situations where domain and image spaces of the mapping f(ω, ·) also depend
on ω, that is, with fibred spaces Xω such that f(ω, ·) : Xω → Xθω for each ω ∈ Ω, see,
e.g., [2, 9, 16]. In our context the measure µ would now be defined on ∪ω∈Ω ({ω} ×Xω)
and the disintegrated measures µω on Xω. In addition, we would need grids XM(ω)

= {x(M)
1 (ω), . . . , x

(M)
1 (ω)} of the same finite cardinality M and with a common deter-

ministic upper bound hM on the maximal stepsizes; typically the fibres Xω will be
subspaces of a common metric space X and we could use a common determinsitic grid
XM = {x(M)

1 , . . . , x
(M)
1 } on X with transition probability pij(ω) set to zero if either

x
(M)
i /∈ Xω or x

(M)
j /∈ Xθω. However, we will restrict our proofs here to the case for-

mulated above with a common state space X in order not to further complicate an
already technically complicated situation. For the same reasons, we will not consider
the extension to case of a noninvertible θ here, referring the reader to [9] for hints as
to how this could be done.

3 Intervals of random stochastic matrices

Before discussing the question of approximation of invariant measures just sketched
we have to treat some preliminaries on the ordering of random stochastic matrices.
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We shall introduce an ordering on the set M of real M × M matrices A = (aij) =
(aij)i≤i,j≤M with non-negative entries. According to the natural partial ordering on
M, we have

A ≤ B iff aij ≤ bij for 1 ≤ i, j ≤ M,

for A,B ∈M. Denote by M− the set of all matrices in M for which the column sums
do not exceed 1, i.e. A = (aij) such that

M∑

i=1

aij ≤ 1, 1 ≤ j ≤ M,

and by M+ accordingly those characterized by the condition

M∑

i=1

aij ≥ 1, 1 ≤ j ≤ M.

Then the stochastic M×M matrices SM are given byM−∩M+. For A ∈M−, B ∈M+

we define
ÂB = {C ∈ SM : A ≤ C ≤ B}.

Recall the simplex of stochastic M−vectors is denoted by ΣM .

The matrices we deal with are random, i.e. measurable maps A : Ω → M. For
random matrices A,B we write

A ≤ B iff A(ω) ≤ B(ω) for P− a.e. ω ∈ Ω.

Note that by the P−invariance of θ, we have A ≤ B iff the family of inequalities

A(θn·) ≤ B(θn·), n ∈ Z,

is valid P−a.s. This implication of ordering for the entire translates of the random
matrices will be tacitly taken for granted in all that follows. In this sense we may
define for random matrices A with values (P−a.s.) in M− and B with values in M+

the set

ÂB = {C : C random stochastic matrix such that A ≤ C ≤ B}.
Sets of this type are called random interval stochastic matrices with boundaries A and
B. For any random (P−a.s.) probability vector p ∈ ΣM and for any random interval
stochastic matrix ÂB we let ÂBp be the set of random vectors

{Cp : C ∈ ÂB}.
These sets which have some relevance for numerical studies of invariant measures for
chaotic dynamical systems (see Diamond et al. [11]) are described by the following
theorem. To formulate it, for a pair of (random) matrices A,B with values in M−

resp. M+, and any subset I of {1, · · · ,M} we define the (random) (upper) (j,I)-flow
by

Hj(I, ÂB) = min{∑
i∈I

bij, 1−
∑

i6∈I

aij}.
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Theorem 3.1 For a random vector p ∈ ΣM the set ÂBp is described by the set of all
random vectors q ∈ ΣM satisfying

M∑

j=1

pjHj(I, ÂB) ≥ ∑

i∈I

qi(θ·) for all I ⊂ {1, · · · ,M}.

Proof:
For p fixed, we let Q(p) be the set of random matrices q ∈ ΣM satisfying

M∑

j=1

pjHj(I, ÂB) ≥ ∑

i∈I

qi(θ·) for all I ⊂ {1, · · · , M}.

In these terms, we have to prove that Q(p) = ÂBp.
Step 1. Here we show the inclusion ÂBp ∩ ΣM ⊂ Q(p). Let q ∈ ÂBp ∩ ΣM . Then

there is a random matrix C ∈ ÂB such that Cp = q(θ·). This means that for any
I ⊂ {1, · · · ,M} we have

∑

i∈I

M∑

j=1

cijpj =
∑

i∈I

qi(θ·). (6)

By definition of the ordering, we moreover have for any 1 ≤ j ≤ M, I ⊂ {1, · · · , M}
∑

i∈I

aij ≤
∑

i∈I

cij ≤
∑

i∈I

bij. (7)

This implies the inequality

∑

i∈I

cij ≤ min{∑
i∈I

bij, 1−
∑

i 6∈I

aij} = Hj(I, ÂB).

Hence, (6) and (7) together imply q ∈ Q(p).
Step 2. Here we show that Q(p) ⊂ ÂBp ∩ ΣM . For this purpose, fix q ∈ Q(p). For

all I ⊂ {1, · · · ,M} we then have

M∑

j=1

pjHj(I, ÂB) ≥ ∑

i∈I

qi(θ·). (8)

We have to prove the existence of a random matrix C ∈ ÂB satisfying Cp = q(θ·). For
each individual ω ∈ Ω the existence of an appropriate matrix C(ω) is guaranteed by
the deterministic result from Diamond et al. [12]. The problem is the measurability
of the dependence on ω. This will be established by discretizing the problem in the
following way. For each k ∈ N, let us choose partitions (Ak

n)n∈N of ΣM and (Bk
n)n∈N

of SM into sets of diameter at most 1
k

with respect to the Euclidean distances on RM

and RM×M . Assume in addition that the partition sequences are nested in k, i.e. each
set of the sequence of degree k + 1 is contained in a set of the sequence of degree k.
For n,m, r, s ∈ N, define

Dk
nmrs = {ω ∈ Ω : A(ω) ∈ Bk

n, B(ω) ∈ Bk
m, p(ω) ∈ Ak

r , q(θω) ∈ Ak
s}.
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Obviously, this yields a measurable partition, i.e. a family of pairwise disjoint measur-
able sets for which

∪n,m,r,s∈NDk
nmrs = Ω

for any k ∈ N. Next, for each k, n, m, r, s ∈ N for which this is possible, choose

ωk
nmrs ∈ Dk

nmrs and, using the deterministic result, choose Ck
nmrs ∈ ̂A(ωk

nmrs)B(ωk
nmrs)

such that
Ck

nmrs p(ωk
nmrs) = q(θωk

nmrs).

For each k ∈ N, we set
Ck =

∑
n,m,r,s∈ n

Ck
nmrs1Dk

nmrs
,

and thus obtain a sequence of SM−valued random variables for which by definition

|Ckp− q(θ·)| ≤ c

k

with a constant c > 0, which is bounded in L0(Ω,F ,P), and at most a distance c
k

from

the interval stochastic matrix ÂB. By boundedness, Föllmer and Schied [14], p. 37,
allows us to choose a strictly increasing sequence (σk)k∈N of random integers such that
the sequence (Cσk)k∈N converges P−a.s. to a random variable C with values in SM .
This random variable obviously takes P−a.s. values in ÂB, and fulfills the desired
equation

Cp = q(θ·).
This completes the proof. ¦

We call a random vector p with values in ΣM semi-invariant for the random interval
stochastic matrix ÂB if for each I ⊂ {1, · · · , M} we have

M∑

j=1

pjHj(I, ÂB) ≥ ∑

i∈I

pi(θ·).

And finally, for any stochastic matrix C we denote by Fix(C) the set of all random
vectors x ∈ ΣM for which Cx = x(θ·). In these terms, we obtain the following corollary
which will be important below.

Corollary 3.1 The random set

⋃

C∈ÂB

Fix(C)

consists of all random semi-invariant stochastic vectors in the random interval stochas-
tic matrix ÂB.
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4 Some results on the weak convergence of random

measures

Another short section with preliminaries on the weak topology for random invariant
measures is required. We consider the Hausdorff semi-distance between A,B ∈ B(X)
given by

χ̂(A,B) = inf{ε > 0 : A ⊂ Gε(B)},
and define the Hausdorff distance between A1, A2 ∈ B(X) as

χ(A1, A2) = max{χ̂(A1, A2), χ̂(A2, A1)}.
Let us first recall some basic facts concerning the weak topology for probability mea-
sures on metric spaces.

Lemma 4.1 For probability measures µ1, µ2, ν1, ν2 on B(X) and for λ ∈ [0, 1] we have

ρ(λµ1 + (1− λ)µ2, λν1 + (1− λ)ν2) ≤ max{ρ(µ1, ν1), ρ(µ2, ν2)}. (9)

The straightforward proof is omitted.

Lemma 4.2 Let the sequence (µ(n))n∈N of random probability measures converge to
the random probability measure µ. Moreover, suppose that the sequence of Borel sets
(Bk)k∈N converges in the Hausdorff distance to the closed set B. Then we have for
P−a.e. ω ∈ Ω

lim sup
k→∞

µ
(k)
θnω(Bk)) ≤ µθnω(B), n ∈ N.

Proof:
By definition, R(µ(k), µ) → 0 as k → ∞, hence also ρ(µ

(k)
θn·, µθn·) → 0 for all n ∈ N

P−a.s. as k →∞. Pick ω from a set of probability 1 on which this convergence holds
true for the ω−sections of the measures, and pick n ∈ N. Then for any ε > 0 the
sequence (Bk)k∈N is absorbed by the open set Gε(B), and therefore we have

µθnω(Gε(B)) ≥ lim sup
k→∞

µ
(k)
θnω(Bk)− ε.

Hence by the outer regularity of µθnω and due to S = ∩ε>0Gε(S), we obtain

µθnω(B) ≥ lim sup
k→∞

µ
(k)
θnω(Bk)− ε,

ε being arbitrary, the desired inequality follows. ¦

Now let Gr(f ∗) denote the weak closure of the graph Gr(f ∗) with respect to the
topology induced by R on the space F ⊗ B(X)×F ⊗ B(X).

Lemma 4.3 Let (µ, ν) ∈ Gr(f ∗). Then for P−a.e. ω ∈ Ω we have

νθω(B) ≤ µω(f−1(B)), B ∈ B(X).
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Proof:
Choose sequences of random probability measures µ(n), ν(n), n ∈ N, such that

lim
n→∞R(µ(n), µ) = 0, lim

n→∞R(ν(n), ν) = 0, (10)

and
ν(n) = f ∗µ(n), n ∈ N. (11)

In terms of the factorizations this means for P−a.e. ω ∈ Ω

lim
n→∞ ρ(µ(n)

ω , µω) = 0, lim
n→∞ ρ(ν

(n)
θω , νθω) = 0, (12)

and
ν

(n)
θω = µω(f−1(ω, ·)), n ∈ N. (13)

Pick ω from a set of probability 1 for which (12) and (13) hold. Using the Portmanteau
theorem, we deduce that for any m ∈ N there is m ≤ n(m) ∈ N such that for n ≥ n(m)
we have

νθω(B) ≤ ν
(n)
θω (G 1

m
(B)) +

1

m
, B ∈ B(X), (14)

hence

νθω(B) ≤ µ(n)
ω (f−1(ω, G 1

m
(B))) +

1

m
, B ∈ B(X). (15)

Letting m →∞, we find

νθω(B) ≤ lim sup
m→∞

µ(n(m))
ω (f−1(ω,G 1

m
(B))), B ∈ B(X). (16)

But
lim

m→∞χ(f−1(ω, G 1
m

(B)), f−1(ω, B)) = 0. (17)

Now we apply Lemma 4.2, which is justified due to (16), and (17) to obtain

νθω(B) ≤ µω(f−1(ω,B)), B ∈ B(X).

This completes the proof. ¦

Finally, let XM be a finite subset of X, and consider random Markov chains p on
XM as explained above. For any random probability measure µ on the product of F
and the power set of XM we define

pµi(θ·) =
M∑

j=1

pijµj.

In particular, for the Dirac measure δk at k we obtain

(pδk)i(θ·) = pki, 1 ≤ k ≤ M.

For a set Q of pairs of random probability measures on Ω×X and another pair (µ, ν)
we define

ρ((µ, ν), Q) = inf
(µ′,ν′)∈Q

max{ρ(µ, µ′), ρ(ν, ν ′)}.
With these preliminaries, we have the following inequality.
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Lemma 4.4 Let p be a random Markov chain. For any 1 ≤ k ≤ M we have

ρ((δk, pδk),Gr(f ∗)) ≤ [D(p, f)]
1
2 P− a.s.

Proof:
Fix ω ∈ Ω such that D(p(ω), f(ω, ·)) < ∞. Let γ be a real number such that γ >

[D(p(ω), f(ω, ·)] 1
2 . Our task is to construct a measure µω on B(X) such that

ρ(µ, δk) ≤ γ, (18)

and
ρ(f(ω, ·)∗(µω), p(ω)δk) ≤ γ. (19)

This being granted we may finally construct a measurable version of ω 7→ µω in a way
similar to step 2 of the proof of Theorem 3.1. Let

C(k) = {1 ≤ i ≤ M : distX×X((k, i), Gr(f(ω, ·)) ≥ γ}.

Then Chebyshev’s inequality gives for 1 ≤ k ≤ M

p(ω)δk(C(k)) ≤ γ. (20)

Consider the map Φ : {1, · · · ,M} → X which satisfies Φ(i) = k if i ∈ C(k), and

d(Φ(i), k) ≤ γ and d(f(ω, Φ(i)), i) ≤ γ.

Then by definition for all 1 ≤ i ≤ M

d(Φ(i), k) ≤ γ. (21)

We now define

µθω =
M∑

i=1

p(ω)δk({i})δΦ(i).

Then (18) is a consequence of (21), whereas (19) follows from (20). ¦

Lemma 4.5 Let µ be a random M−vector. Then we have P−a.s.

ρ((µ, (pµ)θ·),Gr(f ∗)) ≤ [D(p, f)]
1
2 .

Proof:
This is a simple consequence of Lemma 4.1, Lemma 4.4 and the linearity of f ∗, with
arguments for fixed ω in a set of measure 1. ¦
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5 Semi-invariant and approachable measures

We now fix a random mapping f generating the random dynamical system φ. We call
a probability measure µ on F ⊗B(XMk

) approachable if there exists an approximating
sequence (p(k))k∈N of random Markov chains for φ and a sequence of random measures
µ(k) on F ⊗ B(XMk

) invariant for p(k) such that R(µ(k), µ) → 0. Speaking about ap-
proximating chains in the sequel, we shall always suppose that p(k) is associated with a
discretization XMk

of X of maximal step size hMk
and we suppose hMk

→ 0 as k →∞.

Our aim is to show that any invariant measure of φ is approachable. As was observed
in [12] in the deterministic setting, approachability is equivalent to a notion of semi-
invariance which is more general than invariance. We will extend this notion to the
setting of random measures, and prove that it is equivalent to approachability in the
sense above.

For a mapping g : X → X let Gr(g) be the closure of the set Gr(g). For any set
B ∈ B(X) take g−1(B) to be defined by

g−1(B) = {x ∈ X : there is y ∈ B such that (x, y) ∈ Gr(g)}.

We call a random probability measure µ with disintegration µ· π−semi-invariant if
P−a.s. the following statement holds:

µθ·(B) ≤ µ·(f−1(·, B))

for all B ∈ B(X). (Recall that π is the skew product flow generated by the random dif-
ference equation 1). Via a standard measure theoretic argument involving the unique-
ness of measures defined on a countable generator which is stable for intersections, this
statement is equivalent with

µθn+1·(B) ≤ µθn·(f−1(·, B)) for any B ∈ B(X), n ∈ Z,

P−a.s. Of course, every invariant measure for π is π−semi-invariant.

5.1 Properties of semi-invariant measures

We shall now study the property of semi-invariance more closely. We first show that it
is genuine to non-continuous generators f . Indeed, if for ω ∈ Ω, f(ω, ·) is continuous,
then any semi-invariant measure is invariant.

Theorem 5.1 Suppose that µ is π−semi-invariant, and that for P−a.e. ω ∈ Ω the
mapping f(ω, ·) is continuous µω−a.e. in X. Then µ is π−invariant.

Proof:
Suppose that there exists a set of positive measure C such that for ω ∈ C the inequality

µθn+1ω(B) ≥ µθnω(f−1(θnω,B))

13



is not valid for all n ∈ N, B ∈ B(X). By eventually removing a set of measure 0, we
may assume that for any ω ∈ C the mappings f(θnω, ·) are continuous µθnω−a.e., say,
outside a null set Nθnω, and that

µθn+1ω(B) ≤ µθnω(f−1(θnω,B)), n ∈ N, B ∈ B(X). (22)

Choose ω ∈ C, to find n ∈ N and B ∈ B(X) for which we have

µθn+1ω(B) < µθnω(f−1(θnω, B)).

To abbreviate, write

νn+1 = µθn+1ω, νn = µθnω, gn = f(θnω, ·).

Choose a closed set F such that

B ∩ F = ∅ and νn+1(F ) + νn(g−1
n (B)) > 1. (23)

The first part of (23) implies that

g−1
n (B) ∩ g−1

n (F ) ⊂ D(gn), (24)

where D(gn) denotes the set of discontinuity points of gn. By νn−a.e. continuity of gn,
we get

νn(gn
−1(B) ∩ g−1

n (F )) = 0.

By (22), we have on the other hand νn(g−1
n (C)) ≥ νn(C). So the second part of (23)

implies
νn(g−1

n (B) ∪ g−1
n (C)) = νn(g−1

n (B)) + νn(g−1
n (C)) > 1.

But this is not possible because νn is a probability measure. ¦

If the random generator f is discontinuous on sets of positive µω−measure, for a
relevant set of ω, semi-invariant measures are more significant than invariant ones.
For example, the set of semi-invariant measures is much more robust with respect to
perturbations of f.

Let us next define a multi-valued operator on the space of random probability mea-
sures on F ⊗ B(X). For a random probability measure µ we set

F ∗µ = {ν : ν random probability measure, νθn+1ω(B) ≤ µθnω(f−1(θnω, B))

for all B ∈ B(X), n ∈ Z,P− a.a ω ∈ Ω}.

Moreover, denote by f ∗ the (possibly also multi-valued) weak closure of the operator
f ∗, i.e. its closure with respect to the metric R. For a random probability measure µ
the set f ∗µ is just given by the set of all weak limits of sequences (f ∗µ(n))n∈N for which
the sequence (µ(n))n∈N converges in the R−metric to µ.

Theorem 5.2 The operators F ∗ and f ∗ coincide.

14



Proof:
We have to prove that

Gr(f ∗) = Gr(F ∗). (25)

From Lemma (4.3) we have
Gr(f ∗) ⊂ Gr(F ∗). (26)

To prove the reverse inclusion, we introduce the multi-valued operator G∗ which maps
random probability measures µ to the collection of weak limits of sequences of the type
(pMk

µ(k))k∈N with an approximating sequence (pMk
)k∈N of random Markov chains for f ,

defined as random Mk×Mk−matrices, and a sequence (µ(k))k∈N of random Mk−vectors
converging weakly to µ. By virtue of Lemma 4.5, we have for P−a.e. ω ∈ Ω

Gr(G∗
ω) ⊂ Gr(f ∗ω). (27)

Due to dominated convergence, (27) implies

Gr(G∗) ⊂ Gr(f ∗). (28)

To obtain the reverse inclusion, it therefore remains to see that

Gr(G∗) ⊂ Gr(F ∗). (29)

This part is almost identical to the second part of the proof of the subsequent main
result. For details we refer to that proof. ¦

5.2 Semi-invariant measures are approachable

We are ready to state the main result of this paper.

Theorem 5.3 A probability measure µ on Ω×X is π−approachable through a sequence
of random Markov chains if and only if it is π−semi-invariant.

Proof:
The proof consists of two steps. In the first one, we shall show that any approachable
measure is semi-invariant. In the more complicated second step, we shall show that
every semi-invariant measure is approachable. We recall that inequalities between
random variables are in fact P−a.s. inequalities.

Step 1: Fix a random probability measure µ which is approachable. We shall prove
that for P−a.e. ω ∈ Ω the inequality

µθω(B) ≤ µω(f−1(ω, B)), B ∈ B(X)

holds true. By applying Lemma 4.3, we reduce this statement to the following state-
ment being true for P−a.e. ω ∈ Ω

(µω, µθω) ∈ Gr(f ∗)(ω, ·). (30)

15



Now choose an approximating sequence (p(k))k∈N of Markov chains and a sequence of
random measures (µ(k))k∈N such that µ(k) is invariant for p(k) for all k ∈ N and such
that R(µ(k), µ) → 0, hence ρ(µ(k)

ω , µω) → 0 for P−a.e. ω ∈ Ω. Now note that for P−a.e.
ω ∈ Ω we have p(k)(ω)µ(k)

ω = µθω, k ∈ N. Hence Lemma 4.5 yields for P−a.e. ω ∈ Ω

ρ((µ
(k)
θω , µ(k)

ω ), Gr(f ∗)ω) = ρ((µ
(k)
θω , (p(k)µ(k))ω), Gr(f ∗)ω) ≤ [D(p(k)(ω), f(ω, ·))] 1

2 . (31)

Since (p(k))k∈N is approximating, we deduce

ρ((µθω, µω), Gr(f ∗)) = 0, (32)

which implies (30).

Step 2: Assume now that the random probability measure µ is semi-invariant, that
is for P−a.e. ω ∈ Ω the family of inequalities

µθω(B) ≤ µω(f−1(ω, B)), B ∈ B(X) (33)

is satisfied. Fix k ∈ N. Then approachability will be a consequence of the following
Lemma. Once this Lemma is proved, Step 2 will be accomplished and therefore the
proof of the Theorem finished.

Lemma 5.1 Let γ > 1. There exists a random Markov chain p(k) and a random prob-
ability measure µ(k) on XMk

invariant for p(k) and such that

D(p(k), f) ≤ γhMk
, (34)

R(µ(k), µ) ≤ hMk
. (35)

Proof:
We first construct the measure µ(k). To this end, abbreviate d = Mk, and enumerate
XMk

by x1, · · · , xd. Let (U(i) : 1 ≤ i ≤ d) be a partition of X into Borel sets satisfying

(P1) any element xi ∈ XMk
belongs only to the set U(i), for all 1 ≤ i ≤ d,

(P2) U(i) ⊂ {x ∈ X : d(x, xi) ≤ hMk
} for all 1 ≤ i ≤ d.

(36)

Now define
µ(k)(ω)(i) = µ(ω, U(i)), 1 ≤ i ≤ d. (37)

Evidently, the random vector µ(k) is a probability vector. If we interpret this vector as
a random linear combination of Dirac measures charging the points of XMk

to measure
distances between µ(k) and µ, we have by construction

R(µ(k), µ) ≤ hMk
.

It remains to construct the random chain p(k) for which µ(k) is invariant and which
satisfies (34). In fact we shall construct a chain which does better than just satisfy
(34). Let Ck(γ) be the collection of all random d× d−matrices p satisfying

pij = 0 if dist((xi, xj), Gr(f)) > γhMk
.

16



Note that p ∈ Ck(γ) implies (34). We therefore have to construct a random chain
p(k) ∈ Ck(γ) with invariant random vector µ(k). At this point random interval stochastic
matrices enter the game. It is evident that

Ck(γ) = ÂB, (38)

where A = 0 and B is the random d× d−matrix defined by

bij(ω) =

{
1 if dist((xi, xj), Gr(f(ω, ·)) ≤ γhMk

,
0 otherwise.

(39)

According to Theorem 3.1 and its Corollary, we have to show that µ(k) is a semi-
invariant random vector for the random interval stochastic matrix ÂB. This means
that for any I ⊂ {1, · · · , d} we have to establish

d∑

j=1

µ(k)(j)Hj(I, ÂB) ≥ ∑

j∈I

µ(k)(j). (40)

In our particular case, the upper (j, I)−flow Hj is given by the simple relationship

Hj(I, ÂB) =

{
1 if there is i ∈ I such that bij = 1,
0 otherwise.

(41)

By definition of the bij and (41), the inequality to establish can be rephrased in the
form ∑

j∈I

µ
(k)
θ· (j) ≤ ∑

j∈J(I)

µ(k)(j), (42)

where

J(I) = {l : 1 ≤ j ≤ d, there is i ∈ I such that dist((xi, xj), Gr(f)) ≤ γhk}.
The measurability of the random integer set J(I) is due to the measurability of f.
Recalling the definition of µ(k), the inequality (42) takes the form

µθ·(∪i∈IU(i)) =
∑

i∈I

µ·(U(i)) ≤ ∑

j∈J(I)

µ·(U(j)). (43)

Take ε = γ − 1. Then by semi-invariance

µθ·(∪i∈IU(i)) ≤ µ·(Gε[∪i∈If
−1(·, Gε(U(i)))]. (44)

Let B1 = ∪i∈If
−1(·, Gε(U(i))). Then (43) will be proved, once we have established

µ·(B1) ≤
∑

j∈J(I)

µ·(U(j)). (45)

To do this, recall our construction of µ(k) due to which

B1 ⊂ Gε[∪i∈I{x ∈ X : d(f(·, x), xi) ≤ γhk}]. (46)

Now suppose that U(j) ∩ B1 6= ∅. Then by construction there is an i ∈ I such that
dist((xi, xj), Gr(f)) ≤ γhMk

. This just means B1 ⊂ ∪j∈J(I)U(j), which in turn implies
the desired

µ·(B1) ≤
∑

j∈J(I)

µ·(U(j)).

This completes the proof of Lemma 5.1. ¦
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