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Abstract. Mehta, Roughgarden, and Sundararajan recently introduced
a new class of cost sharing mechanisms called acyclic mechanisms. These
mechanisms achieve a slightly weaker notion of truthfulness than the
well-known Moulin mechanisms, but provide additional freedom to im-
prove budget balance and social cost approximation guarantees. In this
paper, we investigate the potential of acyclic mechanisms for combinato-
rial optimization problems. In particular, we study a subclass of acyclic
mechanisms which we term singleton acyclic mechanisms. We show that
every ρ-approximate algorithm that is partially increasing can be turned
into a singleton acyclic mechanism that is weakly group-strategyproof
and ρ-budget balanced. Based on this result, we develop singleton acyclic
mechanisms for parallel machine scheduling problems with completion
time objectives, which perform extremely well both with respect to bud-
get balance and social cost.

1 Introduction

We consider the problem of designing truthful mechanisms for binary demand
cost sharing games. We are given a universe U of players that are interested in a
common service, and a cost function C : 2U → R+ that specifies the cost C(S)
to serve player set S ⊆ U . We require that the cost function C is increasing,
i.e., C(T ) ≤ C(S) for every T ⊆ S ⊆ U , and satisfies C(∅) = 0. In this paper,
we assume that C is given implicitly by the cost of an optimal solution to an
underlying combinatorial optimization problem P. Every player i ∈ U has a
private, non-negative valuation vi and a non-negative bid bi for receiving the
service.

A cost sharing mechanism M takes the bid vector b := (bi)i∈U as input,
and computes a binary allocation vector x := (xi)i∈U and a payment vector
p := (pi)i∈U . Let SM be the subset of players associated with the allocation
vector x, i.e., i ∈ SM iff xi = 1. We say that SM is the player set that re-
ceives service. We require that a cost sharing mechanism complies with the
following two standard assumptions: pi = 0 if i /∈ SM and pi ≤ bi if i ∈ SM

(individual rationality) and pi ≥ 0 for all i ∈ SM (no positive transfer). In
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addition, the mechanism has to compute a (potentially suboptimal) feasible so-
lution to the underlying optimization problem P on the player set SM . We
denote the cost of the computed solution by C̄(SM ). M is β-budget balanced
if C̄(SM ) ≤

∑
i∈SM pi ≤ β · C(SM ). The social cost [17] of a set S ⊆ U

is defined as Π(S) := C̄(S) +
∑

i/∈S vi. A mechanism M is said to be α-
approximate if the social cost of the served set SM satisfies Π(SM ) ≤ α · Π∗,
where Π∗ := minS⊆U (C(S) +

∑
i/∈S vi) denotes the optimal social cost.

We assume that players act strategically and each player’s goal is to maximize
his own utility. The utility ui of player i is defined as ui(x,p) := vixi− pi. Since
the outcome (x,p) computed by the mechanism M solely depends on the bids b
of the players, a player may have an incentive to declare a bid bi that differs
from his valuation vi. We say that M is strategyproof if bidding truthfully is a
dominant strategy for every player. In this paper, we consider cooperative cost
sharing games, i.e., players are allowed to form coalitions in order to coordinate
their bids. A mechanism is group-strategyproof if no coordinated bidding of a
coalition S ⊆ U can ever strictly increase the utility of some player in S without
strictly decreasing the utility of another player in S.

In recent years, considerable progress has been made in devising truthful
mechanisms for cost sharing games. Most notably, Moulin [15] proposed a gen-
eral framework for designing so-called Moulin mechanisms that are truthful and
(approximately) budget balanced. The strength of Moulin mechanisms lies in the
fact that they achieve one of the strongest notions of truthfulness, i.e., group-
strategyproofness. Most of the mechanisms for cooperative cost sharing games
that are currently prevailing in literature are Moulin mechanisms (e.g., [1, 2, 4,
9, 12, 17, 18]). However, recent negative results [1, 2, 10, 13, 17] show that for sev-
eral fundamental cost sharing games, Moulin mechanisms can only achieve a very
poor budget balance factor, and this effect is further amplified if approximate
social cost is desired as additional objective [2, 4, 17, 18].

Very recently, Mehta, Roughgarden, and Sundararajan [14] introduced a
more general framework for designing truthful cost sharing mechanisms, termed
acyclic mechanisms. Acyclic mechanisms implement a slightly weaker notion of
truthfulness, called weak group-strategyproofness, but therefore leave more flex-
ibility to improve upon the approximation guarantees with respect to budget
balance and social cost. A mechanism is weakly group-strategyproof [5, 14] if no
coordinated bidding of a coalition S ⊆ U can ever strictly increase the util-
ity of every player in S. Mehta, Roughgarden, and Sundararajan [14] showed
that primal-dual approximation algorithms for several combinatorial optimiza-
tion problems naturally give rise to acyclic mechanisms.

Our Results. In this paper, we investigate the potential of acyclic mechanisms
for combinatorial optimization problems. Our contribution is twofold:

1. Singleton Acyclic Mechanisms. We study a subclass of acyclic mechanisms
that we call singleton acyclic mechanisms. We show that a ρ-approximation
algorithm for the underlying optimization problem P yields a singleton acyclic



mechanism that is ρ-budget balanced and weakly group-strategyproof if the cost
function C̄ induced by the approximation algorithm is increasing. In fact, even
a slightly weaker condition suffices, namely that the induced cost function is
partially increasing (definition will be given in Section 3). Our proof is construc-
tive, i.e., we provide a framework that enables to turn any such approximation
algorithm into a corresponding singleton acyclic mechanism. We also provide
a means to prove approximate social cost for singleton mechanisms that fulfill
an additional weak monotonicity property. While previously, most cost sharing
mechanisms were developed in case-by-case studies, this is the first attempt to
provide a general framework for obtaining cost sharing mechanisms from existing
approximation algorithms.

Implications: A direct consequence of this result is that for several problems,
lower bounds on the budget balance factor for Moulin mechanisms can be over-
come by acyclic mechanisms. We mention three examples from the schedul-
ing context here only: Graham’s largest processing time rule [8] yields a 4/3-
budget balanced acyclic mechanism for P | |Cmax, beating the lower bound of
essentially 2 for Moulin mechanisms [1]. Moreover, the shortest remaining pro-
cessing time algorithm gives rise to a 2-budget balanced acyclic mechanism for
P |ri, pmtn|

∑
Ci [6] and a 1-budget balanced acyclic mechanism for 1|ri, pmtn|∑

Fi [19], both overcoming the lower bounds of Ω(n) for Moulin mechanisms [2].

2. Singleton Acyclic Mechanisms for Completion Time Scheduling. We demon-
strate the applicability of our singleton acyclic mechanism framework, also when
social cost is concerned, by developing acyclic mechanisms for completion time
scheduling with and without release dates and preemption. Namely, we achieve
1-budget balance and 2-approximate social cost for P | |

∑
Ci, 1.21-budget bal-

ance and 2.42-approximate social cost for P | |
∑

wiCi, and 1-budget balance and
4-approximate social cost for 1|ri, pmtn|

∑
Ci. Not only are these the first cost

sharing mechanisms to achieve constant social cost approximation factors, but
we also outperform the strong lower bound of Ω(n) on the budget balance factor
of any Moulin mechanism for all completion time related objectives [2].

Implications: We remark that every cost sharing mechanism that approximates
social cost by a factor of α also is an α-approximation algorithm for the price-
collecting variant of the underlying optimization problem. As a by-product of the
results mentioned above, we therefore obtain constant approximation algorithms
for the respective machine scheduling problems with rejection (see also [7] and
the references therein).

2 Preliminaries

2.1 Acyclic Mechanisms

We briefly review the definition of acyclic mechanisms introduced by Mehta,
Roughgarden, and Sundararajan (see [14] for a more detailed description).



An acyclic mechanism is defined in terms of a cost sharing method ξ and
an offer function τ . A cost sharing method ξ : U × 2U → R+ specifies for every
subset S ⊆ U and every player i ∈ S a non-negative cost share ξi(S); we define
ξi(S) := 0 for all i /∈ S. ξ is β-budget balanced if for every subset S ⊆ U we have
C̄(S) ≤

∑
i∈S ξi(S) ≤ β · C(S). An offer function τ : U × 2U → R+ defines for

every subset S ⊆ U and every player i ∈ S a non-negative offer time τ(i, S).
The acyclic mechanism M(ξ, τ) induced by ξ and τ receives the bid vector b

as input and proceeds as follows:

1. Initialize S := U .
2. If ξi(S) ≤ bi for every player i ∈ S, then halt. Output the characteristic

vector x of S and payments p := (ξi(S))i∈U .
3. Among all players in S with ξi(S) > bi, let i∗ be one with minimum τ(i, S)

(breaking ties arbitrarily).
4. Set S := S \ {i∗} and return to Step 2.

For a given subset S ⊆ U and a player i ∈ S, we partition the player set S into
three sets with respect to the offer time of i: let L(i, S), E(i, S) and G(i, S) be
the sets of players with offer times τ(·, S) strictly less than, equal to, or strictly
greater than τ(i, S), respectively. The following definition is crucial to achieve
weak group-strategyproofness.

Definition 1. Let ξ and τ be a cost sharing method and an offer function on U .
The offer function τ is valid for ξ if the following two properties hold for every
subset S ⊆ U and player i ∈ S:

(P1) ξi(S \ T ) = ξi(S) for every subset T ⊆ G(i, S);
(P2) ξi(S \ T ) ≥ ξi(S) for every subset T ⊆ G(i, S) ∪ (E(i, S) \ {i}).

We summarize the main result of Mehta, Roughgarden, and Sundarara-
jan [14] in the following theorem:

Theorem 1 ([14]). Let ξ be a β-budget balanced cost sharing method on U and
let τ be an offer function on U that is valid for ξ. Then, the induced acyclic
mechanism M(ξ, τ) is β-budget balanced and weakly group-strategyproof.

2.2 Parallel Machine Scheduling

In a parallel machine scheduling problem, we are given a set U of n jobs that are
to be scheduled on m identical machines. Every job i ∈ U has a non-negative
release date ri, a positive processing time pi, and a non-negative weight wi. The
release date specifies the time when job i becomes available for execution. The
processing time describes the time needed to execute i on one of the machines.
Every machine can execute at most one job at a time. In the preemptive setting,
the execution of a job can be interrupted at any point of time and resumed later;
in contrast, in the non-preemptive setting, job interruption is not permitted.

Given a scheduling algorithm alg, we denote by Calg
i (S) the completion

time of job i ∈ S in the schedule for the set of jobs S ⊆ U output by alg. We



omit the superscript alg if it is clear from the context to which schedule we
refer. Depending on the underlying application, there are different objectives for
machine scheduling problems. Among the most common objectives are the mini-
mization of the total weighted completion time, i.e.,

∑
i wiCi, and the makespan,

i.e., maxi Ci, over all feasible schedules.
In our game-theoretic view of scheduling problems, each job is identified with

a player who wants his job to be processed on one of the m machines.

3 Singleton Acyclic Mechanisms

In this section, we describe our general framework for converting an approxima-
tion algorithm into a weakly group-strategyproof acyclic mechanism.

When thinking about acyclic mechanisms and their offer functions, we like
to think of clusters. By a cluster we mean a maximal set of players that have the
same offer time with respect to a set S, i.e., two players i, j ∈ U are in the same
cluster iff τ(i, S) = τ(j, S). With this view, it becomes clear to which extent
acyclic mechanisms generalize Moulin mechanisms: To one end, if there is only
one cluster that contains all players, Definition 1 reduces to cross-monotonicity
(see [15] for a definition), leading to Moulin mechanisms. To the other end, if
all clusters are singletons, i.e., every player has a unique offer time, then (P2)
of Definition 1 reduces to (P1) and once a cost share is announced to a player,
it can never be changed again. Between these two extremes, there is a great
range of other acyclic mechanisms. However, in this paper, we concentrate on
the subclass of acyclic mechanisms that result from singleton offer functions, i.e.,
offer functions that induce singleton clusters. We call these mechanisms singleton
acyclic mechanisms, or simply singleton mechanisms.

Let τ be a singleton offer function. In the following, we assume that the
elements of a subset S ⊆ U are ordered according to non-decreasing offer times,
i.e., S =: {i1, . . . , iq} with τ(il, S) < τ(ik, S) for all 1 ≤ l < k ≤ q. Moreover,
we define Sk := {i1, . . . , ik} ⊆ S as the set of the first 1 ≤ k ≤ q elements in S.
We slightly abuse notation and let for every i ∈ S, Si refer to the set Sk with
ik = i. We are particularly interested in singleton offer functions that satisfy the
following consistency property.

Definition 2. A singleton offer function τ is called consistent if for all subsets
P ⊆ S ⊆ U , ordered as P =: {j1, j2, . . . , jp} and S =: {i1, i2, . . . , iq}, the
following holds: If k is minimal with ik /∈ P , then il = jl for all l < k.

Let alg be a ρ-approximate algorithm for the underlying optimization prob-
lem P and let C̄ denote the cost function induced by alg, i.e., C̄(S) is the cost of
the solution computed by alg for player set S ⊆ U . We say that alg is partially
increasing with respect to a singleton offer function τ if for every S ⊆ U and
i ∈ S, we have C̄(Si) ≥ C̄(Si−1). The main result of this section is the following:

Theorem 2. Let alg be a ρ-approximate algorithm. If there exists a consistent
singleton offer function τ with respect to which alg is partially increasing, then



there is a singleton acyclic mechanism that is weakly group-strategyproof and
ρ-budget balanced.

A singleton offer function τ together with a partially increasing approxima-
tion algorithm alg naturally induce the following cost sharing method ξ: for
every S ⊆ U and every i ∈ S, define

ξi(S) := C̄(Si)− C̄(Si−1).

Note that these cost shares are non-negative since alg is partially increasing.

Truthfulness and Budget Balance. The following lemma together with The-
orem 1 proves Theorem 2.

Lemma 1. Let τ be a singleton offer function and let alg be a ρ-approximate
algorithm that is partially increasing with respect to τ . Moreover, let ξ be the
cost sharing method induced by alg and τ . Then the following holds:

1. ξ is ρ-budget balanced.
2. If τ is consistent, then τ is valid for ξ.

Proof. By definition of ξ, we have
∑

i∈S ξi(S) =
∑

i∈S(C̄(Si) − C̄(Si−1)) =
C̄(S)− C̄(∅) = C̄(S) for all S ⊆ U , proving that ξ is ρ-budget balanced.

We next show that τ is valid for ξ. Fix S ⊆ U and i ∈ S. Since τ is a singleton
offer function, E(i, S) \ {i} = ∅, and so (P2) of Definition 1 reduces to (P1). To
prove (P1), let P := S \T for some subset T ⊆ G(i, S) and consider the ordered
sets S =: {i1, i2, . . . , iq} and P =: {j1, j2, . . . , jp}. Let k be minimal with ik /∈ P .
Then, by Definition 2, for all l < k, il = jl and hence Pl = Sl. Since T ⊆ G(i, S),
we have τ(i, S) < τ(ik, S). We conclude that ξi(P ) = C̄(Pi)−C̄(Pi−1) = C̄(Si)−
C̄(Si−1) = ξi(S). ut

From now on, for a consistent singleton offer function τ and an approxi-
mation algorithm alg that is partially increasing with respect to τ , we call the
mechanism M := M(ξ, τ) the singleton mechanism induced by alg and τ . Given
an approximation algorithm alg, we remark that the budget balance factor of
M is independent of the consistent singleton offer function used. However, the
choice of the singleton offer function may very well influence the social cost of
the solution output by the mechanism. Hence, if the cost function C̄ induced by
alg is increasing, i.e., C̄(T ) ≤ C̄(S) for all T ⊆ S ⊆ U , we can choose τ solely to
achieve a good social cost approximation factor. If not, the no positive transfer
property restricts the choice of τ to offer functions with respect to which alg is
partially increasing.

Social Cost. The social cost analysis of singleton mechanisms can be allevi-
ated if the induced cost sharing method has the following property: We call
a cost sharing method ξ weakly monotone if for all subsets T ⊆ S ⊆ U ,∑

i∈T ξi(S) ≥ C̄(T ).



Theorem 3. Let M = M(ξ, τ) be the singleton mechanism induced by alg and
a consistent singleton offer function τ . Suppose that ξ is weakly monotone. Then,
M approximates social cost by a factor of α if

C̄(SM ∪ S∗)
C(S∗) + C(SM \ S∗)

≤ α.

Proof. We need to upper bound the ratio between the social cost of the set SM

chosen by the mechanism and a set S∗ := arg minS⊆U (C(S)+
∑

i/∈S vi). We have

Π(SM )
Π∗ =

C̄(SM ) +
∑

i∈S∗\SM vi +
∑

i/∈SM∪S∗ vi

C(S∗) +
∑

i∈SM\S∗ vi +
∑

i/∈SM∪S∗ vi
≤

C̄(SM ) +
∑

i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ vi

≤
C̄(SM ) +

∑
i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ ξi(SM )
≤

C̄(SM ) +
∑

i∈S∗\SM vi

C(S∗) + C(SM \ S∗)
.

Here, the first inequality follows from the fact that a
b ≤

a−c
b−c for arbitrary real

numbers a ≥ b > c > 0. The second inequality holds because vi ≥ ξi(SM ) for
every player i ∈ SM . The last inequality follows from weak monotonicity of ξ
and the fact that C̄(S) ≥ C(S) for every set S.

Without loss of generality, number the players in S∗ \ SM in the order in
which they were rejected in the course of the mechanism M , i.e., S∗ \ SM =:
{1, . . . , `}. For every i ∈ S∗ \ SM , let Ri be the subset of players in S∗ ∪ SM

that were remaining in the iteration in which i was removed, i.e., Ri := SM ∪
{i, i + 1, . . . , `}. Since i rejected, we have vi < ξi(Ri). Moreover, by definition
of the sets Ri and weak monotonicity of ξ, we obtain C̄(Ri) =

∑
j∈Ri ξj(Ri) =

ξi(Ri) +
∑

j∈Ri+1 ξj(Ri) ≥ ξi(Ri) + C̄(Ri+1). Summing over all i ∈ {1, . . . , `}
yields

∑
i∈S∗\SM

vi ≤
∑̀
i=1

(
C̄(Ri)− C̄(Ri+1)

)
= C̄(SM ∪ S∗)− C̄(SM ).

ut

4 Completion Time Scheduling

In this section, we study the performance of singleton mechanisms for parallel
machine scheduling problems with total completion time objectives. We distin-
guish between the model with weights, in which all jobs arrive at time zero and
no preemption is allowed, and the model in which jobs have release dates and
may be preempted.

4.1 Weighted Completion Time

We consider the problem P | |
∑

wiCi of scheduling a set of jobs U := [n] non-
preemptively on m parallel machines such that the total weighted completion



time is minimized. Lenstra proves that this problem is NP-complete [3]. Even
for the unweighted version, i.e., wi = 1 for all i ∈ U , no Moulin mechanism can
achieve a budget balance factor better than n/2 [2]. However, using singleton
acyclic mechanisms, we can heavily improve upon this.

Let ρsm denote the approximation guarantee achieved by Smith’s rule [20],
which schedules the jobs in non-increasing order of their weight per processing
time ratios wi/pi. For P | |

∑
wiCi, the produced schedule is (1 +

√
2)/2 ≈ 1.21-

approximate [11]. In the single machine case, Smith’s rule produces an optimal
schedule. In the unweighted setting, Smith’s rule reduces to the shortest process-
ing time policy and also delivers an optimal schedule.

Let Mwct := M(ξ, τ) be the singleton mechanism induced by Smith’s rule
and the offer function τ defined as follows:

Singleton offer function for Smith’s rule: Let σ be a non-increasing
weight per processing time order on U = [n]. If two jobs i, j ∈ U satisfy
wi/pi = wj/pj , we define σ(i) < σ(j) iff i < j. For every subset S ⊆ U , let
τ(·, S) be the order on S induced by σ.

One easily verifies that τ is a consistent singleton offer function. We have ξi(S) =
C̄(Si)− C̄(Si−1) = wiCi(S), where Ci(S) is the completion time of job i in the
schedule computed by Smith’s rule. Since wiCi(S) ≥ 0, Smith’s rule is obviously
partially increasing with respect to τ .

Theorem 4. The singleton mechanism Mwct = M(ξ, τ) induced by Smith’s rule
and τ is weakly group-strategyproof, ρsm-budget balanced, and 2ρsm-approximate.

Proof. It follows from Theorem 2 that Mwct is weakly group-strategyproof and
ρsm-budget balanced. It remains to be shown that Mwct is 2ρsm-approximate with
respect to social cost. To see that the induced cost sharing method ξ is weakly
monotone, note that Ci(S) ≥ Ci(T ) for every i ∈ T ⊆ S. Thus,

∑
i∈T ξi(S) ≥∑

i∈T ξi(T ) = C̄(T ). The social cost approximation factor now follows from
Theorem 3 and Lemma 2 given below. ut

Lemma 2. Let alg be an algorithm for P | |
∑

wiCi with cost function C̄. Let
A and B be two disjoint sets of jobs. Then, the cost of an optimal schedule for
A ∪B can be bounded by C(A ∪B) ≤ 2(C̄(A) + C̄(B)).

Proof. We prove the inequality individually for each machine M̂ . Consider the
jobs Â ⊆ A and B̂ ⊆ B scheduled on M̂ in the runs of alg on A and B,
respectively. We denote by ci the completion time of job i in his respective
schedule, i.e. ci := C̄i(A) for all i ∈ Â and ci := C̄i(B) for all i ∈ B̂.

Consider the schedule which processes all jobs in Â ∪ B̂ on M̂ according to
non-decreasing ci. The completion time of a job i ∈ Â in this schedule is ci + ci∗ ,
where i∗ denotes the last job in B̂ that is processed before i. Since i∗ is processed
before i, we have ci + ci∗ ≤ 2ci. By exchanging the roles of A and B, we can
show the same for the completion time of every job i ∈ B̂.



Since the cost of an optimal schedule for A∪B is at most that of the schedule
produced by repeating the above procedure for each machine, we have

C(A ∪B) ≤
∑

i∈A∪B

wi · 2ci = 2
( ∑

i∈A

wici +
∑
i∈B

wici

)
= 2

(
C̄(A) + C̄(B)

)
.

ut

We remark that a simple example shows that our social cost analysis is tight,
even in the unweighted case (details will be given in the full version of the paper).

4.2 Completion Time with Release Dates and Preemption

Now, consider the problem 1|ri, pmtn|
∑

Ci of scheduling a set of jobs U := [n]
on a single machine such that the total completion time is minimized. Each job
i ∈ U has a non-negative release date ri, and preemption of jobs is allowed. The
shortest remaining processing time (srpt) policy delivers an optimal schedule
for this problem [19].

We introduce some more notation in order to give a formal definition of srpt.
Let ei(t) be the amount of time that has been spent on processing job i up to
time t. The remaining processing time xi(t) of job i at time t is xi(t) := pi−ei(t).
We call a job i active at time t if it has been released but not yet completed at
this time, i.e., ri ≤ t < Ci. Let A(t) be the set of jobs that are active at time t.
srpt works as follows: At any time t ≥ 0, srpt schedules an active job i ∈ A(t)
with minimum remaining processing time, i.e. xi(t) ≤ xk(t) for all k ∈ A(t). In
the following, we assume that srpt uses a consistent tie breaking rule, e.g., if
xi(t) = xk(t) for two different jobs i and k, then schedule the one with smaller
index. Throughout this section, let Ci(S) := Csrpt

i (S) for all S ⊆ U .
Let Mpct := M(ξ, τ) be the singleton mechanism induced by srpt and the

following singleton offer function τ :

Singleton offer function for srpt: For a given subset S ⊆ U , let τ(·, S) be
the order induced by increasing completion times of the jobs in S, i.e.,
τ(i, S) < τ(j, S) iff Ci(S) < Cj(S).

The offer function τ is consistent; we defer the proof to the end of this section.
Recall that srpt is an optimal scheduling policy and thus C̄(S) = C(S). We thus
have ξi(S) = C(Si)−C(Si−1) = Ci(S), where the latter follows from Lemma 5.
Note that srpt is partially increasing with respect to τ because Ci(S) ≥ 0.

Theorem 5. The singleton mechanism Mpct = M(ξ, τ) induced by srpt and τ
is weakly group-strategyproof, budget balanced, and 4-approximate.

Proof. It follows from Theorem 2 that Mpct is weakly group-strategyproof and
budget balanced. To prove that Mpct approximates social cost, we first show that
ξ is weakly monotone. Fix some set S and let T ⊆ S. Consider the srpt schedule
for S. If we remove from this schedule all jobs in S \ T , we obtain a feasible
schedule for T of cost at most

∑
i∈S\T Ci(S) ≥ C(T ). Since ξi(S) = Ci(S), we

have weak monotonicity. Now, the bound on the social cost approximation factor
follows from Theorem 3, using Lemma 3 given below. ut



The following lemma is used to prove the social cost approximation factor.

Lemma 3. Let alg be an algorithm for P |ri, pmtn|
∑

Ci with cost function C̄.
Let A and B be two disjoint sets of jobs. Then, the cost of an optimal schedule
for A ∪B can be bounded by C(A ∪B) ≤ 4(C̄(A) + C̄(B)).

Proof. Phillips et al. [16] prove that any preemptive schedule for P |ri, pmtn|
∑

Ci

can be turned into a non-preemptive schedule np with at most twice the cost.
With Lemma 2, we obtain C(A∪B) ≤ 2(Cnp(A) + Cnp(B)) ≤ 4(C̄(A) + C̄(B)).

ut

Consistency. In order to prove that τ is consistent, we need some more nota-
tion. Consider the srpt schedule for a set S ⊆ U . Let i, j ∈ A(t) be two jobs
that are active at time t. We define i ≺t j iff either xi(t) < xj(t) or xi(t) = xj(t)
and i ≤ j. Note that at any point of time t, srpt schedules the job i ∈ A(t) with
i ≺t j for all j ∈ A(t). Thus, if i ≺t j for some t, then i ≺t′ j for all t′ ∈ [t, Ci).
We therefore simply write i ≺ j iff there exists a time t with i ≺t j. Let σ(t)
denote the job that is executed at time t in the srpt schedule for S; we define
σ(t) = ∅ if A(t) = ∅.

Let j ∈ S be an arbitrary job and consider the time interval [rj , Cj). We
define the set Cj of jobs that are competing with j as Cj := {i ∈ S\{j} : [ri, Ci)∩
[rj , Cj) 6= ∅}. Note that j /∈ Cj . We partition the jobs in Cj into a set Wj of
winning jobs and a set Lj of losing jobs with respect to j: Wj := {i ∈ Cj : i ≺ j}
and Lj := Cj \Wj . Intuitively, suppose i and j are both active at some time t. If
i is a winning job, then i prevents j from being executed by srpt. On the other
hand, if i is a losing job, then j prevents i from being executed.

We next investigate the effect of removing a job j from S. We use the super-
script T if we refer to the srpt schedule for T := S \ {j}.

Lemma 4. Consider the two srpt schedules on job sets S and T := S \ {j}.
For every job i ∈ Cj that is active at time t ∈ [rj , Cj),

xT
i (t) = xi(t) if i ∈ Wj and xT

i (t) ≥ xj(t) if i ∈ Lj .

Proof. We partition the time interval [rj , Cj) into a sequence of maximal subin-
tervals I1, I2, . . . , If such that the set of active jobs remains the same within
every subinterval I` := [s`, e`). We prove by induction over ` that the claim
holds for every t ∈ [rj , e`).

Note that both schedules are identical up to time rj = s1. If σ(s1) 6= j, then
both schedules process the same job during I1 and the claim follows. Suppose
σ(s1) = j. This implies that A(s1) ∩Wj = ∅ and thus all jobs in A(s1) \ {j} =
AT (s1) are losing jobs. If AT (s1) = ∅, the claim follows. Otherwise, let k :=
σT (s1) be the job that is processed in the schedule for T . Since k is a losing job,
we have xT

k (s1) = xk(s1) ≥ xj(s1). Since k and j receive the same processing
time during I1 in their respective schedules, the claim holds for all t ∈ [rj , e1).

Now, assume that the claim is true for every t ∈ [rj , e`−1) for some ` > 1.
We show that it remains true during the time interval I`. By the induction



hypothesis, xT
i (t) = xi(t) for every job i ∈ Wj that is active at time t ∈ [rj , e`−1).

This implies that a job j ∈ Wi is executed at time t ∈ [rj , e`−1) in the schedule
for S iff it is executed at time t in the schedule for T . We thus have AT (s`)∩Wj =
A(s`) ∩Wj . Moreover, xT

i (t) ≥ xj(t) for every job i ∈ Lj that is active at time
t ∈ [rj , e`−1). Since xj(t) > 0 for every t ∈ [rj , Cj), every job i ∈ Lj that is
active at time t ∈ [rj , e`−1) in the schedule for S must also be active at time t
in the schedule for T . Thus, AT (s`) ∩ Lj = A(s`) ∩ Lj . We now distinguish two
cases:

(i) First, assume σ(s`) =: k ∈ Wj . Job k then has smallest remaining pro-
cessing time, i.e., xk(s`) ≤ xi(s`) for all i ∈ A(s`). We conclude that

xT
k (s`) = xk(s`) ≤ xi(s`) = xT

i (s`) ∀i ∈ A(s`) ∩Wj = AT (s`) ∩Wj

xT
k (s`) = xk(s`) ≤ xj(s`) ≤ xT

i (s`) ∀i ∈ A(s`) ∩ Lj = AT (s`) ∩ Lj .

Since we assume that srpt uses a consistent tie breaking rule, this implies that
σT (s`) = k and the claim follows.

(ii) Now, suppose σ(s`) = j. (Note that σ(s`) ∈ Lj is impossible.) Then
xj(s`) ≤ xi(s`) for every i ∈ A(s`) and A(s`) ∩ Wj = ∅. But then we also
have AT (s`) ∩Wj = ∅ and thus AT (s`) ⊆ Lj . If AT (s`) = ∅, the claim follows.
Otherwise, let k := σT (s`) ∈ Lj be the job that is executed at time s` in the
schedule for T . Since xT

k (s`) ≥ xj(s`) and the remaining processing times of k
and j in their respective schedules reduce by the same amount during I`, the
claim follows. ut

We omit the proof of the following lemma due to lack of space.

Lemma 5. Let T ⊆ S ⊆ U and consider the srpt schedule for S \T . We have:

1. Ci(S \ T ) = Ci(S) for every job i ∈ S \ T with Ci(S) < Cj(S) for all j ∈ T .
2. C`(S \ T ) ≥ minj∈T Cj(S) for every job ` ∈ S \ T with C`(S) > Cj(S) for

some j ∈ T .

Lemma 6. The singleton offer function τ is consistent.

Proof. Consider two sets P ⊆ S ⊆ U , ordered by τ as P =: {j1, j2, . . . , jp} and
S =: {i1, i2, . . . , iq}. Let k be minimal with ik /∈ P . Then, for all l < k, we
have il ∈ P by minimality of k, and Cil

(S) < Cik
(S) by definition of τ . Also by

minimality of k, for all other i /∈ P , we have Cil
(S) < Cik

(S) < Ci(S). Hence,
Lemma 5 proves that Cil

(S) = Cil
(P ) for all l < k.

For all other jobs j ∈ P , we have Cj(S) > Ck(S) and thus by Lemma 5,
Cj(P ) ≥ Ck(S) > Ck−1(S) = Ck−1(P ). Hence, we have il = jl for all l < k. ut
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