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1 Introduction
We consider the dynamics of unit magnetization fields m = m(t) : Ω(h) → S2 on a
magnetic film Ω(h) = Ω × (0, h) of small relative height h, governed by the Landau-
Lifshitz-Gilbert equation (LLG)

mt + m× (γH− αmt) = 0,

see [4, 7]. The parameters γ and α are the gyromagnetic ratio and the Gilbert damp-
ing factor, respectively. H = Heff is the effective field that is given by the negative
functional gradient of the interaction energy E = E(m). The equation prescribes a
damped precession of the magnetization vector about the effective field. The parame-
ter γ has the dimension of frequency, and the number 1/(γα) is the typical relaxation
time. Upon nondimensionalization, we assume them to be positive and finite, so that
the associate dynamical system is dissipative. In a basic micromagnetic model for an
isotropic material, see [7, 1], the interaction energy E(m) = E(m,Ω(h)) consist in
exchange energy (with exchange constant A) and magnetostatic energy

E(m,Ω(h)) =
A

2

∫
Ω(h)

|∇m|2 dx +
1
2

∫
R3
|∇U |2 dx.

The gradient field −∇U is the associated stray-field that is related to m via the mag-
netostatic Maxwell equation

∆U = div
(
mχΩ(h)

)
distributionally on R3.

It is well-known that for thin film geometries (h� 1) the leading order energy contri-
bution is a quadratic shape anisotropy effect that favors in-plane magnetization, see
[1, 6]. The equilibrium condition is m × H = 0 where H = −∇E(m). Here
the gradient is taken with respect to the standard L2 inner product on Ω(h), that is
H = A∆m − ∇U . If h � 1, the stray-field −∇U includes a singular forcing term
that pushes the magnetization vector towards the film plane. In a dynamic context,
however, the shape anisotropy effect competes with gyrotropic forces. We investigate
this competition and possible singular limits as h→ 0 when shape anisotropy becomes
a hard constraint, geometrically incompatible with LLG dynamics.
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2 Thin-film limits for the rescaled LLG
We are mainly interested in situations where the renormalized energy

Eh(m) = h−2E(m,Ω(h))

is bounded or at most logarithmically divergent when h � 1. A particular feature
of this energy regime is that the stray-field induced anisotropy asymptotically leads
to a hard in-plane constraint for the magnetization field. The renormalized Landau-
Lifshitz-Gilbert equation reads:

mt + m×
(
γ hHh − αmt

)
= 0 with renormalized Hh = H/h.

The renormalized effective field can also be identified with a functional gradient

−∇hEh(m) = Hh,

which is the negative gradient of the renormalized energy with respect to the averaged
L2 inner product. Due to possible energy divergence as h → 0, the limiting object
might only formally by an energy gradient. A crucial analytical assumption is that the
energy is exchange dominated that is limh→0A(h)/h = ε where ε > 0 is small but
finite. This assumption features a rather microscopic view point like in case of domain
wall models or particles of rather small lateral size. Interesting thin film features are
usually revealed in the limit ε→ 0 when stray-field interaction dominates. A dynamic
theory in such a limit is mathematically more subtle and a challenge for future work.
Here we always assume h� ε� 1.
The competition of strong shape anisotropy due to stray-field interaction and gyro-
scopic forces might lead to asymptotic limiting dynamics. There are two dynamic
regimes that have been considered in literature: If γ ∼ 1/h and α ∼ 1 (slow time
scale and fixed damping), the gyromagnetic term simply drops out. The correspond-
ing formal limit for LLG is a gradient flow which has first been derived formally by
Garcia-Cervera & E in [3], see also [5]. A rigorous result for a full 3D model has
been obtained by Moser in [8]. The case when γ ∼ 1/

√
h and α ∼

√
h (intermediate

regime with small damping) has been considered in [2] in case of a reduced model
for infinitely extended Néel walls with a small parameter ε =

√
h. It is shown that

the asymptotic evolution equation for the transition angle θ is a damped wave equa-
tion ∂2

t θ + ν ∂tθ + ∇E(θ) = 0 where ν > 0 is an effective damping constant and
E = E(θ) is the reduced Néel wall energy. The main simplification in [2] is that the
magnetization field is assumed to have no variations in the vertical direction, which
amounts to a significant mathematical simplification of stray-field energies. The com-
mon feature of both dynamic regimes is uniform averaged energy dissipation along
smooth trajectories. As it turns out, among all such dynamic regimes, the one dis-
cussed in [2] is special since stray-field anisotropy and gyrotropic forcing are in bal-
ance. Here we present a more general convergence result for the full 3D model. Let
mh : Ω(h)× (0,∞)→ S2 ∈ L∞

(
H1(Ω(h))

)
∩ Ḣ1

(
L2(Ω(h))

)
be a family of weak

solutions of the Landau-Lifshitz-Gilbert equation subject to homogeneous Neumann
boundary conditions.
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Theorem 1. Suppose that there are positive constants ν and ε such that for some
sequence h = hk → 0:

α(h)/
√
h→ ν, γ(h)

√
h→ 1, A(h)/h→ ε

−
∫ h

0

mh ∗
⇀m weakly* in L∞loc

(
H1

loc(Ω)
)
∩ Ḣ1

(
L2(Ω)

)
sup
h,t
−
∫ h

0

∫
Ω

(∣∣∣∣∂mh

∂x3

∣∣∣∣2 +
∣∣∇mh

3

∣∣2) dx <∞

Uh/h
∗
⇀ u weakly* in L∞(Ḣ1(R3)).

Then m = (m, 0) : Ω× (0, T )→ S1 is a distributional solutions of[
∂2

tm+ ν ∂tm− ε∆′m+∇′u
]
⊥ TmS1.

The proof will be given in a forthcoming paper. A crucial step is the identification

m ∧mt = lim
h→0

1√
h
−
∫ h

0

mh
3 dx3 = lim

h→0

1√
h
−
∫ h

0

∂Uh

∂x3
dx3

weakly in H−1(Ω× (0,∞)) that reflects the balance of dynamic and energetic forces.
The function u = u(t) is, for almost every t > 0, a solutions of the reduced stray-field
equation, ∫

R3
∇u · ∇φ =

∫
R2
m · ∇′φ

for any φ ∈ C∞0 (R3) where R2 = R2×{0}. In the limiting equation,∇′u = ∇′u|R2 is
understood in the sense of traces. The limit m exhibits improved regularity properties.
Indeed, m ∧ mt ∈ L∞(L2(Ω)) can be shown to be weakly continuous in time, and
Cauchy data can be identified. Moreover, in the finite energy case, an inequality for the
total energy holds true.

Applications. In case of microscopic domain wall models, see [1, 2, 6], uniform
energy bounds imply the requisite compactness conditions. Expressed in collective
coordinates for the wall center, the result strongly supports mechanical particle mod-
els for domain wall motion and motivates the notion of wall mass, see [2]. From a
mesoscopic view point, however, topological defects and energy divergence have to be
taken into account. In case of a bounded simply connected base domain Ω, the so-
called boundary vortex regime as investigated in [8] by R. Moser is characterized by
the energy scaling Eh(m) ∼ ε π log log(1/h) + L as h→ 0 (i.e. finite energy pertur-
bations of minimizing configurations that indeed develop vortices near the boundary,
see [8]). In the dynamic regime of E and Cervera discussed earlier in this note, Moser
derived under various technical assumptions limiting gradient flow dynamics off the
(static) boundary vortices, see [8]. Alternatively, in our intermediate dynamic regime
with small damping, the local compactness conditions requisite for Theorem 1 are met
by suitable weak solutions of LLG, effectively leading to wave-type dynamics in the
interior. The derivation of effective dynamic laws for magnetic point singularities near
the boundary on a suitable time scale remain a challenging open problem.
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