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Abstract

In ferromagnetic materials, the gyrotropic nature of Landau-Lifshitz-
Gilbert dynamics and anisotropic effects from stray-field interaction lead
in certain regimes effectively to a wave-type dynamic equation. In the case
of soft thin films and small Gilbert damping, we investigate the motion
of Néel walls and prove the existence of traveling wave solutions under a
small constant forcing.

1 Introduction

The motion of a domain wall is a fundamental mechanism in the dynamics of
ferromagnetic patterns. If, for instance, a small particle is first saturated in a
high field and the field is then reduced (or even reversed) it will in general switch
at some point to a state of opposite magnetization. In this typical switching
process, magnetic domains nucleate and evolve by propagation of domain walls.
As proposed in [11] and [7], the dynamics of a magnetization distribution in
a ferromagnetic material is governed by the Landau-Lifshitz-Gilbert equation
(LLG)

mt + αm ∧mt − γm ∧Heff = 0

that prescribes a damped gyromagnetic precession of the (unit) magnetization
vector field m about the effective field. In this model α > 0 is a dimensionless
damping coefficient called Gilbert factor and γ > 0 is the gyromagnetic ratio
giving the typical precession frequency. The effective field Heff = h − ∇E(m)
consists of the applied field and the (negative) first variation of the micromagnetic
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energy E(m). Since α > 0 is a small parameter, LLG inherently sets a slow
relaxation and a fast precession time scale.
According to the micromagnetic model and as confirmed experimentally, mag-
netic domain walls extend to finite layers that exhibit diverse transition patterns
depending on the particular parameter regime, see [8, 4, 10]. The internal struc-
ture of domain walls in thin films and its impact on magnetic pattern formation
have long been a subject of intense study. A particular mathematical feature of
the thin–film geometry is the predominance of the shape anisotropy effect that
strongly favors in-plane magnetization. In terms of an electrostatic analogy this
is interpreted as the appearance of surface magnetic charges that lead to strong
dipolar interaction. Appropriate local descriptions of such transition layers rely
on flat domain walls that separate two domains of opposite magnetization at
infinity. Among the simplest wall configurations is the Néel wall, an in-plane
rotation of the magnetization vector, that is stable in extremely thin films.
In certain regimes, ranging from thin film to bulk geometries, the interplay of
gyromagnetic precession and energetic dipolar interactions yields effective equa-
tions for the magnetization dynamics. In the context of thin films, gyromagnetic
precession competes with stray-field shape anisotropy that leads to an in-plane
magnetization. Dynamically, one expects fast but small oscillations of the vertical
magnetization component. Consequently, an effective description of the domain
wall motion has to account for the separation of time scales in LLG when the
relative thickness tends to zero. One of these regimes has already been considered
in [6, 9], where the authors have studied the limit of relative thickness going to
zero, with the Gilbert damping α held fixed of order one. In this case the effective
equation obtained for the in-plane magnetization is an overdamped limit of LLG.
In the first part of the present paper we consider a thin–film regime, where the
Gilbert damping is comparable to the relative thickness of the film. We show
(Theorem 1) that in this regime, LLG effectively reduces to a damped geometric
wave equation for the in-plane magnetization components m = (m1,m2),[

∂2
tm+ ν ∂tm+∇E(m)

]
⊥ TmS1 (1.1)

where ∇E(m) is the L2 gradient of a reduced energy functional acting on the
in-plane components only and ν is an effective damping constant. Expressed in
polar coordinates m = (cos θ, sin θ) with E(θ) = E(m) this yields

∂2
t θ + ν ∂tθ +∇E(θ) = 0 (1.2)

a damped wave equation for the phase function. With this type of dynamics
the oscillatory features of LLG that give rise to spin waves and resonances are
potentially preserved in such a limit.
In the second part we investigate domain wall motion in thin films in the presence
of a constant applied field. For the bulk geometry, valuable information can be
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drawn from LLG by means of explicit solutions with constant speed of propaga-
tion, known as Walker’s exact solutions, [21]. For sufficiently small applied fields,
this construction reveals not only the shape of a moving domain wall but also its
kinematic properties. In particular, its speed of propagation is almost propor-
tional to the applied field, with a constant of proportionality β know as the wall
mobility. These same features are expected, and observed, for the Néel wall in
thin films. Theorem 2 contains the construction of traveling wave solutions for
(1.1) as a perturbation of the Néel wall’s static profile. The result also gives a
first order expansion for the wall mobility β, the infinitesimal rate of change of
velocity at small fields. Back to physical units we obtain

β = γ d2/αEex

where d is the exchange length and Eex is the exchange contribution to the energy
of the static Néel wall. A crucial ingredient in the proof of the latter result is
a spectral analysis for the static Néel wall, that particularly proves stability up
to translations and a spectral gap for the linearization. This result has its own
interest.
The paper is organized in the following way. Section 2 gives a brief summary of
the micromagnetic model, including the reduction to the thin–film approximation
for Néel walls. Here, we also discuss the main features of Walker’s solution and
the formal asymptotic limit that leads to the damped wave-type equation (1.1) in
the bulk and heuristically explain our choice of regime. In Sections 3 we present
the scaling and asymptotics in the thin–film regime and prove Theorem 1. The
spectral analysis for the Néel wall is given in Section 4. In Section 5 we prove
Theorem 2.

2 Mathematical framework for domain walls

2.1 The micromagnetic model

The continuum description of ferromagnetism by Landau and Lifshitz [11] is
based on a direction field (magnetization) m : Ω → S2 that represents the local
average of magnetic moments on a magnetic sample Ω ⊂ R3 and a variational
principle in terms of the micromagnetic energy. In the absence of external fields
it reads

E(m) =
1

2

(
d2

∫
Ω

|∇m|2 dx+

∫
R3

|∇u|2 dx+Q

∫
Ω

Φ(m) dx

)
.

The Dirichlet part is called exchange energy with exchange length d, and has its
origin in the nearest neighbor approximation for the Heisenberg spin interaction.
This term penalizes the spatial variations of m and sets a finite length scale. The
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stray-field ∇u : R3 → R3 is uniquely determined by the static Maxwell equations∫
R3

∇u · ∇ϕ dx =

∫
Ω

m · ∇ϕ dx for all ϕ ∈ C∞0 (R3).

Accordingly, the stray-field energy portion is nonlocal and favors vanishing dis-
tributional divergence, that is ∇ ·m = 0 in Ω and m · n = 0 on ∂Ω where n is
the outward normal. The last energy term models crystalline anisotropy where
penalty function Φ is an even polynomial on S2, and the parameter Q measures
the relative strength of anisotropy penalization versus stray-field interaction.
This combination of nonlocality (through stray-field interaction) and nonconvex-
ity (through the saturation constraint |m| = 1) gives rise to the formation of
typical magnetic patters consisting in domains, where the magnetization changes
slowly. Magnetic domains are separated by thin transition layers, called domain
walls, which may form a complex network. Domain walls are of major interest
in micromagnetic theory since their internal structure and mutual interaction
heavily influence the coarser magnetic microstructure.

2.2 Reduction of the stray-field energy

Let us consider an infinitely extended uniaxial magnetic film Ω = R2 × (0, δ)
with the easy axes oriented in the e2 direction. Since we are mostly interest in
thin films, it is safe to assume that m does not depend on the thickness variable
x3. We consider parameterized transitions along the e1 direction (that we call
transition axis), that connect antipodal states on the easy axis

m : R2 → S2 with m(±∞, x2) = (0,±1, 0) for any x2 ∈ R

and that are l-periodic in the e2 direction

m(x1, x2 + l) = m(x1, x2) for any x = (x1, x2) ∈ R2.

We identify a global magnetization field as given by m(x) = m(x)χ(0,δ)(z), and
defined for x = (x, z) ∈ R3. Then m = m(x) induces the stray-field ∇u deter-
mined by the potential equation ∆R3u = divR3m in the sense of distributions on
R3. We observe that the stray-field potential u = u(x, z) is l-periodic in x2 as
well, and the z dependence only stems from shape anisotropy. Then by Green’s
formula ∫

R

∫ l

0

∫
R
|∇u|2 dx dz =

∫ δ

0

∫ l

0

∫
R
∇u ·m dx dz.

In case of uniaxial anisotropy with Φ(m) = 1 − m2
2, the micromagnetic energy

induces the following (averaged) domain wall energy per unit area:

E(m) =
1

2
−
∫ δ

0

−
∫ l

0

∫
R

(
d2|∇m|2 +∇u ·m +Q(1−m2

2)
)
dx dz. (2.1)
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Fourier representation

For the exchange and anisotropy contribution the average over the film thickness
is redundant. For the stray-field contribution, however, a calculation in frequency
space with the partially discrete Fourier transform

m̂(ξ) = F(m)(ξ) =
1√
2πl

∫
R×(0,l)

m(x) e−iξ·x dx for ξ ∈ R× (2π/l)Z

yields a representation in terms of Fourier multipliers

−
∫ δ

0

−
∫ l

0

∫
R
∇u ·m dx dz =

1

2

∫
R2

[
σ(δξ)

(ξ · m̂(ξ))2

|ξ|2
+
(
1− σ(δξ)

)
|m̂3(ξ)|2 dξ

]
,

where dξ denotes the partially discrete integration measure on R2

dξ = dξ1 ⊗
∑
k∈Z

δηk
where ηk = 2πk/l.

The Fourier multiplier associated with stray-field interaction (see [5, 13]) reads

σ(ξ) = 1− 1− exp(−|ξ|)
|ξ|

.

It exhibits the following small and high frequency asymptotics

σ(ξ) =
1

2
|ξ|+O

(
|ξ|2
)

as |ξ| → 0 and σ(ξ) = 1 +O(1/|ξ|) as |ξ| → ∞

that serve to deduce thin-film and bulk approximations, respectively. In the thin-
film regime we suppose that δ is small compared to the typical wave length, that
is δ |ξ| � 1: Collecting the leading order terms for the in-plane components m
and the vertical component m3 yields the following thin-film approximation for
the stray-field energy

−
∫ δ

0

−
∫ l

0

∫
R
∇u ·m dx dz ∼ δ

2

∫
R2

(ξ · m̂(ξ))2

|ξ|
dξ +

∫
R2

|m̂3(ξ)|2 dξ. (2.2)

The m3 contribution can be interpreted as the residual surface charge interaction
having the form of an additional anisotropy that penalizes vertical magnetiza-
tions (shape anisotropy). The term in m corresponds to residual volume charge
interactions.
Note that the matrix multiplier Ĥ(ξ) = ξ

|ξ| ⊗
ξ
|ξ| corresponds to the Helmholtz

transform H, the L2 projection onto gradient fields, that is formally H(m) =
∇∆−1divm. With this notation we have∫

R2

(ξ · m̂(ξ))2

|ξ|
dξ = ‖H(m)‖2

Ḣ1/2
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with the homogeneous fractional H1/2 Sobolev norm. More generally for s ∈ R

‖F‖2
Ḣs =

∫
R2

|ξ|2s|F̂ (ξ)|2 dξ = −
∫ l

0

∫
R

∣∣|∇|sF ∣∣2 dx,
where

|∇|sF ≡ (−∆)s/2F = F∗
(
|ξ|sF̂ (ξ)

)
.

The full Sobolev norms are given by

‖F‖2
Hs =

∫
R2

(
1 + |ξ|2

)s|F̂ (ξ)|2 dξ,

and we denote the corresponding function spaces by Hs = Hs(R × Tl), where
Tl = R/lZ denotes the 1-torus of length l.

Using fractional Sobolev norms the approximate stray-field energy for m =
(m,m3) can be written in the following compact form

Estray(m) =
δ

4
‖H(m)‖2

Ḣ1/2 +
1

2
‖m3‖2

L2 .

An important remark concerning further dimensional reduction is that if F =
F (x1) is independent of x2 then F̂ (ξ1, ξ2) = 0 unless ξ2 = 0, thus

‖F‖2
Ḣs =

∫
R
|ξ1|2s|F̂ (ξ1)|2 dξ1 =

∫
R

∣∣|∇|sF ∣∣2 dx1.

Therefore we do not distinguish dimension n = 1, 2 when considering (fractional)
Sobolev norms and Fourier multiplication operators.

2.3 Néel walls in soft thin films

¿From a variational point of view the leading order stray-field contribution in
(2.2), determines asymptotically a geodesic magnetization path. Whereas in the
bulk situation the stray field interaction can be eliminated completely by choosing
a path perpendicular to the transition axis, that is m1 = 0 (Bloch walls), the
penalty on the vertical component as δ → 0 enforces in-plane rotations, that is
m3 = 0 (Néel walls), taking into account stray fields that typically appear to the
leading order. In view of (2.2) we approximate the domain wall energy per unit
area (2.1) by

E(m) =
1

2
−
∫ l

0

∫
R

(
d2|∇m|2 +

δ

2

∣∣|∇| 12H(m)
∣∣2 +Q (1−m2

2) +m2
3

)
dx

where m = (m,m3).
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We consider a parameter regime of a soft thin film so that anisotropy and relative
thickness are balanced, more precisely

Q� 1, κ ≡ d/δ � 1 while Q ≡ 4κ2Q. (2.3)

Then we introduce the small parameter ε =
√
Q. Rescaling x by w = δ/(2Q),

the typical tail width, and energy by δ/2 yields the interaction energy

Eε(m) =
1

2
−
∫ L

0

∫
R

(
Q |∇m|+

∣∣|∇| 12H(m)
∣∣2 + (1−m2

2) +
(m3

ε

)2
)
dx (2.4)

where L = l/w and we assume

ε� Q� 1.

If in addition m = m(x1) then H(m) = m1e1 is independent of x2 as well. In
this case we set for simplicity of notation x = x1 and ξ = ξ1 the corresponding
frequency variable. With this notation∫

R
||∇|

1
2m1|2 dx =

∫
R
|ξ||m̂1(ξ)|2 dξ.

Accordingly, the reduced variational principle for one dimensional domain wall
transitions reads

Eε(m) =
1

2

∫
R

(
Q|m′|2 +

∣∣|∇| 12m1

∣∣2 + (1−m2
2) +

(m3

ε

)2
)
dx→ min (2.5)

m : R→ S2 with m(±∞) = (0,±1, 0),

where m′ = dm
dx1

. The translation invariance of the latter transition energy induces
a certain lack of compactness. Nevertheless, one can show (see [5]) that for εk → 0
there exists a sequence of minimizers mεk

of the variational principle above and
a subsequence that locally converges to m = (m, 0) where m satisfies a reduced
variational principle:

E0(m) =
1

2

∫
R

(
Q |m′|2 +

∣∣|∇| 12m1

∣∣2 + |m1|2
)
dx→ min (2.6)

m : R→ S1 with m(±∞) = (0,±1).

A minimizer is called a Néel wall. The Néel wall energy can conveniently be
expressed as

E0(m) =
1

2

(
Q‖m′‖2

L2 + ‖m1‖2
Ḣ1/2 + ‖m1‖2

L2

)
→ min

m : R→ S1 with m(±∞) = (0,±1).
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Since |m′|2 = (m′1)2/(1−m2
1) the Néel wall energy is a strictly convex functional

in m1. Thus the variational principle has for any Q > 0 indeed a minimizer that
is unique up to translations and the sign of m1.

The Néel wall exhibits an internal two-scale structure: it decomposes into a core
region nearby the wall center with typical width wcore = d2/δ and a tail region
wcore . |x| . wtail with wtail = w = δ/(2Q) the scaling factor we have used above.
Then the number Q . 1 has an interpretation as twice the quotient wcore/wtail.
In the regime Q � 1 the typical features of Néel walls are logarithmic energy
scaling, see [5, 4],

minE0 = π ln(1/Q)
(
1 + o(1)

)
as Q → 0 (2.7)

and the extremely slow logarithmic decay of wall profiles,

m1(x) ∼ ln(1/|x|)/ ln(1/Q),

see [13, 14], giving rise to far range interaction of neighboring walls, see [3]. It is
remarkable that, in case of finite Néel walls, the above energy asymptotic (2.7)
holds true when the infimum in taken over L-periodic transitions m = m(x1, x2),
see [2]. The result proves particularly strong stability of the one-dimensional Néel
wall with respect to two-dimensional variations, a result yet unknown for infinite
Néel walls.

In Section 4 we show that up to translations Néel walls are indeed strict min-
imizers. For the purpose of spectral analysis we introduce a phase θ so that
m = (cos θ, sin θ). Then the Néel wall problem (2.6) reads

E(θ) =
1

2

(
Q
∫

R
|θ′|2dx + ‖ cos θ‖2

Ḣ1/2 + ‖ cos θ‖2
L2

)
→ min (2.8)

θ : R→ (−π/2, π/2) with θ(±∞) = ±π/2.

2.4 Landau-Lifshitz-Gilbert dynamics

In the presence of an external field h, the equilibrium condition reads m∧Heff = 0,
where the effective field is given by Heff = h − ∇E(m), that is the difference
of the external field and the L2-gradient of the energy. Again the nonconvex
character of the energy leads to a large variety of (local) minimizers and meta-
stable states, and the hysteresis phenomenon. If otherwise a torque exists, that
is m ∧ Heff 6= 0, the magnetization performs a damped precession dynamics
described by the Landau-Lifshitz-Gilbert equation [12, 7]

mt + αm ∧mt − γm ∧Heff = 0.
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Here, α > 0 is the dimensionless Gilbert damping factor and γ > 0 is the gy-
romagnetic ratio. For the local dynamic picture we consider a single oriented
spin m = m(t) under the influence of a constant external field h. If a torque
m ∧ h exists and damping is neglected (that is α = 0) then m precesses about
h with frequency ω = γ |h|. If damping is switched on, that is α > 0, the spin
vector m spirals down to the constant spin, parallel to h. The typical relaxation
time is 1/(αω). Typically, α > 0 is a small parameter that reflects the fact that
relaxation happens on a time scale that is considerably slower than precession.
Gilbert’s description of damping in magneto-dynamics is a phenomenological
one, mainly justified by thermal effects. In a realistic situation, however, other
damping mechanisms (e.g. eddy current damping, material defects) that cannot
be captured by a local term might be relevant.

Gyrotropic domain wall motion

In the presence of an applied field h = H(t) e2 that points towards one of the equi-
librium states, a domain wall starts to move. If E(m) is the associated internal
domain wall energy, the averaged effective field is given by Heff = −∇E(m) + h.
Hence, the associated Landau-Lifshitz-Gilbert dynamics reads

mt + αm ∧mt + γm ∧∇E(m) = γm ∧ h

m(t) : R→ S2 with m(t,±∞) = (0,±1, 0).

This evolution problem inherits a detailed description including kinematic prop-
erties and shape of a moving domain wall. In contrast to the static case the
dynamic magnetization path for a fixed time t is rather determined by the bal-
ance of energetic and dynamic forces as prescribed by LLG. Indeed, precession
pushes the magnetization vector away from its energetically optimal path taking
into account a gain in stray-field energy.

Walker’s explicit solution in the bulk

An important illustration is provided by Walker’s construction of explicit solu-
tions with constant propagation speed (traveling wave), see [21, 8, 20, 15]. We
consider the bulk geometry and the associated domain wall energy

E(m) =
1

2

∫
R

(
d2|m′|2 +Q (1−m2

2) +m2
1

)
dx.

If the optimal path m1 ≡ 0 (Bloch wall) perpendicular to the transition axis is
chosen, the stray-field is fully eliminated, and the resulting variational principle is
essentially equivalent to the optimal profile problem for Cahn-Hilliard. Standard
methods yield an optimal profile m2(x) = tanh(x/w0) with typical wall width
w0 = d/

√
Q and energy E0 = 2d

√
Q, a calculation first performed to Landau and
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Lifshitz. Subject to a constant applied external field h = H e2, and in a moving
frame ξ = x+ c t where c represents the speed of propagation, LLG reads

cm′ + α cm ∧m′ + γm ∧∇E(m) = γm ∧ h. (2.9)

Under the geometric assumption that the wall moves with constant polar in-
clination ϕ, the balance of driving force and dissipation yields standard profile
m2(ξ) = tanh(ξ/w) but with a decrease in wall width w = d/

√
Q+ sin2 ϕ. The

inclination angle and the propagation speed c are determined by

1

2
sin(2ϕ) =

H

α
and c =

d γ sin(2ϕ)

2
√
Q+ sin2 ϕ

. (2.10)

Beyond a peak velocity that is reached for finite field-strength H this construction
breaks down. On the other side, the wall mobility, that is the infinitesimal rate
of change of propagation speed c for small field H, is given by

β = lim
H→0

c(H)

H
=
γw0

α
=

2d2γ

αE0

=
d2γ

αEex

(2.11)

where we have used energy equi-partition in the last equation.

2.5 Formal wave asymptotics for the Bloch wall

In case of small crystalline anisotropy the residual anisotropy interaction stem-
ming from stray-field dominates, and results in a singular competition with gy-
romagnetic forces in the context of dynamics. Let us show that skew-symmetry
leads a wave-type dynamics along the Bloch wall pass perpendicular to the tran-
sition axis. To this end we introduce the small parameter ε =

√
Q and rescale

space by the Bloch wall width d/
√
Q, time by 1/(γε) and renormalizing energy

by d
√
Q. We obtain

Eε(m) =
1

2

∫
R

(
|m′|2 + (1−m2

2) +
(m1

ε

)2
)
dx.

In this spatial scale the effective field reads Heff = −ε2∇Eε(m). Accordingly
LLG becomes

mt + αm ∧mt + εm ∧∇Eε(m) = 0. (2.12)

We investigate the rescaled equation in the following regime of low anisotropy
and low damping

ε→ 0 while νε = α(ε)/ε→ ν.

A convenient choice of coordinate system in this situation is the following spher-
ical coordinate system as proposed by Enz, see [19]

m1 = sinϕ, m2 = cosϕ sin θ, m3 = cosϕ cos θ, (2.13)
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with limiting conditions θ(±∞) = ±π/2 and ϕ(±∞) = 0. Then the associated
energy functional Eε(θ, ϕ) = Eε(m) is given by

Eε(θ, ϕ) =
1

2

∫
R

(
|ϕ′|2 + cos2 ϕ |θ′|2 + 1− cos2 ϕ sin2 θ +

1

ε2
sin2 ϕ

)
dx,

and the rescaled LLG (2.12) reads

R(ϕ)

(
∂tθ
∂tϕ

)
+

(
∂θEε(θ, ϕ)
∂ϕEε(θ, ϕ)

)
= 0 (2.14)

with

R(ϕ) =

(
α − cosϕ

cosϕ α cos2 ϕ

)
.

Nearby the static Bloch wall path m1 = 0, that is for ϕ� 1, the energy decom-
poses into its leading order contributions

Eε(θ, ϕ) ≈ E0(θ) +
1

2ε2

∫
R
ϕ2 dx with E0(θ) =

1

2

∫
R

(
|θ′|2 + cos2 θ

)
dx

thus

∇Eε(θ, ϕ) ≈
(
∇E0(θ)
ϕ/ε

)
and R(ϕ) ≈

(
α −1
1 α

)
.

Observe that if (θ, ϕ) is considered as a complex function the approximate R(ϕ)
gives rise to a damped Schrödinger dynamics. More precisely (2.14) becomes

−∂tϕ+ α ∂tθ + ε∇E0(θ) = 0,

∂tθ + α ∂tϕ+ (ϕ/ε) = 0.
(2.15)

Setting ψ = ϕ/ε we obtain from (2.15) as ε→ 0 that
∂tψ + ν ∂tθ +∇E0(θ) = 0,

∂tθ − ψ = 0.

Differentiating the second equation with respect to time and substituting it into
the first one we obtain the wave-type limit equation

∂2
t θ + ν ∂tθ +∇E0(θ) = 0.
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3 Effective dynamics for thin films

Gyromagnetic precession is geometrically incompatible with the asymptotic con-
straint of in-plane magnetization that is imposed by stray-filed interaction. In
other words, the competition between energetic and dynamic forces becomes sin-
gular in a thin-film limit. Here we investigate a suitable effective limit for LLG

mt + α m ∧mt + γ m ∧∇E(m) = 0 (3.1)

as the relative thickness δ/d tends to zero, where as in Section 2.2, m(t) : R2 → S2

is l-periodic in the second variable and the interaction energy is given by

E(m) =
1

2
−
∫ l

0

∫
R

(
d2|∇m|2 +

δ

2

∣∣|∇| 12H(m)
∣∣2 +Q(1−m2

2) +m2
3

)
dx.

We recall that Gilbert’s damping factor α is a small parameter as well, that is
to say, precession proceeds much faster than relaxation. Prior work on thin-
film reductions for LLG, leading to enhanced dissipation, see [6, 9, 17], considers
the regime when δ/d � α. In order to preserve the oscillatory features of LLG
dynamics, we take into account small Gilbert damping as well. As it turns out, the
effective dynamics depends on asymptotic regime as α and the relative thickness
δ/d tend to zero.

Scaling and asymptotic regime

We set ε =
√
Q and consider the regime (2.3) when ε� Q while Q = (2εd/δ)2 .

1 is moderately small but uniformly bounded from below. In other words the
dimensionless parameter ε ∼ δ/d can be considered as a relative thickness. We
rescale space and time

x 7→ wx where w = δ/(2ε2) (tail width), t 7→ t/(γε). (3.2)

In this spatial scale the averaged effective field Heff = −∇E(m) reads

Heff = −ε2∇Eε(m) where Eε = (2/δ)E (3.3)

Recall that Eε(m) is the rescaled domain wall energy given by (2.4). Under
the above assumptions the exchange portion of the energy does not drop out
asymptotically. Let us fix the dimensionless periodicity scale L = l/w & 1 (for
the argument we will assume that L = 1). The underlying L2-scalar product is
given by

〈F,G〉 = −
∫ L

0

∫
R
F ·Gdx for F,G ∈ L2(R× TL; Rn), n = 2, 3.

12



If F ∈ H−1(R× TL; Rn) and G ∈ H1(R× TL; Rn) we use the same notation for
the corresponding dual pairing. Accordingly, the L2-gradient of Eε = Eε(m) at
m = (m,m3) defined by

〈∇Eε(m),u〉 =
d

ds
Eε(m + su)

∣∣∣
s=0

for any u ∈ H1(R× TL; R3),

is an L-periodic distribution and reads

∇Eε(m) =
[
Q(−∆)− e2 ⊗ e2

]
m +

(
(−∆)1/2H(m),m3

)
,

where (−∆)1/2 = |∇| corresponds to the Fourier multiplier |ξ|.

According to (3.2) and (3.3) the Landau-Lifshitz-Gilbert equation (3.1) becomes

mt + αm ∧mt + εm ∧∇Eε(m) = 0. (3.4)

We investigate this rescaled equation in the asymptotic regime when

ε→ 0 while α(ε)/ε→ ν (3.5)

for some positive ν. Fixing Q . 1 we implicitly assume that ε � Q. For the
argument we will assume that Q = 1 for any ε > 0. In order to derive an effective
equation for the in-plane magnetizations we decompose Eε(m) into a portion that
only involves the in-plane components m = (m1,m2) independent of ε, and one
that only contains the vertical component m3, that is for m = (m,m3)

Eε(m) = E0(m) +
1

2
−
∫ L

0

∫
R

(
Q |∇m3|2 +

(m3

ε

)2
)
dx. (3.6)

The in-plane portion of the energy E0(m) is given by

E0(m) =
1

2
−
∫ L

0

∫
R

(
Q |∇m|2 + ||∇|

1
2H(m)|2 + (1−m2

2)
)
dx. (3.7)

For in-plane magnetizations, it agrees with the reduced Néel wall energy (2.6)
and turns out to be the effective interaction energy for the dynamic problem as
well.

Theorem 1. Let mε : R2 × (0,∞) → S2 be a family of global smooth solutions
of (3.4) L-periodic in the second spatial direction and with uniformly bounded
initial energy (3.6), that is Eε(mε(0)) ≤ C. Suppose that α(ε)/ε → ν and the
in-plane components mε ⇀ m converge weakly in L2

loc(R×TL×(0,∞); R2). Then
m ∈ H1

loc(R× TL × (0,∞); S1), and it is a weak solution of[
∂2
tm+ ν ∂tm+∇E0(m)

]
⊥ TmS1. (3.8)

13



By an in-plane magnetization m ∈ H1
loc(R× TL × (0,∞); S1) satisfying (3.8) we

mean∫ ∞
0

−
∫ L

0

∫
R

(
− ∂tm · ∂tφ + ν ∂tm · φ

)
dxdt +

∫ ∞
0

〈∇E0(m), φ〉 dt = 0 (3.9)

for any admissible test function φ ∈ L∞∩H1(R×TL× (0,∞); R2) with compact
support so that φ ·m = 0, that is φ is a tangential vector field along m. Observe
that L∞ ∩H1 forms an algebra and that all admissible test functions are of the
form φ = m⊥ϕ for some compactly supported ϕ ∈ L∞ ∩ H1(R × TL × (0,∞))
and m⊥ = (−m2,m1). Thus, by weak* density it is enough to verify (3.9) for
φ = m⊥ϕ with ϕ ∈ C∞0 (R× TL × (0,∞)).

Proof of Theorem 1. Let us assume for notational convenience that Q = 1 and
L = 1, and set T = T1 = R/Z. We blow-up the vertical component by ε, that is
we set m3 = εv. Then, for m = (m, εv), the energy can be written as

Eε(m) = E0(m) +Gε(v)

where E0(m) is the in-plane portion (3.7) and

Gε(v) =
1

2

∫
R×T

(
ε2 |∇v|2 + |v|2

)
dx.

We introduce the rescaled damping factor νε = α(ε)/ε. Using the multiplier
m ∧mt for the rescaled LLG (3.4), we find the energy inequality:

νε

∫ ∞
0

[
‖∂tmε‖2

L2
x

+ ε2 ‖∂tvε‖2
L2

x

]
dt+ sup

T>0

[
E0(mε(T )) +Gε(vε(T ))

]
≤ C. (3.10)

Hence, we have for a subsequence ε = εk ↘ 0 as k →∞

mε
∗
⇀ m weakly ∗ in L∞t Ḣ

1
x ∩ Ḣ1

t L
2
x (3.11)

vε
∗
⇀ v weakly ∗ in L∞t L

2
x (3.12)

(ε vε) is uniformly bounded in L∞t H
1
x ∩ Ḣ1

t L
2
x (3.13)

where |m| = 1 almost everywhere in R× T× (0,∞).

In view of Aubin’s Lemma, (3.11) also implies that

mε → m strongly in Lqloc(R× T× (0,∞); R2) for any 2 ≤ q <∞. (3.14)

Equation (3.4) can be written as∂tmε,1

∂tmε,2

ε∂tvε

 =

 0 ε vε −mε,2

−ε vε 0 mε,1

mε,2 −mε,1 0

ε νε
∂tmε,1

∂tmε,2

ε∂tvε

+

 ε (∇E0)1

ε (∇E0)2

−ε2 ∆ vε + vε

 .
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Using the notation V ⊥ = (−V2, V1) for V ∈ R2, we split the system into

∂tmε − vεm⊥ε = εRε(mε, ε vε)
⊥, (3.15)

∂tvε +m⊥ε ·
[
νε ∂tmε +∇E0(mε)

]
= 0, (3.16)

where

Rε(mε, ε vε) = νε
(
mε ε ∂tvε − ε vε ∂tmε

)
−
(
ε vε∇E0(mε) +mεε∆vε).

We first consider equation (3.15). According to the energy inequality the family
Rε = Rε(mε, ε vε) has uniform bounds as a distribution. Indeed, for any com-
pactly supported φ ∈ L∞ ∩ H1(R × T × (0,∞); R2) the pairing

∫∞
0
〈Rε, φ〉 dt is

bounded by∫ ∞
0

|〈Rε, φ〉| dt ≤ νε

∫ ∞
0

(
|〈ε vε, ∂tmεφ〉|+ |〈ε ∂tvε,mε φ〉|

)
dt

+

∫ ∞
0

(
|〈∇E0(mε), ε vε φ〉|+ |〈ε∇vε,∇(mε φ)〉|

)
dt.

Since for m = mε(t) one has ‖(−∆)m‖H−1
x
≤ ‖∇m‖L2

x
and

‖(−∆)
1
2H(m)‖H−1

x
≤ ‖(−∆)

1
2H(m)‖L2

x
≤ ‖∇m‖L2

x

we deduce from the energy inequality (3.10) that the energy gradient

∇E0(mε(t)) =
[
(−∆) + (−∆)1/2H− e2 ⊗ e2

]
mε(t) ∈ (H−1 + L∞)(R× T; R2)

has a bound in this space that is uniform in ε > 0 and t > 0. Using this, (3.13),
and Cauchy-Schwarz we find∫ ∞

0

|〈Rε, φ〉| dt ≤ C

(∫ ∞
0

(
‖φ(t)‖2

H1
x

+ ‖φ(t)‖2
L∞x

)
dt

)1/2

(3.17)

with a constant C that only depends on the initial energy (that is uniformly
bounded by assumption) and the size of the support of φ.

Estimate (3.17) is valid for test functions of the form φ = m⊥ε ∂tϕ for any ϕ ∈
C∞0 (R × T × (0,∞)). Thus, passing to the limit as ε → 0 in (3.15) while using
(3.11) and (3.12) yields a distributional equation∫ ∞

0

∫
R×T

(m⊥ · ∂tm) ∂tϕdx dt =

∫ ∞
0

∫
R×T

v ∂tϕdx dt, (3.18)

for any ϕ ∈ C∞0 (R × T × (0,∞)), that means formally ∂tv = ∂2
tm · m⊥ in the

sense of distributions.
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For the second equation (3.16), integration by parts yields for the highest order
term

−
∫ ∞

0

∫
R×T

(m⊥ε ·∆mε) ϕdx dt =

∫ ∞
0

∫
R×T

(m⊥ε · ∇mε) ∇ϕdx dt

for any ϕ ∈ C∞0 (R×T× (0,∞)). Using (3.11), (3.12), and (3.14) we can pass to
the limit is every term. We get∫ ∞

0

∫
R×T

v ∂tϕdx dt = ν

∫ ∞
0

∫
R×T

∂tm ·m⊥ϕdx dt+

∫ ∞
0

〈
∇E0(m),m⊥ϕ

〉
dt

(3.19)
for any ϕ ∈ C∞0 (R× T× (0,∞)). Substituting (3.18) into (3.19) equation yields
the result.

Application to moving Néel walls

We apply the latter asymptotic limit in the one-dimensional context of Néel wall
transitions:

E0(m) =
1

2

∫
R

(
Q |m′|2 +

∣∣|∇| 12m1

∣∣2 + |m1|2
)
dx (3.20)

m : R→ S1 with m(±∞) = (0,±1).

The theorem suggests the following dynamic model for the evolution of Néel walls
in thin films subject to a constant applied field h = H ê2 that points towards one
of the end-states determined by anisotropy(

∂2
tm+ ν ∂tm+∇E0(m)

)
·m⊥ = h ·m⊥ (3.21)

m : R× (0,∞)→ S1 with m(±∞, t) = (0,±1).

In terms of the phase function the reduced dynamic equation (3.21) reads

∂2
t θ + ν ∂tθ +∇E(θ) = H(t) cos θ (3.22)

θ : R× (0,∞)→ R with θ(±∞, t) = (0,±π/2).

For constant applied fields H = const. we are mainly interested in solutions
θ = θ(x + ct) of constant propagation speed c (traveling waves) and the typical
dependence of c on H. In this context we show the existence of traveling wave
solution with a profile nearby the static Néel wall θ0 for small H. A crucial
ingredient is the following stability analysis.
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4 Stability for static Néel walls

We have seen in Section 2.2 that the phase θ0 of a minimizing Néel wall is unique
up to a translation. In this section we show that, modulo translation invariance,
Néel walls are stable minimizers. This is merely a consequence of the fact that the
Néel wall energy is a uniformly convex functional of m1 subject to the constraint
m1(0) = 1. The corresponding non-degeneracy result for the linearization serves
to construct special solutions for the dynamic problem close to the ground state.
Throughout this section we setQ = 1 for notational convenience, but all estimates
carry over to arbitrary Q > 0 with only a change of constants. The Euler-
Lagrange equation for (2.8) reads

θ′′ + sin θ
[
1 + (−∆)1/2

]
cos θ = 0. (4.1)

Note that, the left hand side of (4.1) is just the negative of the L2(R)–gradient
of the Néel wall energy E(θ) given by

〈∇E(θ), u〉 =
d

ds
E(θ + su)

∣∣∣
s=0

for any variation u ∈ H1(R).

In [13] it is proved that the phase θ0 of the Néel wall is nondecreasing, and θ′0 only
may vanish in an interval centered at the origin. Here we rule out this possibility.

Lemma 1. The phase θ0 of a centered Néel wall is monotone with θ′0(0) > 0.

Proof. Due to Proposition 1 in [13] we only have to show that θ′0(0) = 0 is
impossible. Observe that θ = θ0 is a solution of the ordinary differential equation

θ′′ + b(x) sin θ = 0 (4.2)

where b(x) =
[
1 + (−∆)1/2

]
(cos θ0)(x). Since θ′0 ∈ L2(R) we have (cos θ0)′ =

sin θ0θ
′
0 ∈ L2(R), and due to the estimate ‖(1 + (−∆)1/2)u‖L2 ≤ C‖u‖H1 we

conclude that b(x) ∈ L2(R). Hence, by (4.2) θ′′0 ∈ L2(R). Next, using the
interpolation inequality

‖θ′0‖L4 ≤ ‖θ0‖1/2
L∞‖θ

′′
0‖

1/2

L2

we have (cos θ0)′ = − sin θ0θ
′′
0 − cos θ0|θ′0|2 ∈ L2(R). Thus, b(x) ∈ H1(R). Then,

Sobolev embedding theorem in one dimension imply that b(x) is continuous and
bounded. If we assume that θ(0) = θ′(0) = 0, the uniqueness theorem for ordinary
differential equations implies that θ(x) = 0, a contradiction.

Observe that the regularity assertions in the proof can be bootstrapped, and we
find that Néel wall profiles are indeed smooth.
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4.1 A lower bound for the Hessian

We introduce the bilinear form

B(f, g) = Re

∫
R

(
1 + |ξ|

)
f̂(ξ) ¯̂g(ξ) dξ,

that is equivalent to the H1/2(R) inner product. In particular, B(f, f) ≥ ‖f‖2
L2 .

Lemma 2. Suppose that θ0 minimizes E(θ) subjected to center and boundary
conditions θ(0) = 0 and θ(±∞) = ±π/2. Then the Hessian exhibits a lower
bound

Hess E(θ0)〈u, u〉 ≥ ‖u θ′0‖2
L2 +B(u sin θ0, u sin θ0)

for any admissible variation u ∈ H1(R) with u(0) = 0.

Proof. We first consider functions u that vanish in a neighborhood of 0. Then

Hess E(θ0)〈u, u〉 =

∫
R
|u′|2 dx−B(cos θ0, u

2 cos θ0) +B(u sin θ0, u sin θ0).

In order to estimate the middle term, we deduce from the Euler-Lagrange equa-
tion with the admissible test function u2 cot θ0∫

R
θ′0
(
u2 cot θ0

)′
dx = B(cos θ0, u

2 cos θ0).

Recalling that −d(cot θ)/dθ = 1 + cot2 θ, we find with Young’s inequality∫
R

(
|u′|2 − θ′0(u2 cot θ)′

)
dx ≥

∫
R
|θ′0|2|u|2 dx

and the claim follows. If we only assume that u(0) = 0, then we approximate by
uδ ∈ H1(R) defined by uδ(x) = 0 in (−δ, δ) and uδ(x) = u(x − δ) for x > δ and
analog for x < δ. Then uδ is admissible for the above estimate and converges to
u strongly in H1, so that the claim follows in the limit δ → 0.

4.2 The linearized operator

We consider the linearization L0 of the mapping ∇E = ∇E(θ) at θ0 given by

L0u =
d

ds

∣∣∣
s=0
∇E(θ0 + su). (4.3)

With the bounded and smooth coefficients

s(x) = sin θ0(x) and C(x) = cos θ0(x)
[
1 + (−∆)1/2

]
(cos θ0)(x) (4.4)

the operator reads

L0u = −u′′ + s(x)
[
1 + (−∆)1/2

]
(s(x)u)− C(x)u. (4.5)
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Proposition 1. For all f ∈ L2(R) such that f ⊥ θ′0 in L2(R) there exists a
solution u ∈ H2(R) of

L0 u = f. (4.6)

The solution is unique up to a constant multiple of θ′0.

Proposition 1 is a consequence of the following lemmata. Lemma 3 provides a
spectral bound for L0 on the complementary space {u ⊥ θ′0}. Lemma 4 provides
existence and (partial) uniqueness of weak solutions by the Riesz representation
theorem. Finally we show H2-regularity.

Lemma 3. There is a constant Λ > 0 with the following property: If u ∈ H1(R)
such that u ⊥ θ′0 in L2(R), then

Hess E(θ0)〈u, u〉 ≥ Λ ‖u‖2
L2 . (4.7)

Recall that 〈L0u, u〉 = Hess E(θ0)〈u, u〉. Note that as a consequence of this lemma
and that θ′0 annihilates the Hessian, the operator L0 has zero as a simple eigen-
value with eigenspace spanned by θ′0.

Proof of Lemma 3. We first show that the claim of Lemma 2 holds for u ∈ H1(R)
with u ⊥ θ′0 in L2(R). Indeed, θ′0 annihilates Hess E(θ0). In view of Lemma 1 the
function v = u− u(0)/θ′0(0)θ′0 is admissible with

Hess E(θ0)〈u, u〉 = Hess E(θ0)〈v, v〉
≥ ‖θ′0v‖2

L2 +B(v sin θ0, v sin θ0)

≥ ‖θ′0v‖2
L2 + ‖ sin θ0 v‖2

L2

≥ Λ ‖v‖2
L2

where we have used that |θ′0| and | sin θ0| are bounded from below for small and for
large |x|, respectively. But by orthogonality ‖v‖2

L2 ≥ ‖u‖2
L2 and (4.7) follows.

Lemma 4. Let f ∈ L2(R) such that f ⊥ θ′0 in L2(R). Then problem (4.6) has a
weak solution u ∈ H1(R), unique up to a multiple of θ′0. Moreover, if u ⊥ θ′0 in
L2(R) then

‖u‖H1 ≤ C‖f‖H−1

for a universal constant C > 0.

Proof. Let H1
⊥ := {u ∈ H1(R) : u ⊥ θ′0 in L2(R)} and

a(u, v) := Hess E(θ0)〈u, v〉 =

∫
R
u′v′ dx+B(sin θ0 u, sin θ0 v)−

∫
R
C(x)uv dx.

We claim that a(·, ·) : H1
⊥ ×H1

⊥ → R is a symmetric bilinear form, that induces
a norm on H1

⊥ equivalent to the H1–norm. Indeed, since

B(sin θ0 u, sin θ0 u) ≤ ‖ sin θ0 u‖2
H1/2 ≤ ‖ sin θ0 u‖2

H1 ≤ C‖u‖2
H1
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for some constant C that only depends on ‖θ0‖H1 , we only need to show that
a(·, ·) is coercive. From (4.7) and the boundedness of C(x) (see (4.4) and comment
after Lemma 1) we infer

(1 + C) a(u, u) =

∫
R
|u′|2 dx+B(u sin θ0, u sin θ0)

−
∫

R
C(x)u2 dx+ C Hess E(θ0)〈u, u〉

≥
∫

R
|u′|2 dx−

∫
R
C(x) u2 dx+ C Λ

∫
R
u2 dx

≥ min{1, C Λ− ‖C(x)‖L∞}‖u‖2
H1 (4.8)

where we choose the constant so that C Λ > ‖C(x)‖L∞ .

Observe that L0 commutes with the L2 projection onto the complement of θ′0,
and let f be as in the assumptions of the Lemma. Then, u ∈ H1

⊥ is a weak
solutions of(4.6) means

a(u, v) = 〈f, v〉 for any v ∈ H1
⊥.

Then existence and uniqueness in the space H1
⊥ follows from the Riesz represen-

tation theorem. Moreover, if u ∈ H1
⊥ is a weak solution of (4.6) then we get by

(4.8)
C‖u‖2

H1 ≤ a(u, u) = 〈u, f〉 ≤ ‖u‖H1‖f‖H−1

and the estimate follows.

Lemma 5. Let f ∈ L2(R) with f ⊥ θ′0 in L2(R) and u ∈ H1(R) be a weak
solution of (4.6), then u ∈ H2(R). Moreover, if u ⊥ θ′0 in L2(R), there exists a
constant C > 0 such that

‖u‖H2 ≤ C ‖f‖L2 . (4.9)

Proof. Since θ′0 ∈ H2(R) we can, in view of Lemma 4, assume that u ∈ H1
⊥. We

have
u′′ = s(x)(1 + (−∆)1/2)(s(x)u)− C(x)u+ f

where C(x) and s(x), as in (4.4), are smooth with bounded derivatives. Using
the estimate in Lemma 4 we find

‖u′′‖2
L2 ≤ C (‖f‖2

L2 + ‖u‖2
H1) ≤ C ‖f‖2

L2

and the result follows.
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5 Traveling wave solutions for the Néel wall

The analysis performed in the last section allows to construct a traveling wave
solution for the dynamic problem near the static Néel wall, by means of the
implicit function theorem. Similar arguments have been used in the context of
convolution models for phase transitions [1].

Theorem 2. For sufficiently small field strength H there is a traveling wave for
the reduced Landau-Lifshitz-Gilbert dynamics

c2 θ′′ + c ν θ′ +∇E(θ) = H cos θ

that connects antipodal states at infinity θ(±∞) = ±π/2 near the static Néel wall
θ0. Moreover, the propagation speed has an expansion c = βH + o(H) where the
wall mobility is given by β = 1/(Mν) with M = 1

2

∫
R |θ

′
0|2 dx.

Mobility of a the Néel wall in physical units

In order to extract the wall mobility in physical units, we have to account for all
changes of scale. Recall that we rescaled time t̃ = t/(γ

√
Q) and space x̃ = w x

where w is the tail width of the static Néel wall w = δ/(2Q). Therefore, since in
physical units the mobility β∗ has the dimension of velocity, we have

β∗ =
γδ

2ε
β.

The exchange coefficient reads Q = 4Q(d/δ)2. Rescaling to physical units

Eex =
d2

2

∫
R
|m′|2dx =

δ

2
QM.

The number Eex is the exchange part of the energy per unit of area that remains
implicit in the thin film situation. Then we deduce from Theorem 2

β∗ =
δ2Qγ

4 ε ν Eex

=
d2γ

αEex

.

Taking into account energy equi-partition for the Bloch wall we observe that
this expression formally agrees with (2.11) deduced from the Walker solution.
With the energy asymptotic (2.7) we have the upper bound, Eex . δ/ ln(1/Q)
for Q � 1, giving a lower bound for the mobility.

Proof of Theorem 2. We let

G
(
(θ, c), H

)
= c2 θ′′ + c ν θ′ +∇E(θ)−H cos θ.
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This functional inherits the translation invariance of the Néel wall, in the sense
that, if G

(
(θ(x), c), H

)
= 0 then G

(
(θ(x+x0), c), H

)
= 0 for all real x0. To factor

out this invariance we consider the extended functional equation

G
(
(θ, c), H

)
=
[
G
(
(θ, c), H

)
, θ(0)

]
= (0, 0).

Step 1: We claim that, for a static Néel wall θ0 and perturbations φ, the mapping

H2(R)× R× R 3
(
(φ, c), H

)
7→ G

(
(θ0 + φ, c), H

)
∈ L2(R)× R

is continuously Fréchet differentiable. First, since H2(R) ↪→ BC(R), the linear
mapping θ → θ(0) is well defined and bounded. Next, we consider the mapping

((φ, c), H)→ G((θ0 + φ, c), H).

The dependence on c and H of this functional is obviously smooth. Regarding φ
dependence we only need to consider the nonlinear part

φ 7→ sin(θ0 + φ)
[
1 + (−∆)1/2

]
cos(θ0 + φ)−H cos(θ0 + φ)

that is C1 regular from H2(R) ↪→ H1(R) into L2(R). Indeed, the mappings

φ 7→ cos(θ0 + φ) and φ 7→ sin(θ0 + φ)− sin θ0

are bounded and continuous on H1(R). Moreover, since H1(R) forms a smooth
multiplicative algebra, one infers continuous differentiability of these mappings
from H1(R) into itself. Since (−∆)1/2 : H1(R) → L2(R) smoothly, we deduce
from the product rule the continuous differentiability of

φ 7→
(

sin(θ0 + φ)− sin θ0

)[
1 + (−∆)1/2

]
cos(θ0 + φ)

as a mapping from H1(R) into L2(R) and clearly for

φ 7→ sin θ0

[
1 + (−∆)1/2

]
cos(θ0 + φ)−H cos(θ0 + φ).

Step 2: The linearization with respect to the first two components (θ, c) at the
(stationary) Néel wall (θ0, 0) reads[

L0 ν θ′0
δ0 0

]
.

We show that, as a mapping H2(R)×R→ L2(R)×R, it has a bounded inverse.
We only need to show invertibility. This means that, for every (f, b) ∈ L2(R)×R
there is a unique (v, c) ∈ H2(R)× R so that

L0v + c ν θ′0 = f and v(0) = b. (5.1)
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Indeed, according to Proposition 1, the first equation is solvable provided

(f − cνθ′0) ⊥ θ′0 that is c ν

∫
R
|θ′0|2 dx =

∫
R
f θ′0 dx.

This fixes c and determines v up to a multiple of θ′0, that is v + λθ′0. But due to
Lemma 1 we have θ′0(0) > 0, and the second equation in (5.1) fixes λ as well.
Regarding uniqueness we have to show that

L0w + c ν θ′0 = 0 and w(0) = 0

only admits the zero solution (w, c) = (0, 0). Indeed, since L0 is (formally) self-
adjoint we deduce c

∫
R |θ

′
0|2 dx = 0 whence c = 0. But then, according to Lemma

4, w = 0 as well.

Step 3: The implicit function theorem implies the existence of a differentiable
branch

H 7→ (θ[H], c[H]), so that G
(
(θ[H], c[H]), H

)
= (0, 0)

for small enough H and (θ[0], c[0]) = (θ0, 0). We let

ψ =
dθ

dH

∣∣
H=0

and β =
dc

dH

∣∣
H=0

.

Then

0 =

〈
θ′0,

d

dH

∣∣∣
H=0

G((θ[H], c[H]), H)

〉
= ν β

∫
R
|θ′0|2 dx+

〈
θ′0,L0ψ − cos θ0

〉
= ν β

∫
R
|θ′0|2 dx− 2,

gives the formula for the wall mobility and the theorem follows.
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Equ. 168 (2004), pp. 209-219.

[15] C. Melcher, Domain wall motion in ferromagnetic layers, Physica D 192
(2004) pp. 249-264.

24



[16] S. Middelhoek, Domain wall velocities in thin magnetic films, IBM J. Res.
Dev. 10 (1966), pp.351–354.

[17] R. Moser, Boundary vortices for thin ferromagnetic films, Arch. Ration.
Mech. Anal. 174 (2004), pp. 267–300.
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