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Abstract

We consider financial markets with two kinds of small traders: regular traders
who perceive the asset price process S through its natural filtration, and insid-
ers who possess some information advantage which makes the filtrations through
which they perceive the evolution of the market richer. The basic question we dis-
cuss is the link between (NFLVR), the semimartingale property of S viewed from
the agent’s perspective, and bounded expected utility. We show that whenever
an agent’s expected utility is finite, S is a semimartingale with a Doob-Meyer
decomposition featuring a martingale part and an information drift. The ex-
pected utility gain of an insider with respect to a regular trader is calculated in
a completely general setting. In particular, for the logarithmic utility function,
utility gain is a function of the relative information drift alone, regardless of the
completeness of the market.
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Introduction

Asymmetry of information on financial markets has been a subject of increasing interest
in recent years. Several mathematical models have been designed to deal with financial
markets on which traders with different information levels are active. See Wu [29]
for an overview. The model to capture basic facts of insider action on markets which
motivated this paper is very simple. Two kinds of traders are considered: regular agents
who usually know not more than the natural evolution of the assets of the market, and
insiders whose knowledge at any given time in the trading interval is larger than the
σ−field generated by the asset price process up to that time. The insider may, for
example, possess some additional information on the price of an asset at maturity, or
at some later time. He might anticipate the time when an asset price reaches a favorable
level, or be able to stop the time at which some final level crossing of the price process
occurs. Situations of this type have been modelled for example by Karatzas, Pikovsky
[21], Amendinger [1], Amendinger, Becherer and Schweizer [2], Grorud, Pontier [15],
and [3], [16], [17], [18]. In most of these papers, questions of utility gain of the insider
relative to the regular trader were discussed. It turned out that for many types of
additional information the expected increment of utility gained by the insider may
become infinite quite easily, and might provide opportunities for free lunch or even
arbitrage in an equally easy way. Baudoin [6] and Baudoin, Nguyen-Ngoc [7] develop a
model in which additional information on some random variable unknown to the regular
trader is only weakly available, i.e. in form of some knowledge of its law instead of the
precise anticipation of its value. In this framework the insider’s utility is more likely
to be finite and can be computed for example by means of the fundamental results by
Kramkov, Schachermayer [22]. In [10], the precise observation of some random element
by the insider which is inaccessible to the natural trader is blurred dynamically by
some exterior independent noise to produce a weaker information advantage in the
same spirit, and keep the additional utility from getting out of control.

A natural mathematical toolbox to use in the context of the models described con-
tains the techniques of grossissement de filtrations developed in some deep work mostly
by French authors [9], [19], [20], [23], [30], [31], [32], [33], [28]. This is just one of numer-
ous examples in which the direct impact of Meyer’s Strasbourg school on contemporary
financial mathematics becomes evident. Another example is initiated in a recent paper
by Biagini, Oksendal [8]. In this paper a question is raised which appears of purely
mathematical interest at the first glance: knowing that the expected utility of an in-
sider is finite, what can be said about the regularity of the asset price process from
the insider’s point of view? The authors show that given finite utility and the exis-
tence of an optimal investment strategy for the insider, the asset price process must
be a semimartingale in the insider’s enlarged filtration. This way, they address one of
the basic questions of the theory of grossissements de filtrations, and at the same time
raise a problem which goes to the heart of stochastic analysis: the relationship between
semimartingales and the stochastic integrator property. To describe the utility of the
insider in his enlarged filtration, they use extended notions of stochastic integrals in-
vestigated in anticipative stochastic calculus, such as Skorokhod’s integral (see Nualart
[24]) and the forward Itô integral introduced by Russo and Vallois [26].
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The deep and central theorem of Bichteler-Dellacherie-Mokobodsky characterizes
semimartingales as stochastic integrators. A process S is a semimartingale if and only
if the stochastic integrals of uniformly bounded simple processes, i.e. predictable step
processes, with respect to S form a bounded set in the topological vector space of
random variables with the (L0−) topology of convergence in probability. This key
theorem allows to deal with the problem posed by Biagini and Oksendal [8] from a
different perspective. Suppose an agent invests on a financial market with asset price
process S and perceives the utility of his final wealth through a utility function U
which is unbounded. Then the hypothesis that the expected utilities the agent is able
to attain be a bounded function of the simple investment strategies he is allowed to
use due to his information horizon should be closely related to the L0−boundedness
of the set of stochastic integrals of simple admissible strategies. Hence the theorem
should provide a direct link between finite utility of agents on financial markets and the
semimartingale property of the asset price processes with respect to the evolution of
their information. This basic observation is the starting point for the analysis presented
in this paper.

A related link is exploited in the fundamental paper by Delbaen and Schachermayer
[11]. It is shown that if an asset price process S fulfills the (NFLVR) condition, i.e.
allow no admissible simple strategies which lead with positive probability to a final gain
with controllable risk, then the agent views S as a semimartingale. In addition, M
being the martingale part of S, its Doob-Meyer decomposition is given by the special
formula

S = M + α · 〈M, M〉.

We start by proving that if an agent has bounded expected utility with respect to his
information horizon, then he cannot have (FLVR). This allows us to hook up to the
result by Delbaen and Schachermayer, show that bounded utility implies the semi-
martingale property of S, and investigate more thoroughly the relationship between
the properties (NFLVR), the semimartingale property of S in the agent’s filtration,
and bounded expected utility. The drift density α may be considered a function of the
agent’s information horizon, i.e. its filtration. Passing from one filtration to a bigger
one while keeping utility finite will change α to β, and we may well call β − α the
corresponding information drift. We will keep an attentive eye on logarithmic utility.
In this particular case we will show that a better informed agent’s additional utility is
a function of the information drift alone, regardless of whether we face a complete or
an incomplete market. This result is derived in an entirely abstract framework. We
do not have to specify the type of information advantage the insider possesses. Based
on the fundamental result by Kramkov and Schachermayer [22], we will describe the
additional expected utility of an insider in a complete market setting for all reasonable
utility functions and express it as a function of relative information drifts.

Here is a brief outline of the paper. In section 1, we shall investigate the relationship
between (NFLVR), the semimartingale property, and finite utility. Section 2 is devoted
to investigate conditions under which optimal utility can be obtained by maximizing
over simple instead of general predictable admissible strategies. In section 3 we inves-
tigate the link between singularities of the integral process of the squared information
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drift α and infinite utility. In the following two sections 4 and 5 we restrict our at-
tention to logarithmic utility. We calculate it in general incomplete market settings,
and derive the expected utility increment of an insider. In the final section 6 we give
some formulas expressing the additional utility of an insider in complete markets as a
function of information drift for general ways of information evolution and show that
the logarithm gives essentially the only way of measuring utility which allows portfolios
that are optimal at any time in the trading interval.

1 Finite Utility and semimartingales

Delbaen and Schachermayer [11] establish a link between the (NFLVR) condition and
the semimartingale property of an asset price process on a financial market. In this
section we shall compare these two properties with a third one: the boundedness of ex-
pected utility with respect to wealth processes based on simple admissible integrands,
and non-bounded utility functions. Our main result will roughly show that bounded-
ness of utility implies the semimartingale property of the price process with respect to
the filtration of a fixed agent on the market.

Let (Ω, F, P ) be a probability space and F = (Ft)0≤t≤T an arbitrary filtration satis-
fying the usual conditions, T being the time horizon. Suppose that S : [0, T ]×Ω → R
is a stochastic process. S will take the role of the asset price process on our financial
market. The wealth of the agent on our market with information horizon F will be
determined in this section by simple investment strategies (integrands) of the following
form. A simple integrand is a linear combination of processes of the form f1]T1,T2]

where f is a bounded and FT1-measurable random variable and T1 and T2 are finite
stopping times with respect to the filtration F . The collection of simple integrands
will be denoted by S and the stochastic integral process of simple or more general
predictable integrands with respect to a cadlag process X by θ ·X. We now recall some
terminology introduced in [11]. If a is a positive real number, then a strategy θ is called
a-admissible, if for all t ∈ [0, T ] we have (θ · S)t ≥ −a almost surely. It will be called
admissible if it is a-admissible for some a ≥ 0. We put

Ks = {(θ · S)T |θ ∈ S admissible}

and C = Ks ∩ L∞+ . The process S is said to satisfy the no free lunch with vanishing
risk (NFLVR) property for simple integrands, if

C̄ ∩ L∞+ = {0},

where C̄ denotes the closure of C in L∞. For the general (NFLVR) condition, we
refer to K defined as Ks just with general F−predictable θ with well defined stochastic
integral. If the intersection contains more than the trivial element 0, we will say that
S satisfies (FLVR).

The following is a useful reformulation of the (FLVR) property.

Lemma 1.1 S satisfies the (FLVR) property for simple integrands if and only if there
is a sequence (θn)n≥0 of admissible simple integrands such that the following two con-
ditions are satisfied
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i) fn = (θn · S)T , n ∈ N, converges a.s. to a nonnegative function f satisfying P (f >
0) > 0 and

ii) ‖f−n ‖∞ → 0.

Proof. It is an immediate consequence of the definition of (FLVR), that this condition
is implied by i) and ii) .

For the reverse direction, suppose that the (FLVR) property holds. Then there is
a sequence (θn)n∈N of simple integrands such that the integrals gn = (θn · S)T , n ∈ N,
satisfy

i’)‖g−n ‖∞ → 0 and

ii’) g+
n 9 0 in probability.

One can find an α > 0 such that for any n ≥ 0 there exists a k ≥ n with P (gk > α) > α.
By taking a subsequence, still denoted by (gn)n∈N, we assume that P (gn > α) > α holds
for all n ≥ 0. From lemma A.1.1 in [11] we know that there are fn ∈ conv(gk : k ≥ n)
converging almost surely to some f with P (f > 0) > 0. Observe that every fn is still
an integral of some simple process with respect to S. i) and ii) follow and the claim is
proven. 2

If not stated otherwise in the sequel, we mean by a utility function a function
U : R → [−∞,∞) which is strictly concave and strictly increasing on dom(U) = {y :
U(y) > −∞}. We will interpret the integral EU(x + (θ · S)T ) as the expected utility
of a trader possessing an initial wealth x and choosing his investments following the
strategy θ. Note that the integral might not exist. For ease of notation, we use the
convention EU(x + (θ · S)T ) = −∞, if both the positive and the negative part of
U(x + (θ · S)T ) have infinite expectation.

The following proposition provides the link between the boundedness of the agent’s
utility for simple strategies and the (NFLVR) condition.

Proposition 1.2 Let U : R → [−∞,∞) be a utility function with limx→+∞ U(x) =
+∞. Then for all x > sup{y ∈ R : U(y) = −∞} (recall sup ∅ = −∞) the following
implication holds.

If sup
S3θ admissible

E[U(x + (θ · S)T )] < ∞, then (NFLV R) for simple integrands.

Proof. Let x > sup{y ∈ R : U(y) = −∞}. Then there is a δ > 0 for which
x− δ > sup{y ∈ R : U(y) = −∞}. We put D = U(x− δ) ∧ 0 > −∞.
Suppose that the (NFLVR) property for simple integrands is violated. By the preceding
lemma we can find a sequence (θn)n∈N of admissible simple integrands such that the
final payoffs fn = (θn · S)T , n ∈ N, satisfy

i) fn = (θn · S)T → f a.s. , where f is nonnegative with P (f > 0) > 0 and

ii) ‖f−n ‖∞ → 0.
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For n ∈ N we set εn = ‖f−n ‖∞. For all but finitely many n ∈ N we have εn < δ. To
simplify notation we assume that this holds for all n ∈ N. We now define new simple
integrands

πn =
δ
εn

θn

for all n ∈ N. It is clear that all the integrals (πn · S)T exceed the bound −δ. Further-
more the random variables U(x + (πn · S)T ) are bounded from below by the constant
D. More formally,

U(x + (πn · S)T ) = U(x +
δ
εn

(θn · S)T )

≥ U(x +
δ
εn

(−εn))

= U(x− δ)
= D > −∞.

Since fn converges to the nontrivial nonnegative function f, one can find an integer n0

and real numbers α > 0 and β > 0 such that

P ((θn · S)T > α) > β

for all n ≥ n0. This implies

lim inf
n→∞

E[U(x + (πn · S)T )] = lim inf
n→∞

E[U(x +
δ
εn

(θn · S)T )]

≥ lim inf
n→∞

E[D1{(θn·S)T≤α} + U(x +
δ
εn

α)1{(θn·S)T >α}]

≥ lim inf
n→∞

[D(1− β) + U(x +
δ
εn

α)β]

= ∞.

Hence
sup

S3θ admissible
E[U(x + (θ · S)T ] = ∞.

This proves the proposition. 2

Remark: Proposition (1.2) holds in particular for all increasing functions U with
limx→∞ U(x) = ∞.

Combining Proposition (1.2) with the results of the fundamental paper by Delbaen and
Schachermayer [11] we obtain the intuitively plausible relationship between bounded-
ness of the expected utility and the semimartingale property for the continuous asset
price process with respect to the agent’s filtration.

Corollary 1.3 Let S be a cadlag and locally bounded adapted process, U : R →
[−∞,∞) a utility function with limx→+∞ U(x) = +∞ and x > sup{y ∈ R : U(y) =
−∞}. If supS3θadm. E[U(x + (θ · S)T ] < ∞, then S is a semimartingale with respect to
F . If S is, moreover, continuous, it satisfies the general (NFLVR) property.
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Proof. By proposition (1.2), the process S satisfies the (NFLVR) property for simple
integrands. Theorem 7.2 in Delbaen and Schachermayer [11] states that in this case
S is already a semimartingale. Since S is continuous, the general (NFLVR) property
follows from the (NFLVR) property for simple integrands (see Theorem 7.6 in Delbaen
and Schachermayer [11]). 2

Note that Delbaen and Schachermayer [11] use a slight different definition of simple
integrands. They admit unbounded processes. But one can show that (NFLVR) for
bounded simple integrands is equivalent to (NFLVR) for all (possibly unbounded)
simple processes.

We can sharpen the result of the preceding Corollary. In fact, we can show in the
following theorem that boundedness of expected utility over all uniformly bounded
simple strategies is sufficient for the semimartingale property of S to follow.

Theorem 1.4 Let S be a cadlag and locally bounded adapted process indexed by [0, T ]
and U a utility function satisfying limx→∞ U(x) = ∞. If supθ∈S, |θ|≤1 E[U(x + (θ ·
S)T )] < ∞, then S is a semimartingale.

Proof. Our proof is similar to the one of theorem 7.2 in Delbaen and Schachermayer
[11]. Since S is locally bounded we can find a sequence of stopping times (Tn)n∈N such
that the stopped processes STn are bounded. It is sufficient to prove that each STn

is a semimartingale. To put it simply we assume that S is already bounded by some
constant C. Our proof shall proceed in two lemmas for which we will suppose that the
assumptions of theorem 1.4 hold.

Lemma 1.5 Let Θ be a set of simple integrands θ satisfying |θ| ≤ 1. If {sup0≤t≤T (θ ·
S)−t : θ ∈ Θ} is bounded in L0, then the set {sup0≤t≤T (θ · S)+

t : θ ∈ Θ} is also bounded
in L0.

Proof. Suppose that {sup0≤t≤T (θ · S)+
t : θ ∈ Θ} is not bounded in L0. Then one

can find a sequence (cn)n∈N of real numbers and (θn)n∈N in Θ satisfying cn → ∞ and
P (sup0≤t≤T (θn ·S)t > cn + 2C) ≥ ε > 0 for all n ∈ N. Since {sup0≤t≤T (θ ·S)−t : θ ∈ Θ}
is bounded in L0, there is a constant K for which

sup
θ∈Θ

P ( sup
0≤t≤T

(θ · S)−t ≥ K) <
ε
2
.

Consider the stopping times

Tn = inf{t > 0 : (θn · S)−t ≥ K or (θn · S)t ≥ cn + 2C} ∧ T, n ∈ N.

We then have for n ∈ N

i) (θn 1[0,Tn] · S)T ≥ −K − 2C

ii) P ((θn 1[0,Tn] · S)T ≥ cn) ≥ ε
2 .
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We choose δ > 0 such that U(x− δ) > −∞ still holds and a sequence of real numbers
(γn)n∈N with γn ∈ (0, 1) converging to 0 slowly enough to guarantee γncn → ∞. Now
define new simple integrands by

πn =
δγn

K + 2C
1[0,T n]θn, n ∈ N.

For all but finitely many n ∈ N we remark | δγn
K+2C | ≤ 1, because γn → 0. Without loss

of generality we suppose |πn| ≤ 1, n ∈ N. The integrands πn satisfy the properties

(πn · S)T =
δγn

K + 2C
(1[0,T n]θn · S)T (1)

≥ δγn

K + 2C
(−K − 2C) ≥ −δγn

≥ −δ,

P ((πn · S)T ≥
δγncn

K + 2C
) = P ((1[0,T n]θn · S)T ≥ cn) >

ε
2
. (2)

Due to (1), the random variables U(x + (πn · S)T ) are bounded from below by the
constant D = U(x − δ) > −∞. Set an = δγncn

K+2C , n ∈ N, and observe that an → ∞ as
n →∞. Hence

E[U(x + (πn · S)T )] = E[U(x + (πn · S)T )1{(πn·S)T <an}]
+E[U(x + (πn · S)T )1{(πn·S)T≥an}]

≥ DP [(πn · S)T ) < an] + U(x + an)P [(πn · S)T ≥ an]

≥ D(1− ε
2
) + U(x + an)

ε
2
−→ ∞.

But this is in contradiction with the hypothesis supθ∈S, |θ|≤1 E[U(x + (θ · S)T )] < ∞.
2

As in [11] one can show that the preceding lemma implies

Lemma 1.6 (Lemma 7.4. in [11]) The set

{
n

∑

k=0

(STk+1 − STk)
2|n ∈ N, 0 ≤ T0 ≤ . . . ≤ Tn+1 ≤ T}

is bounded in L0.

We can now complete the proof of Theorem (1.4) as in [11]. The two preceding
lemmas imply that S is a semimartingale (proof of theorem 7.2 in [11]). 2

2 Simple versus general strategies

In the preceding section we have seen that if the expected utility maximized over the set
of simple strategies is finite, the price process S is a semimartingale. As a consequence,
S is a stochastic integrator, and its stochastic integral is defined not only for simple
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integrands, but for a much wider class of F− predictable strategies. A natural question
arising in this context is the following: can a trader increase his optimal utility by using
general S- integrable strategies? While this may be the case for discontinuous S, as
is shown by an example at the end of this section, its main result will prove that for
continuous asset price processes S the answer is no.

The utility functions U : R → [−∞,∞) considered in this section have to fulfill
the following further requirements. We suppose that U is strictly increasing, strictly
concave and continuously differentiable on dom(U) = {y : U(y) > −∞}. Furthermore
we assume that

U
′
(∞) = lim

x→∞
U
′
(x) = 0. (3)

We remark at this point that all results of this section could equally well be stated
for infinite time horizon. For homogeneity reasons (some results we refer to in a later
section are formulated for finite T ) we refrain from doing so. Fix an initial wealth
x > sup{y : U(y) = −∞}. We denote by A the set of all S-integrable processes θ
recalling the convention made in the previous section. From the economic point of
view it is no restriction to admit only processes from A.

We next define two quantities to be compared to the maximal expected utility taken
over simple strategies. Let

ua(x) = sup
A3θ a−adm.

E[U(x + (θ · S)T )],

and
u(x) = sup

A3θ adm.
E[U(x + (θ · S)T )].

Before stating the main result of this section, some preliminary steps are in order.
The following auxiliary results deal with some aspects of a−admissible strategies.

Lemma 2.1 Let S be a continuous semimartingale satisfying (NFLVR). If θ is a-
admissible then almost surely

(θ · S)T > −a =⇒ (θ · S)t > −a for all 0 ≤ t ≤ T.

Proof. Let A = {there exists a t ∈ [0, T ] for which (θ · S)t = −a}. A is measurable
due to continuity of S. We have to show that A ∩ {(θ · S)T > −a} has probability 0.
Define the entrance time T ′ = inf{t > 0 : (θ ·S)t = −a}∧T . Observe that the strategy
π = 1A1]T ′,T ]θ satisfies

i) (π · S)T = 1A[(θ · S)T − (θ · S)T ′ ] ≥ −a + a = 0,

ii) P ((π · S)T > 0) = P (T ′ < T, (θ · S)T > −a) = P (A ∩ {(θ · S)T > −a}).

If P (A ∩ {(θ · S)T > −a}) > 0, then i) and ii) would qualify π as an arbitrage oppor-
tunity. But this violates (NFLVR). 2

In a similar way we obtain

Proposition 2.2 Let S be a continuous semimartingale satisfying (NFLVR). If (θ ·
S)T ≥ −a a.s, then the process θ is a-admissible.
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Proof. For every ε > 0 define a stopping time by

Tε = inf{t > 0 : (θ · S)t = −a− ε} ∧ T.

Suppose θ is not a-admissible. Then for some ε > 0 we must have P (Tε < T ) > 0. The
strategy π = 1]Tε,T ]θ satisfies

(π · S)T = 1{Tε<T}[(θ · S)T − (θ · S)Tε ] ≥ 0,
P ((π · S)T > 0) = P (Tε < T ) > 0.

Hence π is an arbitrage opportunity. But this is a contradiction to (NFLVR). 2

In the following proposition we approximate admissible general strategies by simple
ones.

Proposition 2.3 Let S be a continuous semimartingale satisfying (NFLV R). For
every a-admissible integrand θ there is a sequence of a-admissible simple processes
(θn)n≥0 for which

(θn · S)T −→ (θ · S)T a.s.

Proof. Let (πn)n∈N be an arbitrary sequence of simple integrands such that a.s. the
trajectories of πn · S converge uniformly to those of θ · S. For n ∈ N, we put

Tn = inf{t > 0 : (πn · S)t ≤ −a} ∧ T.

We first show that Tn converges to T a.s. on the set {(θ · S)T > −a}.
According to Lemma 2.1 almost all ω ∈ {(θ · S)T > −a} satisfy:

(θ · S)t > −a for all 0 ≤ t ≤ T.

Since θ ·S is continuous, for almost all ω ∈ {(θ ·S)T > −a} there exists a δ = δ(ω) > 0
such that

(θ · S)t(ω) > −a + δ.

Since (πn ·S) converges uniformly to (θ·S), we find for almost every ω ∈ {(θ·S)T > −a}
some n0 such that

(πn · S)t > −a for all 0 ≤ t ≤ T and n ≥ n0.

It follows that Tn −→ T a.s. on the set {(θ · S)T > −a}.
Furthermore, the simple processes θn = 1[0,Tn]πn, n ∈ N, are obviously a-admissible and
satisfy

|(θn · S)T − (θ · S)T |
= |(θn · S)T − (θ · S)T |1{Tn<T, (θ·S)T >−a}

+ |(θn · S)T − (θ · S)T |1{Tn=T}

≤ |(θn · S)T − (θ · S)T |1{Tn<T, (θ·S)T >−a} + |(πn · S)T − (θ · S)T |

The first summand converges to 0 a.s., because Tn converges to T on the set {(θ ·S)T >
−a}. Since the second summand also converges to 0, we obtain that (θn ·S)T converges
to (θ · S)T a.s. 2

The preceding proposition now allows to prove the result we aim at if for a fixed a
we concentrate on a−admissible strategies.
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Proposition 2.4 If a > 0 is such that U(x− a) > −∞, then

ua(x) = sup
S3θ a−adm.

E[U(x + (θ · S)T )].

Proof. We have to prove that the right hand side is not smaller than the left hand
side. Let therefore θ be an a-admissible integrand. Proposition (2.3) states that we
can find a sequence of a-admissible simple processes (θn)n∈N such that (θn · S)T →
(θ · S)T a.s. Since the random variables U(θn · S)T , n ∈ N, are bounded from below by
U(x−a) > −∞, we conclude by using Fatou’s lemma and the fact that U is continuous
on {y : U(y) > −∞}:

E[U(x + (θ · S)T )] = E[ lim
n→∞

U(x + (θn · S)T )]

≤ lim inf
n→∞

E[U(x + (θn · S)T )]

≤ sup
S3θ′a−adm.

E[U(x + (θ′ · S)T )] = ua(x).

2

Remark. The proposition remains valid if ua(x) = ∞.
We are now ready to state and prove the main result of this section.

Theorem 2.5 Let S be a continuous semimartingale satisfying (NFLVR). If x >
sup{y : U(y) = −∞}, then

u(x) = sup
S3θ adm.

E[U(x + (θ · S)T )]. (4)

In particular, the maximal expected utility u(x) is infinite if and only if
supθ3S adm. E[U(x + (θ · S)T )] = ∞.

Proof. The proof will be executed in several steps. The utility functions admit-
ted by the hypotheses above will be subdivided into several classes. This leads to
distinguishing the following cases.

We start with
case 1: {y : U(y) > −∞} = R.
Observe that the exponential utility function U(x) = −e−αx, x ∈ R, with α > 0, is

covered by case 1.
If the domain of U is R, any admissible strategy leads to a utility bounded from

below. This is the main observation needed to prove the assertion in this case. Let ζ
be any admissible integrand. According to proposition 2.4 the expected utility EU(x+
(ζ · S)T ) is not greater than supS3θ adm. E[U(x + (θ · S)T )]. Hence we have

u(x) ≤ sup
S3θ adm.

E[U(x + (θ · S)T )].

Since the left hand side is obviously not smaller than the right hand side, equality
holds.
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case 2: c = sup{y : U(y) = −∞} ∈ R and U(c) > −∞.
Think of the power utility function U(x) = xα

α , x > 0, extended to be −∞ for x ≤ 0,
where α ∈ (0, 1), as a typical example. If ζ is (x − c)-admissible, then by proposition
2.4 the expected utility EU(x+(ζ ·S)T ) is dominated by supS3θ adm. E[U(x+(θ ·S)T )].
Suppose now that ζ is not (x − c)-admissible. By proposition 2.2 we have (θ · S)T <
−x + c on a set of positive probability. Since U(z) = −∞ for all z < c, the expected
utility EU(x + (ζ · S)T ) must equal −∞. This provides the asserted equation in this
case.

case 3: c = sup{y : U(y) = −∞} ∈ R and U(c) = −∞
For example the logarithmic utility function is covered by this case.
To simplify notation we assume that c = 0. The fact that limx→0+ U(x) = −∞

implies
U
′
(0) = lim

x→0+
U
′
(x) = ∞.

Hence the Inada conditions are satisfied and we are in the setting of [22]. We make
use of Theorem 2.1 in [22], according to which the following statement holds true. If
u(x0) < ∞ for some x0 > 0, then u(x) < ∞ for all x > 0 and the function u is
continuously differentiable on (0,∞). With the help of this result we are able to prove
the assertion in the given case.

Let x > 0. Assume first that u(x) < ∞. Due to the quoted result u is continuous
on (0,∞). Hence for any ε > 0 there exists a 0 < y < x such that u(x) − u(y) < ε

2 .
Let ζ be an admissible strategy satisfying

u(y)− EU(y + (ζ · S)T ) ≤ ε
2
.

Proposition 2.2 guarantees that ζ is y-admissible. Starting with the initial wealth
x, the utility process U(x + (ζ · S)t) will be bounded from below by the constant
D = U(x− y) > −∞. Again with proposition 2.4 we obtain

u(x)− sup
S3θ adm.

E[U(x + (θ · S)T )] ≤ u(x)− EU(x + (ζ · S)T )

= [u(x)− u(y)] + [u(y)− EU(x + (ζ · S)T )]
≤ [u(x)− u(y)] + [u(y)− EU(y + (ζ · S)T )]

≤ ε
2

+
ε
2

= ε.

Since ε was arbitrary, the assertion follows.
Next suppose that u(x) = ∞. Then by the preceding theorem for 0 < y < x the
maximal utility u(y) is also infinite. Choose y-admissible integrands θn, n ∈ N, such
that

EU(y + (θn · S)T ) ≥ n for n ∈ N.

Given the initial wealth x we have

U(x + (θn · S)t) ≥ U(x− y) > −∞

12



for all t ≥ 0, n ∈ N. Hence we can apply proposition 2.4 to obtain for n ∈ N

sup
S3θ adm.

E[U(x + (θ · S)T )] ≥ EU(x + (θn · S)T )

≥ EU(y + (θn · S)T )
≥ n.

This shows that supS3θ adm. E[U(x + (θ · S)T )] = ∞.
This completes the proof in the final case. 2

Combining theorem 2.5 with the results of section 1 we get

Corollary 2.6 Let S be an arbitrary adapted continuous process indexed by [0, T ],
U a utility function with limx→∞ U(x) = ∞ and x > sup{y : U(y) = −∞}. If
supS3θ adm. E[U(x + (θ · S)T )] < ∞, then S is a semimartingale satisfying (NFLVR)
and expected utility maximized over general admissible integrands is also finite and
given by supS3θadm. E[u(x + (θ · S)T )].

Proof. This follows by combining corollary 1.3 and theorem 2.5. 2

We close this section with an example inspired by example 7.5 in [12] and showing
that in theorem 2.5 the requirement that S is continuous cannot be dropped.

Example 2.7 Let (Xn)n∈N be a sequence of Gaussian unit variables and (φn)n∈N a
sequence of random variables satisfying P (φn = 1) = 2−n and P (φn = 0) = 1 − 2−n.
Furthermore suppose that Z is a random variable with distribution P (Z = a) = P (Z =
b) = 1

2 , where 0 < a < 1 and b > 1. We assume that all these random variables are
independent. Choose an enumeration (qn)n∈N of the rationals in [0, 1[. The process
defined by

S = 1[0,1[(t) + Z 1{1}(t) +
∑

{n:qn≤t}

φnXn, 0 ≤ t ≤ 1,

is cadlag. We start by showing that S is a semimartingale satisfying the (NFLVR)
property. For this purpose denote by P̃ the restriction of P to σ(Z). It is obvious,
that there is a probability measure Q̃ ∼ P̃ on σ(Z) such that the expectation of Z with
respect to Q̃ is equal to 1. Note that the extension dQ = dQ̃

dP̃
dP is a probability measure

such that

i) Q = Q̃ on σ(Z),

ii) Q = P on σ(φnXn, n ∈ N) and

iii) Q ∼ P .

Hence the process S is a Q-martingale with respect to its natural filtration. By the
fundamental theorem of asset pricing (see corollary 1.2 in [12]) this implies that S is
a semimartingale satisfying the (NFLVR) property.
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As in example 7.5 in [11] one can show that θ = 0 is the only simple integrand which
is admissible for S. Hence we have

sup
S3θ adm.

E[U(x + (θ · S)1)] = U(x).

However, the non-simple strategy θ = 1{1} has as final payoff

x + (θ · S)1 = x + (S1 − S−1) = x + (Z − 1) a.s.

If limx→∞ U(x) = ∞, choose x, a and b such that

EU(x + (θ · S)1) =
1
2
U(x + a− 1) +

1
2
U(x + b− 1) > U(x).

For example if U = log, x = 1, a and b are such that ab = e2, then

EU(x + (θ · S)1) =
1
2

log(a) +
1
2

log(b) =
1
2

log(ab) = 1 > 0 = U(x).

Thus we have
u(x) 6= sup

S3θ adm.
E[U(x + (θ · S)1)].

3 Instantaneous infinite utility

According to the previous sections bounded utility for an agent with an information
horizon F implies (NFLVR). Under this condition, Delbaen and Schachermayer [12]
show that the process of bounded variation in the Doob-Meyer decomposition of S
must be controlled by the martingale (uncertainty) part M of S, i.e. there is an
F−predictable process α such that

S = M + α · 〈M, M〉.

In this section, we shall start in this framework, to establish a relationship between
the intensity of the intrinsic drift α · 〈M, M〉 of S and the boundedness of expected
utility. We shall prove that if this drift has an instantaneously infinite increase at
some stopping time T ′, then at this same time there is an equally infinite increase of
expected utility with respect to unbounded utility functions. Due to close connections
between (NFLVR) and finite utility, explained in section 1, out treatment will in some
parts heavily rely on similar arguments in Delbaen and Schachermayer [12].

This is the case in the following lemma in which a link between infinite intrinsic
drift and the existence of admissible strategies inducing large wealths is established.

Lemma 3.1 Suppose P (
∫ T

0 α2d〈M,M〉 = ∞) = η > 0. Then for all a, ξ > 0 we can
find an a-admissible integrand θ such that P ((θ · S)T ≥ 1) ≥ η − ξ.

Proof. The proof is essentially the same as the one of Lemma 3.8 in [12], and is
therefore omitted. 2

As an immediate consequence of the preceding, infinite drift with positive probability
entails that free lunches are possible.
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Corollary 3.2 If
∫ T
0 α2d〈M, M〉 = ∞ on a set with positive probability, then S satis-

fies (FLVR).

For later use we are mainly interested in another consequence of the lemma. It
says that infinite drift with positive probability also implies that the expected utility
becomes infinite.

Theorem 3.3 Suppose U is a utility function satisfying limx→∞ U(x) = ∞. If
∫ T

0
α2d〈M,M〉 = ∞

on a set with positive probability, then for all a > 0 and x > sup{y : U(y) = −∞} we
have

ua(x) = ∞.

Proof. Choose a > 0 and x so that U(x) > −∞. By eventually reducing a we may
assume that D = U(x − a) > −∞. By lemma 3.1 there is an α > 0 and a sequence
(θn)n∈N of a-admissible integrands satisfying

P ((θn · S)T ≥ n) > α.

Since U(x) →∞, we obtain

lim inf
n→∞

EU(x + (θn · S)T ) ≥ lim inf
n→∞

U(x + n) α + D (1− α)
= ∞,

which proves the theorem. 2

Remark. The theorem does neither follow from the preceding corollary nor from
the ‘Immediate Arbitrage Theorem’ of Delbaen and Schachermayer in [12]. This is
because there are situations where (NA) is violated, but ua(x) is finite for some a.

In the preceding findings about infinite utility the agent may need an arbitrarily
long time to obtain unbounded utility. For completeness, we shall now generalize this
to arbitrarily short time intervals after a stopping time. The following notion is related
to the notion of immediate arbitrage (Definition 3.2 in [12]).

Definition 3.4 Let U be a utility function with U(x) →∞ as x →∞ and x an initial
wealth such that U(x) > −∞. The semimartingale S admits instantaneous infinite
utility at the stopping time T̃ , where we suppose P (T̃ < T ) > 0, if for all ε > 0

sup
A3θ adm.

EU(x + (θ1]T̃ ,T̃+ε] · S)T ) = ∞.

Theorem 3.5 (instantaneous infinite utility theorem)
Suppose T̃ is a stopping time with P (T̃ < T ) > 0. If

∫ (T̃+ε)∧T

T̃
α2 d〈M, M〉 = ∞ for all ε > 0,

then S admits immediate infinite utility at time T .
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Proof. Let ε > 0. We define S ′t = St∧T̃+ε − St∧T̃ , 0 ≤ t ≤ T . The semimartingale S′

satisfies the conditions of theorem 3.3. Hence it admits infinite utility. Let (θn)n∈N be
a sequence with limn→∞ EU(x + (θn · S ′)T ) = ∞. On the interval ]T̃ ∧ T, (T̃ + ε) ∧ T ]
the process S ′ coincides with S. Hence θn · S ′ = θn1]T̃∧T,(T̃+ε)∧T ] · S. The claim is now
obvious. 2

4 Logarithmic utility of an agent

In this section we uniquely consider the case of logarithmic utility. So let U = log
throughout the section. We also assume throughout that the asset price process of
the market be continuous. Assume that an agent with information horizon F possess
bounded logarithmic utility. According to section 1 we therefore know that S enjoys the
(NFLVR) property, and thus it is a semimartingale with Doob-Meyer decomposition

S = M + α · 〈M,M〉. (5)

The aim of this section consists in computing explicitly the expected logarithmic utility
of the agent, and to prove implicitly that it only depends on the drift density α. In
fact, we shall prove that

u(x) = log x +
1
2
E

∫ T

0
α2

s d〈M,M〉s, x > 0. (6)

We shall even show that (6) is valid irrespective of whether (NFLVR) holds, provided
(5) is guaranteed. So we do not assume completeness for the underlying financial
market. Our analysis in fact does not use equivalent martingale measures for S. The
method of proof of (6) we employ consists in using the linear stochastic equation link
allowing to describe the optimal portfolio θ∗ as a function of the drift process α in a
completely general framework. In subsection 4.1., we shall consider the case of positive
wealth, in subsection 4.2. we extend the results to the case in which wealth may become
negative.

4.1 Maximal utility if wealth stays positive

If wealth always stays positive, we may consider the following class of admissible strate-
gies.

Definition 4.1 An S-integrable and predictable process θ is called a-superadmissible
if almost surely (θ · S)t > −a for all t ∈ [0, T ].

Our goal is to find

u+(x) = sup
A3θx−superadm.

E log(x + (θ · S)T ).

It will be helpful to express the right hand side by the so-called optimal portfolio, i.e.
the process θ∗ ∈ A which satisfies u+(x) = E log(x + (θ∗ · S)T ). Before we can show
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that the optimal portfolio exists and may be expressed as a function of α, we have
to prove some auxiliary results which will ultimately turn out to present the optimal
portfolio as the unique solution of a linear stochastic equation. Recall that we do not
assume (NFLVR) here. We start by proving

Proposition 4.2 Suppose E
∫ T
0 α2

sd〈M, M〉s < ∞. If π is a progressively measurable
and S-integrable process, the product E(π · S)E(−α ·M) is a local martingale.

Proof: Let Z = E(−α · M). Note that Z is a local martingale. By applying the
inegration by parts formula we obtain for t ∈ [0, T ]

ZtE(π · S)t = 1 +
∫ t

0
E(π · S)dZ +

∫ t

0
ZdE(π · S) + 〈E(π · S), Z〉t

= 1 +
∫ t

0
E(π · S)dZ +

∫ t

0
πE(π · S)ZdS +

∫ t

0
πE(π · S)d〈S, Z〉

= 1 +
∫ t

0
E(π · S)dZ +

∫ t

0
πE(π · S)ZdM

+
∫ t

0
πE(π · S)αZd〈M, M〉 −

∫ t

0
πE(π · S)αZ d〈M,M〉

= 1 +
∫ t

0
E(π · S)dZ +

∫ t

0
πE(π · S)ZdM.

This shows that ZE(π · S) is a local martingale. 2

Remark: Proposition (4.2) states that E(−α · S) is a strict martingale density for
E(π · S) in the sense of Schweizer (1995).

Lemma 4.3 Suppose that x > 0 and E
∫ T

0 α2
sd〈M, M〉s < ∞. The process H =

xαE(α · S) is x-superadmissible, belongs to A and solves the integral equation

Ht = αt(x +
∫ t

0
HrdSr), 0 ≤ t ≤ T. (7)

Proof. We observe that the process H = xαE(α · S) is progressively measurable and
satisfies for all t ∈ [0, T ]

x + (H · S)t = x + x
∫ t

0
αrE(α · S)rdSr

= x(1 +
∫ t

0
αrE(α · S)rdSr)

= xE(α · S)t > 0.

This yields that H is x-superadmissible.
The expression

E log(x + (H · S)T ) = log x + E(α · S)T −
1
2
E

∫ T

0
α2

sd〈M, M〉s
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makes sense due to the integrability condition E
∫ T
0 α2

sd〈M,M〉s < ∞. Hence H be-
longs to A.

We now prove the last claim. The process Y = xE(α · S) is the unique solution of
the SDE

Y0 = x
dYt = YtαtdSt = Ytd(α · S)t.

Obviously Y solves also

αtYt = αt(x +
∫ t

0
αrYrdSr).

Hence H = xαE(α · S) is a solution of equation (7). 2

We now state the main result of this subsection. It generalizes Theorem 3.5. of [3],
where it was proved in the special case of a semimartingale given by an SDE.

Theorem 4.4 For any x > 0 the following equation holds

u+(x) = log x +
1
2
E

∫ T

0
α2

s d〈M, M〉s. (8)

If E
∫ T

0 α2
sd〈M, M〉s < ∞, then the process

θ∗ = xαE(α · S)

is the unique optimal portfolio.

Proof. We first assume that E
∫ T

0 α2
sd〈M,M〉s < ∞.

Let θ ∈ A be x-superadmissible. Then x + (θ · S)t > 0 a.s. for all t ∈ [0, T ] and
hence we can define a new process by

πt =
θt

x + (θ · S)t
, 0 ≤ t ≤ T.

Since π is progressively measurable, the integral π · S is defined.
The SDE

Y0 = x,
dYt = πtYtdSt = Ytd(π · S)t

is uniquely solved by the process Y = xE(π · S). On the other hand the process
x + (θ · S)t is also easily seen to be a solution. By uniqueness this implies

x + (θ · S) = xE(π · S). (9)

In the next step we will show that the expected logarithmic utility of x + (θ · S)T

is not greater than log x + 1
2E

∫ T
0 α2

sd〈M, M〉s. Applying the inequality log z ≤ z − 1,
valid for positive z, to the product of two positive numbers a, b we get the inequality

log a ≤ ab− log b− 1.
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If we take a = xE(π · S) and b = 1
xE(−α ·M) we obtain

log xE(π · S) ≤ E(π · S)E(−α ·M)− log
1
x
E(−α ·M)− 1.

By proposition (4.2) the product E(π · S)E(−α ·M) is a local martingale. Since it is
nonnegative, it is also a supermartingale and therefore by (9)

E[log(x + (θ · S)T )] = E[log xE(π · S)T ]

≤ E[E(π · S)TE(−α ·M)T − log
1
x
E(−α ·M)T − 1]

≤ −E[log
1
x
E(−α ·M)T ]

= log x− E
[

−
∫ T

0
αtdMt −

1
2

∫ T

0
α2d〈M, M〉

]

= log x +
1
2
E

∫ T

0
α2d〈M,M〉.

This implies

u+(x) ≤ log x +
1
2
E

∫ T

0
α2d〈M,M〉.

Before we prove that in fact equality holds, we note

E log(xE(α · S)T ) = log x +
1
2
E

∫ T

0
α2d〈M, M〉.

Therefore it is enough to show that there is a process θ such that E log(x + (θ ·S)T ) =
E log(xE(α · S)T ).
According to lemma 4.3 the process θ∗ = xαE(α ·S) belongs to A, is x-superadmissible
and satisfies

α =
θ∗

x + (θ∗ · S)
.

As in the first part of the proof we deduce

x + (θ∗ · S)t = xE(α · S)t.

This proves the theorem in the case where E
∫ T

0 α2
sd〈M,M〉s < ∞.

We now claim that equation (8) is still true if E
∫ T
0 α2

sd〈M, M〉s = ∞. Suppose
∫ T

0 α2
sd〈M,M〉s = ∞ on a set with positive probability. Then theorem 3.3 yields

u+(x) = ∞.
If

∫ T
0 α2

sd〈M, M〉s < ∞ almost surely, we can find stopping times (Tn)n∈N such that
Tn → T and

E
∫ Tn

0
α2

s d〈M, M〉s < ∞.

With the first part of the proof we deduce

u+(x) ≥ log x +
1
2
E

∫ Tn

0
α2

s d〈M,M〉s

for all n ∈ N. By dominated convergence the right hand side goes to infinity as n →∞.
Hence u+(x) = ∞, which completes the proof. 2
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4.2 Maximal utility if wealth may become negative

In this section we allow the wealth process to take negative values and again deduce
the desired formula for u(x).

Let S be a continuous semimartingale satisfying (NFLVR). So, as usual, we can
write

dS = dM + αd〈M, M〉,

due to [12]. If θ ∈ A is not x-superadmissible, then by lemma 2.1

(θ · S)T ≤ −x

on a set with positive probability. But this implies E log(x + (θ · S)T ) = −∞ and
therefore u(x) = u+(x). Hence we have shown

Theorem 4.5 Let S be a continuous semimartingale satisfying (NFLVR). The maxi-
mal expected logarithmic utility is given by

u(x) = log x +
1
2
E

∫ T

0
α2

s d〈M, M〉s.

Remark. Kramkov and Schachermayer [22] show that under the assumption of (NFLVR)
a more general result can be obtained. They give explicit formulas for the maximal
expected utility not only for the logarithm but for a large class of utility functions.

We mention that E
∫ T

0 α2
sd〈M, M〉s < ∞ does not imply the (NFLVR) property.

In the following example the integral of the drift is finite, but arbitrage is possible
and hence u(x) is infinite (see proposition 1.2). Hence the assumption of (NFLVR) in
theorem 4.5 cannot be dropped.

Example 4.6 Let W be a Brownian motion on some probability space (Ω, F, P ). We
denote by (Ft)t≥0 the completed filtration generated by W . We will study the price
process

St = E(W )t, t ≥ 0,

not under (Ft)t≥0 but with respect to a larger filtration. Choose for example T = 1,
let a, b ∈ R such that a < b, let G = 1[a,b](W1), and take the right continuous and
completed version of Gt = Ft ∨ σ(G), t ∈ [0, 1]. It has been shown in [3] that an agent
in this filtration possesses finite logarithmic utility, if wealth has to be positive. u+(x)
is given by the entropy of G, or, alternatively, by 1

2E
∫ 1
0 α2

sds with the corresponding
information drift α.

We will see now that there are arbitrage strategies. Define a stopping time by

T = inf{t ≥ 0 : Wt ≤ a− 1} ∧ 1.

The strategy θ = 1{W1∈[a,b]}1]T,1] is admissible, because

(θ · S)t ≥ −ea−1, 0 ≤ t ≤ 1.

Furthermore θ satisfies
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i) (θ · S)1 = 1{W1∈[a,b]}(S1 − ST ) ≥ 0 and

ii) P ((θ · S)1 > 0) = P (T < 1,W1 ∈ [a, b]) > 0,

which shows that θ is an arbitrage strategy. In particular S doesn’t have the (NFLVR)
property.

As a summarizing consequence of the results obtained so far we note the following
Corollary which computes the (bounded) expected logarithmic utility of an agent with
information horizon F from first principles in a very general setting, and therefore
generalizes Theorem 3.7 in [8].

Corollary 4.7 Let S be an F−adapted continuous stochastic process and x > 0. If
supS3θ adm. E log(x + (θ · S)T ) < ∞, then S is a semimartingale satisfying (NFLVR)
possessing a Doob-Meyer decomposition

S = M + α · 〈M, M〉.

with a local martingale M , and an F−predictable process α. Furthermore there is a
process θ∗ solving the optimal portfolio problem and satisfying

θ∗ = xαE(α · S).

The maximal expected logarithmic utility is

u(x) = log x +
1
2
E

∫ T

0
α2

sd〈S, S〉s.

Proof. By corollary 1.3 S is a semimartingale satisfying (NFLVR). Theorem 2.5 states
that u(x) = supS3θ adm. E[log(x + (θ · S)T )], hence u(x) is finite. By theorem 4.4 we
know that θ∗ = xαE(α · S) is the solution of the optimal portfolio problem. The last
assertion follows from theorem 4.5. 2

5 Additional logarithmic utility of an insider

We now return to the setting of a financial market with small agents possessing asym-
metric information. But as before we keep our analysis very general. So we assume
that each of the agents (regular trader and insider) takes his portfolio decisions on
the basis of his individual information horizon, given by different filtrations F and
G. We just suppose that the insider’s filtration is bigger, but do not specify at all
what the sources for the additional information in G are. The asset price process S
will again be continuous, and as in the preceding section we shall consider logarithmic
utility U = log . Our main result will show that in this general setting the finite utility
advantage an insider has compared to the regular trader is given by

1
2
E

∫ T

0
γ2

sd〈M,M〉s,

if γ is the density of the relative information drift obtained by passing from F to G.
Let us first specify those agents who possess finite utility on the basis of their

knowledge.
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Definition 5.1 A filtration F satisfying the usual conditions is a finite utility filtration
for S, if S is a F-semimartingale with decomposition dS = dM + α · d〈M,M〉, where
α is predictable and belongs to L2(PM), i.e. E

∫ T
0 α2 d〈M, M〉 < ∞.

Given an initial wealth x > 0, we denote by u+(F , x) the corresponding maximal
expected utility if wealth has always to be positive. Note that if F is a finite utility
filtration, u+(F , x) is finite for all x > 0 (see theorem 4.4).

Let F and G be two finite utility filtrations. We denote by

S = M + α · 〈M, M〉 (10)

the semimartingale decomposition with respect to F and by

S = N + β · 〈N,N〉 (11)

the decomposition with respect to G. Obviously,

〈M, M〉 = 〈S, S〉 = 〈N, N〉

and therefore equations (10) and (11) imply

M = N − (α− β) · 〈M, M〉 a.s. (12)

If Ft ⊂ Gt for all t ≥ 0, equation (12) can be interpreted as the semimartingale
decomposition of M with respect to G.

A bigger filtration must clearly lead to a bigger maximal utility. The following
Theorem will quantify this increase.

Theorem 5.2 If Ft ⊂ Gt for all t ∈ [0, T ], then for any x > 0

u+(G, x)− u+(F , x) =
1
2
E

∫ T

0
(β − α)2 d〈M,M〉. (13)

Proof. Since α and β are in L2(PM), we can write

1
2
E

∫ T

0
(β − α)2 d〈M,M〉 =

1
2
E

∫ T

0
(β2 − α2) d〈M, M〉+ E

∫ T

0
(α2 − αβ) d〈M,M〉.

Since α is both F− and G− adapted we have

E
∫ T

0
(α2 − αβ) d〈M, M〉 = E

∫ T

0
α dN − E

∫ T

0
α dM

= 0.

Hence

1
2
E

∫ T

0
(β − α)2 d〈M,M〉 =

1
2
E

∫ T

0
(β2 − α2) d〈M,M〉 = u+(G, x)− u+(F , x).

2

We see that the additional utility depends only on the relative drift density process
(β − α). On the other hand equation (12) shows that (β − α) is the density of the
process of bounded variation which has to be subtracted from M in order to obtain a
G-local martingale. This relationship motivates the following notion.
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Definition 5.3 Let F be a finite utility filtration and S = M + α · 〈M, M〉 the Doob-
Meyer decomposition of S with respect to F . Suppose that G is a filtration such that
Ft ⊂ Gt for all t ∈ [0, T ]. The G-predictable process µ satisfying

M −
∫ ·

0
µt d〈M,M〉t is a G − local martingale

is called information drift (see [18]) of G with respect to F .

Notice that any finite utility filtration containing F has an information drift with
respect to F . Using this terminology we can paraphrase Theorem 5.2 as follows.

Theorem 5.4 Let F and G be two finite utility filtrations such that Ft ⊂ Gt for all
t ∈ [0, T ]. If µ is the information drift of G w.r.t. F , we have

u+(G, x)− u+(F , x) =
1
2
E

∫ T

0
µ2 d〈M, M〉.

Relative information drifts are additive with respect to successive refinements of
filtrations. Indeed, let F , G and H be three finite utility filtrations such that Ft ⊂
Gt ⊂ Ht for all t ∈ [0, T ]. Suppose that µ is the information drift of G with respect to
F . Then by the definition we know that M̃ = M − µ · 〈M,M〉 is a G-local martingale.
If λ is the information drift of H with respect to G, then M̃ − λ · 〈M, M〉 is a H-local
martingale. As a consequence κ = µ + λ is the information drift of H with respect to
F . We obtain

Proposition 5.5 The information drift of H w.r.t. F is the sum of the information
drift of G w.r.t. F and the information drift of H w.r.t. G.

In the same situation, we will now show that the information drift of G with respect
to F can be expressed as the optional projection of the information drift of H with
respect to F . To this end, we have to recall some basic facts about this notion of
projection.

Proposition 5.6 (Theorem 43, chapter VI in [14]) Let X be a measurable process
which is either nonnegative or bounded. If K is a filtration satisfying the usual condi-
tions, then there is a unique (up to indistinguishability) K-predictable process Y such
that

YT 1{T<∞} = E[XT 1{T<∞}|KT−]

a.s. for every predictable stopping time T . Y is called the predictable projection of X
on K.

The predictable projection has the following useful property.

Proposition 5.7 Let X be a measurable process which is either nonnegative or bounded
and let A be an increasing process adapted to K. The K-predictable projection Y of X
satisfies

E
[∫ ∞

T
Xs dAs|KT−

]

= E
[∫ ∞

T
Ys dAs|KT−

]

for every predictable stopping time T .
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Proof. This is shown in remark b after theorem 57, chapter VI, in [14]. 2

We now generalize proposition 5.6 and 5.7 to measurable processes in L2(PM).

Proposition 5.8 Let X be a measurable process in L2(PM). If K ⊃ F satisfies the
usual conditions, there is a unique (up to indistinguishability) K-predictable process
Y ∈ L2(PM) such that

YT 1{T<∞} = E[XT 1{T<∞}|KT−]

a.s. for every predictable stopping time T .

Proof. Let Y + be the predictable projection of X+ and let Z+ be the predictable
projection of (X+)2 on K. For all t ≥ 0 we have

(Y +
t )2 = E[X+

t |Kt−]2 ≤ E[(X+
t )2|Kt−] = Z+

t

a.s. by Jensen’s inequality. Since Y + and Z+ are cadlag, almost everywhere

(Y +
t )2 ≤ Z+

t for all t ≥ 0.

Hence by Proposition 5.7

E
[∫ ∞

0
(Y +

t )2 d〈M, M〉t
]

≤ E
[∫ ∞

0
Z+

t d〈M, M〉t
]

= E
[∫ ∞

0
(X+

t )2 d〈M, M〉t
]

< ∞.

Thus we have shown that Y + lies in L2(PM). In a similar way we obtain Y − ∈ L2(PM)
and therefore Y ∈ L2(PM). Obviously Y satisfies YT 1{T<∞} = E[XT 1{T<∞}|KT−]. 2

The generalization of Proposition 5.9 is now immediate.

Proposition 5.9 Let X ∈ L2(PM) be a measurable process and K ⊃ F . The K-
predictable projection Y of X satisfies

E
[∫ ∞

T
Xs d〈M,M〉s|KT−

]

= E
[∫ ∞

T
Ys d〈M, M〉s|KT−

]

for every predictable stopping time T .

Equipped with these prerequisites we can state our theorem about the predictable
projection property of information drifts. Recall that F ⊂ G ⊂ H are finite utility
filtrations, S = M + α · 〈M, M〉 is the decomposition w.r.t. F , µ is the information
drift of G with respect to F and κ the information drift of H with respect to F . Also
note that we return to finite horizon T now.

Theorem 5.10 Let µ be the information drift of G with respect to F and pκ the pre-
dictable projection of κ on G. Then PM -a.s.

µ = pκ.
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Proof: Assume that S = M + α · 〈M, M〉 is the semimartingale decomposition with
respect to F . We may assume, by localizing the processes with some stopping time,
that both M and κ · 〈M, M〉 are bounded. We have to show that M − pκ · 〈M,M〉 is
a G-local martingale. Choose 0 ≤ s < t, a set A ∈ Gs, and ε > 0 such that s + ε < t.
Since G is a sub-filtration of H we obtain, using Proposition 5.7,

E(1A(Mt −Ms+ε)) = E(1A

∫ t

s+ε
κr d〈M, M〉r)

= E(1A E
[∫ t

s+ε
κr d〈M, M〉r|G(s+ε)−

]

)

= E(1A E
[∫ t

s+ε

pκr d〈M, M〉r|G(s+ε)−

]

)

= E(1A

∫ t

s+ε

pκr d〈M, M〉).

We next let ε → 0 in the extremes of the chain of equations just obtained, and use
dominated convergence to get

E(1A(Mt −Ms)) = E(1A

∫ t

s

pκr d〈M, M〉.

This proves the claim. 2

In particular we have

Corollary 5.11 If µ is the information drift of G with respect to F , then the predictable
projection of µ on F vanishes.

6 Additional utility of an insider on a complete
market

The main aim of this section is to describe the additional utility of an insider with
respect to a regular trader for fairly arbitrary utility functions. Besides, we shall briefly
discuss always optimal strategies, i.e. strategies that optimize expected utility from
terminal wealth if any time t in the trading interval may be chosen as terminal. Again,
the setting is very general: we specify the information advantage between the insider
with filtration G and the regular trader with filtration F just by the relative information
drift. As opposed to the previous section, we however assume the market to be complete
here, so that we may invoke the general results by Kramkov and Schachermayer [22]
about maximal utility. We assume time horizon T > 0 to be finite, and as usual the
asset price process S indexed by [0, T ] to be continuous. Completeness entails that
there is a unique equivalent local martingale measure, which we will denote by Q. By
the fundamental theorem of asset pricing the NFLVR property holds and hence we
may decompose S into

S = M + α · 〈M, M〉,
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where M is a P -local martingale and α an F−predictable process. The Radon-
Nikodym density of the martingale measure given P is known to be described by
the exponential of α ·M :

dQ
dP

∣

∣

∣

∣

Ft

= E(−α ·M)t, t ∈ [0, T ]. (14)

(see [13].)
In the following we shall abbreviate

Z = E(−α ·M).

Let us next describe the class of utility functions for which the maximal expected utility
can be explicitly calculated by means of Z. Let U be strictly increasing, strictly concave
and continuously differentiable on (0,∞). Furthermore we assume that U satisfies

lim
x→0+

U ′(x) = ∞ and lim
x→∞

U ′(x) = 0 (15)

and that
u(x0) < ∞ for some x0 > 0. (16)

On (0,∞) the derivative of U has an inverse function, which we will denote by I.
Observe that I is a function with domain (0,∞) and with range (0,∞). The following
formula for the maximal expected utility is obtained by Kramkov, Schachermayer [22].

Theorem 6.1 (theorem 2.0 in [22]) Assume that the conditions (15) and (16) are
satisfied. For all x > 0 we have

u(x) = EU(I(yZT )),

where y is the real number satisfying E[ZT I(yZT )] = x. Furthermore the process I(yZt)
is a uniformly integrable martingale under Q.

6.1 Always optimal strategies

The maximal expected utility u(x) depends of course on the time interval in which the
traders are allowed to act. We will denote by ut(x) the maximal expected utility of a
trader of initial wealth x who is not allowed to hold any shares of the stock after time
t ≤ T , i.e.

ut(x) = sup
θ∈A

EU(x + (θ1[0,t] · S)T ) = sup
θ∈A

EU(x + (θ · S)t).

Definition 6.2 A strategy θ∗ ∈ A is called always optimal, if for all t ∈ [0, T ] and
x > 0

EU(x + (θ∗ · S)t) = ut(x).
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We will now analyze to which extent always optimal strategies exist.
Consider at first the case where the drift α is equal to 0. In this case the price

process S is a P -local martingale and intuitively one would expect that a risk averse
trader will not trade at all. Theorem 6.1 confirms that the maximal expected utility
is the utility of the initial capital U(x). Hence in this case the trivial strategy θ = 0 is
always optimal, whatever the utility function U looks like.

If the drift α is not trivial, however, the situation is different. It turns out that in
general always optimal strategies exist only for logarithmic utility functions. Before
proving this we define

Z̄T = sup
0≤t≤T

Zt

and
ZT = inf

0≤t≤T
Zt.

We will only consider the case where

ess inf ZT = 0 and ess sup Z̄T = ∞. (17)

Theorem 6.3 Assume that I = (U ′)−1 is twice continuously differentiable on (0,∞)
and that the conditions (15), (16) and (17) are satisfied. Then an always optimal
strategy exists if and only if U is the logarithm up to affine transformations, i.e.

U(x) = a log(x) + b

for some constants a > 0 and b ∈ R.

Proof. Suppose at first that U(x) = log(x) + c. By theorem 6.1 we have for any
t ∈ [0, T ]

ut(x) = EU(I(yZt)) = EU(
1

yZt
)

= E log(xZ−1
t ) + c = E log[xE(α · S)t] + c = E log[x + (αE(α · S) · S)t] + c.

This shows that θ∗ = αE(α · S) is always optimal.
We now prove the converse statement. Let θ∗ be an always optimal strategy. By

theorem 6.1 the process
x + (θ∗ · S) = I(yZ)

is a Q-martingale. Hence
ZI(yZ)

is a P -martingale. Since the function φ : (0,∞) → R, φ(x) = xI(yx) is twice continu-
ously differentiable, we may apply Itô’s formula and obtain for t ∈ [0, T ]

ZtI(yZt) = φ(Zt) = φ(1) +
∫ t

0
φ′(Zs) dZs +

1
2

∫ t

0
φ′′(Zs) d〈Z, Z〉s.
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From this equation we can deduce that the continuous process of bounded variation
∫ ·

0
φ′′(Zs) d〈Z, Z〉s =

∫ ·

0
φ′′(Zs)α2

sZ
2
s d〈M,M〉s

is a P -martingale and hence vanishes. We will now show that φ′′(z) = 0 for all z > 0.
Suppose that this is not true. Then φ′′ 6= 0 on an interval (p, q), where 0 < p < q.
Equation (17) implies that on the set

A = {(t, ω) : Zt(ω) ∈ (p, q)}

we have
α = 0 PM − a.s.

This means that the process
∫ ·
0 α2 d〈M, M〉 is constant on A. Hence also the processes

∫ ·
0 α dM and Z = E(α ·M) are constant on A (see [25]), i.e.

1A(t, ω)Zt(ω) = is constant a.s.

In other words, the paths t 7→ Zt(w) are a.s. constant on (p, q).
Suppose first that q < 1 or p > 1. Since Z0 = 1, it follows that the entire trajectories

of Z are above q or below p, respectively. This contradicts (17).
Suppose next that p < 1 < q. Since Z is constant on (p, q), we must have Z = 1,

which also contradicts property (17).
Thus we have shown φ′′ = 0.
On the other hand we know that

φ′(x) = I(yx) + yxI ′(yx)

and
φ′′(x) = 2yI ′(yx) + xy2I ′′(yx).

Hence I ′ solves the differential equation

2I ′(z) = −zI ′′(z), z > 0.

By assumpution (15) the function I ′ : (0,∞) → (−∞, 0) satisfies

lim
z→0+

I ′(z) = −∞.

Hence
I ′(z) = − a

z2

and
I(z) =

a
z

+ c1

for some constants a > 0 and c1 ∈ R. It follows

U ′(x) =
a

x− c1

and
U(x) = a log(x− c1) + c2

for some c2 ∈ R. Note that c1 = 0, because limx→0+ U(x) = −∞. This completes the
proof. 2
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6.2 The additional expected utility of an insider

Let F and G be filtrations such that S is complete with respect to both filtrations. We
write

S = M + α · 〈M,M〉
for the semimartingale decomposition with respect to F and

S = N + β · 〈N, N〉

for the decomposition with respect to G. Furthermore we denote by Q the ELMM with
respect to F and by Q′ the ELMM with respect to G. Notice that

dQ
dP

∣

∣

∣

FT

= E(−α ·M)T

and
dQ′

dP

∣

∣

∣

GT

= E(−β ·N)T .

Consider now the case where F is contained in G, i.e. Ft ⊂ Gt for all 0 ≤ t ≤ T . The
following Lemma observes that the two ELMMs agree on the smaller world.

Lemma 6.4 On FT the measures Q and Q′ are equal, i.e.

Q′
∣

∣

∣

FT

= Q
∣

∣

∣

FT

.

Proof. On the one hand, S is a (Q′,G)-local martingale. Since on the other hand S is
adapted to F , it is also a (Q′,F)-local martingale. Completeness of the market implies
that the ELMM on F is unique. Hence Q′ coincides with Q on FT . 2

By applying theorem 6.1 we obtain the following expression for the utility increment

u(G, x)− u(F , x) = EU(I(y
dQ′

dP
))− EU(I(y

dQ
dP

))

= EU(I(yE(−β ·N)T ))− EU(I(yE(−α ·M)T )).

Again we want to express the additional expected utility by means of the information
drift µ.

Recall the representation

M = N −
∫ ·

0
(α− β) d〈M, M〉 a.s.

with µ = α− β as information drift. Note that for t ∈ [0, T ]

E(−β ·N)t = exp
[

−
∫ t

0
β dN − 1

2

∫ t

0
β2 d〈M,M〉

]

= exp
[∫ t

0
µ dN −

∫ t

0
α dM +

∫ t

0
α(β − α)d〈M, M〉 − 1

2

∫ t

0
β2d〈M, M〉

]

= E(−α ·M)tE(−µ ·N)t,
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which implies
dQ′

dP

∣

∣

∣

GT

=
dQ
dP

∣

∣

∣

FT

E(−µ ·N)T .

Conditioning on FT leads to

dQ′

dP

∣

∣

∣

FT

=
dQ
dP

∣

∣

∣

FT

E[E(−µ ·N)T |FT ],

and by lemma 6.4 we get

E[E(−µ ·N)T |FT ] =
dQ′

dQ

∣

∣

∣

FT

= 1. (18)

We may summarize our findings on the expected additional utility in the following
Proposition.

Proposition 6.5 The additional expected utility of the insider is equal to

u(G, x)− u(F , x) = E[U(I(yE(−α ·M)TE(−µ ·N)T ))− U(I(yE(−α ·M)T ))].

By definition, the insider’s expected utility must exceed the regular trader’s. In case
U ◦ I is convex, which is the case for the exponential, power, and logarithmic utility
functions for example, but in general does not hold true, the projection result of Lemma
6.4 gives us a direct argument to show this starting with the representation obtained
in the preceding Proposition. Since U ◦ I is convex, Jensen’s inequality and equation
(18) yield

u(G, x)− u(F , x) = E
[

U(I(y
dQ′

dP
))

]

− E
[

U(I(y
dQ
dP

))
]

≥ E
[

U
(

I
(

yE
[

E(−α ·M)TE(−µ ·N)T

∣

∣

∣FT

]))]

−E [U(I(yE(−α ·M)T ))]

= E
[

U
(

I
(

yE(−α ·M)T E
[

E(−µ ·N)T

∣

∣

∣FT

]))]

−E [U(I(yE(−α ·M)T ))]
= E [U(I(yE(−α ·M)T ))]− E [U(I(yE(−α ·M)T ))]
= 0.

Remark. 1. We conclude that in general, the utility increment depends - besides the
information drift - on the initial wealth and on the intrinsic drift α. This is not the
case for logarithmic utility functions, where it only depends on the information drift.
2. The assumption that in the bigger filtration’s information evolution the market is
still complete is not as restrictive as it might seem. Some examples can be found in [3]
and [2].
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Grossissements de filtrations: exemples et applications. T. Jeulin, M.Yor (eds.).
LNM 1118. Springer: Berlin 1985.

[20] Jeulin, T. Semi-martingales et grossissement de filtration. LNM 833. Springer:
Berlin 1980.

[21] Karatzas, I., Pikovsky, I. Anticipative Portfolio Optimization. Advances in Applied
Probability 28 (1996), 1095-1122.

[22] Kramkov, D., Schachermayer, W. The asymptotic elasticity of utility functions
and optimal investment in incomplete markets. Ann. Appl. Probability 9 (1999),
904-950.
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