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21 IntrodutionThe item of this work is situated on the intersetion of two mathematialquestions: the �rst is on the regularity for the solutions of ellipti trans-mission problems (see, e.g. [41, 48, 52, 55, 24, 2, 3, 43, 18, 53, 40, 21, 22℄,and referenes therein). The other is on the isomorphism property for el-lipti operators −∇ · µ∇ : X → Y between suitable Banah spaes X, Yin ase of nonsmooth domains and/or disontinuous oe�ient funtions µ,see [7, 20, 29, 35, 53, 64, 12℄. In partiular, the latter question in view oftransmission problems for spaes X := W 1,q, Y := W−1,q (boundary on-ditions inorporated) has been treated in [29, 12, 46, 7℄, see also [34℄ andreferenes therein. All of these have in ommon that they transfer geomet-rial properties of the underlying domain or/and geometrial properties ofthe smoothness regions for the oe�ient funtion to the funtional analytiquality of the ourring spaes W 1,q and W−1,q, respetively. Exatly thisis also the ase in this paper; our aim is to prove a sharpened (and optimal)version of the results from [12, Ch. 4℄, namely:1.1 Theorem. Assume that Ω ⊂ Rd is a bounded domain with Lipshitzboundary. Further, let Ω◦ ⊂ Ω be another domain whih is supposed tosatisfy one of the following onditions:i) Ω◦ is C1 domain whih does not touh the boundary of Ω.ii) The dimension d equals 3, Ω◦ is a Lipshitz domain, and ∂Ω◦ ∩ Ω isa C1 surfae. Moreover, ∂Ω and ∂Ω◦ meet suitably (see the de�nitionbelow).Let µ be a funtion on Ω with values in the set of real, symmetri d × dmatries whih is uniformly ontinuous on both of the sets Ω◦ and Ω \ Ω̄◦.Additionally, µ is supposed to satisfy the usual elliptiity onditioness inf
x∈Ω

inf
ξ∈Cd,‖ξ‖

Cd=1
µ(x)ξ · ξ̄ > 0. (1.1)Then there is a q1 > 3 suh that for every λ from the (losed) right omplexhalf plane

−∇ · µ∇ + λ : W 1,q
0 (Ω) →W−1,q(Ω) (1.2)



1 Introdution 3provides a topologial isomorphism for all q ∈]q′1, q1[. If Ω itself is also a C1domain and Ω◦ ful�lls i), then q1 may be taken as ∞.1.2 De�nition. We say that ∂Ω and ∂Ω◦ meet suitably if for any point xfrom the boundary of ∂Ω∩∂Ω◦ whithin ∂Ω there is an open neighbourhood
Ux of x in R3 and a C1 di�eomorphism Φx from Ux onto an open subset of
R

3 suh that
• Φx(Ux ∩ Ω) equals a onvex polyhedron Kx

• Φx(Ux ∩Ω ∩ ∂Ω◦) = Kx ∩Hx, where Hx is a plane whih ontains Φx(x)and an inner point of Kx.The proof rests heavily on nontrivial regularity results for adequate modelproblems within the same sale of spaes: onerning i), an isomorphy re-sult for the Dirihlet Laplaian on a domain with Lipshitz boundary [35℄is required and, seondly, a result for ∇ · σ∇ on Rd, where σ equals a(real, symmetri, positive de�nite) d×d matrix on a half spae and another
d × d matrix on the omplementing half spae, see Theorem 3.11 below.In ase ii) an isomorphy result for interfae problems on polyhedra is addi-tionally needed, see [23℄. Note that our result is a ertain omplement to[20℄, where for 3D-problems with mixed boundary onditions, but withoutheterogeneities isomorphism theorems within the W 1,q ↔ W−1,q sales areobtained. Furthermore, it is somewhat similar to the results of [43℄, wherepieewise Hölder ontinuity of the �rst order derivatives is proved underslightly stronger assumptions on the data. Last but not least Theorem 1.1is related to the results of [15℄, where W 1,∞

loc regularity is proved for thesolution if the right hand side is su�iently regular.Operators of type (1.2) � whih may be seen as the prinipal part of thehomogenized version of an ellipti operator with inhomogeneous Dirihletdata � are of fundamental signi�ane in many appliation areas. This isthe ase not only in the mehanis (see [42, Ch. IV.3℄), thermodynamis[57, 54, 13℄, and eletrodynamis [56℄ of heterogeneous media, but also inmining, multiphase �ow and mathematial biology. Espeially in biologialmodels it often seems unavoidable to take into aount heterogeneties, see[25℄ or [11℄ and referenes therein. Moreover, suh operators are also ofinterest for the desription of submiron devies by means of a Shrödingeroperator in e�etive mass approximation (see for example [10, 62, 60, 44℄).Here heterostrutures are the determining features of many fundamental



4e�ets (see for instane [9, 37℄). With ongoing miniaturisation of eletronidevies the resolution of material interfaes beomes ever more important,so that one de�nitely has to deal with disontinuous oe�ient funtionshere. Besides, a large amount of papers exist on the numeris of suh prob-lems (see e.g. [1, 33, 14, 61℄ and referenes therein).The W 1,q
0 ↔ W−1,q setting is attrative for many problems for the fol-lowing reasons: if the gradient of the solution belongs to a summabilitylass q, larger than the spae dimension d, then the solution is automati-ally Hölder ontinuous - what often is of use for auxiliary problems. Bythe way, this annot be ahieved within the W s,2 sale beause W 3/2,2 is aprinipal threshold in ase of jumping oe�ients, see [53℄ for further re-sults. Seondly, the result has far reahing onsequenes for the treatment ofquasilinear paraboli equations in Lp spaes - as is arried out in [46, 51, 36℄.Moreover, our ellipti regularity theorem, ombined with a result from [8℄,yields maximal paraboli regularity on W−1,q, too.Another important appliation of the information q > d is the possibility toobtain uniqueness results for assoiated nonlinear equations and systems,see for example [26, 27℄. Of ourse, these things are most relevant in the'physial' spae dimension 3. Last, but not least, W−1,q is large enough toontain (suitable, say bounded) surfae densities and even (not too singular)measures, see [65, Ch. 4℄. In partiular, this enables to inlude presribedjump onditions for the onormal derivative of the solution aross the in-terfae, see [14℄.The outline of the paper is as follows: First we introdue some notation.In the next hapter we derive some tehnial prerequisites and afterwardsprove Theorem 1.1. Chapter 4 ontains some perturbation results onern-ing �rst order operators. In Chapter 5 it is shown by a ounterexamplethat if the C1 ondition on the subdomain is violated in only one point,then one ompletely loses the result. Chapter 6 is devoted to onlusionsfor orresponding paraboli operators, suh as maximal paraboli regularityon W−1,q. Finally, in the Appendix we prove a tehnial lemma on domainswith Lipshitz boundary.



2 Notations, general assumptions 52 Notations, general assumptionsThe real salar produt ∑d
j=1 xjyj of two vetors x = (x1, . . . , xd), y =

(y1, . . . , yd) ∈ Cd is denoted by x · y. Throughout this paper, Ω and Λare always domains in Rd. Conerning the de�nition of a Lipshitz domainand a domain with Lipshitz boundary we refer the reader primarly to [28,Ch. 1.2℄, see also [63, Ch. 1.2℄. If X is a omplex Banah spae, then wedenote the spae of X�valued, Bohner measurable, p-integrable funtionson Λ, (p ∈ [1,∞[), by Lp(Λ;X), whereas L∞(Λ;X) denotes the spae ofLebesgue measurable, essentially bounded funtions on Λ with values in
X. If X = C, then we write simply Lp(Λ). W 1,q(Λ) stands for the usual(omplex) Sobolev spae on the set Λ (see [28℄ or [59℄). Further, we usethe symbol W 1,q

0 (Λ) for the losure of {v|Λ : v ∈ C∞
0 (Rd), supp v ⊂ Λ

} in
W 1,q(Λ). W−1,q′(Λ) denotes the dual to W 1,q

0 (Λ), where q′ here and in thesequel always denotes the adjoint exponent q′ := q
q−1

. If ρ is a Lebesguemeasurable, essentially bounded funtion on the domain Λ, taking its valuesin the set of real, symmetri d× d matries, then we de�ne
−∇ · ρ∇ : W 1,2

0 (Λ) 7−→W−1,2(Λ) (2.1)by
〈−∇ · ρ∇v, w〉 :=

∫

Λ

ρ∇v · ∇w dx ; v, w ∈W 1,2
0 (Λ). (2.2)Here and in the following 〈·, ·〉 always denotes the dual pairing between

W 1,2
0 and W−1,2. The maximal restrition of −∇ · ρ∇ to any of the spaes

W−1,q(Λ) (q > 2) we will denote by the same symbol. If we are given afuntion, de�ned on a subset of Rd and uniformly ontinuous there, thenwe identify it anonially with its (uniquely determined) extension to thelosure of this set. The norm in a Banah spae X will be always indiatedby ‖ · ‖X . For two Banah spaes X and Y we denote the spae of linear,bounded operators from X into Y by B(X;Y ). If X = Y , then we abbre-viate B(X). Finally, we introdue the following model sets whih will beused later: by E we denote the open unit ube in R
d, that means the set

{
x = (x1, ..., xd) ∈ R

d : −
1

2
< x1, ..., xd <

1

2

}
.



6
E−, E+ are used as symbols for the lower and upper open half ubes

E− := E ∩

{
x = (x1, ..., xd) ∈ R

d : −
1

2
< xd < 0

}and
E+ := E ∩

{
x = (x1, ..., xd) ∈ R

d : 0 < xd <
1

2

}
.Finally, we denote by E0 the upper plate of E−, E0 := E ∩ {x : xd = 0}.3 Proof of Theorem 1.13.a Known results and preliminariesIn this hapter we will prove Theorem 1.1. In order to do so, we �rst quotea lassial perturbation theorem on the bounded invertibility for operators(see [38, Ch. IV.1.4 Thm. 1.16℄ whih we will use repeatedly in the sequel:3.1 Proposition. Let X, Y be Banah spaes. Assume that A,B : X → Yare linear, ontinuous operators, suh that ‖A−1‖B(Y ;X)‖B‖B(X;Y ) < 1. Then

A+B is a topologial isomorphism between X and Y and
‖A−1 − (A +B)−1‖B(Y ;X) ≤

‖B‖B(X;Y ) ‖A
−1‖B(Y ;X)

1 − ‖B‖B(X;Y ) ‖A−1‖B(Y ;X)
‖A−1‖B(Y ;X)Next, we quote a result of of Jerison/Kenig (see [35, Thm. 1.1℄), whihis a ornerstone for all what follows:3.2 Proposition. If Λ ⊂ Rd is a bounded domain with Lipshitz boundary,then there is a number q1 > 3, depending only on the Lipshitz onstantof Λ, suh that the Dirihlet Laplaian provides a topologial isomorphismbetween W 1,q

0 (Λ) and W−1,q(Λ) for all q ∈]q′1, q1[. If Λ is a C1 domain, q1may be hosen ∞.3.3 Remark. The seond assertion may also be diretly onluded from[58℄ Thm. 4.6.



3.a Known results and preliminaries 7In order to generalize Proposition 3.2 to operators ∇ · ρ∇ we need thefollowing lemma, whih is proved in the Appendix:3.4 Lemma. Let Λ be a bounded domain with Lipshitz boundary and Lip-shitz onstant γ. If K is a linear bijetion of Rn onto itself, then KΛ isagain a domain with Lipshitz boundary and the Lipshitz onstant of KΛdoes not exeed ‖K‖‖K−1‖(γ + 1).This at hand, we an draw the following onlusion from Proposition 3.2:3.5 Corollary. Let Λ ⊂ Rd be a bounded domain with Lipshitz boundary.If the oe�ient funtion ρ is a onstant real, symmetri, positive de�nite
d×d matrix on Λ, then there is a number q1 > 3 suh that the operator −∇·
ρ∇ + 1 provides a topologial isomorphism between W 1,q

0 (Λ) and W−1,q(Λ)for all q ∈]q′1, q1[. The number q1 may be taken uniformly with respet to anyset of (symmetri) ρ's whih is, together with the set of inverses, boundedin B(Cd). If Λ is a C1 domain, then q1 may be hosen as ∞.Proof. The assertion may be dedued immediately from Proposition 3.2:namely one transforms −∇ · ρ∇ with respet to the oordinate transform
ρ1/2 and ends up with a multiple of the Dirihlet Laplaian. Under thesupposition on the ρ′s the Lipshitz onstants of the transformed domains
ρ1/2Λ are uniformly bounded by Lemma 3.4. Thus, every −∇· ρ∇ providesa topologial isomorphism between W 1,q

0 (Λ) and W−1,q(Λ) for the assertedrange of q's. The same is true for the operators −∇ · ρ∇ + 1 beause theorresponding resolvents are ompat and −1 is not an eigenvalue for anyof these operators.Having in mind operators with non-onstant oe�ients, we need thefollowing interpolation result:3.6 Theorem. Assume that Λ ⊆ R
d is an open set. Let the linear mapping

F : W−1,q(Λ) → W 1,q
0 (Λ) be ontinuous for q = q1 ∈]1,∞[ and q = q2 ∈

]1,∞[. Then it is ontinuous for any q =
(

θ
q1

+ 1−θ
q2

)−1

∈]q1, q2[ and
‖F‖B(W−1,q(Λ);W 1,q

0 (Λ)) ≤ ‖F‖θ

B(W−1,q1 (Λ);W
1,q1
0 (Λ))

‖F‖
(1−θ)

B(W−1,q2(Λ);W
1,q2
0 (Λ))

.(3.1)



8 The proof is arried out with help of the following representation theorem:3.7 Proposition. Let Λ ⊆ Rd be open and q ∈]1,∞[.i) Any element T ∈ (W 1,q′(Λ))∗ may be represented as
〈T, ψ〉 =

∫

Λ

f0ψ +

d∑

j=1

∂ψ

∂xj
fj dx , ψ ∈W 1,q′(Λ)) (3.2)with f = (f0, f1, ..., fd) ∈ Lq(Λ; Cd+1) and the additional property

‖f‖Lq(Λ;Cd+1) = ‖T‖(W 1,q′(Λ))∗ . (3.3)ii) The same representation (3.2) holds true for any ontinuous linearform T whih is de�ned on a losed subspae of W 1,q′(Λ), in partiularfor T ∈ W−1,q(Λ). In this ase f an be hosen suh that ‖T‖ =
‖f‖Lq(Λ;Cd+1).A proof of the representation formula (3.2) is given in [65, Ch. 4.3℄. Thenorm equality (3.3) is obtained by an inspetion of the proof given there.ii) is obtained from i) by extending the linear form T (norm preserving) towhole W 1,q′(Λ).We give now the proof of Theorem 3.6: Assume q ∈ [q1, q2]. Then for any

f = (f0, f1, ..., fd) ∈ Lq(Λ; Cd+1) we de�ne an element (1+div)f ∈W−1,q(Λ)by
〈(1 + div)f, ψ〉 :=

∫

Λ

f0ψ +

d∑

j=1

∂ψ

∂xj
fj dx , ψ ∈W 1,q′

0 (Λ).Further, for any q ∈ [q1, q2] we de�ne a mapping G : Lq(Λ; Cd+1) →
Lq(Λ; Cd+1) by putting G = (1 ⊕ grad)F (1 + div). The ruial point isthe equality

‖G‖B(Lq(Λ;Cd+1)) = ‖F‖B(W−1,q(Λ),W 1,q
0 (Λ)),whih results from the following fats:

• 1 ⊕ grad is an isometry from W 1,q
0 (Λ) into Lq(Λ; Cd+1).

• (1+div) is non-expansive by Hölder's inequality , but, additionally, Propo-sition 3.7 holds.



3.a Known results and preliminaries 9Thus, an appliation of the Riesz-Thorin interpolation theorem to the map-pings G : Lq(Λ; Cd+1) → Lq(Λ; Cd+1) gives the assertion. Next we present aloalization priniple similar to Lemma 2 of [29℄. In essene, this will permitus to onlude the isomorphism property (1.2) from the same isomorphismproperty for adequate loal model onstellations.3.8 Lemma. Let Λ ⊂ Rd be a bounded Lipshitz domain and O ⊂ Rd beopen suh that Λ• := Λ∩O is again a Lipshitz domain. We �x an arbitraryfuntion η ∈ C∞
0 (Rd) with supp η ⊂ O. Let ρ• denote the restrition of theoe�ient funtion ρ to Λ•. Assume u ∈W 1,2

0 (Λ) to be the solution of
−∇ · ρ∇u+ u = f ∈W−1,2(Λ); (3.4)then the following holds true:i) The linear form

f• : w → 〈f, η̃w〉(where η̃w means the extension by zero to whole Λ) is well de�ned andontinuous on W 1,r′

0 (Λ•) whenever f ∈W−1,r(Λ).ii) Let Tu denote the linear form
w −→

∫

Λ•

uρ•∇η · ∇w dxonW 1,2
0 (Λ•). If u ∈W 1,r(Λ), then −ρ•∇u|Λ•

·∇η|Λ•
+Tu ∈W−1,s(Λ•),where s = s(r) is given by

s =

{
rd

d−r
if r ∈ [2, d[any (large) positive number if r ≥ d.

(3.5)iii) Let the operator −∇ · ρ•∇ : W 1,2
0 (Λ•) → W−1,2(Λ•) be de�ned analo-gously to (2.2). Then v := ηu|Λ•

belongs to W 1,2
0 (Λ•) and satis�es

−∇ · ρ•∇v + v = −ρ•∇u|Ω•
· ∇η|Ω•

+ Tu + f•. (3.6)



10Proof. i) The mapping f 7→ f• is the adjoint to w 7→ η̃w whih maps
W 1,r′

0 (Λ•) ontinuously into W 1,r′

0 (Λ).ii) The ase r ≥ d may be redued by the embeddingW 1,r(Λ) →֒ W 1,d−ǫ(Λ)to the ase r < d; we treat this latter one: learly, one has ρ•∇u|Λ•
· ∇η ∈

Lr(Λ•), what gives by Sobolev embedding and duality ρ•∇u|Λ•
· ∇η|Λ•

∈ W−1, rd
d−r (Λ•) for r ∈ [2, d[. Conerning Tu, we will show that it is aontinuous linear form on W 1,( rd

d−r
)′

0 (Λ•): one an estimate
| 〈Tu, w〉 | ≤ ‖u‖

L
rd

d−r (Λ•)
‖ρ‖L∞(Λ;B(Cd)) ‖∇η‖L∞(Λ•) ‖∇w‖

L
( rd
d−r

)′
(Λ•)

. (3.7)Using again Sobolev embedding, the right hand side of (3.7) may be esti-mated by
γ‖u‖W 1,r(Λ•) ‖ρ‖L∞(Λ;B(Cd)) ‖∇η‖L∞(Λ•) ‖w‖

W
1,( rd

d−r
)′

(Λ•)
.iii) For every u ∈ W 1,2

0 (Λ) there is a sequene {ul}l onsisting of C∞
0 (Rd)funtions with support within Λ suh that liml→∞ ul|Λ = u in W 1,2(Λ). Ob-viously, then any funtion ηul has its support within Λ• and liml→∞ ηul|Λ•

=
ηu|Λ•

in W 1,2(Λ•). Seondly, for every w ∈W 1,2
0 (Λ•) we have

〈−∇ · ρ•∇v, w〉 + 〈v, w〉 =

∫

Λ•

ρ•∇(ηu) · ∇w dx +

∫

Λ•

ηuw dx =

−

∫

Λ•

w ρ•∇u·∇η dx+

∫

Λ•

uρ•∇η ·∇w dx +

∫

Λ

ρ∇u·∇(η̃w) dx+

∫

Λ

u η̃w dx.(3.8)Applying the de�nitions of Tu and f•, this gives the assertion.Next we want to show the assertion of Theorem 1.1 under the additionalassumption that the oe�ient funtion is uniformly ontinuous on whole
Ω.3.9 Theorem. Let Λ ⊂ Rd be a bounded domain with Lipshitz boundaryand ρ a real, symmetri-valued , uniformly ontinuous oe�ient funtionon Λ, ellipti in the sense of (1.1).



3.a Known results and preliminaries 11i) Then there is a q1 > 3 suh that for all q ∈]q′1, q1[ it holds true:
sup
x∈Λ̄

‖(−∇ · ρ(x)∇ + 1)−1‖B(W−1,q(Λ);W 1,q
0 (Λ)) <∞.ii) The operator

−∇ · ρ∇ + 1 : W 1,q
0 (Λ) −→W−1,q(Λ) (3.9)is a topologial isomorphism for the same range of q's.iii) If Λ is a C1 domain, then q1 may be hosen ∞.Proof. The proof will be onluded from Corollary 3.5, for this reason theorresponding q′s are idential with those from Corollary 3.5. i) The set{

ρ(x) : x ∈ Λ̄
} is bounded in B(Rd) while {ρ(x)−1 : x ∈ Λ̄

} is also boundedby the elliptiity ondition and the (uniform) ontinuity of ρ. Thus, byCorollary 3.5, there is a q1 > 3 suh that for any q ∈]q′1, q1[ and for any
x ∈ Ω̄ the operator −∇ · ρ(x)∇ + 1 provides a topologial isomorphismbetween W 1,q

0 (Ω) and W−1,q(Ω). If Ω is a C1 domain, then q1 = ∞. Hene,the funtion
Λ̄ ∋ x 7→ (−∇ · ρ(x)∇ + 1)−1 ∈ B(W−1,q(Λ);W 1,q

0 (Λ)) (3.10)is well de�ned and, additionally, the mapping
Λ̄ ∋ x 7→ ρ(x) 7→ −∇ · ρ(x)∇ + 1 ∈ B(W 1,q

0 (Λ);W−1,q(Λ))is ontinuous. By Proposition 3.1 the funtion (3.10) is also ontinuous and,hene, bounded.ii) First we onsider the ase q ∈]2, q1[; then (3.9) is injetive by Lax-Milgram. Choose for every point x ∈ Λ̄ a ball Bx around x with radius Rxsuh that for y ∈ Bx ∩ Λ̄

‖ρ(y) − ρ(x)‖B(Rd) <

1

supt∈[2,q] sup
z∈Λ̄ ‖(−∇ · ρ(z)∇ + 1)−1‖B(W−1,t(Λ);W 1,t

0 (Λ))

(3.11)



12holds true. This radius Rx is indeed nonzero, namely: the Lax-Milgramlemma yields
sup
z∈Λ̄

‖(−∇ · ρ(z)∇ + 1)−1‖B(W−1,2(Λ);W 1,2
0 (Λ)) <∞.This, together with i) and interpolation (Theorem 3.6) implies

sup
t∈[2,q]

sup
z∈Λ̄

‖(−∇ · ρ(z)∇ + 1)−1‖B(W−1,t(Λ);W 1,t
0 (Λ)) <∞.We hoose a �nite subovering Bx1 ...Bxm for Λ̄. Let η1....ηm be a partitionof unity on Λ̄ whih is subordinated to this subovering. Assume now

f ∈W−1,q(Λ) and let u be a solution of
−∇ · ρ∇u+ u = f. (3.12)By the Lax-Milgram lemma u must be fromW 1,2

0 (Λ). Putting O := ∪m
l=1Bxlwe get from Lemma 3.8

−∇ · ρ∇(ηlu) + ηlu = gl, (3.13)where gl is from W−1,min(s(2),q)(Λ) (see Lemma 3.8). We now set t :=
min(s(2), q) and de�ne for every l ∈ {1, ..., m} a modi�ed oe�ient fun-tion ρl on Λ as follows:

ρl(y) =

{
ρ(y) if y ∈ Bxl

∩ Λ

ρ(xl) elsewhere on Λ.
(3.14)Beause ηlu has its support inBxl

, it satis�es besides (3.13) also the equation
−∇ · ρl∇(ηlu) + ηlu = gl. (3.15)We will now show that gl ∈ W−1,t(Λ) implies ηlu ∈ W 1,t

0 (Λ). Rewriting(3.15) as
−∇ · ρ(xl)∇(ηlu) + ηlu+ ∇ · [ρ(xl) − ρl]∇(ηlu) = gl,one estimates

‖∇ · [ρl − ρ(xl)]∇‖B(W 1,t
0 (Λ);W−1,t(Λ)) ≤ ‖ρ(xl) − ρl‖L∞(Λ;B(Cd)) =



3.b Core of the proof 13
= ‖ρ(xl) − ρ‖L∞(Br(xl)∩Λ;B(Cd)).Taking into aount (3.11), we obtain for all l ∈ {1...m}

‖∇·[ρl−ρ(xl)]∇‖B(W 1,t
0 (Λ);W−1,t(Λ))‖(−∇·ρ(xl)∇+1)−1‖B(W−1,t(Λ);W 1,t

0 (Λ)) < 1.Now one an apply again the perturbation result (Proposition 3.1), whihsays that −∇·ρl∇+1 : W 1,t
0 (Λ) 7→W−1,t(Λ) is boundedly invertible. Thus,eah ηlu must be from W 1,t
0 (Λ), what gives u ∈ W 1,t

0 (Λ). Repeating theseonsiderations with the improved information on the integrability exponentof ∇u � eah time using Lemma 3.8 � one, after �nitely many steps, endsup with u ∈ W 1,q
0 (Λ). Hene, (3.9) is surjetive and thus, by the Openmapping theorem, a topologial isomorphism. The ase q < 2 is obtainedby duality.Further, we need the following tehnial lemma, the proof of whih anbe found in [39, Remark 2.1.3℄:3.10 Lemma. Let Λ be a domain with Lipshitz boundary. Then for any

x ∈ ∂Λ and any neighbourhood of x there is a (possibly) smaller open neigh-bourhood Vx of x suh that Λ∩Vx is a (even starlike) domain with Lipshitzboundary.3.b Core of the proofBefore we prove Theorem 1.1 we have to show a result on our �rst modelonstellation for operators ∇ · σ∇, when σ is disontinuous:3.11 Theorem. Let σ be a oe�ient funtion on Rd whih equals a real,symmetri, positive de�nite d × d matrix σ− on Rd
− = {x ∈ Rd : xd < 0}and another real, symmetri, positive de�nite d × d matrix σ+ on Rd

+ =
{x ∈ Rd : xd > 0}. Then −∇ · σ∇ + 1 provides a topologial isomorphismbetween W 1,q(Rd) and W−1,q(Rd) for all q ∈]1,∞[.Proof. Let x = (x′, xd) ∈ Rd, x′ ∈ Rd−1, and ∂i = ∂xi

, 1 ≤ i ≤ d. Moreover,we identify {x ∈ Rd : xd = 0} with Rd−1. It is su�ient to prove that theunique solution u ∈W 1,2(Rd) for eah of the equations
−∇ · σ∇u+ u = f , f ∈ Lq(Rd) , 2 < q <∞ (3.16)



14
−∇ · σ∇u+ u = ∂if , f ∈ Lq(Rd) , 2 < q <∞ (3.17)

i ∈ {1, ..., d}, belongs to W 1,q(Rd). To do this, it is enough to show theestimate
‖u‖W 1,q(Rd) ≤ c‖f‖Lq(Rd) , f ∈ C̃∞ , (3.18)where c denotes a generi positive onstant and C̃∞ stands for the densesubset of Lq(Rd) de�ned by

C̃∞ = {ψ ∈ C∞
0 (Rd) : ψ = 0 in some neighbourhood of R

d−1} .Applying lassial ellipti theory of transmission problems (e.g., [52℄) to theequation
−∇ · σ∇v + v = f , f ∈ C̃∞ , (3.19)we obtain the inequality
‖v‖W 2,q(Rd

−
∪Rd

+) ≤ c‖f‖Lq(Rd) . (3.20)This assures (3.18) in ase of (3.16). We establish (3.18) also in ase of(3.17): looking for the solution of (3.17) in the form u = ∂iv + w, weobserve that w has to satisfy the following transmission problem:
−∇ · σ±∇w± + w± = 0 in R

d
± , [w] = −[∂iv] =: g ,

[∂ν,σw] = −[∂ν,σ∂iv] =: h , (3.21)where w± = w|Rd
±
, [w] = (w− − w+)|Rd−1 and

[∂ν,σw] = (σ−ν · ∇w− − σ+ν · ∇w+)|Rd−1 , ν = (0, . . . , 0, 1) .Sine v± satisfy the homogeneous di�erential equations near Rd−1, the term
[∂ν,σ∂dv] is a linear ombination of ∂j∂dv

±|Rd−1 for j = 1, . . . , d − 1. Thus,by the trae theorem and the ontinuity of di�erentiation in tangential di-retion, we obtain from (3.20) that the estimate
‖[∂iv]‖W 1−1/q,q(Rd−1) + ‖[∂ν,σ∂iv]‖W−1/q,q(Rd−1) ≤ c‖f‖Lq(Rd) (3.22)holds for i = 1, . . . , d. We refer to [59, Ch. 2℄ for the required properties ofSobolev spaes.



3.b Core of the proof 15To prove (3.18), in view of (3.20) and (3.22), it now su�es to show thatthe solution of (3.21) satis�es
‖w‖W 1,q(Rd

−
∪Rd

+) ≤ c
(
‖h‖W−1/q,q(Rd−1) + ‖g‖W 1−1/q,q(Rd−1)

)
. (3.23)We will redue (3.23) to well known ontinuity properties of Poisson oper-ators (see [30℄), the symbols of whih an be alulated expliitly. In orderto do so, we solve (3.21) by taking partial Fourier transform with respet to

x′ denoted by Fu = Fu(ξ′, xd) for a funtion u(x) on Rd, with F−1 beingthe inverse transform. We set
B± =

(
σ±

ij

)d−1

i,j=1
, a± =

(
σ±

1d, . . . , σ
±
d−1d

)
, b± = σ±

dd ,where σ±
ij are the entries of the matries σ±. Applying the partial Fouriertransform to (3.21), we obtain

(−b± ∂2
d + 2ia± · ξ′ ∂d +B±ξ′ · ξ′ + 1)Fw±(ξ′, xd) = 0 in R

d
± ,

Fw−(ξ′, 0) − Fw+(ξ′, 0) = Fg(ξ′) , (3.24)
(b− ∂d − ia− · ξ′)Fw−(ξ′, 0) − (b+ ∂d − ia+ · ξ′)Fw+(ξ′, 0) = Fh(ξ′) .Ignoring the exponentially inreasing solutions of the homogeneous di�er-ential equations in (3.24), we have

Fw±(ξ′, xd) = C±(ξ′) exp{∓xd (A±(ξ′) + ia± · ξ′)/b±} (3.25)with A±(ξ′) = (b±(1 +B±ξ′ · ξ′)− (a± · ξ′)2)1/2. Then we determine C±(ξ′)from the transmission onditions in (3.24),
C−(ξ′) − C+(ξ′) = Fg(ξ′) ,

A−(ξ′)C−(ξ′) + A+(ξ′)C+(ξ′) = Fh(ξ′) ,whih gives
C± = (A− + A+)−1 Fh∓A∓(A− + A+)−1 Fg . (3.26)Note that the elliptiity of ∇ · σ∇ implies the lower bound

A±(ξ′) ≥ c 〈ξ′〉 , 〈ξ′〉 = (1 + |ξ′|2)1/2 .



16We will only prove the orresponding estimate (3.23) for the upper half-spae sine the proof for Rd
− is ompletely analogous. From (3.25) and(3.26) we obtain the representation

w(x′, xd) = F−1k1(ξ
′, xd)Fh(ξ

′) + F−1k2(ξ
′, xd)Fg(ξ

′) =: K1h + K2g(3.27)for xd > 0. Here K1 , K2 are Poisson operators with the symbols
k1(ξ

′, xd) = (A−(ξ′) + A+(ξ′))−1 exp{−xd (A+(ξ′) + ia+ · ξ′)} ,

k2(ξ
′, xd) = −A−(ξ′) k1(ξ

′, xd) . (3.28)Using (3.28) and the expressions for A±, it is not di�ult to hek that k2is a symbol of order −1, i.e., it satis�es the estimates
‖xm

d ∂
n
d ∂

α
ξ′ k1(ξ

′, ·)‖L2(R+) ≤ cmnα 〈ξ
′〉−3/2−|α|−m+n (3.29)for all ξ′ ∈ R

d−1 , xd ∈ R
+, m,n ∈ N and all multi-indies α. Analogously,

k2 is a symbol of order 0, i.e., the −3/2 in the exponent of 〈ξ′〉 in (3.29)has to be replaed by −1/2. Therefore, from [30, Thm. 3.1℄ we obtain theontinuity of the operators
K1 : W s−1/q,q(Rd−1) → W s+1,q(Rd

+) , K2 : W s−1/q,q(Rd−1) →W s,q(Rd
+)for all s ∈ Z. In partiular, together with (3.27) this implies that the W 1,qnorm of w on Rd

+ an be estimated by the right hand side of (3.23).We now ome to the proof of Theorem 1.1, starting with the settingde�ned under i): �rst, one easily noties that the operator in (1.2) is wellde�ned and ontinuous for any q ∈]1,∞[. Conerning the ontinuity of theinverse, we restrit the onsiderations �rst to the ase q > 2. For these q,(1.2) is injetive by the Lax-Milgram lemma. Hene, by the Open mappingtheorem it su�es to show that (1.2) is surjetive for suitable q's, what wewill do in the sequel. Let for any x ∈ ∂Ω an open neighbourhood Ox begiven whih satis�es the following two onditions:
i) Ox ∩ Ω̄◦ = ∅.
ii) If Ω is C1, then Ax := Ox ∩Ω is C1; and if Ω has a Lipshitz boundary,then Ax := Ox ∩ Ω has a Lipshitz boundary.



3.b Core of the proof 17The existene of suh a neighbourhood is almost obvious in the C1 ase andfollows from Lemma 3.10 in the other ase.We hoose a �nite subovering Ox1 , ...,Oxk
of ∂Ω and �x from now on anumber q ∈]3,∞[ suh that

−∇ · µ|Axl
∇ : W 1,q

0 (Axl
) →W−1,q(Axl

) (3.30)is a topologial isomorphism for every l ∈ {1, ..., k}. This is possible byTheorem 3.9; in partiular, q may be hosen as an arbitrarily large number,if Ω is C1. Additionally, observe that (3.30) is then, by interpolation, atopologial isomorphism for any other number from the interval [2, q[.Assume now f ∈W−1,q(Ω) →֒ W−1,2(Ω) and u to be a solution of
−∇ · µ∇u+ u = f (3.31)(whih belongs to W 1,2

0 (Ω) by the Lax-Milgram lemma). We will show thatthen u ∈W 1,q
0 (Ω).The C1 property of ∂Ω◦ assures for every x ∈ ∂Ω◦ the existene of a positivenumber αx, an open neighborhood Vx ⊂ Ω of x and a C1 di�eomorphism

Φx : Vx 7→ αxE suh that Φx(∂Ω◦ ∩ Vx) = αxE0, Φx(x) = 0 and theorresponding Jaobian is idential 1, see [63, Ch.I Satz 2.5℄. Without lossof generality we may assume that the losure of Vx is also ontained in Ω.The transformed of (−∇·µ∇+1)|Vx
under Φx (see [7, Ch. 0.8℄) is then of theform −∇· µ̂x∇+1, where µ̂x is uniformly ontinuous on αxE− and on αxE+,respetively. We denote limy∈E−,y→0 µ̂x(y) by σ−

x
and limy∈E+,y→0 µ̂x(y) by

σ+
x
. Now let σx be the oe�ient funtion on Rd de�ned by

σx = σ±
x

on R
d
± .By Theorem 3.11, −∇ · σx∇ + 1 is a topologial isomorphism between

W 1,t(Rd) and W−1,t(Rd) for all x ∈ ∂Ω◦ and all t ∈]1,∞[. Let βx ∈]0, αx]be a number suh that
‖σx − µ̂x‖L∞(βxE;B(Cd))‖

(
∇ · σx∇ + 1

)−1
‖B(W−1,t(Rd);W 1,t(Rd)) < 1 (3.32)holds for t = 2 and t = q. Suh βx exists beause the seond fator is�nite by Theorem 3.11 and the �rst fator an be made arbitrarily smallby the properties of µ̂x and σx for βx 7→ 0. Please notie that, by our



18interpolation result Theorem 3.6, (3.32) remains true for any other t ∈]2, q[.De�ne Ux as the inverse image of βxE under Φx. Finally, for any x ∈(
Ω\(∪n

l=1Oxl
∪Ω̄◦)

) let Bx be an open ball around x whih does not interset
∂Ω ∪ ∂Ω◦. Obviously, the systems {Ux}x∈∂Ω◦

, {Bx}
x∈
(
Ω\(∪k

l=1Oxl
∪Ω̄◦)

) forman open overing of the (ompat) set Ω \
(
∪k

l=1Oxl
∪ Ω◦

). Let the system
Uxk+1

...Uxm , Bxm+1, ..., Bxn, be a �nite subovering. Clearly, then the sets
Ox1 , ...,Oxk

,Uxk+1
...Uxm , Bxm+1, ..., Bxn, ,Ω◦ form an open overing of Ω̄. Let

η1, ...ηk, ηk+1, ...ηm, ηm+1, ...ηn, η◦ be a partition of unity over Ω̄ subordinatedto this subovering. Realling (3.5), from now on we set t := min(s(2), q).Assume l ∈ {1, ..., k}. Then vl := ηlu|Axl
, due to the property u ∈ W 1,2

0 (Ω)and Lemma 3.8, satis�es an equation
−∇ · µl∇vl + vl = fl (3.33)where µl := µ|Axl

and fl ∈W−1,t(Axl
). Beause (3.30) also is a topologialisomorphism if q is replaed by t there, we get vl ∈ W 1,t

0 (Axl
) what gives

ηul ∈ W 1,t
0 (Ω). Let next l be from {k + 1, ..., m}. Then the property u ∈

W 1,2
0 (Ω) and Lemma 3.8 imply that vl := ηlu|Uxl

satis�es an equation (3.33),where this time µl := µ|Uxl
and fl ∈ W−1,t(Uxl

). Moreover, it is lear thatboth, vl and fl, have their supports within Uxl
. We transform (3.33) via the

C1-mapping Φxl
. This leads to the following equation for the transformedobjets

−∇ · µ̂xl
∇v̂l + v̂l = f̂l (3.34)on βxl

E , where f̂l ∈ W−1,t(βxE). Additionally, f̂l has its support in βxl
E ,what is also true for v̂l. Let σ̌l be the following oe�ient funtion, de�nedon Rd:

σ̌l =

{
µ̂xl

on βxl
E

σxl
on Rd \ βxl

E .Beause f̂l and v̂l have their supports in βxl
E , (3.34) an be extended toan equation on whole Rd; namely: let ζl be a C∞ funtion on Rd whih isidential 1 on supp(v̂l)∪ supp(f̂l) and whih has its support within βxl

E . Ifwe de�ne Fl by 〈Fl, w〉 =
〈
f̂l, ζlw

〉 for w ∈W 1,t′(Rd) and Vl as the extensionof v̂l by zero to whole R
d, then Fl ∈ W−1,t(Rd) and the following equationis ful�lled:

−∇ · σ̌l∇Vl + Vl = −∇ · σxl
∇Vl + Vl + ∇ · (σxl

− σ̌l)∇Vl = Fl. (3.35)



3.b Core of the proof 19Beause (3.32) is in partiular true for our spei�ed t, this implies
‖∇· (σxl

− σ̌l)∇‖B(W 1,t(Rd);W−1,t(Rd))‖
(
−∇·σxl

∇+1
)−1

‖B(W−1,t(Rd);W 1,t(Rd)) ≤

≤ ‖σxl
− σ̌l‖L∞(Rd;B(Cd))‖

(
∇ · σxl

∇ + 1
)−1

‖B(W−1,t(Rd);W 1,t(Rd)) =

= ‖σxl
− µ̂xl

‖L∞(βxl
E;B(Cd))‖

(
∇ · σxl

∇ + 1
)−1

‖B(W−1,t(Rd);W 1,t(Rd)) < 1.This, together with Proposition 3.1, then implies that −∇ · σ̌l∇ + 1 :
W 1,t(Rd) 7→ W−1,t(Rd) is also a topologial isomorphism. Consequently,
Vl ∈ W 1,t(Rd), what gives v̂l ∈ W 1,t

0 (βxl
E) and, hene, vl = ηlu|Uxl

∈

W 1,t
0 (Uxl

). Beause the support of ηlu is within Uxl
we obtain ηlu ∈W 1,t

0 (Ω)for all l = k + 1, ..., m. Lastly, if l ∈ {m+ 1, ..., n}, then one also ends upfor vl := ηlu|Bxl
with an equation of type (3.33) and this same is true for

v0 := η◦u|Ω◦
. The orresponding right hand sides are from W−1,t(Bxl

) and
W−1,t(Ω◦), respetively (see Lemma 3.8). By Theorem 3.9 ηlu|Bxl

and η◦u|Ω◦are then from W 1,t
0 (Bxl

) and W 1,t
0 (Ω◦), respetively. Clearly, then ηlu and

η◦u must be from W 1,t
0 (Ω) what altogether gives u ∈ W 1,t

0 (Ω). Exploitingthis and iterating the above onsiderations one improves the summabilityof ∇u in the light of Lemma 3.8 step by step and �nally ends up with
u ∈ W 1,q

0 (Ω). This proves the assertion for λ = 1. For all other λ's weobtain the proof by the ompatness of the resolvent and the fat that no
λ with ℜλ ≤ 0 an be an eigenvalue. The ase q < 2 is obtained by duality.We will now point out how to prove Theorem 1.1 if Condition ii) is ful�lled.The only di�erene in the proofs of i) and ii) in Theorem 1.1 is that theboundary points must be treated in di�erent ways; for this we prove thefollowing3.12 Lemma. For any x ∈ ∂Ω there is a neighbourhood Ox and a q = qx >
3 suh that Ox ∩ Ω is a Lipshitz domain and

∇ · µ∇ + 1 : W 1,q
0 (Ox ∩ Ω) →W−1,q(Ox ∩ Ω)is a topologial isomorphism.In ontrast to ase i) one annot treat the points from ∂Ω in ommon,but has to divide ∂Ω into three subsets whih have to be treated separately:a) ∂Ω \ ∂Ω◦



20b) the inner points of ∂Ω ∩ ∂Ω◦ within ∂Ω) the boundary points of ∂Ω ∩ ∂Ω◦ within ∂Ωa) If x ∈ ∂Ω \ ∂Ω◦, then there is an open neighbourhood Wx of x suh that
Wx ∩ Ω does not interset Ω̄◦. Namely, if this were not the ase, then xwould be an aumulation point of Ω̄◦, and, hene, belongs to Ω̄◦. Beause
x is not from Ω◦ this would mean x ∈ ∂Ω◦, what is wrong. By Lemma 3.10we an pass to a (possibly) smaller open neighbourhoodOx suh that Ox∩Ωis again a domain with Lipshitz boundary. Thus, the oe�ient funtion isuniformly ontinuous on Ox∩Ω and the assertion follows from Theorem 3.9.Le us now onsider ase b). What we want to show is the following: if x isan inner point of ∂Ω ∩ ∂Ω◦ within ∂Ω, then one an �nd a neighbourhood
Ox of x suh that
i) Ox ∩ Ω = Ox ∩ Ω◦and
ii) Ox ∩ Ω is a domain with Lipshitz boundary.First we onstrut an open neighbourhoodMx of x whih ful�llsMx∩Ω =
Mx ∩Ω◦ Namely, beause Ω is a Lipshitz domain (see [28, Ch. 1.2℄ or [63,Ch. I.2.3℄) there is an open neighbourhood Wx of x and a bi-Lipshitz map
Ψx : Wx → E suh that Ψx(x) = 0, Ψx(Ω∩Wx) = E+ and Ψx(∂Ω ∩Wx) =
E0. Beause x was an inner point of ∂Ω ∩ ∂Ω◦, there is a positive number
rx suh that rxE0 ⊂ Ψ(∂Ω ∩ ∂Ω◦) ⊂ Ψ(∂Ω◦). But, by supposition, Ω◦ itselfwas a Lipshitz domain, too; thus there is a number sx ∈]0, rx] suh that

Ψx(∂Ω◦) ∩ sxE = sxE0. (3.36)Now we de�ne Mx := Ψ−1
x

(
sxE
) and write

Mx ∩ Ω =
(
Mx ∩ Ω◦

)
∪
(
Mx ∩ Ω ∩ ∂Ω◦

)
∪
(
Mx ∩ (Ω \ Ω̄◦)

)
. (3.37)From the de�nition ofMx and (3.36) it is lear thatMx∩Ω∩∂Ω◦ is empty.Thus, (3.37) redues to

Mx ∩ Ω =
(
Mx ∩ Ω◦

)
∪
(
Mx ∩ (Ω \ Ω̄◦)

)
. (3.38)But Mx ∩ Ω is -as a ontinuous image of a onneted set- itself onneted.Thus, one of the (open) sets on the right hand side of (3.38) must be empty,what is de�nitely not true for Mx ∩ Ω◦. This gives Mx ∩ Ω = Mx ∩ Ω◦.Due to Lemma 3.10 we may pass to a neighbourhood Ox ⊂ Mx whih then



3.b Core of the proof 21(obviously) also satis�es i) and, additionally, ii). Hene, the oe�ientfuntion is also uniformly ontinuous on Ox ∩ Ω and one an again argueby Theorem 3.9.It remains ase ), whih we will onsider now. For doing so, we �rstestablish some preliminaries:3.13 Proposition. [23℄ Assume that K ⊂ R3 is a onvex polyhedron andthat H ⊂ R
3 is a plane whih ontains an inner point of K. Let K+ and

K− be the two omponents of K \H, and let ρ be a funtion on K, onstanton K+ and K−, and whose values are two real, symmetri, positive de�nite
3 × 3 matries there. Then there is a q > 3 suh that

−∇ · ρ∇ : W 1,q
0 (Ω) →W−1,q(Ω)is a topologial isomorphism.3.14 Lemma. Let K ⊂ R

3 be a onvex set whose losure ontains 0. As-sume that ρ is a bounded, measurable, ellipti oe�ient funtion on K,taking its values in the set of real, symmetri 3 × 3 matries and whihadditionally satis�es
ρ(αx) = ρ(x) for all x ∈ K, α ∈]0, 1[. (3.39)Let for any α ∈]0, 1] the spae W 1,q

0 (αK) be equipped with the norm ψ 7→(∫
αK

|∇ψ|qdx
) 1

q . Then
‖
(
−∇ · ρ|αK∇

)−1
‖B(W−1,q

0 (αK);W 1,q
0 (αK)) = ‖

(
−∇ · ρ∇

)−1
‖B(W−1,q

0 (K);W 1,q
0 (K)).(3.40)Proof. One easily heks that for any q ∈ [1,∞[ and any α ∈]0, 1[ themapping

Tq,α : W 1,q
0 (K) ∋ ψ 7−→ α1− 3

qψ(α−1(·))provides an isometri isomorphism from W 1,q
0 (K) onto W 1,q

0 (αK). After-wards one veri�es the identity
T ∗

q′,α(−∇ · ρ|αK∇)Tq,α = −∇ · ρ∇.



22Assume now that x is a boundary point of ∂Ω∩∂Ω◦ within ∂Ω. Then, bysupposition, there is an open neighbourhoodWx, a C1 mappingΦx, a onvexpolyhedron Kx and a plane Hx whih together satisfy the onditions ofDe�nition 1.2. Modulo a translation we may additionally assume Φx(x) = 0.Let ρx be the oe�ient funtion on Kx whih is indued by µ|Wx
under themapping Φx. If K+

x
and K−

x
are the two omponents of Kx \ Hx, then ρx isuniformly ontinuous on both of them. De�ne the matries

ρ+
x

:= lim
y→0,y∈K+

ρx(y) and ρ+
x

:= lim
y→0,y∈K−

ρx(y) (3.41)and the oe�ient funtion ρ̃x on Kx by
ρ̃x :=

{
ρ+
x
on K+

x

ρ−
x
on K−

x
.

(3.42)Let αx ∈]0, 1[ be a number for whih the following is true:
αxΦx(Wx) ⊂ Φx(Wx) (3.43)andess sup

y∈αxKx

‖ρx(y) − ρ̃x(y)‖B(C3)‖
(
−∇ · ρ̃x∇

)−1
‖B(W−1,q

0 (K);W 1,q
0 (K)) < 1.This is possible due to (3.41) and (3.42). In view of Lemma 3.14 then alsoess sup

y∈αxKx

‖ρx(y)− ρ̃x(y)‖B(C3)‖
(
−∇· ρ̃x|αxK∇

)−1
‖B(W−1,q

0 (αxK);W 1,q
0 (αxK)) < 1is true. Completely analogous to the above onsiderations one obtains bythe perturbation theorem that

−∇ · ρx|αxK∇ : W 1,q
0 (αxK) →W−1,q(αxK)is also a topologial isomorphism. If one de�nes Ox := Φ−1

x

(
αxΦx(Wx)

)(what makes sense in view of (3.43)) then Φx(Ox∩Ω) = αxKx. The latter isa domain with Lipshitz boundary and, hene, a Lipshitz domain. Beause
Φ−1

x
is in partiular bi-Lipshitz in a neighbourhood of αxKx, Ox ∩ Ω itselfis a Lipshitz domain (see [28, Ch. 1.2 Lem. 1.2.1.3℄. Moreover,

−∇ · µ∇ : W 1,q
0 (Ox ∩ Ω) → W−1,q(Ox ∩ Ω)



4 Perturbation by lower order terms 23is a topologial isomorphism. But the resolvent is ompat and−1 obviouslynot an eigenvalue, hene Ox also ful�lls the assertion of Lemma 3.12. Withthe help of Lemma 3.12 the proof for ase ii) of Theorem 1.1 an be arriedout as in ase i).3.15 Remark. The reader may possibly ask why in ase ii) we restritourself to d = 3. The answer is: the essential aim of this paper is to prove theisomorphism property for a q whih is larger than the spae dimension d. Inthis spirit, the two dimensional ase (even under more general assumptions)is overed by [29℄. If d > 3 we do not have results for the orrespondingmodel sets. Nevertherless, d = 3 as the 'physial' dimension seems to usthe most important ase.In fat, in [23℄ more general geometri (nononvex) settings are treated.However, the tehnialities here would get muh more involved.3.16 Remark. If Ω◦ does not touh the boundary of Ω, then one anprove the analogous result for the Neumann operator, namely: −∇·µ∇+λprovides a topologial isomorphism between W 1,q(Ω) and (W−1,q′(Ω)
)∗ fora q > 3 and all λ from the open right half plane. In this ase one usesZanger's result [64℄ instead that of Jerison/Kenig.3.17 Remark. The reader should notie that the result generalizes to thease where �nitely many C1 domains are inluded in Ω having positive dis-tane to eah other and the oe�ient funtion being uniformly ontinuousone eah of them and, of ourse, on the omplement of their union. Theproof runs along the same lines and has not been arried out here only fornotational simpliity.3.18 Remark. The isomorphy property laimed in Theorem 1.1 remainstrue in ase of real spaes W 1,q

0 (Ω), W−1,q(Ω) and real λ's, beause −∇ ·
µ∇ + 1 ommutes with omplex onjugation.4 Perturbation by lower order termsIn this hapter we will present a lass of �rst order terms under the pertur-bation of whih our regularity result is (essentially) maintained:



244.1 Theorem. Let q ≥ 2 be a number suh that
−∇ · ρ∇ : W 1,q

0 (Λ) 7−→W−1,q(Λ)is a topologial isomorphism. Assume r > d, ǫ > 0, δ ∈]0, 2[,
s :=

{
q if q > d

d+ ǫ if q ≤ d
, t :=

{(
1
q

+ 1
d

)−1 if q > d
d
δ
if q ≤ d.and a1, ..., ad ∈ Lr(Λ), b1, ...bd ∈ Ls(Λ), c ∈ Lt(Λ).i) The �rst order operator

u→
d∑

l=1

al
∂u

∂xl

+
∂(blu)

∂xl

+ c uis relatively ompat with respet to −∇ · ρ∇.ii) The operator
u→ −∇ · ρ∇u+

d∑

l=1

al
∂u

∂xl
+
∂(blu)

∂xl
+ c u (4.1)also has W 1,q

0 (Λ) as its domain of de�nition.iii) The spetrum of the operator from (4.1) onsists of ountably manyisolated eigenvalues with �nite (algebrai) multipliities.Proof. i) It su�es to show the assertion for the terms separately: eah op-erator ∂
∂xl

maps W 1,q
0 (Λ) ontinuously into Lq(Λ). The multipliation oper-ators a1, ..., ad then ontinuously map Lq(Λ) into L( 1

q
+ 1

r
)−1

(Λ) →֒ W− d
r
,q(Λ).Thus, for the terms al

∂
∂xl

the assertion results from the ompatness of theembedding W− d
r
,q(Λ) →֒ W−1,q(Λ). Conerning the terms ∂(blu)

∂xl
we �rstonsider the ase q > d: then one has the ompat embedding W 1,q

0 (Λ) →֒
L∞(Λ) whih implies the ompatness of the mappings

W 1,q
0 (Λ) ∋ u→ blu ∈ Lq(Λ) (4.2)



5 Nonsmooth interfaes: a ounterexample 25and
W 1,q

0 (Λ) ∋ u→
∂(blu)

∂xl

∈W−1,q(Λ). (4.3)If q = d, then the mapping W 1,q
0 (Λ) →֒ L

d(d+ǫ)
ǫ (Λ) is ompat and so arethe mappings (4.2) and (4.3) in this ase. It remains the ase q < d:putting τ := d

d+ǫ
, one veri�es the ompatness of W 1,q

0 (Λ) →֒ W τ,q
0 (Λ) →֒

L( 1
q
− τ

d
)−1

(Λ) and, hene, again the ompatness of the mappings (4.2) and(4.3). We inspet the c-term, �rst onsidering the ase q > d: then themapping W 1,q
0 (Λ) →֒ L∞(Λ) is ompat. Consequently, the mapping
W 1,q

0 (Λ) ∋ u → c u ∈ L( 1
q
+ 1

d
)−1

(Λ) →֒ W−1,q(Λ)is ompat, too. If q = d, then the embedding W 1,q
0 (Λ) →֒ L

d
2−δ (Λ) isompat. This implies the ompatness of the mapping

W 1,d
0 (Λ) →֒ L

d
2−δ (Λ) ∋ u → cu ∈ L

d
2 (Λ) →֒ W−1,d(Λ).What onerns the ase q < d, it su�es to onsider δ's from ]1, 2[. Then wehave the embedding W 1,q

0 (Λ) →֒ L( 1
q
− 1

d
)−1

(Λ). Consequently, the mapping
W 1,q

0 (Λ) ∋ u→ c u ∈ L( 1
q
+ δ−1

d
)−1

(Λ) →֒ W 1−δ,q(Λ) →֒W−1,q(Λ)is also ompat. ii) follows from a well known theorem on relatively om-pat perturbations (see [38, Ch. IV.1.3 Thm. 1.11℄).iii) Obviously, the resolvent of−∇·ρ∇ is ompat. Hene, the essential spe-trum of this operator is empty (see [38, Ch. III.6.8 Thm. 6.29℄). Beause theperturbation is relatively ompat, the essential spetrum of the perturbedoperator (.f. (4.1)) is also empty (see [38, Ch. IV.5.6 Thm. 5.35℄). Thus,the assertion follows from another well known theorem (see [38, Ch. IV.5.6Thm. 5.33℄).5 Nonsmooth interfaes: a ounterexampleThe reader may have possibly asked himself whether the C1 property isneessary or may be weakened without hanging the result. The following



26ounterexample (see [23℄) shows that the situation hanges dramatiallyif the interfae has only one orner point. In partiular, this shows thatpieewise C1 is (by far) not su�ient for our result. Namely, quite parallelyto the lassial example of Meyers (see [47℄) the integrability exponent forthe gradient of the solution of the (planar) homogeneous ellipti equationtends to 2 in dependene of a suitable parameter. The di�erene to Meyer'sexample is that there the elliptiity onstant tends to zero, while here anonsmooth interfae ours and the norms of the oe�ient matries tendto in�nity.The bakground for the onsiderations in this hapter is the well knownonnetion between singularities for the solution of an ellipti equation andthe eigenvalues of an assoiated operator penil of Sturm-Liouville opera-tors, see [46℄ or [23℄.We onsider the following oe�ient funtion on R2:
µ(x, y) =





(
1 0

0 t2

) if x, y > 0

(
t 0

0 t

) elsewhere on R
2 , t > 0 ,and, orrespondingly, the following ellipti problem

∇ · µ∇u = 0. (5.1)Proeeding as in [46℄ we are looking for solutions ũ ∈ W 1,2(]0, 2π[) of the(generalized) Sturm-Liouville equation
−(b2ũ

′)′ − λ(b1ũ)
′ − λb1ũ

′ − λ2b0ũ = 0 , (5.2)ombined with the ompatibility onditions
w(π/2) = v(π/2) , w(0) = v(2π) ,

(b2∂θw + λb1w)|0 = (b2∂θv + λb1v)|2π , (5.3)
(b2∂θw + λb1w)|π/2 = (b2∂θv + λb1v)|π/2 ,if w = ũ|[0,π/2] and v = ũ|[π/2,2π].



5 Nonsmooth interfaes: a ounterexample 27The oe�ient funtions b0, b1, b2 are de�ned as follows:
b0(θ)

def
=

{
cos2 θ + t2 sin2 θ, if θ ∈ [0, π/2[

t, if θ ∈ [π/2, 2π[

b2(θ)
def
=

{
sin2 θ + t2 cos2 θ, if θ ∈ [0, π/2[

t, if θ ∈ [π/2, 2π[

b1(θ)
def
=

{
(t2 − 1) sin θ cos θ, if θ ∈ [0, π/2[

0, if θ ∈ [π/2, 2π[

(5.4)
In order to determine the λ with the smallest possible (positive) real part,we use the ansatz funtions (see [17℄)

w(θ) := c+(t cos θ + i sin θ)λ + c−(t cos θ − i sin θ)λand
v(θ) := d+ cosλθ + d− sinλθwith unknown oe�ients c± and d±. Using (5.3) and (5.4), we an eliminate

c± and then get the equations
d+(tλ − cos 2πλ) − d− sin 2πλ = 0 ,

d+ sin 2πλ+ d−(tλ − cos 2πλ) = 0 . (5.5)Obviously, the system (5.5) is nontrivially solvable in d+, d− i�
(tλ − cos 2πλ)2 + sin2 2πλ = 0 ,or, what is the same,

cos 2πλ =
tλ + t−λ

2
= cosh(λ ln t) . (5.6)Writing cosh(λ ln t) = cos(iλ ln t) and taking into aount the identity

cos θ − cos ρ = −2 sin
θ + ρ

2
sin

θ − ρ

2
,



28(5.6) is equivalent to
sin
(λ

2
(2π + i ln t)

)
sin
(λ

2
(2π − i ln t)

)
= 0 .This is the ase i�

λ

2
(2π ± i ln t) = 2kπ , k ∈ Z .Thus, the λ with the smallest (positive) real part is

λ =
8π2

4π2 + ln2 t
± i

4π ln t

4π2 + ln2 t
.One easily noties: If t → ∞, then the real parts of these λ's onvergeto zero. Assume that λ with ℜλ ∈ (0, 1) is a omplex number and ũλ ∈

W 1,2(0, 2π) a orresponding funtion whih satis�es (5.2) together with theompatibility onditions (5.3). Then the funtion
u(x) := (x2

1 + x2
2)

λ/2ũλ(arg(x)) ∈W 1,2
loc (R2)is a solution of equation (5.1) in the distributional sense. Moreover, ũλdoes not vanish identially and, hene, its absolute value has a stritlypositive lower bound at least on a (nontrivial) subinterval of (0, 2π). Thus,

u ∈ W 1,q
loc (R2) for q ∈ [2,

(
1−ℜλ

2
)−1), but not for q =

(
1−ℜλ

2
)−1. Tendingwith t to ∞, these solutions lak any ommon (loal) integrability exponentlarger than 2 for their �rst order derivatives.5.1 Remark. The example is not restrited to two dimensions. One anadd arbitrarily many dimensions by extending the solution onstantly inthese diretions � at least in a neighbourhood of zero.6 Paraboli operatorsVery often ellipti operators in divergene form our as the ellipti part ofparaboli operators (see [5℄ or [31℄). In this hapter we will dedue fun-tional analyti properties for the orresponding paraboli operators from our



6 Paraboli operators 29ellipti regularity result. If X is a omplex Banah spae, then we denote by
W 1,r(]0, T [;X) the set of elements from Lr(]0, T [;X) whose distributionalderivatives also belong to Lr(]0, T [;X) (see [4, Ch. III 1.1℄ for details). Themain result reads as follows:6.1 Theorem. Let Λ be a bounded domain with Lipshitz boundary and ρ ameasurable, essentially bounded, ellipti oe�ient funtion whih takes itsvalues in the set of real, symmetri d × d matries. Assume that q ∈]1,∞[is a number suh that

−∇ · ρ∇ : W 1,q
0 (Λ) →W−1,q(Λ)is a topologial isomorphism.Then ∂

∂t
− ∇ · ρ∇ satis�es maximal paraboli regularity on W−1,q(Λ),preisely: If r ∈]1,∞[ is �xed, then for any f ∈ Lr

(
]0, T [,W−1,q(Λ)

) thereis exatly one funtion w ∈ Lr
(
]0, T [;W 1,q(Λ)

)
∩W 1,r

(
]0, T [;W−1,q(Λ)

) suhthat
∂w

∂t
−∇ · ρ∇w = f and w(0) = 0. (6.1)6.2 Corollary. Under the above suppositions −∇·ρ∇ generates an analytisemigroup on W−1,q(Λ).In order to prove this theorem we �rst establish some auxiliary results:6.3 Theorem. Let Λ be a Lipshitz domain and ρ as in the previous the-orem. Assume q ∈]1,∞[ and let Aq be the Lq(Λ) realization of ∇ · ρ∇,further Dq the domain of this realization. Then ∂

∂t
− Aq satis�es maximalregularity over Lq(Λ), in other words: If r ∈]1,∞[ is �xed, then for any

f ∈ Lr
(
]0, T [;Lq(Λ)

) there is exatly one funtion w ∈ Lr
(
]0, T [;Dq

)
∩

W 1,r
(
]0, T [;Lq(Λ)

) suh that (6.1) is satis�ed.Proof. The semigroup generated by A2 on L2(Λ) admits upper Gaussianestimates, see [8℄ or [6℄. But upper Gaussian estimates imply maximalparaboli regularity on Lp spaes [32℄, see also [19℄.6.4 Theorem. Under the suppositions of Theorem 6.1 (−∇ · ρ∇)1/2 pro-vides a topoloial isomorphism between W 1,s
0 (Λ) and Ls(Λ) and between

Ls(Λ) and W−1,s(Λ) for all s ∈ [q′, q].



30Proof. First, interpolation (see Theorem 3.6) and duality show that −∇·ρ∇is a topologial isomorphism between W 1,s
0 (Λ) and W−1,s(Λ) for all s ∈

[q′, q]. A deep result of [8, Thm. 4℄ yields the ontinuity of the map
(−∇ · ρ∇)1/2 : W 1,s

0 (Λ) → Ls(Λ) (6.2)for all s ∈]1,∞[. By duality one obtains the ontinuity of
(−∇ · ρ∇)1/2 : Ls(Λ) 7→W−1,s(Λ) (6.3)for all s ∈]1,∞[. Hene, for s ∈ [q′, q] we an estimate
‖
(
−∇ · ρ∇)−1/2‖B(Ls(Λ);W 1,s

0 (Λ)) ≤

≤ ‖(−∇ · ρ∇)1/2‖B(Ls(Λ);W−1,s(Λ))‖
(
−∇ · ρ∇

)−1
‖B(W−1,s(Λ);W 1,s

0 (Λ)).This proves that (6.2) in fat is a topologial isomorphism, if s ∈ [q′, q].The isomorphism property between Ls(Λ) and W−1,s(Λ) follows from thisby duality.6.5 Corollary. Let Dq denote the domain of the Lq(Λ) realization of −∇ ·
ρ∇. Then (−∇ · ρ∇)1/2 provides a topologial isomorphism between Dq and
W 1,q

0 (Λ).Proof. −∇ · ρ∇ is a topologial isomorphism between Dq and Lq(Λ) while
(−∇ · ρ∇)1/2 is a topologial isomorphism between W 1,q

0 (Λ) and Lq(Λ).We will now give the proof of Theorem 6.1: it is lear that the establishedisomorphisms for (−∇ · ρ∇)1/2 indue the following isomorphisms:
(
−∇ · ρ∇

)−1/2
: Lr

(
]0, T [;W−1,q(Λ)

)
→ Lr

(
]0, T [;Lq(Λ)

) (6.4)
(−∇ · ρ∇)1/2 : Lr

(
]0, T [;Dq) → Lr

(
]0, T [;W 1,q

0 (Λ)
) (6.5)

(−∇ · ρ∇)1/2 : W 1,r
(
]0, T [;Lq(Λ)) →W 1,r

(
]0, T [;W−1,q(Λ)

) (6.6)Further, it is well known that the solution w of (6.1) is obtained as w(t) =∫ t

0
e(t−s)∇·ρ∇f(s)ds. Hene, the paraboli solution operator ommutes with

(−∇ · ρ∇)1/2. Consequently, the maximal regularity property on Lq(Λ)transports via the isomorphisms (6.4), (6.5), (6.6) to the spae W−1,q(Λ).Corollary 6.2 is implied by the well known fat that maximal paraboliregularity implies the generation property of an analyti semigroup.



7 Appendix 316.6 Remark. The authors are onvined that the results on the parabolioperators are adequate instruments for the treatment of (even non-autonomous)semilinear (see [49, Ch. 5.6℄) and quasilinear paraboli problems [45, 50, 16℄.The key point onerning quasilinear equations of, say, the type
∂w

∂t
−∇ ·G(w)µ∇w = H(t, w,∇w)is the fat that in ase of three-dimensional domains and q > 3 suitable inter-polation spaes between W 1,q

0 and W−1,q embed ontinuously into Hölderspaes. Thus, if G is a stritly positive C1 funtion, then the oe�ientfuntions G(w)µ are of the same quality as µ (in the spirit of Theorem 1.1).Hene, the domains of the operators ∇ · G(w)µ∇ do not depend on u ifthis runs through a suitable interpolation spae (see [51℄) - what often isrequired in quasilinear paraboli theory. We will aomplish these thingselsewhere in detail.7 AppendixIn the appendix we give the announed proof of Lemma 3.4: let x0 be anypoint from ∂Λ. Then for every ǫ > 0 there is an an orthonormal basis
e1, ..., ed of Rd suh that ∂Λ an be parametrized in a neighbourhood of x0via a Lipshitz funtion ϕ : Rd−1 → R by

x · ed = ϕ
(
x · e1, ...,x · ed−1

)and the Lipshitz onstant lip(ϕ) of ϕ does not exeed γ+ǫ. If K : Rd → Rdis a linear bijetion, then ∂(KΛ) may be parametrized in a neighbourhoodof Kx0 by
Kx · (K−1)∗ed = ϕ

(
Kx · (K−1)∗e1, ..., Kx · (K−1)∗ed−1

)
. (7.1)Clearly, {(K−1)∗e1, (K

−1)∗e2, ..., (K
−1)∗ed} is not neessarily an orthonor-mal system. In the sequel we will modify the representation (7.1) in suha way that the required orthogonality of the representing oordinates isre-established. Let {f1, ..., fd−1} be any orthonormal basis in the subspae



32whih is generated by {(K−1)∗e1, ..., (K
−1)∗ed−1}. Then, if k ∈ {1, ..., d− 1},any (K−1)∗ek may be written as

(K−1)∗ek =
d−1∑

j=1

αkjfj. (7.2)In this notation, (7.1) reads as
Kx · (K−1)∗ed = ϕ

(d−1∑

j=1

α1jKx · fj , ...,

d−1∑

j=1

αdjKx · fj

)
. (7.3)Let fd be a unit vetor, orthogonal to {f1, ..., fd−1}. Then, aording to

(K−1)∗ed =
∑d

j=1(K
−1)∗ed · fj fj , (7.3) an be expressed as

Kx · fd =
1

(K−1)∗ed · fd

(
ϕ
(d−1∑

j=1

α1jKx · fj , ...,
d−1∑

j=1

αd−1jKx · fj

)
−

−
d−1∑

j=1

Kx · fj (K−1)∗ed · fj

)
. (7.4)We denote the mapping whih assigns to the vetor (Kx · f1, ..., Kx · fd−1)the right hand side of (7.4) by ψ.Finally we have to estimate the Lipshitz onstant lip(ψ) of ψ: obviously,one has

lip(ψ) ≤
1

|fd · (K−1)∗ed|

(
lip(ϕ)‖αkj‖B(Rd−1) +

√√√√
d−1∑

j=1

(
(K−1)∗ed · fj

)2)
.(7.5)Next we will derive a bound for 1

|(K−1)∗ed·fd|
= 1

|ed·K−1fd|
: one has

K−1fd · ej = fd · (K
−1)∗ej = 0 for j = 1, ..., d− 1.Hene, K−1fd = λed, or, equivalently, Ked = 1

λ
fd. This implies

1

|λ|
= ‖

1

λ
fd‖ = ‖Ked‖ ≤ ‖K‖.



REFERENCES 33Altogether, we obtain
1

|(K−1)∗ed · fd|
=

1

|ed ·K−1fd|
=

1

|λ|
≤ ‖K‖. (7.6)By de�nition, {αkj}kj is the matrix representation of (K−1)∗|span{e1,...,ed−1}with respet to two orthonormal bases {e1, ..., ed−1} and {f1, ..., fd−1}. Con-sequently, one has

‖αkj‖B(Rd−1) = ‖(K−1)∗|span{e1,...,ed−1}‖ ≤ ‖(K−1)∗‖ = ‖K−1‖. (7.7)Lastly, one estimates
√√√√

d−1∑

j=1

(
(K−1)∗ed · fj

)2
≤

√√√√
d∑

j=1

(
ed ·K−1fj

)2
,and reognizes that the expression of the right hand side equals ‖PK−1‖ ≤

‖K−1‖, where P is the orthoprojetor x → x · ed ed. This, together with(7.5), (7.6) and (7.7) gives
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