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Abstract

We consider financial markets with agents exposed to external sources of risk
caused for example by short term climate events such as the South Pacific sea
surface temperature anomalies widely known under the name El Nino. Since
such risks cannot be hedged through investments on the capital market alone,
we face a typical example of an incomplete financial market. In order to make
this risk tradable, we use a financial market model in which an additional insur-
ance asset provides another possibility of investment besides the usual capital
market. Given one of many possible market prices of risk each agent can maxi-
mize his individual exponential utility from his income obtained from trading in
the capital market, the additional security, and his risk exposure function. Under
the equilibrium market clearing condition for the insurance security the market
price of risk is uniquely determined by a backward stochastic differential equa-
tion. We translate these stochastic equations via the Feynman-Kac formalism
into semi-linear parabolic partial differential equations. Numerical schemes are
available by which these semilinear pde can be simulated. We choose two simple
qualitatively interesting models to describe sea surface temperature, and with
an ENSO risk exposed fisher and farmer and a climate risk neutral bank three
model agents with simple risk exposure functions. By simulating the expected
appreciation price of risk trading, the optimal utility of the agents as a function
of temperature, and their optimal investment into the risk trading security we
obtain first insight into the dynamics of such a market in simple situations.
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Introduction

In this paper, we are concerned with the control and dynamical hedging of risks exterior
to usual financial markets, residing in climate and weather influences onto parts of
economies. Let us first give some details about one of the typical examples of risk
sources we think of.

The most well known randomly periodic climate event is known under the name El
Nino or more precisely El Nino Southern Oscillation (ENSO). It has been known to Pe-
ruvian fishermen before the arrival of the Spaniards through its spectacular economical
effects. The normal large scale of atmospheric pressure distribution over the Southern
Pacific shows a zone of high pressure over the eastern part near the South American
coast, while a zone of lower pressure prevails over the western part of the ocean. This
pressure difference on sea level is expressed in the so-called Southern Oscillation Index
(SOI) which is usually positive. Positive SOI forces trade winds to blow east to west.
At randomly periodic times - every 3-8 years (the El Nino years) - however, the SOI
becomes negative forcing the trade winds to relax or even blow in the reverse direc-
tion. Ocean currents are largely influenced by trade winds at sea level. In particular,
the Humboldt Current along the South American coast may be affected. It normally
transports cold water northward. During an El Nino event, the relaxation of trade
winds allows warm water to appear on the surface of the Southern Pacific near the
South American coast.

The effects of this change of the sea surface temperature on marine life are tremen-
dous. The trade wind shift disrupts the upwelling of oxygen and nutrient rich cold
water, one of the basic conditions for dense concentrations of marine life. Let us give
some numbers first for the local effect on the Peruvian fishing industry. As in most
developing countries in the tropics with economies depending largely on few branches
for example in food production, the sensitivity to climatic fluctuations is very high.
According to a study of the World Resources Institute (1994), El Nino contributed to
the collapse of the Peruvian fishing industry. From the early 1950s through 1971 the
harvest increased, peaking at more than 12 million tons per year. With the arrival
of the 1972/1973 El Nino, a disastrous drop of the harvest to 2.5 million tons was
recorded.

The consequences of this distortion of ocean currents due to changes in the SOI are
much more global than one may conjecture at first glance. The change of the tropical
Pacific sea surface temperatures induced by the fluctuation of trade winds affects the
atmosphere in turn directly by causing convection. Dense tropical rain clouds are
created which, besides increasing the amount of precipitation the western hemisphere
receives, distort the atmospheric air flow in altitudes of 5-10 km above sea level. This
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effect may be compared to rocks which disturb the flow of a water stream. However,
it has to be imagined on a much larger horizontal length scale of several thousands of
miles. The waves in the air flow at these altitudes determine the belts of jet streams
along which systems of high and low pressure travel, and thus also the positions of
storms and monsoons on a global scale. One global pattern becomes clearly visible:
in El Nino periods, rain areas usually centered above Indonesia and the far western
Pacific move eastward into the central Pacific, which affects waves in the tropospheric
air flow causing unusual weather over many regions of the globe.

We shall underline the global impacts of El Nino by some examples. Changes in
the health and population sizes of northern fur seals and California sea lions appear
to be related to changes in marine mammal prey availability caused by missing up-
welling of nutrient rich water. According to a study conducted by the Oregon State
University 1996, a similar effect is observed with the population of coho salmon dur-
ing the El Nino of 1982/1983 believed to have been the worst of the 20th century.
Fishery experts had predicted, based on numbers in the previous years, that about
1.6 million wild coho salmon would return to spawn in Pacific North West streams in
1982. In fact, only about 42 percent, an estimated 667.000 showed up. Statistical cor-
relations (teleconnections) between El Nino and atypical weather events globally have
been found in droughts in Central America, Southern India, Indonesia, the Philippines,
Africa, and Australia, culminating in large scale brush and bush fires for example in
Australia and Kalimantan (Borneo). They also are found in floods in the US, Cuba,
Peru, other states in South America, and even Western Europe. As consequences of
droughts or floods, ecosystem dynamics may be disrupted. For example, the natural
balance between predators like owls and snakes, and rodent prey animals in the US and
in Southern Africa has been found to be destroyed following El Nino years. It is clear
that these teleconnections have extensive social and economical impacts, eventually
leaving whole national economies disturbed.

The model in which we face and treat risks of this type was discussed in [16]. We
consider an economy with a finite number of agents. They may for example represent
individual farmers or fishers, bigger farming cooperatives, or companies like insurance
or even reinsurance companies. Their common feature is an eventually big exposure to
the risks caused by extreme weather or climate events. We emphasize here the global
or at least transnational composition of this market, which is due to the global features
of the risk causing climate event, as explained above. One component of the economy is
a stock market on which all participants of the economy are able to trade. In fact they
are considered as small traders unable to influence the stock prices - a hypothesis made
for simplicity, which needs some further development in view of the role big agents like
re-insurers may play. The risks caused by the external factors cannot be hedged by the
stocks. For this reason we of course face a typical incomplete market.

As opposed to other approaches, in view of the global interests meeting in facing the
risk source, our goal consists in completing the market. This is done by constructing a
special security which is physically added to the market. Through this security climate
risk becomes tradable. Agents participating in the market may buy or sell individual
amounts of risk trading money according to their random exposures to climate risk.
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If a particular market price of risk is given, every agent is able to price his share of
risk to be traded. He will then choose an investment strategy which optimizes the
individual utility from his total income composed of his investment both into the usual
capital market and into the risk trading security, and of his random risky income
subject to climate hazards. There will be a unique market price of risk for which a
market equilibrium is achieved, i.e. for which there is equality between the total offer
and demand of risk trading money on the market. This pricing rule is determined by
the intervention of one of the main tools of stochastic control theory in incomplete
markets, backward stochastic differential equations. Utility maximization techniques
for complete markets using martingale methods are independently treated for example
in [18], [8] and [27]. The construction of a unique equilibrium in a Brownian filtration
is given in [19], where the expected utility of consumption in a trading interval is
maximized .

So the introduction of the special risk trading security leads to a process of relo-
cating and shuffling risky claims between the different market participants to reach
an equilibrium, which will be particularly efficient in the presence of groups of agents
with complementary interests. Let us illustrate this effect by giving some examples.
As explained above, American fishing industries from Peru to Canada are strongly
affected during El Nino years by seriously dropping catch numbers. Quite opposite
changes are observed on the other ”pole” of the Southern Oscillation. According to
Gaol and Manurung [12] and Mizuno [25], catch numbers for big eye tuna in the South
Java sea waters, one of the most important tuna fishing regions of the world, during El
Nino periods increase by about 30 percent, due to an opposite effect on the sea surface
temperatures in the Western South Pacific. Another pair of groups of economic agents
with complementary interests is given by farmers and fishers even in the same national
economy. Warm El Nino years are unfavorable for fishers for the reasons given, but
may be favorable to farmers in parts of the country normally dry due to increased
amounts of precipitation. Cold years usually following in the heels of El Nino years are
welcomed by fishermen, but not by farmers, because of droughts and crop failures. For
example, rice and cotton, two of the primary crops grown in Northern Peru, are highly
sensitive to the quantities and timing of rainfall. Hence there are various scenarios of
natural risk sharing possibilities for fishermen and farmers, eventually in combination
with predictions of the event. Finally, also farmers or fishers exposed to climate risk
as explained on the one hand, and banks with no such exposure, but the desire to
diversify their portfolios on the other hand might be considered as pairs of agents with
complementary interests.

The model

We next recall the model of [16] in more formal details. The stock market is represented
by a stock price process X1 indexed by the trading interval [0, T ]. The external (climate)
risk component is represented by a stochastic process K, indexed by the trading interval
as well. Both processes live on a Wiener space and are adapted to a Brownian filtration.
Agents on the market are symbolized by the elements a of a finite set I. The number
of agents is small compared to the number of traders at the stock market. Every agent
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a ∈ I is supposed to be endowed with an initial capital va
0 ≥ 0. At the end T of the

trading interval he receives a stochastic income Ha which describes the profits that
he or the company he represents obtains from his usual business. The income Ha is
supposed to be a bounded function of the processes X1 and K, i.e.

Ha = ga(X1, K).

Should one of the companies represented by agents be traded at the stock exchange,
then its stock price is supposed to be only a small fraction of the index X1. The sum
of the random incomes

∑
a∈I Ha is assumed to be small compared to the value of the

securities traded at the stock market.

One of the main aims of this paper is to model and simulate different scenarios for
climate processes qualitatively correct. The main example will be given if we interpret
K as the sea surface temperature process in the South Pacific. As explained above, this
process exhibits randomly periodic fluctuations with periods between 3-8 years. There
is a number of simple mathematical models available to describe such a behavior.
The most common used for the purpose of predictions of the event is based on an
Ornstein-Uhlenbeck process in dimension 15, where the dimensionality comes from
statistical data fitting (see Penland [26]). Periodicity in this simple model is generated
by a non-trivial rotational part in the matrix determining the drift in the stochastic
differential equation giving the Ornstein-Uhlenbeck process. Another 2-dimensional
conceptual model with intrinsic random periodicity is obtained from a deterministic
nonlinear equation coupling thermocline depth and sea surface temperature perturbed
by random noise representing trade wind coupling at sea level (see Fang, Barcilon,
Wang [1]). Another way to obtain the random periodicity in a simple conceptual
model is given by Battisti [4]. Here the delay coupling to the state the randomly
perturbed system experienced before it sent Kelvin waves from the South American
Pacific coast across the ocean, which were reflected at the Japanese coast and travelled
back to their origin, is responsible for an intrinsic periodicity. In our simulations below
we use two simple models to describe this climate phenomenon. In the simplest one, K
is a one-dimensional Ornstein-Uhlenbeck process. The second model, a more realistic
one, is given by a conceptual bi-stable diffusion model driven by a Brownian motion
with a time-periodic potential function which has two minima the depths of which
fluctuate periodically. The noise is given intensities at which the solution trajectories
show some random periodicity which can be measured by means of quality of periodic
tuning notions in the theory of stochastic resonance (see [17], [15], [14]).

The typical toy agents we have in mind in our simulations will be just a pair com-
posed on the one side of a fisher or a (rice) farmer (f or r) subject to the hazard
of ENSO, for example, and whose random income Hf (Hr) depends uniquely on the
climate process K. The exposures of fishermen or farmers f resp. r will be given by
some cumulative functional of the form

H =

∫ T

0

φ(Ks)ds or H =

∫ T

0

φ(s,Ks, X1(s))ds,

where φ is an individual bounded revenue function taking its maximum for example
at some low temperature k1 close to the normal sea surface temperature in the case
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of the fisher, or at some higher temperature k2 in the case of the rice farmer. The
functions may in turn be relatively small at the corresponding opposite values k2 resp.
k1. On the other side, there is a climate risk neutral agent such as a bank (b) whose
income Hb is a function of the stock market evolution alone. Trading climate risk for
these agents can be viewed in the following way. f wants to hedge fluctuations caused
by the external factor and signs a contract with b to transfer part of this risk. b’s
interest in the contract could be based on the wish to diversify its portfolio. The main
example of the global ENSO risk provides a number of further relevant risk functionals
for different, eventually complementary groups of agents treated in the mathematical
parts, but not in the simulations below. For example, the exposure to ENSO for a big
agent such as an insurance or a re-insurance i company will be a functional of the type

H i = g(τ,Kτ ), or H i = g(τ,Kτ , X1(τ)),

if τ is the time ENSO strikes, which is realized by some entrance time for the process K.

As indicated above, we realize mathematically the idea of market completion by the
design of a second security with price process X2, which, besides X1, can be uniquely
traded by the agents in I. Suppose the market has been completed in this way so that
the climate risk can be traded. The insurance asset is modelled by writing down a rea-
sonable candidate for its price process X2 in terms of a simple SDE. It is parametrized
by a process θ2 describing the market price of external risk. Given θ, each individual
agent a maximizes his expected exponential utility from terminal wealth composed
of the random risky income Ha and the terminal value of his portfolio in (X1, X2)
obtained with his individual trading strategy.

We next compute the density of the unique probability measure equivalent to the
underlying historical measure P such that the process (X1, X2) is a martingale. It will
be given by a martingale measure Qθ indexed by the market price of risk θ. The util-
ity maximizing terminal wealth and the market clearing condition can be expressed in
terms of this density and mathematically lead to a constraint for the process parameter
θ. Therefore our next task will be to determine θ in such a way that the partial market
clearing condition is satisfied. Mathematically, this leads to a Backward Stochastic
Differential Equation (BSDE) the solution of which yields a unique θ∗ and therefore
a unique probability measure Qθ∗ with associated second security price process X∗

2

such that (X∗
1 , X

∗
2 ) is a Qθ∗−martingale. The second security selected in this way

satisfies the partial equilibrium condition (see [16]). The choice of income functionals
for model traders in our market used in particular for the simulations will imply that
the mathematical treatment is possible in the framework of forward-backward stochas-
tic differential equations of Markovian character. Via the generalized Feynman-Kac
formalism, this implies that we are able to associate to each individual problem a
system of linear or semi-linear parabolic partial differential equations. The solution
process of our problem of enlarging the market in equilibrium by an asset making risk
tradable in a general setting will be given in terms of viscosity solutions, much as in
Chaumont [6]. In the concrete situations we consider, the solutions of the associated
pde will be classical. We will use numerical schemes for non-linear pde developed in
[6] to approximate and simulate these classical solutions for the Ornstein-Uhlenbeck
or bistable diffusion climate processes, and the risk functionals for fishermen, farmers
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and bank sketched above. Notably, we shall be able to simulate the expected price of
the risk trading asset X2 which indicates the cumulative appreciation of trading the
external risk by the affected agents, the temporal evolution of the optimal utility for
the agents in dependence on the level of the temperature process, and the shape of the
optimal investments of the agents into the additional security. This way we obtain first
information on the dynamics of such a market which will, if not quantitatively, be of
interest at least for qualitative issues.

The paper is organized as follows. In section 1 we give a more formal and detailed
account of our market model, including in particular the formal links to the theory
of semi-linear parabolic pde via generalized Feynman-Kac formulas, as well as proofs
for existence, uniqueness and regularity for the pde expressing the Markovian optimal
control problem derived from our utility maximization problems on completed mar-
kets under the equilibrium constraint. We shall also explain the concrete elementary
models for temperature processes and risk functionals used in the simulations. Section
2 is devoted to exhibiting and explaining the numerical approximation schemes and
convergence results. In section 3 we present our simulation results for the optimal allo-
cation of risk given the particular temperature processes and risk exposure functionals
for fisher, farmer and bank, and interpret the findings intuitively.

1 Model and concrete examples

In this section we describe formally the equations governing our model. The key to our
simulation results presented in section 2 is a crucial link between stochastic forward
and backward differential equations on the one hand and nonlinear PDE, possibly with
solutions in the viscosity sense, on the other hand. It is provided by a nonlinear exten-
sion of the Feynman-Kac formula and will be explained in subsection 1.1. All relevant
PDEs for our analysis will be derived from this formula. In subsection 1.2, we shall
make precise the market and climate processes we use, in subsection 1.3. this will be
done for the agents on the market. A particular emphasis is on their random incomes,
in which their exposure to climate is reflected. We further specify utility functions
according to which the agents maximize their utilities from terminal wealth which is
obtained through investment in the financial market and random climate affected in-
come. Utility maximization for the agents on the stochastic side may be achieved by
a duality approach resting upon Legendre transforms of the utility functions which
provides explicit formulas for maximal utility in terms of martingale measure densi-
ties of the asset price process. From the analytical point of view, with the help of a
nonlinear Feynman-Kac formula, it leads to a linear backward PDE in terms of the
infinitesimal generator of the diffusion described by the asset price and the climate
process. The analytical description of the optimal investment policies of the differ-
ent agents into the asset price process of the market X1 and the insurance asset X2

leads to an optimal control problem in terms of a nonlinear Hamilton-Jacobi-Bellman
equation. The effect of the equilibrium (market clearing) condition determining X2

on the analytical description of our utility maximization problem will be exhibited in
subsection 1.3. In stochastic terms, utility maximization under equilibrium leads to a
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nonlinear backwards stochastic differential equation. Its access in analytical terms is
again guaranteed by the nonlinear Feynman-Kac formula which this time produces a
nonlinear backwards PDE with solutions in the viscosity sense. In subsection 1.5 we
give some formulas, based again on a linear PDE, by which we can compute moments
of the insurance asset X2 in particular situations. In the final subsection 1.6 we dis-
cuss concrete examples of risk exposure functionals which depict some of the situations
alluded to in the introduction. Existence and uniqueness questions for the different
PDEs governing the analytical description in this section will be discussed in section 2.

1.1 The link to PDE: Feynman-Kac formulas

In this section we recall the basic link between forward and backward stochastic dif-
ferential equations and partial differential equations, which will be one of the crucial
tools in our paper.

Let n ≥ 1 and d ≥ 1. Let O be an open subset of ]0, T [×IRn. Let t ∈ [0, T ] be
an arbitrary time, representing time of initial action. For a d−dimensional Brownian
motion W , and x ∈ IRn, we construct the process X t,x as the solution of the following
SDE {

dX t,x
s = b(s,X t,x

s )ds + σ(s,X t,x
s )dWs, t ≤ s ≤ τ

X t,x
t = x ∈ {y |(t, y) ∈ O} ,

(1)

and we define τ = inf {s ∈]t, T ] |(s,X t,x
s ) 6∈ O} the first exit time of X t,x from the

domain O.

In this section, we will denote by L the infinitesimal generator associated with X t,x,
i.e. for a regular (C2) function φ,

Lφ(s, x) = b(s, x)Dφ(s, x) +
1

2
trace

[
σσ∗(s, x)D2φ(s, x)

]
, (s, x) ∈ O,

where Dφ stands for the gradient and D2φ the Hessian matrix of φ.

In all the following, we will suppose that the drift b and the diffusion matrix σ
are C∞ functions of the state variable with linear growth at infinity, and that L is
uniformly elliptic.

We first recall the well-known classical Feynman-Kac formula for linear problems,
which can be found in [20].

Theorem 1.1 Suppose that the coefficients f and h are Lipschitz functions of the
state variable with linear growth at infinity. Assume further that h is bounded, g is
continuous with polynomial growth in the state variable. We define the function v on
O by

v(t, x) = IEt,x

[∫ τ

t

f(s,X t,x
s )e−

R τ
s h(r,Xt,x

r )drds + g(τ,Xτ )e
− R τ

t h(s,Xs)ds

]
. (2)
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Then v is a classical solution of the following backward linear system
{
−∂v

∂s
− Lv + f − hv = 0 in O,

u(s, x) = g(s, x) on ∂O.
(3)

There is a similar formula for forward PDEs with an initial condition instead of a
terminal one.

Proof:
The simplest way to prove that the function v solves (3) is to prove that there exists a
classical solution to the PDE (3). Once this is guaranteed, we just have to apply Itô’s
formula in a well known manner to read off the PDE. So it is enough to quote a classical
existence and uniqueness result. It is valid under certain hypotheses for the coefficients
which will be seen to be satisfied in all the applications we have in mind below. To
complete the proof we therefore recall a result which can be found for example in [11]
or [13].2

Theorem 1.2 Under the assumptions of Theorem 1.1, the system (3) has a unique
classical solution.

We now recall the nonlinear Feynman-Kac formula for BSDEs.

Theorem 1.3 Suppose that σσ∗ is uniformly elliptic, and O =]0, T [×IRn. In addition
to the family (X t,x)(t,x)∈[0,T ]×IRn given by (1) consider two additional processes Y and
Z defined by the following BSDE

{ −dY t,x
s = F (s,X t,x

s , Y t,x
s , Zt,x

s )ds− Zt,x
s dWs, t ≤ s ≤ τ

Y t,x
τ = g(τ, X t,x

τ ).
(4)

Assume that F : [0, T ]× IRn× IR× IRn → IR is C∞ and g ∈ C([0, T ]×C1(IRn)). Then,
for every t ≤ s ≤ τ , we have

{
Y t,x

s = u(s,X t,x
s )

Zt,x
s = σ∗Du(s,X t,x

s ),

where u is the unique classical solution of the PDE
{
−∂u

∂s
− Lu− F (s, x, u, σ∗(t, x)Du) = 0 in O,

u(s, x) = g(s, x) on ∂O.
(5)

Proof:
Again, we shall invoke a classical existence, regularity and uniqueness result, in order
to prove that the generally existing solution in the viscosity sense of (5) is in fact a
unique regular classical solution. Once this is guaranteed, the proof of the existence
may be completed by an appeal to Itô’s formula (see [21], p. 581) in a well known
manner. 2

The theorem alluded to above which guarantees the existence, uniqueness and reg-
ularity of classical solutions for (5) is taken from Taylor [28].
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Theorem 1.4 Under the assumptions of theorem 1.3, system (5) has a unique classical
solution w ∈ C ([0, T ], C1 (IRn)) ∩ C∞ ([0, T [×IRn).

Proof:
The proof is given in Taylor [28], in Proposition 15.1.1 on p.273. Note first that we
may and do assume that the infinitesimal generator L is in divergence form, and thus
self adjoint as a linear operator. This can be achieved by shuffling the drift part as
well as an additional drift containing Dσσ∗ to the function F in Taylor’s Proposition.
This is possible due to the regularity assumptions on b and σ. With F and L thus
modified, we next have to make sure that under the given assumptions the hypotheses
of this Proposition are satisfied. For convenience, we recall these hypotheses. For any
integer r ≥ 0, they claim

etL : Cr+1([0, T ]× IRn) → Cr+1([0, T ]× IRn)
is a strongly continuous
semigroup, for t ≥ 0,

(6)

Φ :
Cr+1([0, T ]× IRn) → Cr([0, T ]× IRn)

ϕ 7→ F (ϕ,Dϕ)
is a locally Lipschitz map, (7)

etL : Cr([0, T ]× IRn) → Cr+1([0, T ]× IRn), (8)

and, for some γ < 1,

||etL||L(Cr([0,T ]×IRn),Cr+1([0,T ]×IRn)) ≤ Ct−γ. (9)

The condition on F is evidently satisfied. To verify the conditions on the semigroup
of L, we refer to Davies [7]. Strong continuity is due to [7], Theorem 1.4.1, p.22. the
smoothing property is related to [7], Theorem 5.2.1, p. 149, and the large time asymp-
totic property can be obtained from [7], Theorem 2.3.6, p. 73. 2

1.2 Market and climate models

We consider a probability space (Ω,F , IP ) with two independent Brownian motions
W1 (m-dimensional) and W2 (n-dimensional), indexed by the finite time interval [0, T ],
where T > 0 is a deterministic time horizon. Let F = {Ft}0≤t≤T be the completion of
the natural filtration of W = (W1,W2) by the sets of measure 0.

We consider a simple financial market model composed of m+1 securities, consisting
of one bond with null interest rate

X0,t = 1, for all t ∈ [0, T ],

and p stocks. We assume that the stock price vector process X1 is given by a Markovian
SDE, i.e. :

{
dX1,s = X1,s (b1(s,X1,s)ds + σ1(s,X1,s)dW1,s) , t ≤ s ≤ T,
X1,t = x1 ∈ IRp.
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The coefficients b1 : [0, T ]× IRm 7→ IRm, σ1 : [0, T ]× IRm 7→ IRm× IRm are supposed
to satisfy Lipschitz conditions in the state variables.

We also consider an n-dimensional climate process, the dynamics of which is also
described by an SDE of the form

{
dKs = bK(s, Ks)ds + σK(s,Ks)dW2,s, t ≤ s ≤ T,
Kt = k ∈ IRd.

The coefficients bK : [0, T ] × IRn 7→ IRn and σK : [0, T ] × IRn 7→ IRn × IRn are again
Lipschitz functions of the state variables.

Market completion is achieved by adding a security X2 whose market price of risk
process θ parametrizes the completion and thus the valuation of risky claims. Equi-
librium is obtained via a market clearing condition for this additional security. The
condition determines uniquely an equilibrium market price for trading exposures to
climate risk. More details about the equilibrium construction will follow in subsection
1.4. See also [16]. X2 will be determined again as the solution of an SDE of the form

{
dX2,s = X2,s (b2,sds + σ2,sdW2,s) , t ≤ s ≤ T,
X2,t = x2 ∈ IRd.

We will note θ1 = b1 (σ1
−1) and θ2 = b2 (σ2

−1). The local equilibrium probability
Qθ, under which (X1, X2) is a martingale, is given by Girsanov’s formula

dQθ

dIP

∣∣∣∣
Fs

= Zθ
s = E

(
−

∫ s

0

θtdWt

)
= exp

(
−

∫ s

0

θtdWt − 1

2

∫ s

0

||θt||2 dt

)
, s ∈ [0, T ].

(10)
The main goal of this paper consists in computing θ2, and consequently the optimal

proportions each trader invests in both the market and the insurance asset. We will
obtain this process as a function of the system state (t,X1,t, Kt) at a time t ∈ [0, T ].
X2 can then be constructed by taking the coefficients σ2 = id and b2 = θ2.

1.3 Modelling of the agents

From this section on, we shall take n = m = 1 for greater simplicity. Assume that the
market has been completed by the introduction of the security X2, which is completely
determined by θ2. We shall assume in the sequel, and justify in the computations later,
that θ2 can be written as a regular function of the state of the system, i.e.

θ2,s = θ̃2(s,X1,s, Ks) with θ̃2 ∈ C2.

In the sequel we shall use the same symbol θ2 for both the random process and the
real valued regular function of (s, x1, k) ∈ [t, T ] × IR × IR, since it will be clear from
the context which object we are dealing with. In fact, under the conditions we impose
on the coefficients of our equations, it will be seen that θ̃2 is even C∞.
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Let I be the finite set of agents active on the market. Each agent a ∈ I is supposed
to be endowed with an initial capital va

0 ≥ 0. He invests in the market including the
insurance asset and uses an admissible trading strategy π = (π1, π2).

Its wealth process is given by

V a
s = va

0 +

∫ s

0

π1,s
dX1,s

X1,s

+ π2,s
dX2,s

X2,s

, s ∈ [0, T ] (11)

(“not investing” means investing in X0, i.e. choosing the strategy π = 0).

1.3.1 Income

At the end T of the trading interval, each agent receives a stochastic income Ha,
describing the profits the company he represents obtains, which can depend on the
market and on the climate. We assume it has the form

Ha = ga(τ, X1,τ , Kτ ) +

∫ τ

0

ϕa(t,X1,t, Kt)dt,

where ga and ϕa are real valued bounded smooth (C∞) functions, with

τ = inf {s ∈]t, T ] |(s,X1,s, Ks) 6∈ O}

the entrance time of some critical set O, an open subset of ]0, T [×IRp × IRd.

1.3.2 Utility maximization

Each agent a ∈ I, by acting on its trading strategy π, wants to maximize the expected
utility of the sum of the terminal wealth V a

T and the income Ha. We will use the family
of exponential utility functions

Ua(x) = − exp (−αax) , x ∈ IR,

with individual risk aversion coefficient αa > 0. In mathematical terms, every agent
wants to attain

Ja = sup
π admissible

IE [Ua (V a
T + Ha)] . (12)

We can compute this expectation by solving a linear PDE. To see this, we start
from the stochastic representation of maximal utility obtained via duality and Legendre
transforms of U derived in Karatzas, Lehoczky, Shreve [18] or Kramkov, Schachermayer
[22]. The formula valid in our setting is derived in [16], Proposition 10. We have

Ja = IE

[
−λa

αa

Zθ
T

]
= −λa

αa

, (13)

since Zθ is a IP−martingale, where λa is defined by

log(λa) = log(αa)− αav
a
0 + IEθ

[− log
(
Zθ

T

)− αaH
a
]
.

12



Now define for t ∈ [0, T ], x1 ∈ IR, k ∈ IR

χ(t, x1, k) = IEθ
[− log

(
Zθ

T

)− αaH
a
]

= IEθ

[∫ T

t

(∣∣∣∣
∣∣∣∣−

1

2
θ (s,X1,s, Ks)

∣∣∣∣
∣∣∣∣
2

− αaϕ
a (s,X1,s, Ks)

)
ds− αag

a (T, X1,T , KT )

]
.

An appeal to the backward version of Theorem 1.1 translates the stochastic utility
maximization formula into a linear backward PDE.

Corollary 1.1 Let L̃ be the infinitesimal generator of the diffusion (X1, K) under Qθ,
determined for a regular function φ by

L̃φ = (bK − θ2σK)
∂φ

∂k
+

1

2
trace

{(
x2

1σ
2
1 0

0 σ2
K

)
D2φ

}
.

Then χ is the unique classical solution of the following backward PDE

{
−∂χ

∂t
− L̃χ− 1

2
||θ||2 − αaϕ

a = 0

χ(T, x1, k) = −αag
a(x1, k).

(14)

Proof:

The result follows from Theorem 1.1 in dimension n = p+d = 2 with b =

(
0

bK − θ2σK

)
,

σσ∗ =

(
x2

1σ
2
1 0

0 σ2
K

)
, f = −1

2
||θ||2 − αaϕ

a, g = −αag
a and h = 0. Obviously, f and

h are Lipschitz continuous and possess linear growth at infinity, g is continuous and
bounded. There is one small gap here, which can be easily overcome. The diffusion
matrix σσ∗ is not uniformly elliptic, due to the appearance of x2

1 in the first diagonal
entry. But since the generated diffusion does not visit the boundary x1 = 0, we may
argue by using a logarithmic coordinate change in x1 at the beginning of the analysis
(see the proof of Corollary 1.3). By this change, the diffusion matrix becomes constant
in the first diagonal entry, and thus uniformly elliptic. The drift is modified, but stays
Lipschitz with linear growth at infinity. The change of variable being a regular bijection
of the domain, existence and uniqueness of solutions in the two coordinate systems are
equivalent. 2

If, as usual, the initial time of action is 0, we have

Ja = − exp (−αav
a
0 + χ(0, x1, k)) .

1.3.3 Optimal control problem

While Corollary 1.1 offers a convenient possibility of describing the optimal utility,
an analytic access to the actual optimal portfolio strategies (π1, π2), the quantities of
(X1, X2) to be invested, requires to dig a little deeper. We have to invoke the basic
results of stochastic control theory (see for example [23] or [5]).

13



Suppose as before that the trading period begins at a time t ∈]0, T ], each agent
starting with an initial capital va

t (and X1,t = x1 and Kt = k). The agents want to
attain their value function

Ja(t, x1, k, va
t ) = sup

π admissible
IEt,x1,k,va

t
[Ua (V a

T + Ha)] .

By the same calculus we have

Ja(t, x1, k, va
t ) = − exp (−αav

a
t + χ(t, x1, k)) , (15)

where χ is the classical solution of the PDE of Corollary 1.1.
Let us rewrite the wealth process V a defined in (11) in terms of the proportions p =

(p1, p2) to be invested in (X1, X2). Formally πi

V a = pi, and we now have pa
0 +pa

1 +pa
2 = 1.

In these terms we may write

dV a
s

V a
s

= p1,s (b1ds + σ1dW1,s) + p2,s (θ2ds + dW2,s) ,

so that the coefficients of this SDE controlled by p do not depend on X2.

Equation (15) yields that the function Ja is C2, as is the function χ. So, using
theorem 1.3.1, p. 25, in [6] this implies that Ja solves the following Hamilton-Jacobi-
Bellman (HJB) equation





∂Ja

∂t
(s, x1, k, v) + sup

p
{LpJa(s, x1, k, v)} = 0 for (s, x1, k) ∈ O

Ja(s, x1, k, v) = Ua(v + ga(x1, k)) for (s, x1, k) on ∂O,
(16)

where O is the open set from 1.3.1, Lp is the infinitesimal generator of the diffusion
s 7→ (X1,s, Ks, V

a
s , ), i.e. the differential operator determined by its value for a regular

function φ by

Lpφ(s, x1, k, v) =




x1b1(s, x1)
bK(s, k)

v (p1b1 + p2θ2)







∂φ
∂x1
∂φ
∂k
∂φ
∂v




+
1

2
trace








x2
1σ

2
1 0 vp1x1σ

2
1

0 σ2
K vp2σK

vp1x1σ
2
1 vp2σK v2 (p2

1σ
2
1 + p2

2)







∂2φ
∂x2

1

∂2φ
∂x1k

∂2φ
∂x1v

∂2φ
∂x1k

∂2φ
∂k2

∂2φ
∂kv

∂2φ
∂x1v

∂2φ
∂kv

∂2φ
∂v2








. (17)

If the optimal control process exists, it is given in feedback form, i.e. as a function
of the state of the system by

pa(s,X1,s, Ks, V
a
s ) = arg max

p
LpJa(s,X1,s, Ks, V

a
s ). (18)

Formulas of this type have been derived for example in Fleming, Soner [10] p.170, in
a general setting, and also in [5] and [23]. As soon as this process pa is well-defined, it
coincides with the optimal strategy. In our case, existence problems for pa are covered
by (14) which guarantees the existence of a classical solution of the HJB equation.
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Using (15), we can express the optimal proportions pa in terms of the function χ
defined by system (14) of Corollary 1.1. This will allow us to justify the existence of
the optimal control.

Let us omit for the moment the superscript a. We then have to find p1 which
maximizes

p1

(
vb1

∂Ja

∂v
+ vx1σ1

∂2Ja

∂v∂x1

)
+

1

2
(p1)

2

(
v2σ2

1

∂2Ja

∂v2

)

and, independently, p2 which maximizes

p2

(
vθ2

∂Ja

∂v
+ vσK

∂2Ja

∂v∂k

)
+

1

2
(p2)

2

(
v2∂2Ja

∂v2

)
.

This is seen by applying (17) to Ja, separating the p1− and the p2−terms from the
resulting polynomial in (p1, p2) and separately maximizing these. By (15), we have
∂Ja

∂v
= −αaJ

a, hence ∂2Ja

∂v2 = (αa)
2 Ja and ∂2Ja

∂kv
= −αa

∂Ja

∂k
. Therefore, to compute p2,

we have to maximize the expression

−p2αav

(
θ2J

a + σK
∂Ja

∂k

)
+

1

2
(p2)

2
(
v2(αa)

2J
)
.

Now, again by (15), ∂Ja

∂k
= ∂χ

∂k
Ja. Moreover, by definition of the utility functions, it is

clear that Ja ≤ 0. We are therefore led to the problem of minimizing

−p2αav

(
θ2 + σK

∂χ

∂k

)
+

1

2
(p2)

2v2(αa)
2.

The result is easily obtained by minimizing the given polynomial of degree 2 and,
together with the analogous calculation for p1 leads to the following formulas.

Corollary 1.2 Let a ∈ I. Let χ be a solution of (1.1), define Ja by (15), and let X2

and therefore θ2 be given according to subsection 1.2. Then the solution (p1, p2) of the
optimal control problem (18) at (X1,s, Ks, V

a
s ) = (x1, k, v) is given by

pa
1 =

b1 + x1σ1
∂χ

∂x1

vσ2
1αa

,

pa
2 =

θ2 + σK
∂χ

∂k
vαa

.

Accordingly, the quantity

πa
2,s = V a

s pa
2,s =

1

αa

(
θ2(s,X1,s, Ks) + σK(s,Ks)

∂χ

∂k
(s, X1,sKs)

)

is the optimal amount of money to be invested in X2 by agent a at time s ∈ [t, T ].
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1.4 Local Equilibrium Measure

According to [16], the insurance security X2 is chosen in such a way that the market
is in local equilibrium. This means that the total investment (πa

2)a∈I in this security
satisfies the market clearing condition

∑
a∈I

πa
2 = 0 a.s. (19)

As a consequence, the process θ2, which determines completely the structure of the
security X2 and the unique martingale measure Qθ, can be computed as the solution
of a BSDE. We shall briefly recall how this can be seen. The structure result for the
optimal utility of agent a reflected for example in (13) combines with (10) to produce
for any a ∈ I the following formula for the optimal income from trading in (X1, X2)
including the income due to risk exposure

− 1

αa

log(
1

αa

λaZ
θ
T )−Ha (20)

= − 1

αa

log

(
λa

αa

)
+

1

αa

∫ T

0

(θ1,tdW1,t + θ2,tdW2,t) +
1

2αa

∫ T

0

(θ2
1,t + θ2

2,t)dt−Ha.

On the other hand, taking into account the market clearing condition, the total
optimal income of all agents on the market due to their trading strategies (πa

1 , π
a
2)

amounts to the following quantity

∑
a∈I

(Ba −Ha)

=
∑
a∈I

va
0 +

∫ T

0

(
∑
a∈I

πa
1,t)dX1,t +

∫ T

0

(
∑
a∈I

πa
2,t)dX2,t (21)

=
∑
a∈I

va
0 +

∫ T

0

(
∑
a∈I

πa
1,t) σ1,tX1,t (dW1,t + θ1,tdt)

+

∫ T

0

(
∑
a∈I

πa
2,t) σ2,t(dW2,t + θ2,tdt)

=
∑
a∈I

va
0 +

∫ T

0

(
∑
a∈I

πa
1,t) σ1,tX1,t (dW1,t + θ1,tdt).

We sum (20) in a ∈ I and equate the result to (21). The equation thus obtained
is interpreted as an equation for the unknown process θ2 with given parameter θ1 and
given risk exposure functionals Ha. With the abbreviations

α =

(∑
α∈I

1

αa

)−1

,
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H =
∑
α∈I

Ha +
1

2α

∫ τ

0

θ2
1,tdt,

z1 = θ1 − ασ1

∑
a∈I

πa
1 ,

z2 = θ2,

we are thus led to a nonlinear BSDE of the form

hs = αH −
∫ T

s

ztdWt −
∫ T

s

θ1,tz1,tdt− 1

2

∫ T

s

z2
2,tdt (22)

to be solved for the process (h, z1, z2).
Again, we shall associate a PDE with the stochastic object from (22). To simplify

its derivation, let us further abbriviate

g = α
∑
α∈I

ga,

ϕ = α
∑
α∈I

ϕa +
1

2
θ2
1,

Rs =

∫ s

0

ϕ(t,X1,t, Kt)dt.

In these terms, we obtain αH = g(τ,X1,τ , Kτ ) + Rτ and we can rewrite the BSDE
(22) as

−Ys = hs−Rs = g(τ, X1,τ , Kτ )−
∫ T

s

ztdWt−
∫ T

s

θ1,tz1,tdt−1

2

∫ T

s

z2
2,tdt+

∫ T

s

ϕtdt. (23)

Now using the nonlinear Feynman-Kac formula in its version of Theorem 1.3, we
see that z can be obtained by computing the function u, which is the classical solution
of a backward nonlinear PDE, provided the coefficient and risk functions satisfy the
following regularity hypotheses.

(H1) the system state domain O is given by the cylinder ]0, T [×]0,∞)× IR (there
is no stopping time, no Dirichlet condition).

(H2) the terminal income g is a C1 (]0,∞)× IR) function and all the other coeffi-
cients b1, σ1, bK , σK , ϕ are C∞ ([0, T ]×]0,∞)× IR) functions.

(H3) σ2
1, σ

2
K are bounded below by positive constants.

Corollary 1.3 Assume that the domain and coefficient functions satisfy the hypotheses
(H1), (H2), (H3). Let u be a classical solution of the nonlinear PDE



−∂u

∂t
− bK

∂u

∂K
− 1

2

(
x2

1σ
2
1

∂2u

∂x2
1

+ σ2
K

∂2u

∂K2

)
+

1

2

(
σK

∂u

∂K

)2

− ϕ(t, x1, k) = 0 in O,

u = −g on ∂O.
(24)
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Then by setting
Ys = Rs − hs = u(s,X1,s, Ks),

zs =

(
X1,sσ1 0

0 σK

)
Du(s,X1,s, Ks)

(25)

we obtain the unique solution of BSDE (23).

Proof:

We shall prove that our system, under a regular change of variables, can be written
in the form {

∂u

∂t
− Lu− F (t, x, u, γ∗(t, x)Du) = 0 in O,

u(t, x) = g(t, x) on ∂O,
(26)

with

Lu =
1

2

(
γ2

1

∂2u

∂x2
+ γ2

2

∂2u

∂y2

)
,

and coefficients γ1, γ2 whose squares are bounded below by positive constants. Let us
begin formally. Suppose that ũ is a solution, in some sense, of (24). Consider a function
w̃ defined by

w̃(t, x, y) = ũ(T − t, ex, y) on [0, T ]× IR2.

It is straightforward to see that w̃ is associated with the system (26) with terminal
condition

f(x, y) = −g(T, ex, y), (27)

coefficients
γ1(x) = σ1(e

x), γ2(y) = σK(y), x, y ∈ IR,

and generator

F (t, (x, y), w, (wx, wy)) = −1

2
γ2

1wx + γ2wy − 1

2
γ2

2w
2
y + ϕ(T − t, ex, y). (28)

Due to (H2), f and F are regular functions, and (H3) guarantees the uniform ellip-
ticity of the operator L. Hence the assumptions of Theorem 1.4 hold. There exists
a unique classical solution w ∈ C ([0, T ], C1 (IR2)) ∩ C∞ ([0, T [×IR2) of the system
(26),(27) and (28). Now we can define rigorously u by setting

u(t, x, k) = w (T − t, log(x), k) for (t, x, k) ∈ [0, T ]×]0,∞)× IR.

This function has clearly the announced regularity. Finally, using (25) and Itô’s for-
mula, it easy to check that u solves (24) in the classical sense.2

Recall that θ2 is defined as a partial derivative of the function u in (29). The
preceding result allows us to justify this definition, moreover we obviously have

θ2 ∈ C
(
[0, T ], C

(
]0,∞)p × IRd

)) ∩ C∞ (
[0, T [×]0,∞)p × IRd

)
.
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In particular θ2 is a Lipschitz continuous function, so the process X2 is well-defined by
(29).

Recalling the definitions of z above and of θ in subsection 1.2, we can use Corollary
1.3 to compute explicitly θ2 and thus the insurance asset process X2 through the
following formulas

θ2,s = σK
∂u

∂K
(s,X1,s, Ks), (29)

dX2,s = X2,s (θ2,sds + dW2,s) . (30)

1.5 Formulas for X2

In this subsection, we derive some formulas enabling us to compute the moments of
the insurance asset process X2 in case σK is invertible. Under this hypothesis, we can
write

dW2,s =
dKs − bK(s,Ks)ds

σK(s,Ks)
.

This leads us to an integral expression for X2 in terms of the trajectories of the process
K, given by

log (X2,t) = log (x2) +

∫ t

0

[
θ2(s,X1,s, Ks)− 1

2
− bK(s,Ks)

σK(s,Ks)

]
ds +

∫ t

0

1

σK(s, Ks)
dKs.

If σK is even constant which is the case if for example K is an Ornstein-Uhlenbeck
process, we have

log (X2,t) = log (x2) +

∫ t

0

[
θ2(s, X1,s, Ks)− 1

2
− bK(s,Ks)

σK

]
ds +

Ks −K0

σK

.

In this case the expectation of X2,t with the initial conditions X1,0 = x1, X2,0 =
x2, K0 = k may be expressed by the formula

IEx1,x2,k[X2,t] = x2e
− k

σK IEx1,k

[
e

Ks
σK exp

(∫ t

0

[
θ2(s,X1,s, Ks)− 1

2
− bK(s,Ks)

σK

]
ds

)]

= x2e
− k

σK f(t, x1, k).
(31)

In this case again, we may translate its computation into analysis by associating
with this expectation a PDE possessing a simple derivation from the forward linear
Feynman-Kac formula in Theorem 1.1.

Corollary 1.4 Suppose σK 6= 0 is constant. Define

f(s, x1, k) =
1

x2

e
k

σK IEx1,x2,k[X2,t], s ∈ [t, T ], x1, x2, k ∈ IR.
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Let L be the infinitesimal generator of the diffusion (X1, K), i.e.

Lf =

(
x1b1

bK

)
Df +

1

2
trace

{(
x1σ1 0

0 σK

)
D2f

}
.

Then f is the solution of the forward linear PDE





∂f
∂t
− Lf −

(
θ2 − 1

2
− bK

σK

)
f = 0

f(0, x1, k) = exp
(

k
σK

)
.

(32)

Remark that the implicit dependence on x2 in the definition of f above can indeed be
suppressed, since X2 depends only in a multiplicative way on its initial condition x2.

Proof:
The result is directly given by the forward form of theorem 1.1 with

b =

(
x1b1

bK

)
, σ =

(
x1σ1 0

0 σK

)
, f = 0, g = exp

(
k

σK

)
, and h = θ2 − 1

2
− bK

σK
.

For obtaining uniform ellipticity of the diffusion part, a procedure as in the proof of
Corollary 1.3, based on a logarithmic coordinate change in x1, again applies. 2

With the same technique, we can compute any moment of X2. For all n ∈ IN,

IEx1,x2,k[X
n
2,t] = x2 exp

(
−n

k

σK

)
fn(t, x1, k),

where fn is the solution of





∂fn

∂t
− Lfn − n

(
θ2 − 1

2
− bK

σK

)
fn = 0,

fn(0, x1, k) = exp
(
n k

σK

)
.

1.6 Examples

We now specify some climate processes, stock price models, and risk exposure func-
tionals we shall investigate in our numerical simulations in section 3.

1.6.1 Temperature models

Our climate process affecting the agents on our market will model the local temperature
(of air, of ocean water) evolution as a random function of time. It is therefore usually
modelled as a one-dimensional stochastic process, also for the simplicity of qualitative
numerical simulations. The reduced physical models they come from usually lead to fi-
nite dimensional stochastic equations and describe some nonlinear interaction between
finitely many physical quantities including the local temperature. For example, there
are ENSO models consisting in nonlinear two-dimensional stochastic differential equa-
tions coupling the thermocline depth in some area of the South Pacific with the sea
surface temperature. The system turns out to be an autonomous nonlinear stochastic
oscillator which in some parameter regimes acts as a stochastically perturbed bistable
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differential equation with an intrinsically defined periodicity. For our purposes, we
take a one-dimensional SDE driven by a Brownian motion. It describes the motion of
a state variable travelling through a bi-stable potential landscape, with an explicit pe-
riodic dependence of the potential shape creating a non-autonomous stochastic system.
Another example comes from a 15-dimensional linear SDE of the Ornstein-Uhlenbeck
type with a 15× 15−matrix with non-trivial rotational part and entries determined by
satellite measurements which is used in linear prediction models for ENSO. It creates
a diffusion with non-trivial rotation numbers implying random periodicity for the sea
surface temperature contained in the model. For our qualitative problems we may de-
scribe the temperature curve as a simple mean-reverting linear sde with an additional
deterministic periodic forcing. The following concrete examples can be studied.

1. Ornstein-Uhlenbeck. A simple model for a temperature process fluctuating
around an average value Ka ∈ IR is given by an Ornstein-Uhlenbeck process
(centered in Ka), determined by

dKs = C(Ka −Ks)ds + σKdW2,s,

where C > 0 is the strength of restoring force to Ka, and σK > 0 the volatility.
We use this process in our simulations (cf. model A in section 3).

2. Ornstein-Uhlenbeck with periodic term. This is a rudimentary version of
the temperature part of the model used for ENSO prediction. It is obtained by
modifying the preceding example in adding a periodical perturbation

dKs =

[
C(Ka −Ks) + C ′ sin

(
2π

T0

s

)]
ds + σKdW2,s,

where C ′ > 0 is the amplitude and T0 the period of the sinusoidal periodic term.

3. Multidimensional Ornstein-Uhlenbeck with intrinsic periodicity. This
is another less rudimentary version of the physicists’ model for ENSO prediction.
We take dimension to be 2, but could also consider a d−dimensional version.
The temperature will be represented by the first component K1 of the following
two-dimensional process K, defined through the autonomous linear SDE

dKs = C

(
0 −1
1 0

)
Ksds +

(
σK1

σK2

)
dW2,s.

4. Periodically forced bi-stable temperature. This is a phenomenological ver-
sion of the stochastic oscillator model for ENSO sketched above, where intrinsic
periodicity is replaced by a non-autonomous periodic dependence of the bi-stable
function U . U is a double-well potential function, for example U(k) = k4

4
− k2

2
, k ∈

IR. The diffusion process K given by the SDE

dKs = U ′(Ks)ds + Q.Ks. sin

(
2π

T0

s

)
+
√

εdW2,s

models temperature in a bi-stable environment. For ε chosen appropriately, the
trajectories of K are almost periodic. This phenomenon is investigated under
the name stochastic resonance. See [15] for a review. We use this process in our
simulations (cf. model B and C in section 3).
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Figure 1: A sample path of the bi-stable temperature process K.

1.6.2 Asset price process

The stock price model, for simplicity, is just a simple Black-Scholes model of one
risky asset.

(a) Black-Scholes. We will use a simple geometrical Brownian motion to de-
scribe the share price, i.e.

dX1,s = X1,s (b1ds + σ1dW1,s) , s ∈ [t, T ], (33)

where b1 > 0 is the rate and σ1 > 0 the volatility of the asset.

1.6.3 Risk exposure of the agents

Three typical qualitative risk exposures will be considered: the one of a fisher
describing profits from fishing whose efficiency depends on the surface tempera-
ture of the ocean and is optimal at some fixed temperature value while it drops
off as temperature deviates from this optimum. A rice farmer’s risk exposure
functional may be quite similar, his interests, however, rather complementary to
the fisher’s. Think of the sea surface temperature process possessing two meta-
stable equilibria, a low and a high one. As explained earlier, the fisher may
have his temperature of optimal income near the lower equilibrium, while the
farmer might profit more from higher precipitation rates at the higher ENSO
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temperature equilibrium. This in particular means that the fisher profits from
temperature values under which the farmer suffers most, and vice versa. The
exposure of a bank may not directly dependent on climate risk.

(a) Fisher. Let τ = T , the final time of the trading interval. Let K be a local
sea surface temperature, and imagine a fishing company f ∈ I that makes
most profits if the temperature is near an optimal value k1. We can describe
the income Hf of this company on the period [0, T ] qualitatively by

Hf =

∫ T

0

ϕf (Ks)ds,

where ϕf is a positive function taking its global maximum in k1, for example

ϕf (k) = e−(k−k1)2 .

(b) Farmer. The (rice) farmer or farming company we imagine as an example
may have an exposure quite of the same type as the fisher. The optimal
income still being a function of the sea surface temperature is just obtained
at another value k2, which typically is higher than k1, and may be given
by the second meta-stable point of a bi-stable random temperature. The
income of the farmer may therefore be described by

Hr =

∫ T

0

ϕr(Ks)ds,

where ϕr is a positive function taking its global maximum in k2, for example

ϕf (k) = e−(k−k2)2 .

If we work with a bi-stable randomly periodic sea surface temperature pro-
cess, we see immediately that farmer and fisher have complementary inter-
ests, and therefore are likely to profit from trading the climate risk among
each other.

(c) Bank. As an additional agent, we can consider a bank b ∈ I whose profits
only come from its portfolio management from investment on the financial
market, and which participates in the climate risk share only by investing
in the insurance security X2. So its exposure functional will be the trivial
Hb = 0.

2 Numerical approximations results

As explained in section 1, one of the main methods of our approach consists in trans-
lating the key stochastic equations appearing in our utility maximization problem into
linear or non-linear PDE. The main equations we obtained this way are given by
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• the backward linear PDE (14) describing the value function and providing the
optimal strategy for any agent on the market.

• the forward linear PDE (32) computing the moments of X2.

• the backward non-linear PDE (24) providing the coefficient θ2 which determines
the insurance asset X2.

In this section we describe the construction of numerical schemes approximating the
solutions of these parabolic PDEs and prove their convergence. In subsection 2.1 we
shall employ a method initiated by Barles and Souganidis [3] based on the well known
stability results for viscosity solutions (see [9], [2] for a general presentation) to derive
a basic convergence result which will be applicable to our schemes. In the following
subsections 2.2 and 2.3 we shall explain the numerical approximation schemes we use
for our simulations, starting in the linear case, and ending with the case of a non-linear
equation with quadratic terms.

2.1 Convergence

To state our convergence result in a fairly general framework, let O be an open subset
of ]0, T [×IRn, and let us consider a general possibly non-linear PDE of the second order
written in the forward form

{
∂v
∂t

+ G(t, x, v, Dv,D2v) = 0 in O,
v = Ψ on ∂O.

(34)

Here G and Ψ are scalar functions, respectively continuous on O × IR× IRn × Sn and
∂O, and S denotes the set of symmetric n × n−matrices. Let ε > 0. We consider
time-explicit schemes of the form

{
vε(t + ε, x) = S(ε)vε(t, x) if (t, x) ∈ O,
vε(t + ε, x) = Ψ(t + ε, x) in any other case,

(35)

where, for all ε > 0, S(ε) is an operator defined on L∞(O) with values in L∞(O).

We assume that the following assumptions hold.

Monotonicity :
For any ε > 0, and any function u, v ∈ L∞(O),

S(ε)u ≤ S(ε)v if u ≤ v in O. (36)

Let us note that this assumption can be relaxed (see [3] remark 2.1 p. 276), this
inequality needs only to hold within up to o(ε) terms.

Commutation with constants :
For any ξ ∈ IR,

S(ε)(u + ξ) = S(ε)u + ξ. (37)

24



Stability :

There exists a sequence (vε)ε>0 of solutions to the scheme (35)
which are locally uniformly bounded in L∞(O).

(38)

Consistency :
For any (t, x) ∈ O and any test function φ ∈ C∞

b (O),

lim
ε → 0

(s, y) → (t, x)

φ(s, y)− S(ε)φ(s, y)

ε
= G(t, x, φ(t, x), Dφ(t, x), D2φ(t, x)). (39)

We also assume that a strong comparison result holds for the equation (34) (see
[2], [3]), i.e.

If u is a bounded viscosity subsolution to (34)
and v is a bounded viscosity supersolution to (34),

then u ≤ v on O.
(40)

Under these conditions, we have the following convergence result derived in [3],
Theorem 2.1, p. 275, and also in [6], Theorem 2.4.5, page 81.

Theorem 2.1 Under the assumptions (36), (37), (38), (39) and (40), the solution vε

of the scheme (35) converges locally uniformly as ε → 0 to the unique viscosity solution
of PDE (34).

We note that a unique classical solution of (34) coincides with the viscosity solution.

2.2 Approximation schemes for linear equations

Let us first treat a general backward parabolic linear PDE of the second order. Note
that equations (14) and (32) are of this form:

{
−∂u

∂t
− b.Du− 1

2
trace

[
σσ∗D2u

]
= 0 in O,

u = Ψ on ∂O.
(41)

We here assume that b : O → IRn and σ : O → IRn×n are Lipschitz continuous, Ψ is
continuous and also that a = σσ∗ is a diagonal dominant matrix, i.e.

for all j, σσ∗i,i ≥
∑

j 6=i

∣∣σσ∗i,j
∣∣ .

We use a time-explicit upwind finite differences scheme (see [6], section 2.4, page 65,
and [24]). Let ∆t = ε > 0 and ∆x = ∆x(ε) > 0 be the mesh size of a space-time grid.
We denote by V∆x the set of neighboring points of x = 0 on the space grid of mesh size
∆x.

Let us describe our scheme in the particular case O =]0, T [×IRn.
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Scheme 2.1 Given ∆t > 0 and ∆x > 0, we construct a function u such that

u(T, x) = Ψ(x),

and
u(t−∆t, x) =

∑

h∈V∆x

p(x, h)u(t, x + h) = S(∆t, ∆x)u(t,.)(x), (42)

with :

p(x, 0) = 1− ∆t

∆x

d∑
i=1

|bi|(x)− ∆t

(∆x)2

d∑
i=1

(
aii −

∑

j 6=i

|aij|
)

(x),

p(x,±ei∆x) =
∆t

(∆x)2
(bi)

±(x) +
1

2

∆t

(∆x)2

(
aii −

∑

j 6=i

|aij|
)

(x),

p(x, (ei ± ej)∆x) = p(x,−(ei ± ej)∆x) =
1

2

∆t

(∆x)2
(aij)

±(x),

p(x, h) = 0 in any other case.

Consistency, monotonicity and commutation with constants of the scheme are straight-
forward. Under the C.F.L. condition

∆t ≤ (∆x)2

{
d∑

i=1

(
∆x|bi|+ aii −

∑

j 6=i

|aij|
)}−1

,

the scheme is stable, because p(x, h) ≥ 0 and
∑

h∈V∆x

p(x, h) = 1, and S is a contraction.

In fact, we have
|u(t−∆t, x)| ≤ ||u(t, .)||∞ ≤ ... ≤ ||Ψ||∞.

Moreover, the classical uniqueness result of theorem 1.2 implies that a strong com-
parison result holds for equations (14) and (32) (see also theorem 3.3 p.18 in [9]).

Then, for both these equations, theorem 2.1 proves that u converges locally uni-
formly to the unique continuous viscosity solution, thus the unique classical solution,
as ∆t and ∆x converge to 0.

2.3 Approximation schemes for non-linear equations with quadratic
terms

We now consider a more complicated equation, the following general semilinear PDE
with quadratic terms which generalizes (24):

{
−∂u

∂t
− b.Du− 1

2
trace

[
σσ∗D2u

]
+ ||MDu||2 = 0 in O,

u = Ψ on ∂O,
(43)

where M is a n× n−matrix.
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This kind of equation has been studied in the viscosity solutions framework in Koby-
lanski [21]. In particular, if we assume that the coefficients b, σ and M are Lipschitz
functions of the state variable with linear growth at infinity, theorem 3.3.2 p. 582 in
[21] states that a strong comparison result holds for (43).

Since ||MDu||2 = MDu · MDu = trace [MDuDu∗M∗] = trace [M∗MDuDu∗] =
(M∗MDu).Du, we can rewrite (43) as

{
−∂u

∂t
− (b−M∗MDu).Du− 1

2
trace

[
σσ∗D2u

]
= 0 in O,

u = Ψ on ∂O.
(44)

This gives us a simple idea for defining an approximating scheme which we again
describe in the case O =]0, T [×IRn.

Scheme 2.2 Given ∆t > 0 and ∆x > 0, we construct a function u such that

u(T, x) = Ψ(x),

and
u(t−∆t, x) =

∑

h∈V∆x

p̃(x, h)u(t, x + h) = S̃(∆t, ∆x)u(t,.)(x). (45)

This time the transition coefficients p̃ depend on u in the following way

p̃(x, 0) = p(x, 0)− ∆t

(∆x)2

d∑
i=1

| (M∗Mδ∆xu(t, x)
)

i
|,

p̃(x,±ei∆x) = p(x,±ei∆x) +
∆t

(∆x)2

((
M∗Mδ∆xu(t, x)

)
i

)±
,

p̃(x, (ei ± ej)∆x) = p̃(x,−(ei ± ej)∆x) = p(x, (ei ± ej)∆x),

p̃(x, h) = 0 in any other case,

where

δ∆xu(t, x) =




u(t, x + e1∆x)− u(t, x)
u(t, x + e2∆x)− u(t, x)

...
u(t, x + ed∆x)− u(t, x)


 .

It is straightforward to check the consistency of this scheme with (43), and the
property of commutation with constants. Under the C.F.L. condition

∆t ≤ (∆x)2

{
d∑

i=1

(
∆x|bi|+ 2||Ψ||∞||M ||2∞ + aii −

∑

j 6=i

|aij|
)}−1

, (46)

the scheme is also stable : we have p̃(x, h) ∈ [0, 1] for all (x, h) and
∑

h

p̃(x, h) = 1 for

all x. So S̃ is a contraction and thus ||u||∞ ≤ ||Ψ||∞.
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To check the monotonicity condition, let us further assume that

∆t ≤ (∆x)3. (47)

For any functions u and v such that u ≤ v, we obtain the following chain of inequal-
ities, denoting p̂ = p̃ − p and adding the subscript pu to indicate that the transition
matrix belongs to u etc:

S̃(∆t, ∆x)(u)− S̃(∆t, ∆x)(v) =
∑

h∈V∆x

(p̃u(x, h)u(t, x + h)− p̃v(x, h)v(t, x + h))

=
∑

h∈V∆x

p(x, h) (u(t, x + h)− v(t, x + h))

+
∑

h∈V∆x

(p̂u(x, h)u(t, x + h)− p̂v(x, h)v(t, x + h))

≤
∑

h∈V∆x

(p̂u(x, h)u(t, x + h)− p̂v(x, h)v(t, x + h))

≤ ∆t

(∆x)2
C ≤ ∆xC.

Here, thanks to stability, the constant C depends only on bounds on Ψ, M , b, σ and
on the Lispschitz constants of b and σ.

Moreover, according to [21], we have a strong comparison result for the PDE (43).

Hence, Theorem 2.1 allows us to conclude that u converges locally uniformly to the
unique continuous viscosity solution u of (43), as ∆t and ∆x converge to 0.

3 Simulations and their interpretations

We now choose different types of simple toy agents and different temperature models
(as given in section 1.6.3). We concentrate on simulating the expectation of the addi-
tional security X2 (in subsection 3.1), the maximal expected utility Ja for each agent
(in subsection 3.2) and the optimal strategy of investment in X2 (in subsection 3.3).
We use the following concrete models :

Model A
The time horizon is chosen to be T = 2. We use an Ornstein-Uhlenbeck process to
describe the climate process K, with the following coefficients :

dKs = −Ks +
1

2
dW2,s, s ∈ [0, T ].

Here we consider only two model agents, a fisher and a bank as described in section
1.6.1. The fisher’s random income function is

Hf =

∫ T

0

ϕf (Ks)ds,

28



with ϕf (k) = 5 exp (−10k2) , for all k ∈ IR. This means that the optimal temperature
for the fisher is normalized to be 0. The bank has no risky income, i.e. Hb = 0. We
assume that each agent uses the risk aversion coefficient αf = αb = 1.

Model B
The temperature is now modelled by a periodically forced bi-stable temperature process
with coefficients

dKs = −8(K3
s −Ks)− sin(2πs) + 4.5dW2,s, s ∈ [0, T ].

See Figure 1 for a sample path of this process. Again, we choose T = 2 for the time
horizon, i.e. 2 periods of the temperature process. This process is close to the high
temperature value k2 = 2.5 for t ∈ [0; 0.5] ∪ [1; 1.5] and symmetrically close to the low
value k1 = −2.5 for t ∈ [0.5; 1] ∪ [1.5; 2]. Again we consider only two agents, a fisher
and a farmer with respective income

H1 =

∫ T

0

5 exp
(−10(Ks − k1)

2
)
ds and H2 =

∫ T

0

5 exp
(−10(Ks − k2)

2
)
ds,

where the optimal temperature is k1 = −2.5 for the fisher and k2 = 2.5 for the farmer,
which coincide with the bistable states of the temperature process. We again assume
that each agent uses the risk aversion coefficient α1 = α2 = 1.

Model C
This model uses the same characteristics as model B except for the time horizon, which
is now chosen to be T = 3/2, i.e. 3 half-periods for the temperature process K. This
gives an advantage to the farmer, since the temperature spends 1 unit of time i.e. 2/3
of the trading interval near the meta-stable state favorable for the farmer, and only 0.5
units of time near its low meta-equilibrium favorable for the fisher.

In all the models, the share price is a geometrical Brownian motion given by (33)
with very strong coefficients b1 = 1 and σ1 = 1.

3.1 Expectation of X2

Here we exhibit the expectation of X2,t at the same time t = 1.5 for each model, as
a function of the initial condition (x1, k) at time t = 0. X2 is starting from 1 at time
t = 0.

3.1.1 Model A

We observe that IE[X2] has a minimum if the temperature starts from the value 0 which
is optimal for the fisher. Indeed, in this case, the fisher’s income is maximal, since the
temperature will only slightly oscillate around 0. So there is no need to transfer risk
from the fisher to the bank : the expectation of X2 (starting from k = 0) almost stays
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at the initial value 1. This can serve as an indication that we could interpret the size
of X2 as an appreciation rate for the trading of climate risk among the affected agents.

If, on the other hand, the initial temperature is far from 0, the fact that the expec-
tation of X2 grows with time indicates that the fisher has an interest to invest in X2.
In this case the growth of X2 compensates the smaller income of the fisher.

Expectation of the risk−security, model A, t=1.50
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Figure 2: The expectation of X2,t (model A).

3.1.2 Model B

The dependence on K seems reversed in this model as compared to model A. We now
see that the expectation of X2 is maximal when starting from k = 0, i.e. in the middle
between the optimal temperatures. At this temperature obviously both agents like to
trade risk, since on the scale between −2.5 and 2.5 it corresponds to the worst situation
for the totality of the affected agents. This is why X2 is expected to be higher.

3.1.3 Model C

This case is very similar to the preceding one. We just observe that the maximum of
the expectation has been translated to lower temperatures, to account for the difference
of exposition of the agents.

3.2 Optimal value Ja

We now turn to numerical simulations of the underlying optimal control problem. First
we will show the value Ja, the optimal utility, for both agents involved, at different
times t ∈ [0, 1], as a function of the current value of the temperature k at time t. Due
to simplicity of our model for the share price X1, and since the climate affected agents
are chosen to have incomes not depending on X1, Ja does not depend on X1,t.
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Expectation of the risk−security, model B, t=1.50
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Figure 3: The expectation of X2,t (model B).
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Figure 4: The expectation of X2,t (model C).
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In a real situation, the wealth process of an agent with initial capital va
0 = 1 should

increase with time. Here we assume that the initial capital of each agent is normed by
va

t = 1 at time t. This is why the expected terminal value Ja we simulated is decreasing
with time. Indeed we have Ja

T = 1. This is not a limitation, since Ja depends in a
multiplicative way on the initial value of the wealth process of agent a. Also, in our
simulations we are more interested in exhibiting the dependence of Ja on k at different
times.

3.2.1 Model A
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Figure 5: The maximal expected utility J for the fisher (model A).

Let us recall that if the fisher does not invest in X2, his only benefits will be given
by Hf . The dependence of this random income on K shows a narrow peak around the
optimal temperature 0. The fisher benefits a lot when the temperature is near 0 and
almost nothing not very far from there. We clearly observe that investing in X2 reduces
the fisher’s risk exposure. The optimal utility curve exhibited by the simulations at
different times has a very wide maximal zone around 0.

The bank’s optimal utility curve as a function of temperature shows the following
features. The bank’s situation is best if the temperature is in a neighborhood of 0, but
not too close to 0. Indeed, if it is very close to 0, it is not interesting for the fisher to
invest in X2: there is no risk to transfer. If temperature changes a little, both agents
clearly have an interest in the exchange of X2. If the temperature is too far from 0, then
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Figure 6: The maximal expected utility J for the bank (model A).

of course the situation is bad for both agents: the fisher has not much money to invest.
The latter situation is, however, very unlikely to happen. The Ornstein-Uhlenbeck
process used here reaches ±2 before time 1 only with a very small probability.

3.2.2 Models B and C

We just show diagrams from the farmer’s point of view for theses models, since there
is symmetry in the exposure of the agents. The optimal expected utility for the farmer
seems a very flat curve, which is maximal around the optimal temperature. This may
indicate that trading on the risk asset brought security to the agents. There is no real
qualitative difference in the shape of the curves between model B and model C. We
just observe that model C reflects, of course, a better situation for the farmer.

3.3 Optimal strategies

We finally describe the optimal amount of money to be invested in X2 by each agent
during the trading interval, i.e. the strategy of investment which allow the agents to
attain maximal expected utility Ja.

Since only two agents are active on the market, the local equilibrium condition (19)
implies that at each time t the entire quantity of X2 sold by one agent is bought by
the other, i.e.

πf
2,t = −πb

2,t in model A, or πr
2,t = −πf

2,t in models B and C.
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Figure 7: The maximal expected utility J for the farmer (model B).
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Figure 8: The maximal expected utility J for the farmer (model C).

34



Therefore it will be enough to show diagrams of the strategy of one agent (fisher in
model A and farmer in models B and C). Since we are able to approximate numerically
the strategies of both agents, we remark that the local equilibrium condition may be
used to check the accuracy of our schemes.

We show the optimal strategies as functions of t (on the period [0,1]) and the current
temperature Kt. As in the preceding subsection, in our simple example this strategy
does not depend on X1,t. The diagrams also display the optimal amount of money to
be exchanged between the agents, from the selected agent’s point of view.

3.3.1 Model A

Here we only show the fisher’s optimal strategy πf
2 . At the optimal temperature for

fishing Kt = 0, the fisher makes his maximal profit, and we observe that there is no
exchange of risk trading money. As soon as the temperature grows a little, the fisher
has to buy a certain quantity of X2 from the bank. This exchange will bring security
to the fisher and profits to the bank.
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Figure 9: The optimal strategy for the fisher (model A).

3.3.2 Model B and C

We only show the farmer’s optimal strategy πr
2. We can first notice, by taking into

account the estimates for the expectation of X2 in subsection 3.1, that the appreciation
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of risk trading is very low compared to model A.

On theses diagrams, we see that the farmer invests in X2 when the temperature is
high in the first half period [0,0.5], i.e. an interval that favors him, and sells X2 (to the
fisher) when the temperature is low, for t ∈ [0.5, 1], i.e. when he needs money. This
reflects the intuition that the agents have an interest to share their risks by exchanging
money this way.

Again, the qualitative difference between models B and C is not big. We just observe
that the farmer invests a little more than the fisher.
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Figure 10: The optimal strategy for the farmer (model B).
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Figure 11: The optimal strategy for the farmer (model C).
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