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Classical Solutions of Quasilinear Parabolic Systems 1

Abstract

Using a classical theorem of Sobolevskii on equations of parabolic type in
a Banach space and recently obtained results on elliptic operators with dis-
continuous coefficients including mixed boundary conditions we prove that
quasilinear parabolic systems in diagonal form admit a local, classical solu-
tion in the space of p–integrable functions, for some p > 1, over a bounded
two dimensional space domain. As applications we have in mind systems of
reaction diffusion equations, e.g. van Roosbroeck’s system. The treatment
of such equations in a space of integrable functions enables us to define the
normal component of the flow across any part of the Dirichlet boundary by
Gauss’ theorem.

2000 Mathematics Subject Classification. 35K40, 35K45, 35K50, 35K55, 35K57.

Key words and phrases. Partial differential equations, quasilinear parabolic sys-

tems, nonsmooth domains, mixed boundary conditions, discontinuous coefficients,
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2 Hans-Christoph Kaiser, Hagen Neidhardt, and Joachim Rehberg

1 Introduction

In this paper we will study quasilinear parabolic systems of the form

∂uk
∂t
− Ek (t,u)∇ · (Fk (t,u)µk∇uk) = Gk (t,u,∇u) on [T0, T1]× Ω,

uk = φk on [T0, T1]× ∂Ω \ Γk,

ν · (µk∇uk) = 0 on [T0, T1]× Γk,

uk(T0) = u0
k on Ω,

k = 1, . . . , l, (1.1)

where u = (u1, . . . , ul) is the vector of unknowns depending on t ∈ [T0, T1] and

x ∈ Ω ⊂ R2, and ν is the outer unit normal to the boundary ∂Ω of the bounded

spatial domain Ω. The functions uk are subject to initial conditions u0
k = u0

k(x)

and in general mixed Neumann and Dirichlet boundary conditions on the parts Γk

and ∂Ω \ Γk of the boundary of Ω, respectively; the functions φk may depend on

t. Ek, Fk, and Gk are mappings from a space of Rl valued functions into a space

of real valued functions, depending on t parametrically. In particular they may be

Nemytzkii operators

Ek (t,w) (x) := ek
(
t, x,w(x)

)
, t ∈ [T0, T1], x ∈ Ω

with suitable functions ek, k ∈ {1, . . . , l}; mutatis mutandis for Fk and Gk. The µk

are essentially bounded real 2×2 matrix functions on Ω with an ellipticity condition.

We will specify the data of the problem in Assumption 2.1, Assumption 2.3, and

Assumption 4.1. Then §4 presents the precise formulation of the problem.

Equations of the form (1.1) are occurring frequently in physics, chemistry and bi-

ology, cf. [1] for an overview on the subject. In these fields of applications one

often is confronted with nonsmooth domains, discontinuous coefficients and mixed

boundary conditions cf. e.g. Amann [1] and Gajewski/Gröger [10]. In this sit-

uation equations of the type (1.1) have usually been regarded in negatively indexed

Sobolev spaces, cf. [10] and the references cited there. Though this approach often

provides a weak solution on [T0, T1] one does not know in the end that for any t the

divergence of the flow is an integrable function; one only obtains that it is a distri-

bution. However, it would be highly satisfactory to define the normal flow over any

part of the Dirichlet boundary by Gauss’ theorem. The continuity of the normal

component of the flow plays an essential role in connecting potential flow systems
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Classical Solutions of Quasilinear Parabolic Systems 3

(1.1) to adjacent systems. This problem occurs e.g. in electronic device simulation,

cf. Gajewski [4]. In modelling heterogeneous semiconductors it is inevitable to

deal with nonsmooth domains, discontinuous coefficients and mixed boundary con-

ditions. Even more, the corresponding problem for pure Dirichlet or pure Neumann

boundary conditions is physically irrelevant, cf. e.g. [14] and [4]. Thus, it seems

adequate to treat equations (1.1) not only in negatively indexed Sobolev spaces,

but also in spaces of integrable functions.

We will demonstrate, cf. Theorem 5.10, that (1.1) admits a local, classical solution

which is unique. This solution is once continuously differentiable in t and its deriva-

tive with respect to t is integrable over Ω to some exponent p > 1. For proving our

result we use the classical theorem of Sobolevskii [15] on equations of parabolic

type in a Banach space. The problem is that with the discontinuous coefficients

µk and the mixed boundary conditions we have in mind one cannot use standard

regularity results. However, this difficulty can be overcome by means of recently

obtained resolvent estimates for second order elliptic differential operators with es-

sentially bounded coefficients, cf. [7], and interpolation results for function spaces

related to mixed boundary value problems, cf. [6]. In this paper we will not deal

with global existence of solutions to (1.1). Indeed, it cannot be generally expected

in such a wide spread class of problems.

Of course, the question arises why our investigation is restricted to the case of two

spatial dimensions and how relevant this case is for applications. Systems of the form

(1.1) on two dimensional spatial domains are very useful models for the simulation of

many processes in natural and technical sciences. In engineering the essentially two

dimensional structure of the problem in space often follows the applied technology.

Inspecting the proofs in this paper readers will realise that similar proofs in three

spatial dimensions would require (at least) that the gradients of solutions for the

elliptic boundary value problem associated to (1.1) are integrable to an exponent

p > 3. However, this cannot be expected in general, not even for arbitrary step

functions µk whose—finitely many—constancy domains are arbitrary polyhedral

subdomains of Ω, cf. e.g. [3].

2 Notations and general assumptions

We start this section by specifying the spatial domain under consideration.
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4 Hans-Christoph Kaiser, Hagen Neidhardt, and Joachim Rehberg

2.1 Assumption. Let Ω ⊂ R2 be a fixed bounded Lipschitz domain. Further, for

any k ∈ {1, . . . , l} there is a boundary part Γk ⊂ ∂Ω which may be empty and which

is the union of a finite set of open arc pieces such that no component of ∂Ω \ Γk

consists only of a single point.

This class of domains Ω and parts Γk of its boundary ∂Ω to be contacted from the

outside covers almost all spatially two dimensional problems encountered in science

and engineering.

2.2 Remark. Assumption 2.1 implies the following condition on Ω and the sets

Γk: For every point x ∈ ∂Ω there exist an open neighbourhood U ⊂ R
2 of x,

another open set O ⊂ R2, and a bi–Lipschitz transformation L from U onto O with

almost everywhere constant absolute value of the functional determinant such that

L
(
U ∩ (Ω ∪ Γk)

)
coincides either with the open unit half ball in R2, the open unit

half ball united with its ground plate, or the open unit half ball united with half of

its ground plate, cf. [18, Ch. I Thm. 2.5]. These three model sets may be replaced

by just two model sets, namely the open unit ball and the open unit half ball united

with its ground plate, cf. [6]. Thus Assumption 2.1 implies for each k ∈ {1, . . . , l}
the regularity of the set Ω ∪ Γk in the sense of Gröger, cf. [8], [9].

If p is from [1,∞[, then we denote the space of real, Lebesgue measurable, p–

integrable functions on Ω by Lp. Moreover, we denote the space of real Lebesgue

measurable, essentially bounded functions on Ω by L∞. By Lp = Lp × . . . × Lp

we denote the l times direct product of the spaces Lp, p ∈ [1,∞]. If s ∈ [0, 1]

and q ∈]1,∞[, then we denote—as usual, cf. [17]—by Hs,q the space of real Bessel

potentials with the differentiability index s and the integrability index q on the set

Ω. N.B. for s = 1 these spaces coincide with the Sobolev spaces W 1,q(Ω). We define

Hs,q
k as the closure in Hs,q of the set{

u|Ω : u ∈ C∞0 (R2), suppu ∩
(
Ω \ (Ω ∪ Γk)

)
= ∅
}
.

If s ∈ [−1, 0[, then Hs,q
k denotes the dual to H−s,q

′

k , where 1
q

+ 1
q′

= 1. We abbreviate

by Hs,q = Hs,q × ... × Hs,q the l times direct product of the spaces Hs,q and by

Hs,q
0 = Hs,q

1 × ...×H
s,q
l the direct product of the spaces Hs,q

k .

Apart of the real function spaces we introduce their complex analoga: If Z is a real

Banach space, we denote by Z̃ its complexification.

For two Banach spaces X and Y we denote the space of linear, bounded operators

from X into Y by B(X;Y ). If X = Y , then we abbreviate B(X). If X ⊂ Y
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Classical Solutions of Quasilinear Parabolic Systems 5

continuously embeds into Y , then we write X ↪→ Y .

C([t1, t2];X), Cη([t1, t2];X), C1([t1, t2];X), η ∈]0, 1[

denote the spaces of continuous, Hölder continuous, and once continuously differen-

tiable functions, respectively, on the closed interval [t1, t2] with values in the Banach

space X. The symbols 〈·, ·〉R2 and 〈·, ·〉C2 denote the canonic bilinear forms on R2

and C2, respectively.

2.3 Assumption. µk : Ω −→ B(R2), k ∈ {1, . . . , l} are measurable mappings into

the set of real, symmetric 2× 2 matrices, satisfying the relations

max
k∈{1,...,l}

vraimax
x∈Ω

‖µk(x)‖B(R2) ≤ µ•

min
k∈{1,...,l}

vraimin
x∈Ω

〈µk(x)ξ, ξ〉R2 ≥ µ•‖ξ‖2
R2 ∀ξ ∈ R2

(2.1)

for two strictly positive constants µ• and µ•.

2.4 Definition. For each k ∈ {1, . . . , l} we define the operator

ak : H̃1,2
k −→ H̃−1,2

k (2.2)

by

〈akψ1, ψ2〉 =

∫
Ω

〈µk∇ψ1,∇ψ2〉C2 dx, (2.3)

where 〈·, ·〉 on the left hand side denotes the dual pairing between H̃1,2
k and H̃−1,2

k .

Further, we denote by a the operator

H̃1,2
0 3 (ψ1, . . . , ψl) 7−→ (a1ψ1, . . . , alψl) ∈ H̃−1,2

0 . (2.4)

The restrictions of the operators ak, k ∈ {1, . . . , l} and a to the real domains H1,2
k

and H1,2
0 , respectively, map into the (real) spaces H−1,2

k and H−1,2
0 , respectively, and

will be denoted by the same symbols.

2.5 Definition. Suppose p to be a fixed number from the interval ]1,∞[. Then

for each k ∈ {1, . . . , l} we define the following restriction of the operator ak from

Definition 2.4:

Ak : ψ 7→ akψ ψ ∈ domAk =
{
ψ ∈ H̃1,2

k : akψ ∈ L̃p
}
. (2.5)

Further, we define

A : D := dom A = domA1 × . . .× domAl −→ L̃p

D 3 (ψ1, . . . , ψl) 7−→ A(ψ1, . . . , ψl) := (A1ψ1, . . . , Alψl) ∈ L̃p
(2.6)
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6 Hans-Christoph Kaiser, Hagen Neidhardt, and Joachim Rehberg

The domain of the operator Ak will be equipped with the norm ‖(Ak + 1) · ‖L̃p
which is equivalent to the graph norm of Ak. The restrictions of the operators Ak,

k ∈ {1, . . . , l} and A to the real domains map into the (real) spaces Lp and Lp,

respectively, and will be denoted by the same symbols.

2.6 Remark. Definition 2.4 incorporates in the usual way, cf. [5] or [2], homoge-

neous Neumann boundary conditions on Γk and homogeneous Dirichlet boundary

conditions on ∂Ω \ Γk for functions from domAk, k ∈ {1, . . . , l}.

3 Functional analytic tools

We outline in this section the functional analytic background of our investigation. In

particular, we specify the adequate Banach spaces for the mathematical treatment

of the system formally introduced above. We start by quoting a recently obtained

interpolation result for spaces representing mixed boundary conditions and gather

some regularity results on elliptic and parabolic equations. Throughout this section

we suppose k ∈ {1, . . . , l} and Assumption 2.1, and Assumption 2.3 apply.

3.1 Proposition. [6]. If

θ ∈]0, 1[, q ∈]1,∞[, s0, s1 ∈ [−1, 1] \
{
− 1
q′
, 1
q

}
,

then there is the following complex interpolation identity:[
H̃s0,q
k , H̃s1,q

k

]
θ

= H̃s,q
k , s = (1− θ)s0 + θs1. (3.1)

3.2 Proposition. [11]. For each k ∈ {1, . . . , l} there is a number

qk = qk(Ω,Γk, µk) > 2

such that for any q ∈ [2, qk]

i) the maximal restriction of the operator ak from Definition 2.4 which still

maps into H̃−1,q
k provides a topological isomorphism—we denote it also by

ak—between H̃1,q
k and H̃−1,q

k ; and

ii) the negative of this isomorphism generates an analytic semigroup on H̃−1,q
k ,

i.e.

sup
<z≥0

(1 + |z|)
∥∥(ak + 1 + z)−1

∥∥
B(H̃−1,q

k )
<∞. (3.2)
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Classical Solutions of Quasilinear Parabolic Systems 7

3.3 Remark. The numbers qk may be arbitrarily close to 2, even in the case of

pure, homogeneous Dirichlet boundary conditions, cf. [13, §5].

3.4 Proposition. [7, §5]. Let U ∈ L∞ be a function with strictly positive essential

upper and lower bounds U• and U•, respectively. If p ∈]1,∞[, and Ak, k ∈ {1, . . . , l}
is one of the operators from Definition 2.5, then the operator UAk is densely defined

and satisfies the following resolvent estimate for z ∈ C with <z ≥ 0:∥∥(UAk + 1 + z)−1
∥∥
B(L̃p)

≤ U•

U•
Λ

(
µ•

µ•
, p

)
1

1 + |z|
, (3.3)

with some explicitly given continuous function

Λ : [1,∞[×]1,∞[−→]0,∞[.

3.5 Proposition. Let X be a Banach space and let B be a densely defined operator

on X satisfying the resolvent estimate

sup
t∈[0,∞[

(1 + t)
∥∥(B + t)−1

∥∥
B(X)

<∞.

If 0 ≤ α < β ≤ 1, then

[X, domB]β ↪→ domBα, (3.4)

and

domBβ ↪→ [X, domB]α, (3.5)

the domains of B, Bα, and Bβ being topologized by a norm equivalent to the graph

norm of the corresponding operator.

Proof. The assertions are obtained from [17, 1.15.2, 1.10.3, and 1.3.3].

3.6 Lemma. Let X and Y be Banach spaces, let us assume that Y embeds densely

and continuously into X, and let B : Y → X be a linear, topological isomorphism

which satisfies

sup
t∈[0,∞[

(1 + t)
∥∥(B + t)−1

∥∥
B(X)

<∞. (3.6)

Furthermore, let X0 ⊃ Y be another Banach space which embeds continuously into

the complex interpolation space [X, Y ]θ for some θ ∈]0, 1[. We denote the maximal

restriction of B which maps into X0 by B0. As Y ⊂ X0, the domain of B0 is a

subspace of X0. We assume that this subspace is dense in X0 and we suppose

sup
t∈[0,∞[

(1 + t)
∥∥(B0 + t)−1

∥∥
B(X0)

<∞. (3.7)

Then both, Bα and Bα
0 are well defined for any α ∈ [0, 1]. Moreover, if α > 1− θ,

then the complex interpolation space [X0, domB0]α continuously embeds into Y .
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8 Hans-Christoph Kaiser, Hagen Neidhardt, and Joachim Rehberg

Proof. The first assertion is well known, cf. [17, 1.15.1]. In order to prove the second

assertion we regard an arbitrary α ∈]1−θ, 1[ and some β with α > 1−β > 1−θ. Then

there are constants δ1, . . . , δ7 such that for any w from the complex interpolation

space [X0, domB0]α the following is true (read it from right to left):

‖w‖Y ≤
∥∥B−1

∥∥
B(X;Y )

‖Bw‖X = δ1

∥∥BβB1−βw
∥∥
X
≤ δ2

∥∥B1−βw
∥∥

domBβ

≤ δ3

∥∥B1−βw
∥∥

[X,domB]θ
≤ δ4

∥∥B1−βw
∥∥

[X,Y ]θ
≤ δ5

∥∥B1−βw
∥∥
X0

= δ5

∥∥B1−β
0 w

∥∥
X0
≤ δ6

∥∥w∥∥
domB1−β

0
≤ δ7

∥∥w∥∥
[X0,domB0]α

,

cf. (3.4) from Proposition 3.5, the presupposed continuity of the embedding X0 ↪→
[X, Y ]θ, and the equivalence of ‖·‖Y with the graph norm of B due to B being a

topological isomorphism from Y into X. N.B. under the preconditions of Lemma 3.6

Bδ
0 is the maximal restriction of Bδ which maps into X0, for any δ ∈]0, 1[. Indeed,

there is

(B + t)−1
∣∣
X0

= (B0 + t)−1 for all t ∈ [0,∞[

according to the definition of the operator B0; hence,

B−δ
∣∣
X0

= B−δ0 for all δ ∈]0, 1[, (3.8)

cf. [17, 1.15.1]. Now one passes over to the inverse in (3.8).

3.7 Proposition. Sobolevskii [15]. Let A0 be a linear operator on a (complex)

Banach space X with dense domain domA0, and let us assume that A0 admits the

resolvent estimate

sup
<z≥0

(1 + |z|)‖(A0 + z)−1‖B(X) <∞. (3.9)

Suppose 1 ≥ β > α ≥ 0 and v0 ∈ domAβ0 . Additionally, let

[T0, T1]× domAα0 3 (t, v) 7−→ A(t, v) ∈ B(domA0, X)

be a mapping satisfying A(T0, v0) = A0 and for some number R > 0:

∥∥(A(t1,A−α0 v1)−A(t2,A−α0 v2)
)
A−1

0

∥∥
B(X)
≤ CR (|t1 − t2|η + ‖v1 − v2‖X)

for all t1, t2 ∈ [T0, T1] and all v1, v2 ∈ X with ‖v1‖X ≤ R, ‖v2‖X ≤ R, (3.10)

where CR is a constant. Finally, let

[T0, T1]× domAα0 3 (t, v) 7−→ f(t, v) ∈ X

Preprint 765, Weierstraß–Institut für Angewandte Analysis und Stochastik, Berlin 2002



Classical Solutions of Quasilinear Parabolic Systems 9

be a mapping obeying∥∥f(t1,A−α0 v1)− f(t2,A−α0 v2)
∥∥
X
≤ CR (|t1 − t2|η + ‖v1 − v2‖X)

for all t1, t2 ∈ [T0, T1] and all v1, v2 ∈ X with ‖v1‖X ≤ R, ‖v2‖X ≤ R. (3.11)

If ‖Aα0 v0‖X < R, then there is an interval [T0, T ], T > T0, such that the equation

∂v

∂t
+A(t, v(t))v = f(t, v), v(T0) = v0 (3.12)

admits exactly one solution on [T0, T ] which belongs to the space

C([T0, T ]; domAα0 ) ∩ C(]T0, T ]; domA0) ∩ C1(]T0, T ];X). (3.13)

4 Exact formulation of the problem

At first we will make precise assumptions about the operators Ek, Fk, and Gk,

k ∈ {1, . . . , l}, and the boundary conditions. We always make Assumption 2.1 and

Assumption 2.3.

4.1 Assumption. With respect to the numbers qk from Proposition 3.2 there are

numbers q, η, and γ with

2 < q ≤ min
k∈{1,...,l}

qk, 0 < η ≤ 1,
1

2
+

1

q
< γ < 1, p :=

q

2
(4.1)

such that:

i) Ek, k ∈ {1, . . . , l}, maps [T0, T1] ×H1,q into the set L∞ ∩ {ψ : ψ > 0}. For

any bounded set M ⊂ H1,q there is

min
k∈{1,...,l}

inf
t ∈ [T0, T1], w ∈M

vraimin
x∈Ω

Ek (t,w) (x) > 0, (4.2)

and a constant EM such that

‖Ek (t1,w1)− Ek (t2,w2)‖L∞ ≤ EM (|t1 − t2|η + ‖w1 −w2‖H1,q) (4.3)

for all k ∈ {1, . . . , l}, t1, t2 ∈ [T0, T1] and w1, w2 ∈M .

ii) Fk, k ∈ {1, . . . , l}, maps [T0, T1]×H1,q into the set H1,q ∩ {ψ : ψ > 0}. For

any bounded set M ⊂ H1,q there is

min
k∈{1,...,l}

inf
t ∈ [T0, T1], w ∈M

inf
x∈Ω

Fk (t,w) (x) > 0. (4.4)

Preprint 765, Weierstraß–Institut für Angewandte Analysis und Stochastik, Berlin 2002



10 Hans-Christoph Kaiser, Hagen Neidhardt, and Joachim Rehberg

and a constant FM such that

‖Fk (t1,w1)− Fk (t2,w2)‖H1,q ≤ FM (|t1 − t2|η + ‖w1 −w2‖H1,q) (4.5)

for all k ∈ {1, . . . , l}, t1, t2 ∈ [T0, T1] and w1, w2 ∈M .

iii) Gk, k ∈ {1, . . . , l}, maps [T0, T1] ×H1,q into Lp. Moreover, for any bounded

set M ⊂ H1,q there is a constant GM such that

‖Gk (t1,w1)−Gk (t2,w2)‖Lp ≤ GM (|t1 − t2|η + ‖w1 −w2‖H1,q) (4.6)

for all k ∈ {1, . . . , l}, t1, t2 ∈ [T0, T1], and w1, w2 ∈M .

iv) There are functions Φk ∈ Cη([T0, T1];H1,q), k ∈ {1, . . . , l}, representing the

inhomogeneous Dirichlet boundary conditions for the uk. For all t ∈ [T0, T1]

the distributional derivatives ∇ · (µk∇Φk(t)) belong to Lp and there is in the

sense of traces, cf. [16, Ch. 1],

Φk(t)|∂Ω\Γk = φk(t) and ν · (µk∇Φk(t)) = 0 on Γk.

Moreover, the mapping

[T0, T1] 3 t 7→ ∇ · (µk∇Φk(t)) ∈ Lp k ∈ {1, . . . , l}

is from Cη([T0, T1];Lp). Further,

Φk ∈ C1([T0, T1];Lp),
∂Φk

∂t
∈ Cη([T0, T1];Lp), k ∈ {1, . . . , l}.

In the sequel we will denote by Φ(t) the vector
(
Φ1(t), . . . ,Φl(t)

)
.

v) If u0 = (u0
1, . . . , u

0
l ), then u0 − Φ(T0) belongs to the complex interpolation

space
[
L̃p,D

]
γ

for some number γ, cf. (4.1). N.B. D is the domain of the

operator A from Definition 2.5.

4.2 Remark. In the formal equation (1.1) Gk was allowed to depend on the gra-

dient of the solution while this dependence here seems to be forbidden. In fact,

this is not the case as operators such as e.g. Gk (t,u) := ‖∇u‖2
R2l are covered by

Assumption 4.1.

4.3 Example. Let ξ : [T0, T1] × R →]0,∞[ be a mapping which satisfies the

following conditions:
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Classical Solutions of Quasilinear Parabolic Systems 11

i) for any R > 0 there is

inf
(t,s)∈[T0,T1]×[−R,R]

ξ(t, s) > 0;

ii) for any fixed t ∈ [T0, T1] the function ξ(t, ·) is twice differentiable;

iii) there is a number η ∈]0, 1] and for any R > 0 there is a constant cR such that

|ξ(t1, s)− ξ(t2, s)|+ |∂2ξ(t1, s)− ∂2ξ(t2, s)| ≤ cR|t1 − t2|η

for all s ∈ [−R,R] and all t1, t2 ∈ [T0, T1];

iv) for any R > 0 there is

sup
(t,s)∈[T0,T1]×[−R,R]

∣∣∂2
2ξ(t, s)

∣∣ <∞.
If w ∈ H1,q, 2 < q ≤ q1, and F1(t, w) denotes the Nemytzkii operator F1(t, w)(x) :=

ξ
(
t, w(x)

)
, induced by the function ξ(t, ·), then the mapping (t, w) 7→ E1(t, w)

satisfies Assumption 4.1.ii.

One can generalize Example 4.3 in a straightforward way to a Nemytzkii operator

F1(t, w)(x) := ξ
(
t, x, w(x)

)
induced by a function ξ : [T0, T1]×Ω×R→]0,∞[. The

next example demonstrates that Assumption 4.1 does not restrict the mappings Ek,

Fk, and Gk to Nemytzkii operators.

4.4 Example. Let Γ∗ and µ∗ be a part of ∂Ω and a real 2× 2 matrix function to

which apply mutatis mutandis Assumption 2.1 and Assumption 2.3, respectively,

and let a∗ : H1,2
∗ → H−1,2

∗ be the corresponding operator as in Definition 2.4 and

let q∗ be the associated number from Proposition 3.2. Suppose F1 and F2 to be

mappings from R into ]0,∞[ which are either multiples of exponentials or strictly

monotonous, twice continuously differentiable, polynomially bounded functions (e.g.

Fermi’s integral to the index one half). Further, let

w1, w2 ∈ H1,q, d ∈ H−1,q
∗ , 2 < q ≤ min {q∗, q1, q2}

be given, and let P be the operator which assigns to the tuple (w1, w2) the solution

ϕ of the equation

a∗ϕ+ F1(w1 + ϕ)− F2(w2 − ϕ) = d.

This solution exists and is unique because the operator

H1,2
∗ 3 ϕ 7→ a∗ϕ+ F1(w1 + ϕ)− F2(w2 − ϕ) ∈ H−1,2

∗
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is well defined and strongly monotone. Moreover, as a∗ provides an isomorphism

between H1,q
∗ and H−1,q

∗ , cf. Proposition 3.2, ϕ even belongs to H1,q
∗ ⊂ H1,q. If one

defines

F1

(
t, (w1, w2)

)
:= F1

(
w1 + P(w1, w2)

)
, F2

(
t, (w1, w2)

)
:= F2

(
w2 − P(w1, w2)

)
,

then F1, F2 satisfy Assumption 4.1.ii.

4.5 Remark. The importance of the first example is evident. The second example

plays a role in the theory of van Roosbroeck’s system which describes the flow of

electrons and holes in semiconductors, cf. e.g. [14] and [4]. Based upon Theo-

rem 5.10 we shall derive a local, unique solution of van Roosbroeck’s system on two

dimensional domains in a forthcoming paper [12].

4.6 Definition. We fix from now on the numbers q, η, γ, and p := q
2

according

to Assumption 4.1 and the operators Ak : domAk → L̃p and A : D → L̃p from

Definition 2.5 always will refer to this number p. Furthermore, let P : H̃1,q → H1,q

be the mapping onto the real part of H̃1,q which takes componentwise the real part

of the function, and let Q : Lp → L̃p be the canonic embedding of the real space

into the complex one.

Now we present a precise formulation of the formal equations (1.1).

4.7 Definition. We say that u = v + Φ is a local solution of (1.1), if there is a

solution v to the following

4.8 Problem. Determine a number T ∈]T0, T1] and a function

v ∈ C([T0, T ],Lp) ∩ C(]T0, T ],PD) ∩ C1(]T0, T ],Lp) (4.7)

such that

v(T0) = u0 −Φ(T0), (4.8)

and

∂vk
∂t

(t) + (Ek (t,v(t) + Φ(t))Fk (t,v(t) + Φ(t))Ak + 1) vk(t)

= vk(t)−
∂Φk

∂t
(t)

+ Ek (t,v(t) + Φ(t)) 〈∇Fk (t,v(t) + Φ(t)), µk∇vk(t)〉R2

+Gk (t,v(t) + Φ(t))

− Ek (t,v(t) + Φ(t))Fk (t,v(t) + Φ(t))∇ · (µk∇Φk(t))

+ Ek (t,v(t) + Φ(t)) 〈∇Fk (t,v(t) + Φ(t)), µk∇Φk(t)〉R2

(4.9)

for all k ∈ {1, . . . , l} on ]T0, T ].
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4.9 Remark. We have split up

− Ek (t,v + Φ)∇ · (Fk (t,v + Φ)µk∇vk)
= Ek (t,v + Φ)Fk (t,v + Φ)Akvk

− Ek (t,v + Φ) 〈∇Fk (t,v + Φ), µk∇vk〉R2 .

This corresponds to the definition of the mappings ak and Ak, cf. Definition 2.4

and Definition 2.5, respectively, and the differentiation rules for distributions.

In Problem 4.8 an initial value problem for a system of operator differential equa-

tions in the real space Lp has been formulated. However, the methods for its solution

operate in complex Banach spaces, cf. Proposition 3.7. That’s why we now pass

over to a complex version of the problem.

4.10 Definition. For any (t,w) ∈ [T0, T1]× H̃1,q we define

Ẽk (t,w) := QEk (t,Pw) , F̃k (t,w) := QFk (t,Pw) , G̃k (t,w) := QGk (t,Pw) ,

where P and Q are the operators from Definition 4.6.

4.11 Lemma. If Assumption 4.1 applies to Ek, Fk, Gk, and Φk, k ∈ {1, . . . , l},
then Assumption 4.1 applies to Ẽk, F̃k, G̃k, and QΦk with the complexified function

spaces.

For the sake of simplicity, we denote the complexified functions QΦk and the vec-

tor
(
QΦ1, . . . , QΦl

)
again by Φk and Φ, respectively. Furthermore, in referring to

Assumption 4.1 we implicitly also refer to Lemma 4.11.

4.12 Problem. Determine a number T ∈]T0, T1] and a function

v ∈ C([T0, T ], L̃p) ∩ C(]T0, T ],D) ∩ C1(]T0, T ], L̃p), (4.10)

such that

v(T0) = u0 −Φ(T0), (4.11)

and

∂vk
∂t

(t) +
(
Ẽk (t,v(t) + Φ(t)) F̃k (t,v(t) + Φ(t))Ak + 1

)
vk(t) = fk(t,v(t))

for all k ∈ {1, . . . , l} and t ∈]T0, T ], (4.12)
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14 Hans-Christoph Kaiser, Hagen Neidhardt, and Joachim Rehberg

where

fk(t,v) = vk −
∂Φk

∂t
(t) + Ẽk (t,v + Φ(t))

〈
∇F̃k (t,v + Φ(t)), µk∇vk

〉
C2

+ G̃k (t,v + Φ(t))− Ẽk (t,v + Φ(t)) F̃k (t,v + Φ(t))∇ · (µk∇Φk(t))

+ Ẽk (t,v + Φ(t))
〈
∇F̃k (t,v + Φ(t)), µk∇Φk(t)

〉
C2
.

(4.13)

5 Existence and uniqueness of a solution

In this section we prove the local existence and uniqueness of a solution to Prob-

lem 4.8 under Assumption 2.1, Assumption 2.3, and Assumption 4.1. To that end

we prove, by means of Proposition 3.7, the local existence and uniqueness of a so-

lution to Problem 4.12. Proposition 3.7 applies with X := L̃p; at first we specify

the operator A0.

5.1 Definition. We define the mapping

(A1, . . . ,Al) : [T0, T1]× H̃1,q −→ B(D; L̃p),

D 3 (ψ1, . . . , ψl) 7−→ (A1(t,w)ψ1, . . . ,Al(t,w)ψl) ∈ L̃p,

where

Ak(t,w) := 1 + Ẽk (t,w + Φ(t)) F̃k (t,w + Φ(t))Ak, k ∈ {1, . . . , l}.

In particular, we denote by A0 the operator

A0 = (A1(T0,u0 −Φ(T0)), . . . ,Al(T0,u0 −Φ(T0))) . (5.1)

Furthermore, we abbreviate

Uk := Ẽk (T0,u0) F̃k (T0,u0) k ∈ {1, . . . , l};

thus,

A0 = (1 + U1A1, . . . , 1 + UlAl) . (5.2)

5.2 Remark. Definition 5.1 is justified because according to Assumption 4.1 and

Lemma 4.11 the functions Ẽk (t,w + Φ(t)) and F̃k (t,w + Φ(t)) have strictly posi-

tive essential lower and upper bounds for all (t,w) ∈ [T0, T1] × H̃1,q; N.B. H̃1,q ↪→
L̃∞. Hence, the multiplication operator induced by

Ẽk (t,w + Φ(t)) F̃k (t,w + Φ(t))
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is a linear homeomorphism on L̃p which implies

dom Ak = dom
(
1 + Ẽk (t,w) F̃k (t,w)Ak

)
= dom

(
1 + Ak

)
= domAk (5.3)

for all t ∈ [T0, T1] and w ∈ H̃1,q including the equivalence of the norms

‖Ak · ‖L̃p and
∥∥(1 + Ak

)
·
∥∥
L̃p
.

In particular, there is D = dom A = domA0.

Having an application of Proposition 3.7 in mind, our first goal is to prove the

precondition (3.9) for the operator A0 from Definition 5.1. Thus, we also will be

able to make use of Proposition 3.5 for the operator B := A0.

5.3 Theorem. The domain D of the operator A0 from Definition 5.1 is dense in

L̃p. With respect to the Banach space X := L̃p the operator A0 satisfies the resolvent

estimate (3.9).

Proof. Proposition 3.4 applies to the kth component of the operator A0 with U :=

Uk = Ẽk (T0,u0) F̃k (T0,u0). According to Assumption 4.1.i and Assumption 4.1.ii

the function Uk has strictly positive essential lower and upper bounds; N.B. H̃1,q ↪→
L̃∞. By Proposition 3.4 now follows that UkAk is densely defined and obeys the

resolvent estimate (3.3). Hence, A0 is densely defined and obeys the resolvent

estimate (3.9).

5.4 Theorem. For every α ∈]1
2

+ 1
q
, 1[ the space domAα0 , equipped with the norm

‖Aα0 · ‖L̃p continuously embeds into H̃1,q
0 .

Proof. It suffices to prove, cf. (5.2),

dom (1 + UkAk)
α ↪→ H̃1,q

k for all k ∈ {1, . . . , l}. (5.4)

Lemma 3.6 applies to this situation with

Y := H̃1,q
k , X := H̃−1,q

k , X0 := L̃p, B := ak + 1;

N.B. p = q
2

and Assumption 4.1 applies. We verify the preconditions of Lemma 3.6.

At first, from Proposition 3.1 one obtains

H̃
− 1
p
,q

k =
[
H̃−1,q
k , H̃1,q

k

]
q−2
2q

. (5.5)

Preprint 765, Weierstraß–Institut für Angewandte Analysis und Stochastik, Berlin 2002



16 Hans-Christoph Kaiser, Hagen Neidhardt, and Joachim Rehberg

According to [17, 4.6.1] the embeddings

H̃
1
p
,q′

k ↪→ H̃
1
p
,q′ ↪→ L̃p

′
, 1

p
+ 1

p′
= 1

q
+ 1

q′
= 1

are continuous, hence,

L̃p ↪→ H̃
− 1
p
,q

k . (5.6)

The operators B = ak + 1 and B0 = Ak + 1, cf. Definition 2.4 and Definition 2.5,

respectively, obey the resolvent estimates (3.6) and (3.7), respectively. Lemma 3.6

yields [
L̃p, domAk

]
α
↪→ H̃1,q

k for all α ∈
]

1
2

+ 1
q
, 1
[
. (5.7)

(5.3) and (5.7) imply[
L̃p, dom (1 + UkAk)

]
α
↪→ H̃1,q

k for all α ∈]1
2

+ 1
q
, 1[. (5.8)

Now the assertion (5.4) follows from (5.8) by means of (3.5), cf. Proposition 3.5,

thereby observing Theorem 5.3.

5.5 Definition. Let α be an arbitrary but from now on fixed number from the

interval
]

1
2

+ 1
q
, γ
[
, where q and γ are the numbers from Assumption 4.1. Then we

denote by A the restriction of the operator (A1, . . . ,Al) from Definition 5.1 to the

domain

domA := [T0, T1]× domAα0 .

Moreover, we denote by κ the embedding constant from domAα0 into H̃1,q

‖y‖H̃1,q
0

= ‖y‖H̃1,q ≤ κ ‖Aα0 y‖L̃p for all y ∈ domAα0 (5.9)

and by λ the embedding constant from H̃1,q into L̃∞

‖ψ‖L̃∞ ≤ λ ‖ψ‖H̃1,q for all ψ ∈ H̃1,q. (5.10)

5.6 Remark. The definition of A and κ is justified because of Theorem 5.4.

5.7 Lemma. Let M be a bounded set in domAα0 . Then there are constants ÊM and

F̂M such that

max
k∈{1,...,l}

sup
(t,y)∈[T0,T1]×M

∥∥Ẽk (t,y + Φ(t))
∥∥
L̃∞
≤ ÊM <∞,

max
k∈{1,...,l}

sup
(t,y)∈[T0,T1]×M

∥∥F̃k (t,y + Φ(t))
∥∥
H̃1,q ≤ F̂M <∞,

(5.11)
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and∥∥Ẽk (t1,y1 + Φ(t1))− Ẽk (t2,y2 + Φ(t2))
∥∥
L̃∞

≤ ÊM
(
|t1 − t2|η + ‖Aα0 y1 −Aα0 y2‖L̃p

)
, (5.12)

∥∥F̃k (t1,y1 + Φ(t1))− F̃k (t2,y2 + Φ(t2))
∥∥
H̃1,q

≤ F̂M
(
|t1 − t2|η + ‖Aα0 y1 −Aα0 y2‖L̃p

)
(5.13)

for all k ∈ {1, . . . , l}, all t1, t2 ∈ [T0, T1], and all y1, y2 ∈M .

Proof. According to Theorem 5.4 the set M is not only bounded in domAα0 but also

in H̃1,q. Thus, by means of Assumption 4.1.i, Lemma 4.11, and Assumption 4.1.iv

we can estimate∥∥Ẽk (t1,y1 + Φ(t1))− Ẽk (t2,y2 + Φ(t2))
∥∥
L̃∞

≤ EM
(
|t1 − t2|η + ‖y1 + Φ(t1)− y2 −Φ(t2)‖H̃1,q

)
≤ EM

(
|t1 − t2|η + ‖Φ‖Cη([T0,T1];H̃1,q)|t1 − t2|

η + ‖y1 − y2‖H̃1,q

)
≤ EM

(
(1 + ‖Φ‖Cη([T0,T1];H̃1,q))|t1 − t2|

η + κ‖Aα0 y1 −Aα0 y2‖L̃p
)
.

This proves (5.12). In order to show (5.13) we estimate by means of Assump-

tion 4.1.ii, Lemma 4.11, and Assumption 4.1.iv:∥∥F̃k (t1,y1 + Φ(t1))− F̃k (t2,y2 + Φ(t2))
∥∥
H̃1,q

≤ FM
(
|t1 − t2|η + ‖y1 + Φ(t1)− y2 −Φ(t2)‖H̃1,q

)
≤ FM

(
|t1 − t2|η + ‖Φ‖Cη([T0,T1];H̃1,q)|t1 − t2|

η + ‖y1 − y2‖H̃1,q

)
≤ FM

(
(1 + ‖Φ‖Cη([T0,T1];H̃1,q))|t1 − t2|

η + κ‖Aα0 y1 −Aα0 y2‖L̃p
)
.

(5.11) follows from (5.12) and (5.13).

5.8 Theorem. The operator A from Definition 5.5 satisfies (3.10) with respect to

the Banach space X := L̃p.

Proof. For an arbitrary R > 0 we regard the ball BR with radius R in the space L̃p.

Then the set A−α0 BR is identical with the R–ball in domAα0 ; hence, it is a bounded

set in H̃1,q, cf. Theorem 5.4. Let

t1, t2 ∈ [T0, T1], w1, w2 ∈ BR (5.14)
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be arbitrarily chosen. We abbreviate

yj =
(
yjk
)
k∈{1,...,l} := A−α0 wj, Ẽj

k := Ẽk (tj,yj + Φ(tj)) ,

F̃ j
k := F̃k (tj,yj + Φ(tj)) , G̃j

k := G̃k (tj,yj + Φ(tj)) ,
j = 1, 2. (5.15)

Then the k–th component of
(
A(t1,y1) − A(t2,y2)

)
A−1

0 can be estimated in the

following way ∥∥((1 + Ẽ1
kF̃

1
kAk)− (1 + Ẽ2

kF̃
2
kAk)

)
(1 + UkAk)

−1
∥∥
B(L̃p)

≤

∥∥∥∥∥Ẽ1
kF̃

1
k − Ẽ2

kF̃
2
k

Uk

∥∥∥∥∥
B(L̃p)

∥∥UkAk(1 + UkAk)
−1
∥∥
B(L̃p)

≤

∥∥∥∥∥Ẽ1
kF̃

1
k − Ẽ2

kF̃
2
k

Uk

∥∥∥∥∥
L∞

(
1 +

∥∥(1 + UkAk)
−1
∥∥
B(L̃p)

)
=

∥∥Ẽ1
kF̃

1
k − Ẽ2

kF̃
2
k

∥∥
L∞

1 +
∥∥(1 + UkAk)

−1
∥∥
B(L̃p)

vraiminx∈Ω Uk(x)
.

The last fraction is finite according to Assumption 4.1 and Proposition 3.4. Thus,

it remains to estimate by means of Lemma 5.7 and (5.10)∥∥Ẽ1
kF̃

1
k − Ẽ2

kF̃
2
k

∥∥
L∞

(5.16)

≤
∥∥(Ẽk (t1,y1 + Φ(t1))− Ẽk (t2,y2 + Φ(t2))

)
F̃k (t1,y1 + Φ(t1))

∥∥
L∞

+
∥∥Ẽk (t2,y2 + Φ(t2))

(
F̃k (t1,y1 + Φ(t1))− F̃k (t2,y2 + Φ(t2))

)∥∥
L∞

≤ 2λ ÊA−α0 BR
F̂A−α0 BR

(
|t1 − t2|η + ‖w1 −w2‖L̃p

)
.

In order to apply Sobolevskii’s Proposition 3.7 to the Problem 4.12 we still have to

prove that the right hand side of (4.12) satisfies (3.11).

5.9 Theorem. Each fk from (4.13) provides a mapping from [T0, T1] × H̃1,q into

L̃p. Moreover, if BR is again the ball with radius R in L̃p, and f denotes the vector

(f1, . . . , fl), then for each R > 0 there is a constant CR such that∥∥f(t1,A−α0 w1)− f(t2,A−α0 w2)
∥∥

L̃p
≤ CR

(
|t1 − t2|η + ‖w1 −w2‖L̃p

)
(5.17)

for all t1, t2 ∈ [T0, T1] and all w1, w2 ∈ BR.

Proof. The first assertion immediately follows from Assumption 4.1. We suppose

t1, t2 ∈ [T0, T1] and w1, w2 ∈ BR to be arbitrarily chosen and adopt the notation
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(5.15). As in the proof of Theorem 5.8 one obtains that A−α0 BR is a bounded set in

H̃1,q; A−α0 BR is contained in the κR ball of H̃1,q, cf. (5.9). For each k ∈ {1, . . . , l}
there is∥∥fk(t1,y1)− fk(t2,y2)

∥∥
L̃p
≤
∥∥∥∥∂Φk

∂t
(t1)− ∂Φk

∂t
(t2)

∥∥∥∥
L̃p

+
∥∥y1

k − y2
k

∥∥
L̃p

(5.18)

+
∥∥∥Ẽ1

k

〈
∇F̃ 1

k , µk∇y1
k

〉
C2
− Ẽ2

k

〈
∇F̃ 2

k , µk∇y2
k

〉
C2

∥∥∥
L̃p

(5.19)

+
∥∥∥G̃1

k − G̃2
k

∥∥∥
L̃p

(5.20)

+
∥∥∥Ẽ1

kF̃
1
k∇ · (µk∇Φk(t1))− Ẽ2

kF̃
2
k∇ · (µk∇Φk(t2))

∥∥∥
L̃p

(5.21)

+
∥∥∥Ẽ1

k

〈
∇F̃ 1

k , µk∇Φk(t1)
〉
C2
− Ẽ2

k

〈
∇F̃ 2

k , µk∇Φk(t2)
〉
C2

∥∥∥
L̃p
. (5.22)

We estimate the addends on the right hand side separately and will show that each

of them has an upper bound as claimed in (5.17). For the first term on the right

hand side of (5.18) this follows directly from Assumption 4.1.iv and Lemma 4.11.

The second addend can be estimated∥∥y1
k − y2

k

∥∥
L̃p
≤ ‖y1 − y2‖L̃p ≤

∥∥A−α0

∥∥
B(L̃p)

‖w1 −w2‖L̃p .

The norm (5.19) can be estimated∥∥∥Ẽ1
k

〈
∇F̃ 1

k , µk∇y1
k

〉
C2
− Ẽ2

k

〈
∇F̃ 2

k , µk∇y2
k

〉
C2

∥∥∥
L̃p

≤
∥∥(Ẽ1

k − Ẽ2
k)
〈
∇F̃ 1

k , µk∇y1
k

〉
C2

∥∥
L̃p

+
∥∥Ẽ2

k

〈
∇(F̃ 1

k − F̃ 2
k ), µk∇y1

k

〉
C2

∥∥
L̃p

+
∥∥Ẽ2

k

〈
∇F̃ 2

k , µk∇(y1
k − y2

k)
〉
C2

∥∥
L̃p

≤
∥∥Ẽ1

k − Ẽ2
k

∥∥
L̃∞

∥∥F̃ 1
k

∥∥
H̃1,qµ

•‖y1‖H̃1,q +
∥∥Ẽ2

k

∥∥
L̃∞

∥∥F̃ 1
k − F̃ 2

k

∥∥
H̃1,qµ

•‖y1‖H̃1,q

+
∥∥Ẽ2

k

∥∥
L̃∞

∥∥F̃ 2
k

∥∥
H̃1,qµ

•‖y1 − y2‖H̃1,q .

Taking into account Lemma 5.7 and domAα0 ↪→ H1,q, cf. Theorem 5.4, we continue

≤ µ•κ(2R + 1)ÊA−α0 BR
F̂A−α0 BR

(
|t1 − t2|η + ‖w1 −w2‖L̃p

)
.

As for the term (5.20) one obtains according to Assumption 4.1.iii and (5.9)∥∥∥G̃1
k − G̃2

k

∥∥∥
L̃p
≤ GA−α0 BR

(|t1 − t2|η + ‖y1 − y2‖H1,q)

≤ GA−α0 BR
(1 + κ)

(
|t1 − t2|η + ‖w1 −w2‖L̃p

)
.

The term (5.21) can be estimated∥∥Ẽ1
kF̃

1
k∇ · (µk∇Φk(t1))− Ẽ2

kF̃
2
k∇ · (µk∇Φk(t2))

∥∥
L̃p

≤
∥∥Ẽ1

kF̃
1
k − Ẽ2

kF̃
2
k

∥∥
L̃∞

∥∥∇ · (µk∇Φk(t1))
∥∥
L̃p

+
∥∥Ẽ2

kF̃
2
k

∥∥
L̃∞

∥∥∇ · (µk∇Φk(t1))−∇ · (µk∇Φk(t2))
∥∥
L̃p
.
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According to (5.10), (5.16) Lemma 5.7, and Assumption 4.1.iv this term is bounded

from above by

3λ ÊA−α0 BR
F̂A−α0 BR

∥∥∇ · (µk∇Φk)
∥∥
Cη([T0,T1];L̃p)

(
|t1 − t2|η + ‖w1 −w2‖L̃p

)
.

Finally, the term (5.22) can be treated as follows:∥∥∥Ẽ1
k

〈
∇F̃ 1

k , µk∇Φk(t1)
〉
C2
− Ẽ2

k

〈
∇F̃ 2

k , µk∇Φk(t2)
〉
C2

∥∥∥
L̃p

≤
∥∥∥(Ẽ1

k − Ẽ2
k

)〈
∇F̃ 1

k , µk∇Φk(t1)
〉
C2

∥∥∥
L̃p

+
∥∥∥Ẽ2

k

〈
∇(F̃ 1

k − F̃ 2
k ), µk∇Φk(t1)

〉
C2

∥∥∥
L̃p

+
∥∥∥Ẽ2

k

〈
∇F̃ 1

k , µk∇(Φk(t1)− Φk(t2)
〉
C2

∥∥∥
L̃p
.

Making use of (2.1) we continue

≤
∥∥Ẽ1

k − Ẽ2
k

∥∥
L̃∞

∥∥F̃ 1
k

∥∥
H̃1,qµ

•∥∥Φk(t1)
∥∥
H̃1,q

+
∥∥Ẽ2

k

∥∥
L̃∞

∥∥F̃ 1
k − F̃ 2

k

∥∥
H̃1,qµ

•∥∥Φk(t1)
∥∥
H̃1,q

+
∥∥Ẽ2

k

∥∥
L̃∞

∥∥F̃ 1
k

∥∥
H̃1,qµ

•∥∥Φk(t1)− Φk(t2)
∥∥
H̃1,q

and by means of Lemma 5.7 and Assumption 4.1.iv we finish this estimate

≤ ÊA−α0 BR
F̂A−α0 BR

µ•
∥∥Φ∥∥

Cη([T0,T1];H̃1,q)

(
|t1 − t2|η + ‖w1 −w2‖L̃p

)
.

5.10 Theorem. Problem 4.12 admits exactly one solution

v ∈ C([T0, T ], domAα0 ) ∩ C(]T0, T ],D) ∩ C1(]T0, T ], L̃p).

The function u := v + Φ is a local solution of (1.1) in the sense of Definition 4.7.

Proof. The first assertion is implied by Proposition 3.7 which applies with respect

to the Banach space X := L̃p to the operators A0 and A(t,w) from Definition 5.5.

According to Theorem 5.3, Theorem 5.8, and Theorem 5.9 the preconditions of

Proposition 3.7 on the operators and the right hand side of the equation are fulfilled.

As for the initial value, (3.4) from Proposition 3.5 implies u0−Φ(T0) ∈ domAβ0 for

any β ∈]α, γ[.

The complex conjugate v of v also is a solution of (4.12) and has the same initial

value. Hence, v = v, i.e. v takes its values in Rl and satisfies (4.9).
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