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Abstract

Non-selfadjoint operators play an important role in the modeling of open quantum systems.

We consider a one-dimensional Schrödinger-type operator of the form

�

1

2

d

dx

1

m

d

dx
+ V �

X
�jÆ(� � xj); Im(�j) > 0;

with dissipative boundary conditions. An explicit description of the characteristic function, the

minimal dilation and the generalized eigenfunctions of the dilation is given. The quantities of

carrier and current densities are rigorously de�ned. Furthermore we will show that the current

is not constant and that the variation of the current depend essentially on the chosen density

matrix and the imaginary parts of the delta potentials, i.e. Im(�j). This correspondence can

be used to model a recombination-generation rate in the open quantum system.

2000 Mathematics Subject Classi�cation: 47B44, 47E05, 47A20, 47A55

Keywords: open quantum system, dissipative Schrödinger operator, delta perturbation, recombi-

nation, generation, dilation, characteristic function, generalized eigenfunctions, carrier and current

densities, density matrix

Contents

1 Introduction 2

2 Dissipative Schrödinger operators 3

3 The characteristic function 5

4 Dilations 7

5 Eigenfunction expansion 12

6 Carrier density 14

7 Current density 17

8 Current variations 21

9 Remarks 24



2 M. Baro, H. Neidhardt

1 Introduction

To embed a quantum mechanically described structure into a macroscopic �ow, one has to replace

the selfadjoint boundary conditions by non-selfadjoint ones [KNR01a, Fre90, BA98, BADM97].

This leads to so-called open quantum systems. One-dimensional Schrödinger-type operators with

dissipative boundary conditions have been intensely studied in [KNR01b]. We extend the model

used there by adding dissipative delta perturbations, i.e. we consider an operator formally given

by

H = �
1

2

d

dx

1

m

d

dx
+ ~V ; (1.1)

where

~V (�) = V (�)�
NX
j=1

�jÆ(� � xj); (1.2)

xj 2 (a; b), xj 6= xi for i 6= j, and �j 2 C+ := fz 2 C j Im(z) > 0g. The potential V is assumed

to be a real-valued L2([a; b])-function and the e�ective mass m > 0 satis�es m; 1
m
2 L

1(a; b).

Point interactions of this kind are extensively studied in the literature for self-adjoint boundary

conditions and real coupling constants �j , cf. [AGHH88, AK00] and references therein. Since the

boundary conditions are not self-adjoint and the coupling constant are complex the expression

(1.1)-(1.2) generates a maximal dissipative operator, see below. Such operators naturally arises

if one is interested in mathematical models for semiconductor devices with recombination and

generation processes of carriers which are embedded in a macrostructure. This case is not treated

in [AGHH88] and [AK00]. To analyze such operators it is fruitful to use the dilation theory for

maximal dissipative operators [FN70, D80]. To Schrödinger operators this approach was speci�ed

in [P77, P76, P84, P96, P99], see also [A87, A88, A89, A90, A93, A97]. In [KNR01c] this approach

was used to de�ne quantities such as steady states, carrier and current density for devices without

recombination and generation. In the present article we modi�ed this approach to �t our situation,

i.e. where recombination and generation processes are included.

In an one-dimensional drift-di�usion model (cf. [S84, M86, MRS90, J01]) the macroscopic �ow is

modeled by the continuity equations

@
@t
n(x; t) � @

@x
Jn(x; t) = �R(n; p);

@
@t
p(x; t) + @

@x
Jp(x; t) = �R(n; p);

(1.3)

where n; p denote the electron and hole densities, Jn; Jp the corresponding currents and R(n; p)

the recombination-generation rate. The stationary continuity equation is given by equation (1.3),

where @
@t
n(x; t) = @

@t
p(x; t) = 0 and Jk(x; t) = Jk(x), k = n; p. Replacing carrier densites n; p and

current densities Jn; Jp by quantum mechanical expressions like [KNR01c] we are able to include

recombination-generation e�ects into the open quantum system determined by (1.1) and (1.2) and

to preserve the form of the continuity equations (1.3) for the quantum mechanically described

structure. However, this implies that one has to chosen the imaginary parts of the coupling

constants �j in an appropriate manner. We outline how the imaginary parts has to be chosen.

In forthcoming papers we have the aim to consider a dissipative Schrödinger-Poisson [BKNR02a]

system with recombination and generation e�ects.

The paper is organized as follows: In section 2 we rigorously de�ne the dissipative Schrödinger-

type operator and show that the operator H is maximal dissipative. We use the well-know dilation

theory as a main tool for our investigations. Therefore, the characteristic function and the minimal

dilation corresponding to the maximal dissipative operator are the main objective in the sections

3 and 4. Section 5 is devoted to the generalized eigenfunctions of the dilation operator. In the

sections 6 and 7 we give a de�nition of the density matrix and de�ne the quantities of carrier and

current densities in terms of the generalized eigenfunctions of the dilation (cf. [KNR01c]). The

motivation for this de�nition is, that the selfadjoint dilation is regarded as the Hamiltonian of

a larger closed system which contains the open system given by the dissipative operator H . In
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section 8 we show that, depending on the density matrix, loss and/or gain e�ect of the open system

can be achieved. We close with some remarks and a discussion on how the imaginary parts of the

delta potentials have to be chosen in order to include recombination-generation processes within

the open quantum model.

2 Dissipative Schrödinger operators

Let xj , j = 1; � � � ; N , be numbers contained in the bounded interval 
 := (a; b) � R, such that

a < x1 < x2 < � � � < xN < b. Furthermore let V 2 L2(a; b) be real-valued, and m 2 L1(a; b), with

m > 0 and 1
m
2 L1(a; b). In accordance with [KNR01b] we de�ne the sesquilinear form

t[u; v] :=

Z b

a

1

2

1

m(x)
u(x)v(x) + V (x)u(x)v(x)dx

� �au(a)v(a)�
NX
j=1

�ju(xj)v(xj)� �bu(b)v(b);

for u; v 2 D(t) = W
1;2(a; b) and �a; �1; � � � ; �N ; �b 2 C+ := fz 2 C j Im(z) > 0g. Mimicking the

proof of Theorem 2.20 in [KNR01a], we get that the form t is closed on H = L
2(a; b) and sectorial.

Thus we get the existence of a maximal sectorial operator H , such that (Hf; v) = t[f; v] for all

f 2 D(H) and v 2 D(t). It can be shown that the operator H is given by

D(H) =

8>>><
>>>:
f 2W1;2(a; b)

���������

1
m
f 0 2W1;2(a; x1)�

LN�1
j=1 W

1;2(xj ; xj+1)�W1;2(xN ; b);
1

2m(a)
f 0(a) = ��af(a); 1

2m(b)
f 0(b) = �bf(b)

1
2m(xj+0)

f 0(xj + 0)� 1
2m(xj�0)

f 0(xj � 0) = ��jf(xj);
8j = 1; � � � ; N

9>>>=
>>>;
;

and

(Hf)(x) = (l(f))(x); f 2 D(H);

where

(l(f))(x) := �
1

2

d

dx

1

m(x)

d

dx
f(x) + V (x)f(x):

Since �a; �1; � � � ; �N ; �b 2 C+ , the operator H is dissipative, i.e. Im(Hf; f) � 0, f 2 D(H). This

can be seen by

Im(Hf; f) = Im t[f; f ] = �
�2a

2
jf(a)j2 �

�2b
2
jf(b)j2 �

NX
j=1

�2j

2
jf(xj)j2;

where �a = qa +
i�2a
2
; � � � ; �b = qb +

i�2b
2
, for some qa; � � � ; qb; �a; � � � ; �b 2 R, �a; � � � ; �b > 0.

A dissipative operator is called maximal dissipative, if it does not admit any proper dissipative

extension. Since H is maximal sectorial it is also maximal dissipative. Furthermore, H is purely

maximal dissipative (cf. [KNR01a]), i.e. it has no selfadjoint part [FN70]. This implies that H

has no real eigenvalues.

Let us introduce some notions. For simplicity we will occasional write a = x0, �a = �0, �a = �0,

b = xN+1, �b = �N+1, and �b = �N+1. We set

�(g; f)(x) :=
1

2m(x+ 0)
g0(x+ 0)�

1

2m(x� 0)
f 0(x� 0); �(g)(x) := �(g; g)(x):

For a matrix A = (aij), with aij 2 C , A will denote the matrix in which every element is complex

conjugated, i.e. A = (aij).
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In order to get an explicit description of the resolvent of H we introduce the elementary solutions

va(x; z) and vb(x; z) de�ned by

l(va(�; z))(x) � zva(x; z) = 0; va(a; z) = 1; 1
2m(a)

v0a(a; z) = ��a;
�(va(�; z))(xj) = ��jva(xj ; z); 8j = 1; � � � ; N;

l(vb(�; z))(x)� zvb(x; z) = 0; vb(b; z) = 1; 1
2m(b)

v0b(b; z) = �b;

�(vb(�; z))(xj) = ��jvb(xj ; z); 8j = 1; � � � ; N:

The existence of these solutions can be proven as in [KNR01b].

The Wronskian of va(x; z) and vb(x; z) is de�ned by

W (va(�; z); vb(�; z))(x) := va(x; z)
1

2m(x)
v0b(x; z)� vb(x; z)

1

2m(x)
v0a(x; z):

We note that W (va(�; z); vb(�; z))(x) is constant for x 2 (xi; xi+1). Furthermore, one easily checks

that

W (va(�; z); vb(�; z))(xi � 0) =W (va(�; z); vb(�; z))(xi + 0):

Thus we write W (z) :=W (va(�; z); vb(�; z))(x).

The functions de�ned by

v�a(x; z) := va(x; z); and v�b(x; z) := vb(x; z);

are solutions of

l(v�a(�; z))(x)� zv�a(x; z) = 0; v�a(a; z) = 1; 1
2m(a)

v0
�a(a; z) = ��a

�(v�a(�; z))(xj) = ��jv�a(xj ; z); 8j = 1; � � � ; N;

l(v�b(�; z))(x) � zv�b(x; z) = 0; v�b(b; z) = 1; 1
2m(b)

v0
�b(b; z) = �b

�(v�b(�; z))(xj) = ��jv�b(xj ; z); 8j = 1; � � � ; N:

Obviously, the Wronskian W�(z) :=W (v�a(�; z); v�b(�; z))(x) satis�es W�(z) =W (z).

We are now able to write the resolvents of H and H� as integral operators, where the kernels are

given in terms of the elementary solutions (see also [K80]).

Theorem 2.1 Let V 2 L2(a; b) be real valued and �a; �1; � � � ; �N ; �b 2 C+ . Then the resolvent of

the maximal dissipative operator H is given by

((H � z)�1f)(x) = �
vb(x; z)

W (z)

Z x

a

va(y; z)f(y) dy �
va(x; z)

W (z)

Z b

x

vb(y; z)f(y) dy; (2.1)

for f 2 H and z 2 %(H).

The resolvent of the adjoint operator H� admits the representation

((H� � z)�1f)(x) = �
v�b(x; z)

W�(z)

Z x

a

v�a(y; z)f(y) dy �
v�a(x; z)

W�(z)

Z b

x

v�b(y; z)f(y) dy; (2.2)

for f 2 H and z 2 %(H�).

We omit the proof, but note that W (z) = 0, z 2 �(H) and W�(z) = 0, z 2 �(H�), where �(�)
denotes the spectrum of the corresponding operator.
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3 The characteristic function

We de�ne the unclosed operator � : H ! CN+2 by

�f =

0
BBBBB@

�bf(b)

��Nf(xN )
...

��1f(x1)
��af(a)

1
CCCCCA ; D(�) = C(a; b):

Let us introduce the operator valued function T (z) : H ! CN+2 given by

T (z)f := �(H � z)�1f; (3.1)

for f 2 H and z 2 %(H). Using the expression (2.1) we get

T (z)f =
1

W (z)

0
BBBBBB@

��b
R b
a
va(y; z)f(y) dy

�Nvb(xN ; z)
R xN
a

va(y; z)f(y) dy + �Nva(xN ; z)
R b
xN

vb(y; z) dy

...

�1vb(x1; z)
R x1
a

va(y; z)f(y) dy + �1va(x1; z)
R b
x1
vb(y; z) dy

�a
R b
a
vb(y; z)f(y) dy

1
CCCCCCA
:

The adjoint operator T (z)� is given by

(T (z)��)(x) =
1

W�(z)
f��bv�a(x; z)�b

+ �N (v�b(xN ; z)v�a(x; z)�[a;x1)(x) + v�a(xN ; z)v�b(x; z)�[xN ;b])�
N

...

+ a1(v�b(x1; z)v�a(x; z)�[a;x1)(x) + v�a(x1; z)v�b(x; z)�[x1;b])�
1

+ �av�b(x; z)�
ag;

for x 2 [a; b], where

� =

0
BBBBB@

�b

�N

...

�1

�a

1
CCCCCA 2 C

N+2 : (3.2)

Similarly, we de�ne T�(z) : H ! CN+2 by

T�(z)f := �(H� � z)�1f;

for f 2 H and z 2 %(H). Using equation (2.2) one gets

T�(z)f =
1

W (z)

0
BBBBBB@

��b
R b
a
v�a(y; z)f(y) dy

�Nv�b(xN ; z)
R xN
a

v�a(y; z)f(y) dy + �Nv�a(xN ; z)
R b
xN

v�b(y; z) dy

...

�1v�b(x1; z)
R x1
a

v�a(y; z)f(y) dy + �1v�a(x1; z)
R b
x1
v�b(y; z) dy

�a
R b
a
v�b(y; z)f(y) dy

1
CCCCCCA
:
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The adjoint operator has the representation

(T�(z)
��)(x) =

1

W (z)
f��bva(x; z)�b

+ �N (vb(xN ; z)va(x; z)�[a;xN )(x) + va(xN ; z)vb(x; z)�[xN ;b])�
N

...

+ �1(vb(x1; z)va(x; z)�[a;x1)(x) + va(x1; z)vb(x; z)�[x1;b])�
1

+ �avb(x; z)�
ag;

for x 2 [a; b].

Let us collect some properties of the above operators.

Lemma 3.1 Let V 2 L2(a; b) be real-valued, and �a; �1; � � � ; �N ; �b 2 C+ . Then we have

(H� � z)�1 � (H � z)�1 = �iT�(z)�T�(z) = �iT (z)�T (z); (3.3)

for z 2 %(H) \ %(H�).

Proof. A straightforward calculation shows that

(H�f; g)� (f;H�g) = i

N+1X
j=0

�2i f(xj)g(xj);

for f; g 2 D(H�). Setting f = (H� � z)�1h and g = (H� � z)�1k with h; k 2 H, z; z 2 %(H�), we

obtain

((H� � z)�1h; k)� (h; (H� � z)�1k) = �ihT�(z)h; T�(z)kiCN+2 ;

and the �rst equality in (3.3) is proven. The second relation can be proven in the same fashion. �

The characteristic function �H(�) is a crucial element in the study of completely non-selfadjoint

operators. It is a purely contractive valued and analytic function on C� , where C� := fz 2
C j Im(z) < 0g, cf. [FN70]. The characteristic function �H(�) of the maximal dissipative operator

H is a (N + 2)� (N + 2) matrix-valued function satisfying the relation

�H(z)T (z)f = T�(z)f; z 2 %(H) \ %(H�); f 2 H: (3.4)

Let us compute the characteristic function �H(�) of H :

Theorem 3.2 Let V 2 L2(a; b) be real-valued and �a; �1; � � � ; �N ; �b 2 C� . Then the characteristic

function of H is given by

�H(z) = ICN+2 �
i

W�(z)
�

0
BBBBB@

��
2

b
v�a(b; z) �b�Nv�a(xN ; z) � � � �b�1v�a(x1; z) �b�a

�N�bv�a(xN ; z) ��
2

Nv�a(xN ; z)v
�b(xN ; z) � � � ��N�1v�a(x1; z)v�b(xN ; z) ��N�av�b(xN ; z)

.

.

.
.
.
.

.

.

.
.
.
.

�1�bv�a(x1; z) ��1�Nv�a(x1; z)v�b(xN ; z) � � � ��
2

1
v�a(x1; z)v�b(x1; z) ��1�av�b(x1; z)

�a�b ��a�Nv
�b(xN ; z) � � � ��a�1v�b(x1; z) ��

2
av�b(a; z)

1
CCCCCA

(3.5)

for z 2 %(H) \ %(H�).

Proof. It remains to verify that �H(�) given by (3.5) satis�es (3.4).
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One easily checks, that equation (3.5) can be written as

�H(z) = ICN+2 � i�T (z)�: (3.6)

Using equation (3.3) we get

�H(z)T (z) = T (z)� i�T (z)�T (z) = �(H� � z)�1 = T�(z):

Thus equation (3.4) is veri�ed. �

Since

T (z)�T (z)� T�(z)
�T�(z) = �2Im(z)T (z)�T (z)T (z)�T (z); for z 2 %(H) \ %(H�);

we have for z 2 C� \ %(H) that

k�H(z)T (z)fk2 = kT�(z)fk2 � kT (z)fk2; f 2 H:

Thus �H(z) is a contraction for z 2 C� \ %(H). Since the spectrum of H consists of only isolated

eigenvalues in C� , we get that the characteristic function �H(z) admits a unique continuation to

all z 2 C� , cf. (3.6).

4 Dilations

Since H is a maximal dissipative operator, there exists a larger Hilbert space K containing H, i.e.
H � K, and a selfadjoint operator K on K such that

PK

H(K � z)�1
jH

= (H � z)�1; z 2 C+ ; (4.1)

(see [FN70]). The operator K is called a dilation of H . K is said to be a minimal selfadjoint

dilation, if

clospan
z2CnR

(K � z)�1H = K: (4.2)

All minimal selfadjoint dilation of a maximal dissipative operator are isomorphic. In particular,

all minimal selfadjoint dilation are unitarily equivalent.

The next step in our investigations is to obtain an explicit description of the selfadjoint dilation of

H . Let us introduce the Hilbert space K de�ned by

K := D� �H�D+;

with D� := L
2(R� ; C

N+2 ). Introducing the domain 
̂

R�

R�

R+

R+

[a; x1]

...

R�

R�

R+

R+

[xi; xi+1]

...

R�

R�

R+

R+

[xN ; b]
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we get K = L
2(
̂; dx). For ~g 2 K we write

~g := g� � g � g+;

where

g� =

0
BBBBB@

gb
�
(x)

gN
�
(x)
...

g1
�
(x)

ga
�
(x)

1
CCCCCA and g+ =

0
BBBBB@

gb+(x)

gN+ (x)
...

g1+(x)

ga+(x)

1
CCCCCA ;

for x 2 R� and x 2 R+ , respectively. Furthermore we will need the (N + 2) � (N + 2)-matrices

Kb
�
, Ka

�
, and K

j
�
, j = 1; � � � ; N , de�ned by

Kb
�
:=

1

�b

0
BBB@

1 0 � � � 0 ��b
0 � � � 0
...

...

0 � � � 0

1
CCCA ; Ka

�
:=

1

�a

0
BBB@

0 � � � 0
...

...

0 � � � 0

1 0 � � � 0 �a

1
CCCA ;

K
j
�
:=

1

�j

0
BBBBBB@

0 � � � 0
...

...

1 0 � � � 0 �j
...

...

0 � � � 0

1
CCCCCCA
 (j + 1)-th row;

and Kb
+ := Kb

�, K
a
+ := Ka

�, K
j
+ := K

j
�, as well as

E =

0
BBBBB@

0 � � � � � � 0 1

0 � � � � � � 0 0
...

...

0 0 � � � � � � 0

�1 0 � � � � � � 0

1
CCCCCA :

We set

ga =

0
BBBBB@

1
2m(a)

g0(a)

0
...

0

g(a)

1
CCCCCA ; gb =

0
BBBBB@

1
2m(b)

g0(b)

0
...

0

g(b)

1
CCCCCA ; and gj =

0
BBBBB@

�(g)(xj)

0
...

0

g(xj)

1
CCCCCA :

Theorem 4.1 Let V 2 L2(a; b), Im(V ) = 0, �a; �1; � � � ; �N ; �b 2 C+ , and x1; � � � ; xN 2 (a; b),

such that x1 < x2 < � � � < xN . Then the operator K de�ned by

D(K) :=

8>>><
>>>:
~g 2 K

���������

g� 2W1;2(R� ; C
N+2 ); g 2W1;2(a; b);

1
m
g0 2W1;2(a; x1)�

LN

j=1W
1;2(xj ; xj+1)�W1;2(xN ; b)

Ka
�ga +

PN

j=1K
j
�
gj +Kb

�gb = g�(0);

Ka
+ga +

PN

j=1K
j
+gj +Kb

+gb = g+(0)

9>>>=
>>>;

(4.3)

and

K~g := �i
d

dx
g� � l(g)��i

d

dx
g+; ~g 2 D(K);

is selfadjoint.
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The proof is essentially the same as in [KNR01b], so we omit it.

Figure 1 shows the boundary conditions of the operator K with respect to the domain 
̂.

To show that K is the minimal dilation corresponding to H , let us compute the resolvent of K.

Theorem 4.2 Assume that V 2 L2(a; b) is real-valued and �a; �1; � � � ; �N ; �b 2 C+ . Then the

resolvent of K admits the representation

(K � z)�1(f� � f � f+)(x) (4.4)

=i

Z x

�1

ei(x�y)zf�(y) dy � ((H � z)�1f)(x) + i

�
T�(z)

�

Z 0

�1

e�iyzf�(y) dy

�
(x)

� i

Z x

0

ei(x�y)zf+(y) dy + ieizxT (z)f + i�H(z)
�

Z 0

�1

ei(x�y)zf�(y) dy;

for Im(z) > 0 and

(K � z)�1(f� � f � f+)(x) (4.5)

=� i

Z 0

x

ei(x�y)zf�(y) dy � ieizxT�(z)f � i�H(z)

Z 1

0

ei(x�y)zf+(y) dy

� ((H� � z)�1f)(x)� i

�
T (z)�

Z 1

0

e�iyzf+(y) dy

�
(x)��i

Z 1

x

ei(x�y)zf+(y) dy;

for Im(z) < 0, where ~f = f� � f � f+ 2 K.

Figure 1: Boundary conditions of the dilation K

�i d
dx
ga
�

�i d
dx
ga+

�ag
a
�(0) =

1
2m(a)

g0(a) + �ag(a)
1

2m(a)
g0(a) + �ag(a) = �ag

a
+(0)

) (

�i d
dx
g1
�

l(g)

�i d
dx
g1+

�1g
1
�
(0) = �(g)(x1) + �1g(x1) �(g)(c) + �1g(x1) = �1g

1
+(0)

) (

...

�i d
dx
g
j
�

�i d
dx
g
j
+

�jg
j
�
(0) = �(g)(xj) + �jg(xj) �(g)(xj) + �jg(xj) = �jg

j
+(0)

) (

l(g)

�i d
dx
g
j+1
�

�i d
dx
g
j+1
+

�j+1g
j+1
�

(0) = �(g)(xj+1) + �j+1g(xj+1) �(g)(xj+1) + �j+1g(xj+1) = �j+1g
j+1
+ (0)

) (

...

�i d
dx
gN
�

�i d
dx
gN+

�Ng
N
�
(0) = �(g)(xN ) + �Ng(xN ) �(g)(xN ) + �Ng(xN ) = �Ng

N
+ (0)

) (

l(g)

�i d
dx
gb
�

�i d
dx
gb+

�bg
b
�
(0) = 1

2m(b)
g0(b)� �bg(b)

1
2m(b)

g0(b)� �bg(b) = �bg
b
+(0)

) (

Proof. We will only prove equation (4.4) since the equality of (4.5) can be shown in the same



10 M. Baro, H. Neidhardt

fashion. Let Im(z) > 0, ~f 2 K. We set

g�(x) := i

Z x

�1

ei(x�y)zf�(y) dy;

g(x) := ((H � z)�1f)(x) + i

�
T�(z)

�

Z 0

�1

e�iyzf�(y) dy

�
(x)

g+(x) := i

Z x

0

ei(x�y)zf+(y) dy + ieizxT (z)f + i�H(z)
�

Z 0

�1

ei(x�y)zf�(y) dy: (4.6)

One easily veri�es that

(K � z)(g� � g � g+) = f� � f � f+:

Thus it remains to show that ~g satis�es the boundary conditions (4.3). We set h = (H � z)�1f

and get

ga = ha +Gag�(0); gj = hj +Gjg�(0); gb = hb +Gbg�(0); 8j = 1; � � � ; N; (4.7)

where

Ga :=

0
BBBBB@

��a(T�(z)�eb)(a) � � � ��a(T�(z)�e1)(a) 1
2m(a)

(T�(z)
�ea)

0(a)

0 � � � 0 0
...

...
...

0 � � � 0 0

(T�(z)
�eb)(a) � � � (T�(z)

�e1)(a) (T�(z)
�ea)(a)

1
CCCCCA ;

Gb :=

0
BBBBB@

1
2m(b)

(T�(z)
�eb)

0(b) �b(T�(z)
�eN)(b) � � � �b(T�(z)

�ea)(b)

0 0 � � � 0
...

...
...

0 0 � � � 0

(T�(z)
�eb)(b) (T�(z)

�eN )(b) � � � (T�(z)
�ea)(b)

1
CCCCCA ;

and

Gj :=

0
BBBBB@

��j(T�(z)�eb)(xj) � � � �(T�(z)
�ej)(xj) � � � ��j(T �(z)�ea)(xj)

0 � � � 0 � � � 0
...

...
...

0 � � � 0 � � � 0

(T�(z)
�eb)(xj) � � � (T�(z)

�ej)(xj) � � � (T �(z)�ea)(xj )

1
CCCCCA ;

where ea; ej ; eb 2 CN+2 are given by

eb =

0
BBB@

1

0
...

0

1
CCCA ; ea =

0
BBB@

0
...

0

1

1
CCCA ; ej =

0
BBBBBB@

0
...

1
...

0

1
CCCCCCA
:

Since h 2 D(H),

Ka
�
ha = K

j
�
hj = Kb

�
hb = 0; 8j = 1; � � � ; N: (4.8)

A straightforward calculation shows, that

Ka
�Ga� = �aea; Kb

�Gb� = �beb; K
j
�Gj� = �jej ; 8j = 1; � � � ; N;
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where � 2 C
N+2 (see (3.2)). Therefore we get by (4.7) and (4.8)

Ka
�
ga +

NX
j=1

K
j
�
gj +Kb

�
gb = g�(0):

Using (4.6) we get

g+(0) = iT (z)f +�H(z)
�g�(0):

Since

Ka
+ha = �i�ah(a)ea; Kb

+hb = i�bh(b)eb; K
j
+hj = �i�jh(xj)ej ; 8j = 1; � � � ; N;

we �nd by equation (3.1)

Ka
+ha +

NX
j=1

K
j
+hj +Kb

+hb = iT (z)f:

Note that

�H(z)
� = 1 + i�T�(z)

�: (4.9)

We have

Ka
+Ga =

0
BBB@

0 � � � 0
...

...

0 � � � 0

�i�a(T�(z)�eb)(a) � � � 1� i�a(T�(z)
�ea)(a)

1
CCCA

=

0
BBB@

0 � � � 0
...

...

0 � � � 0

ih�T�(z)�eb; eaiCN+2 � � � 1 + ih�T�(z)�ea; eaiCN+2

1
CCCA ;

and similar

Kb
+Gb =

0
BBB@

1 + ih�T�(z)�eb; ebiCN+2 � � � ih�T�(z)�ea; ebiCN+2

0 � � � 0
...

...

0 � � � 0

1
CCCA ;

K
j
+Gj =

0
BBBBBBBBBB@

0 � � � 0 � � � 0
...

...
...

0 � � � 0 � � � 0

ih�T�(z)�eb; ejiCN+2 � � � 1 + ih�T�(z)�ej ; ejiCN+2 � � � ih�T�(z)�ea; ejiCN+2

0 � � � 0 � � � 0
...

...
...

0 � � � 0 � � � 0

1
CCCCCCCCCCA
;

for all j = 1; � � � ; N . Hence we get by (4.9)

Ka
+Ga +

NX
j=1

K+Gj +K+Gb = �H(z)
�

and �nally

K+ga +

NX
j=1

K+gj +Kb
+gb = g+(0)

which completes the proof. �

Using the expressions (4.4) and (4.5) for the resolvent of K, one easily veri�es (4.1) and (4.2).
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5 Eigenfunction expansion

The selfadjoint operator K is absolutely continuous and �(K) = �ac(K) = R, i.e. the spectrum

of K coincides with the real line. Its multiplicity is N + 2. We are now going to compute the

generalized eigenfunction ~�(�; �), � 2 R, of K. We set

~�(x; �) = ��(x; �) � �(x; �) � �+(x; �);

for x 2 
̂, where

��(x; �) =

0
BBBBB@

�b
�
(x; �)

�N
�
(x; �)
...

�1
�
(x; �)

�a
�
(x; �)

1
CCCCCA ; x 2 R� ; �+(x; �) =

0
BBBBB@

�b+(x; �)

�N+ (x; �)
...

�1+(x; �)

�a+(x; �)

1
CCCCCA ; x 2 R+ :

From

(K~�)(x; �) = �i
d

dx
��(x; �)� l(�(�; �))(x) ��i

d

dx
�+(x; �)

= �(��(x; �) � �(x; �) � �+(x; �));

x 2 
̂, we �nd the equations

�i
d

dx

0
BBBBB@

�b
�
(x; �)

�N
�
(x; �)
...

�1�(x; �)

�a
�
(x; �)

1
CCCCCA = �

0
BBBBB@

�b
�
(x; �)

�N
�
(x; �)
...

�1�(x; �)

�a
�
(x; �)

1
CCCCCA ; x 2 R� ; (5.1)

l(�(�; �))(x) = ��(x; �); x 2 [a; b]; (5.2)

and

�i
d

dx

0
BBBBB@

�b+(x; �)

�N+ (x; �)
...

�1+(x; �)

�a+(x; �)

1
CCCCCA = �

0
BBBBB@

�b
�
(x; �)

�N
�
(x; �)
...

�1�(x; �)

�a
�
(x; �)

1
CCCCCA ; x 2 R+ : (5.3)

The equation (5.1) and (5.3) have the solutions

��(x; �) = C�e
ix�; C� 2 C

N+2 ; x 2 R� ;

and

�+(x; �) = C+e
ix�; C+ 2 C

N+2 ; x 2 R+ :

The solution of (5.2) is given by a linear combination of the elementary solutions va(x; �) and

vb(x; �) on each interval [xj ; xj+1), i.e.

�(x; �) =

NX
j=0

�
cjava(x; �) + c

j

bvb(x; �);
�
�[xj;xj+1)(x): (5.4)

The eigenfunctions have to satisfy the boundary conditions, i.e.

Ka
��a(�) +

NX
j=1

K
j
��j(�) +Kb

��b(�) = ��(0; �): (5.5)
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and

Ka
+�a(�) +

NX
j=1

K
j
+�j(�) +Kb

+�b(�) = �+(0; �): (5.6)

Furthermore the condition

(cj+1a � cja)va(xj ; �) + (c
j+1
b � c

j

b)vb(xj ; �) = 0; 8j = 0; � � � ; N + 1;

has to be satis�ed. A straightforward calculation shows that

cN+1
a = �

�b

W (z)
; Cb

�
; cja = cj+1a +

�jvb(xj ; �)

W (�)
C
j
�
; j = 0; � � � ; N; (5.7)

as well as

c0b =
�a

W (z)
Ca
�
; c

j

b = c
j+1
b �

�jva(xj ; �)

W (�)
C
j
�
; j = 1; � � � ; N + 1: (5.8)

Inserting equations (5.7) and (5.8) in (5.4) �nally yields

�(x; �) = (T�(�)
�C�)(x): (5.9)

By inserting (5.9) in (5.6) we �nd

C+ = �H(�)
�C�; � 2 R:

Therefore we get

~�C�(x; �) := eix�C� � (T�(�)
�C�)(x) � eix��H(�)

�C�;

x 2 
̂, � 2 R.

A calculation as in [KNR01b] shows that�
1
p
2�

~�C�(�; �);
1
p
2�

~�C
0

�(�; �0)
�
K

= Æ(�� �0)hC�; C 0

�i:

Introducing the notions

~�(�; �; j) :=
1
p
2�

~�ej (�; �); j = 0; � � � ; N + 1; (5.10)

where we have set ea = e0 and eb = eN+1, we get the following theorem.

Theorem 5.1 Assume V 2 L2(a; b), Im(V ) = 0, and �a; �1; � � � ; �N ; �b 2 C+ . Then the functions

f~�(�; �; a); ~�(�; �; 1); � � � ; ~�(�; �;N); ~�(�; �; b)g�2R

perform a complete orthonormal system of generalized eigenfunctions of K, i.e.�
~�(�; �; �); ~�(�; �0; � 0)

�
K

= Æ(�� �0)Æ�� 0 ; �; �0 2 R; �; � 0 = a; 1; � � � ; N; b;

and their linear span, i.e. elements of the form

f(x) =

Z
R

X
�=a;1;��� ;N;b

~�(�; �; �)g� (�) d�;

where g� ,� = a; 1; � � � ; N; b, are smooth functions with compact support, is dense in K.

We say that fea(�); e1(�); � � � ; eN (�); eb(�)g�2R is a measurable family of orthogonal bases in

CN+2 , if the components of the vectors e� (�), � = a; 1; � � � ; N; b, are Lebesgue measurable functions

such that he� (�); e�(�)i = Æ�;� for a.e. � 2 R. Thus we get
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Corollary 5.2 Suppose that V 2 L2(a; b), Im(V ) = 0, �a; �1; � � � ; �N ; �b 2 C+ , and x1; � � � ; xN 2
(a; b) with x1 < x2 < � � � < xN . If fea(�); e1(�); � � � ; eN (�); eb(�)g�2R is a measurable family of

orthogonal bases in CN+2 , then the system of eigenfunctions

f~�(�; �; ea(�)); ~�(�; �; e1(�)); � � � ; ~�(�; �; eN (�)); ~�(�; �; eb(�))g�2R;

where

~�(�; �; e� (�)) :=
1
p
2�

~�e
j (�)(�; �); � = a; � � � ; b;

performs a complete orthonormal system of generalized eigenfunctions of K.

The generalized eigenfunctions �(�; �; �) are usually called the incoming eigenfunctions. By the use

of the incoming eigenfunctions, one de�nes a transform F : K ! K̂ := L
2(R; C N+2 ) by

(F~g)(�) =: ĝ(�) =

0
BBBBB@

ĝb(�)

ĝN(�)
...

ĝ1(�)

ĝa(�)

1
CCCCCA ;

where

ĝ� (�) :=

Z

̂

�
~g(x); ~�(x; �; �)

�
K

dx:

F is a unitary operator and called the incoming Fourier transform. The inverse incoming Fourier

transform F�1 is given by

�
F�1ĝ

�
(x) =

Z
R

X
�=a;1;��� ;N;b

~�(�; �; �)ĝ� (�) d�; ĝ 2 K̂:

We note that

FKF�1 =M; (5.11)

where M is the multiplication operator on K̂ given by

D(M) := fĝ 2 K̂ j�ĝ(�) 2 K̂g;
(Mĝ)(�) := �ĝ(�); ĝ 2 D(M):

6 Carrier density

According to [KNR01c] we call % : K ! K a density matrix, if % is a bounded, non-negative

operator. A density matrix % is called a steady state, if it commutes with K. For steady states %

there exists a function %(�) 2 L1(R;B(C N+2 )) such that the multiplication operator %̂ de�ned by

D(%̂) := fĝ 2 K j %(�)ĝ(�) 2 Kg;
(%̂ĝ)(�) := %(�)ĝ(�); ĝ 2 D(%̂);

is unitarily equivalent to %, i.e.

% = F�1%̂F :

Since % � 0 we get %(�) � 0 for a.e. � 2 R.

The time evolution of a given density matrix % is given by

%(t) := e�itK%eitK ; t 2 R;

cf. [LL71]. If % commutes with K, we have %(t) = % for all t 2 R. This justi�es the de�nition of

steady states.
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De�nition 6.1 A bounded selfadjoint operator A on a Hilbert space K is called an observable.

We say that the observable A

1. is admissible with respect to % if %A is a trace class operator, i.e %A 2 B1(K),

2. is admissible with respect to K if EK(�)A 2 B1(K) for each bounded interval � � R, where

EK(�) denotes the spectral projection of K on �.

If the observable A is admissible with respect to %, then its expectation value E% (A) with respect

to the density matrix % is de�ned by

E% (A) := tr(%A):

To calculate the carrier density we consider the observable U(!) given by

(U(!)~f)(x) = 0� �!(x)f(x) � 0; ~f = f� � f � f+ 2 K;

for any Borel subset ! � [a; b]. We remark that U(!) is a projection on K with ran(U(!)) � H.

Let us introduce some more notions: We set

�(x; �) =

0
B@

�(x; �;N + 1)
...

�(x; �; 0)

1
CA ;

and �(x; �) denotes the the vector �(x; �) with each element complex conjugated.

As in [KNR01c] one proves the following lemma:

Lemma 6.2 Assume that m + 1
m
2 L1(a; b), V 2 L2(a; b), Im(V ) = 0, �a; �1; � � � ; �N ; �b 2 C+ ,

and x1; � � � ; xn 2 (a; b) such that x1 < x2 < � � � < xN .

1. The observable U(!) is admissible with respect to the minimal selfadjoint dilation K of the

maximal dissipative operator H for any Borel set ! � [a; b]. Furthermore, we get the repre-

sentation

tr(%U(!)EK(�)) =

Z
�

tr(%(�)U(!)(�)) d�;

for any bounded Borel set � � R and any steady state %, where

U(!)(�) :=

Z
!

D(x; �) dx;

with

D(x; �) := �(x; �) �(x; �)T

2. If the steady state % satis�es the condition

C%̂ := sup
�2R

p
�2 + 1k%(�)kB(CN+2 ) <1; (6.1)

then the observable U(!) is admissible with respect to % for any Borel set ! � [a; b]. Further-

more we have

tr(%U(!)) =

Z
R

tr(%(�)U(!)(�)) d�:
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We set

u%(x; �) := tr(%(�)D(x; �));

for x 2 [a; b] and � 2 R. Note that

u%(x; �) =


%(�)T�(x; �);�(x; �)

�
; (6.2)

where %(�)T denotes the transposed matrix of %(�). Since %(�) is non-negative, we get by the

representation (6.2) that u%(x; �) � 0 for x 2 [a; b] and a.e. � 2 R. If the condition (6.1) is

satis�ed, we get by Lemma 6.2

E% (U(!)) =

Z
R

Z
!

u%(x; �) dx d�;

for any Borel set ! � [a; b]. Hence by Fubini's Theorem we get

E% (U(!)) =

Z
!

u%(x) dx; (6.3)

where

u%(x) :=

Z
R

u%(x; �) d� � 0; x 2 [a; b]; (6.4)

thus u% 2 L1(a; b). Clearly E% (U(�)) de�nes a measure which is absolutely continuous with respect

to the Lebesgue measure. Since E% (U(!)) can be interpreted as the number of carriers in ! � [a; b],

its Radon-Nikodym derivative can be viewed as the carrier density of the system described by K.

Since K is the dilation corresponding to the maximal dissipative operator H and U(!) acts only

on H, we identify u% with the carrier density of the system described by H .

Note that

u%(x; �) = E%(�) (D(x; �)); (6.5)

for x 2 [a; b] and � 2 R. We call the matrix D(x; �) the carrier density observable and u%(x; �) the

carrier density of the system described by H at point x 2 [a; b] and energy � 2 R. This is justi�ed

since (6.5) can be seen as expectation value of the carrier density observable.

Furthermore we have

u%(x) =

Z
R

E%(�) (D(x; �)); x 2 [a; b];

i.e. the carrier density for each point x is the sum of the expectation values of the carrier density

observable for the point x over all energies.

For real-valued h 2 L1(a; b) we de�ne the multiplication operatorM(h) on the Hilbert space K by

(M(h)~f)(x) = 0� h(x)f(x) � 0; ~f = f� � f � f+ 2 K:

We note that M(�!) = U(!), in particular M(�
) = U(
) = PK

H
. Since

%M(h) = %U(
)M(h); h 2 L1(a; b);

we get that the observable M(h) is admissible with respect to %.

Lemma 6.3 Assume that m + 1
m
2 L1, V 2 L2(a; b) real-valued, and �a; �1 � � � ; �N ; �b 2 C+ .

If the steady state % satis�es the condition (6.1), then the carrier density u% de�ned by (6.4) is a

non-negative L1-function such that

tr(%M(h)) =

Z b

a

u%(x)h(x) dx; (6.6)

for any real-valued function h 2 L1([a; b]). In particular one has

ku%kL1(!) = tr(%U(!)) � C%̂k(K � i)�1PK

HkB1
(6.7)

for each Borel set ! � [a; b].
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Proof. By (6.3) we get that (6.6) holds for h = �
. By linearity (6.6) can be extended for

arbitrary step functions h. Since u% is from L
1(a; b) and %U(
) is of trace class, (6.6) admits a

continuation to all L1-functions h, which proves the �rst part of the lemma.

Since (K � i)�1PK

H
is a trace class operator and since %(K � i) is a bounded operator whose norm

can be estimated by C%̂, we obtain

tr(%(K � i)(K � i)�1U(!)) � C%̂k(K � i)�1PH

K
kB1

:

This veri�es (6.7). �

Suppose that f%(�)g�2R is a measurable family of non-negative selfadjoint operators on CN+2 . We

can �nd a family of unitary operators fV (�)g�2R on CN+2 such that

%(�) = V (�)

0
BBBBB@

�b(�) 0 � � � � � � 0

0 �N (�) 0 � � � 0
...

. . .
...

0 � � � 0 �1(�) 0

0 � � � � � � 0 �a(�)

1
CCCCCAV (�)�;

for a.e. � 2 R, where �� (�), � = a; 1; � � � ; N; b, are the non-negative eigenvalues of the matrix

%(�). Hence from equation (6.2) we obtain

u%(x; �) =

*0B@
�b(�) � � � 0
...

. . .
...

0 � � � �a(�)

1
CAV (�)T�(x; �); V (�)T�(x; �)

+
:

Introducing the measurable family of orthogonal bases fea(�); � � � ; eb(�)g�2R, where e� (�) :=

V (�)e� , we �nd

u%(x; �) =
X

�=a;��� ;b

�� (�)j�(x; �; e� (�))j2;

for x 2 [a; b] and � 2 R, where we used the fact that

V T (�)�(x; �) =

0
B@

�(x; �; eb(�))
...

�(x; �; ea(�))

1
CA : (6.8)

7 Current density

We de�ne the current density j%(x; �) at point x and energy � 2 R of the system described by the

dissipative operator H by

j%(x; �) :=

N+1X
�=0

�� (�)Im

�
1

m(x)
�(x; �; e� (�))0�(x; �; e� (�))

�
: (7.1)

See [LL71] for the motivation for this de�nition. We note that �(x; �; e� (�))0 exists only for x 6= xj ,

j = 1; � � � ; N . Therefore, the de�nition (7.1) makes only sense for x 2
SN

j=0(xj ; xj+1).

Equation (7.1) can be rewritten as

j%(x; �) = Im

��
%(�)T

1

m(x)
�(x; �)0;�(x; �)

��
: (7.2)

Finally this can be expressed as

j%(x; �) = tr(%(�)C(x; �));



18 M. Baro, H. Neidhardt

where

C(x; �) := Im

0
BBBB@

1
m(x)

�(x; �;N + 1)0�(x; �;N + 1) � � � 1
m(x)

�(x; �; 0)0�(x; �;N + 1)
1

m(x)
�(x; �;N + 1)0�(x; �;N) � � � 1

m(x)
�(x; �; 0)0�(x; �;N)

...
...

1
m(x)

�(x; �;N + 1)0�(x; �; 0) � � � 1
m(x)

�(x; �; 0)0�(x; �; 0)

1
CCCCA : (7.3)

The current density is strongly related to the characteristic function of the operator H . This is

shown in the next theorem.

Theorem 7.1 Assume that m + 1
m
2 L1(a; b), V 2 L2(a; b), with Im(V ) = 0, and �a; �1; � � � ;

�N ; �b 2 C+ as well as x1; � � � ; xN 2 (a; b) such that x1 < x2 < � � � < xN . Let % be a steady state.

Then the current density j%(x; �), x 2 [a; b], x 6= xj , � 2 R, is independent of x for x 2 (xj ; xj+1)

and admits the representation

j%(x; �) = tr(%(�)C(x; �)); (7.4)

where

C(x; �) :=

NX
j=0

Ej(�)�H(�)
��(xj ;xj+1)(x) (7.5)

and

Ej(�) :=
1

2�

�
P
j
��H(�)P

j
+ � P

j
+�H(�)P

j
�

�
(7.6)

with

P
j
�
:=

jX
z=0

Pz; P
j
+ :=

N+1X
z=j+1

Pz; Pz := h�; eziez:

Moreover, if tr(%(�)) 2 L1(R), then the total current j%(x) at point x 2 (xj ; xj+1),

j%(x) :=

Z
R

j%(x; �) d�;

is �nite and can be estimated by

jj%(x)j �
1

2�

Z
R

tr(%(�)) d�: (7.7)

Proof. We have

j%(x; �) = tr(%(�)C(x; �)); (7.8)

where C(x; �) is given by (7.3). C(x; �) can be rewritten as

C(x; �) =
1

i

0
BBB@

W (�(�; �;N + 1); �(�; �;N + 1))(x) � � � W (�(�; �;N + 1; �(�; �; 0))(x)
W (�(�; �;N); �(�; �;N + 1))(x) � � � W (�(�; �;N); �(�; �; 0))(x)

...
...

W (�(�; �; 0); �(�; �;N + 1))(x) � � � W (�(�; �; 0); �(�; �; 0))(x)

1
CCCA :

(7.9)

Clearly W (�(�; �; l); �(�; �;m))(x) is constant for every x in each subinterval (xj ; xj+1), for every

l;m = 0; � � � ; N + 1. Hence, j%(x; �)j(xj ;xj+1) is constant.



Dissipative Schrödinger-type operator 19

Let us compute C(x; �)j(xj ;xj+1). Since �(x; �; k) has to ful�l the boundary conditions (5.5) and

(5.6) (see also �gure 1), we get

W (�(�; �; l); �(�; �;m))(x)j(xj ;xj+1) =W (�(�; �; l); �(�; �;m))(xj + 0)

=W (�(�; �; l); �(�; �;m))(xj � 0)

� i�2j�(xj ; �; l)�(xj ; �;m) + Æjm
�mp
2�

�(xm; �; l)

=W (�(�; �; l); �(�; �;m))(xj�1 + 0)

� i�2j�(xj ; �; l)�(xj ; �;m) + Æjm
�mp
2�

�(xm; �; l)

...

=

jX
�=0

�
�i�2��(x� ; �; l)�(x� ; �;m) + Æ�;m

��p
2�

�(x� ; �; l)

�
;

for l;m = 0; � � � ; N + 1 and l > j, where Æ�;m = he� ; emi. Similar we obtain for all l;m =

0; � � � ; N + 1, l � j,

W (�(�; �; l); �(�; �;m))(x)j(xj ;xj+1) =W (�(x; �; l); �(x; �;m))(xj+1 � 0)

=W (�(�; �; l); �(�; �;m))(xj+1 + 0)

+ i�j+1�(xj+1 ; �; l)�(xj+1 ; �;m)� Æj+1;m
�mp
2�

�(xj+1; �; l)

=W (�(�; �; l); �(�; �;m))(xj+2 � 0)

+ i�j+1�(xj+1 ; �; l)�(xj+1 ; �;m)� Æj+1;m
�mp
2�

�(xj+1; �; l)

...

=

N+1X
�=j+1

�
i�2��(x� ; �; l)�(x� ; �;m)� Æ�;m

��p
2�

�(x� ; �; l)

�
:

Note that
1
p
2�
h�T�(�)�e�; e� i = ����(x� ; �; �)

for all �; � = 0; � � � ; N + 1. Hence we �nd

W (�(�; �; l); �(�; �;m))(x)j(xj ;xj+1) =
1
p
2�

jX
�=0

n
�i
p
2����(x� ; �;m) + Æ�;m

o
���(x� ; �; l) (7.10)

= �
1

2�

jX
�=0

fih�T�(�)�em; e� i+ hem; e� ig h�T�(�)�el; e� i

for l > j. Using equation (4.9) we get

W (�(�; �; l); �(�; �;m))(x)j(xj ;xj+1) = �
1

2�

jX
�=0

h�H(�)
�em; e� ih�T�(�)�el; e� i (7.11)

= �
1

2�
hP j

�
�H(�)

�em; �T�(�)
�eli

or

W (�(�; �; l); �(�; �;m))(x)j(xj ;xj+1) = �
i

2�
hP j

�
�H(�)

�em;�H(�)
�P

j
+ eli (7.12)
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for l > j. If l � j, then

W (�(�; �; l); �(�; �;m))(x)j(xj ;xj+1) =
1
p
2�

N+1X
�=j+1

n
i
p
2����(x� ; �;m)� Æ�;m

o
���(x� ; �; l)

(7.13)

=
1

2�

N+1X
�=j+1

fihT�(�)�em; e� i+ hem; e� ig h�T�(�)�el; e� i:

Using again (4.9) we obtain

W (�(�; �; l); �(�; �;m))(x)j(xj ;xj+1) =
1

2�

N+1X
�=j+1

h�H(�)
�em; e� ih�T�(�)�el; e� i (7.14)

=
i

2�
hP j

+�H(�)
�em;�H(�)

�eli

which yields

W (�(�; �; l); �(�; �;m))(x)j(xj ;xj+1) =
i

2�
hP j

+�H(�)
�em;�H(�)

�P
j
�
eli (7.15)

for l � j. Taking into account (7.9), (7.12) and (7.15) we �nd

hC(x; �)em; el)ij(xj ;xj+1) =
1

2�

D
fP j

��H(�)P
j
+ � P

j
+�H(�)P

j
�g�H(�)

�em; el

E
(7.16)

for m; l = 0; 1; : : : ; N + 1. Using notation (7.5) and (7.6) we immediately obtain (7.4).

From the above calculations we get for the total current j%(x), x 2 (xj ; xj+1),

jj%(x)j � k%(�)C(x; �)kB1(CN+2 ) �
1

2�
k%(�)kB1(CN+2 )kEj(�)kB(CN+2 ):

By (7.6) one gets

Ej(�)
�Ej(�) = P

j
+�H(�)

�P
j
�
�H(�)P

j
+ + P

j
�
�H(�)

�P
j
+�H(�)P

j
�

which yields

Ej(�)
�Ej(�) � I:

Hence kEj(�)kB(CN+2 ) � 1 which veri�es (7.7). �

Let us show that piecewise constant matrix-valued function C(x; �) is selfadjoint for each x 6= xj .

If x 2 (xj ; xj+1), then one gets

C(x; �)� = �H(�)Ej(�)
� =

1

2�
�H(�)fP

j
�
�H(�)

�P
j
+ � P

j
+�H(�)

�P
j
�
g:

One has

C(x; �)� =
1

2�
fP j

+�H(�)P
j
+�H(�)

�P
j
� + P

j
��H(�)P

j
+�H(�)

�P
j
�

� P
j
+�H(�)P

j
�
�H(�)

�P
j
+ � P

j
�
�H(�)P

j
�
�H(�)

�P
j
+g:

Since P
j
+ + P

j
� = I and �H(�)�H(�)

� = I we �nd

C(x; �)� =
1

2�
f�P j

+�H(�)P
j
�
�H(�)

�P
j
�
+ P

j
�
�H(�)P

j
+�H(�)

�P
j
�

� P
j
+�H(�)P

j
��H(�)

�P
j
+ + P

j
��H(�)P

j
+�H(�)

�P
j
+g

which yields

C(x; �)� =
1

2�
fP j

�
�H(�)P

j
+ � P

j
+�H(�)P

j
�
g�H(�)

� = C(x; �)

Since C(x; �) is selfadjoint it is useful, in correspondence to the current density, to make the

following de�nition.
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De�nition 7.2 The piecewise constant matrix C(�; �) de�ned by (7.5) is called the current density
observable and the piecewise constant function

j%(x; �) = tr(%(�)C(x; �))

is called the current density at point x 2 [a; b], x 6= xj , and energy � 2 R.

The de�nition is justi�ed by the fact that the current density is the expectation value of the current

density observable at energy � 2 R and point x 2 R, i.e. j%(x; �) = E%(�) (C(x; �)). Using this

notion we get

j%(x) =

Z
R

E%(�) (C(x; �)) d�:

Let us consider the special case, where the steady state % is a function of K, i.e. % = f(K), for

some f 2 L1(R), f � 0. In this case % belong to the bicommutant of K. As in [KNR01c] we get

that in this case the current density is zero. This fact is proven by the following Corollary.

Corollary 7.3 Suppose that m + 1
m
2 L1(a; b), V 2 L2(a; b), such that Im(V ) = 0, �a; �1; � � � ;

�N ; �b 2 C+ , as well as x1; � � � ; xN 2 (a; b), with x1 < x2 < � � � < xN . Furthermore assume that

the steady state % is of the form % = f(K), where f 2 L1(R) is non-negative. Then j%(x; �) = 0

for x 6= x� , � = a; x1; � � � ; xN ; b, and a.e. � 2 R.

Proof. Clearly we have %(�) = f(�)ICN+2 , � 2 R. Thus we get for x 2 (xj ; xj+1)

j%(x; �) = f(�)trCN+2 (C(x; �))

Using (7.5) and (7.6) we obtain

j%(x; �) = f(�)tr(Ej(x; �)�H (�)
�) = f(�)tr

��
P
j
�
�H(�)P

j
+ � P

j
+�H(�)P

j
�

�
�H(�)

�

�
:

Since

tr
�
P
j
+�H(�)P

j
�
�H(�)

�

�
= tr

�
P
j
+�H(�)P

j
�
�H(�)

�P
j
+

�
= tr

�
P
j
�
�H(�)

�P
j
+�H(�)P

j
�

�
and

tr
�
P
j
��H(�)P

j
+�H(�)

�

�
= tr

�
P
j
��H(�)P

j
+�H(�)

�P
j
�

�
we have

tr
��

P
j
�
�H(�)P

j
+ � P

j
+�H(�)p

J
�

�
�H(�)

�

�
= 0

which proves j%(x; �) = 0. �

8 Current variations

In Theorem 7.1 we showed that the current density j%(x; �) is piecewise constant in x. Let us

calculate the current di�erence for some ~a 2 (xj ; xj+1) and ~b 2 (xj+1; xj+2):

j%(~b; �)� j%(~a; �) =
1

2�
tr(%(�)fCj+1(�)� Cj(�)g)

=
1

2�
tr(%(�)fP j+1

�
�H(�)P

j+1
�
� P

j
�
�H(�)P

j
�
g��

H(�))

=
1

2�
tr(%(�)fPj+1�H(�) ��H(�)Pj+1g��

H(�))

=
1

2�
tr(Pj+1f%(�)���(�)%(�)�H (�)gPj+1): (8.1)
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More general we get for â 2 (xj ; xj+1) and b̂ 2 (xj+k+1; xj+k+2)

j%(b̂; �)� j%(â; �) =
1

2�
tr(Qf%(�)��H(�)%(�)�

�

H (�)gQ); (8.2)

where Q =
Pj+k

�=j P� .

From equation (8.2) we see that the current di�erence depends essentially on the density matrix

%(�). For example, if %(�) commutes with �H(�) we get that the di�erence is zero. Hence, the

current is constant. In the case that the di�erence in (8.2) is positive, the system is �losing� electrons

between the points ~a and ~b. If the di�erence in (8.2) is negative, the system �gains� electrons. The

e�ect of losing and gaining electrons is closely related to a recombination-generation process.

In the following we are going to construct a density matrix %(�), such that the r.h.s. of (8.2) is

expressed in terms of the density u%(x� ; �) and the �j 's.

Let R�0 ;G�0 � f1; � � � ; Ng := T such that R�0 \G�0 = ;, R�0 [G�0 = T , and u(�0) 2 CN+2 with

hu(�0); e� i = 0; 8� 2 R�0 ; and hu(�0);�H(�0)e� i = 0; 8� 2 G�0 ; (8.3)

where �0 2 R is �xed. We de�ne the operator %(�0) by

%(�0)
T := u(�0)u(�0)

T :

The function f(x; �0) given by 0
BBB@

0
...

0

f(x; �0)

1
CCCA = u(�0)

T�(x; �);

satis�es the following boundary conditions:

�(f(�; �0))(x� ) = ���f(x� ; �0); 8� 2 R�0 ; (8.4)

�(f(�; �0))(x�) = ���f(x� ; �0); 8� 2 G�0 : (8.5)

Let ! = [~a;~b] � 
 be a given interval and T! := fj 2 T jxj 2 !g. The current di�erence is then
given by

j%(~b; �0)� j%(~a; �0) =Im

��
u(�0)

T 1

m(~b)
�(~b; �0)

0; u(�0)
T�(~b; �0)

��

� Im

��
u(�0)

T 1

m(~a)
�(~a; �0)

0; u(�0)
T�(~a; �0)

��

=
1

i

X
�2T!

n
W (f(�; �0); f(�; �0))(x� + 0)�W (f(�; �0); f(�; �0))(x� � 0)

o
:

Using the boundary conditions (8.4) and (8.5) we obtain

j%(~b; �0)� j%(~a; �0) =
X

�2T!\G�0

�2� jf(x� ; �0)j
2 �

X
�2T!\R�0

�2� jf(x�; �0)j
2

=
X

�2T!\G�0

�2� hV (�0)�(x� ; �0); V (�0)�(x� ; �0)i

�
X

�2T!\R�0

�2� hV (�0)�(x� ; �0); V (�0)�(x� ; �0)i

=
X

�2T!\G�0

�2�u%(x� ; �0)�
X

�2T!\R�0

�2�u%(x� ; �0):
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Clearly a vector u(�0) with the properties (8.3) always exists. In the following we will con-

struct a vector u(�0) for almost every �0 2 R, such that u(�0) is determined up to two given

parameters. Let ua(�0); ub(�0) 2 C be arbitrary. We are now going to construct the vector

u(�0) = (ua(�0); � � � ; ub(�0))T .

We set PG�0 :=
P

j2G�0
Pj and mG�0

:= #G�0 , i.e. the number of elements in G�0 .

The �rst condition in (8.3) implies that uj(�0) = 0 for j 2 R�0 . Furthermore we set ua(�0) =

ua(�0) and ub(�0) = ub(�0). The second condition in (8.3) can be rewritten to

PG�0�H(�0)
�PG�0u = �

�
ub(�0)PG�0�H(�0)

�eb + ua(�0)PG�0�H(�0)
�ea
�
: (8.6)

Since PG�0�H(�0)
�PG�0 can be seen as a mG�0

�mG�0
-matrix, the equation (8.6) has a solution

for a.e. �0 if

detm
G�0

(PG�0�H(�0)
�PG�0 ) 6= 0;

where detm
G�0

(�) denotes the determinant in the vector space C
m
G�0 .

Since h�H(�)ej ; eki is a bounded analytic function on C� (cf. [FN70]), we get that detmG�0

(�) is

also a bounded analytic function on C� . Hence detmG�0

(�H(�)) 6= 0 for a.e. �0.

The remaining components of u, i.e. uj , j 2 G�0 , are then determined as the solution of the linear

equation (8.6).

Thus we proved that we can construct a density matrix %(�0) for a.e. �0, such that we obtain a

loss and gain e�ect at prede�ned points xj . Furthermore we showed that one has two degrees of

freedom in the choice of %(�0), namely ub(�0) and ua(�0).

By repeating the above procedure for every � 2 R we can construct a density matrix %(�), for

every � 2 R. It can easily be seen that the condition (6.1) is satis�ed if ua(�) and ub(�) decay

su�ciently fast, e.g. ua(�); ub(�) have compact support.

We will give some examples: Assume that ub(�0); u
a(�0) 2 C are given and let R�0 = f1; � � � ; Ng,

G�0 = ;. Clearly the vector

uR(�0) := (ub(�0); 0; � � � ; 0; ua(�0))T

satis�es equation (8.3). Introducing the density matrix by

%R(�0)
T := uR(�0)uR(�0)

T ;

we get

j%R(
~b; �0)� j%R(~a; �0) = �

NX
�=1

�2�u%R(x� ; �0);

i.e. the density matrix %R(�0) is purely recombinative.

To obtain a density matrix which is purely generative we introduce the vector

uG(�0) := �H(�0)uR(�0);

which satis�es equation (8.3) with R�0 = ; and G�0 = f1; � � � ; Ng. As above we de�ne the density
matrix by %G(�0)

T := uG(�0)uG(�0)
T and get

j%G(
~b; �0)� j%G(~a; �0) =

NX
�=1

�2�u%G(x� ; �0):

Thus %G(�0) is purely generative. We note that

%G(�0) = �H(�0)%R(�0)�H(�0)
�: (8.7)
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9 Remarks

The de�nition of carrier and current density was formulated in terms of the complete orthonormal

system of eigenfunctions f~�(�; �; a); � � � ; ~�(�; �; b)g�2R. Since the eigenfunctions behave on R� like

free wave, they are called the incoming eigenfunctions. By equation (5.10) we can de�ne another

system of orthogonal eigenfunctions by

~�out(�; �; j) :=
1
p
2�

~��(�)ej (�; �); j = 0; � � � ; N + 1;

which are called the outgoing eigenfunctions. By equation (6.8) the following relation holds

�H(�)�in(x; �) =

0
B@

�out(x; �; b)
...

�out(x; �; a)

1
CA := �out(x; �); (9.1)

where we have set �in(x; �) = �(x; �).

Using the outgoing eigenfunction we de�ne the �outgoing� carrier and current density by

uout% (x; �) :=


%(�)T�out(x; �);�out(x; �)

�
;

jout% (x; �) := Im

�
%(�)T

1

m(x)
�out(x; �)

0;�out(x; �)

�

Using (9.1) we get

uout% (x; �) = uin�H%��

H
(x; �); jout% (x; �) = jin�H%��

H
(x; �);

where uin% (x; �), j
in
% (x; �) denotes the carrier, respectively current, density de�ned in the previous

sections.

The incoming and the outgoing carrier and current densities coincide, if %(�) commutes with the

characteristic function �H(�). As already mentioned above in this case neither loss nor gain e�ects

will occur.

In the previous section we gave an example for a purely recombinative density matrix %R(�) and

an example for a strict generative matrix %G(�). Using the relations (9.1) and (8.7) we get

jin%G(x; �) = jout%R
(x; �):

i.e. the generative matrix %G in the incoming representation becomes a recombinative matrix in

the outgoing representation.

Introducing the notions P in
j = h�; ejiej and P out

j = h�; EjiEj , where Ej = ��

H(�)ej , we can rewrite

(8.1) as follows

j%(~b; �)� j%(~a; �) =
1

2�
tr(%(�)fP in

j � P out
j g):

Let us consider two di�erent dissipative Schrödinger operator Hn and Hp for the two di�erent

species of particles (electron and holes), with mn, mp, Vn, Vp, �j;n, �j;p, j = 1; � � � ; N , and let xj ,

j = 1; � � � ; N , be numbers within the interval (a; b) such that a < x1 < � � � < xN < b. We denote

by u%k(x; �), respectively j%k (x; �), the carrier density, respectively current density, corresponding

to the density matrix %k and the operator Hk, k = n; p.

Assume that the sets G� = G and R� = R are given. Let %n(�) and %p(�) density matrices
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satisfying equation (6.1) such that

j%n(
~b; �)� j%n(~a; �) =

X
�2R\T!

�2�;nu%n(x� ; �)�
X

�2G\T!

�2�;nu%n(x� ; �); for a.e. � 2 R (9.2)

j%p(
~b; �)� j%p(~a; �) = �

0
@ X
�2R\T!

�2�;pu%p(x� ; �)�
X

�2G\T!

�2�;pu%p(x� ; �)

1
A ; for a.e. � 2 R:

(9.3)

By the consideration of section 8, such density matrices exists. Integrating (9.2) and (9.3) with

respect to � yields

j%n(
~b)� j%n(~a) =

X
�2R\T!

�2�;nu%n(x� )�
X

�2G\T!

�2�;nu%n(x� ; ); (9.4)

j%p(
~b)� j%p(~a) = �

0
@ X
�2R\T!

�2�;pu%p(x� )�
X

�2G\T!

�2�;pu%p(x�)

1
A : (9.5)

Integrating the stationary continuity equation (cf. (1.3)) over ! gives

j%n(
~b)� j%n(~a) = �

�
j%p(

~b)� j%p(~a)
�

(9.6)

Matching equation (9.6) with (9.4) and (9.5) leads to a condition on the �2j;n's and �2j;p's, i.e.

�2j;n = u%p(xj ; �); and �2j;p = u%n(xj ; �); j = 1; � � � ; N: (9.7)

The equations (9.4),(9.5) can now be viewed as a stationary continuity equation with recom-

bination-generation term given byZ
!

R(u%n(x); u%p(x)) dx =
X

j2T!\R

u%n(xj)u%p(xj)�
X

j2T!\G

u%n(xj)u%p(xj):

To solve the nonlinear equation given by (9.7) we introduce the operators Nk : RN+ ! RN+ , given

by

Nk(�
2
1;k; � � � ; �

2
N;k) = (u%k (x1); � � � ; u%k (xN ));

where k = n; p.

A solution of (9.7) is thus given by a �x point of the operator E de�ned by

E(�21;n; � � � ; �
2
N;n) := Np(Nn(�

2
1;n; � � � ; �

2
N;n)):

As in [KNR01c, BKNR02a] one can set up a dissipative Schrödinger-Poisson system using the

de�nition of carrier densities introduced in this article. In addition to the Schrödinger-Poisson

system considered in [BKNR02a] the current is not constant. This system will be discussed in a

forthcoming paper.

In section 8 we constructed explicitly a density matrix %(�) such that loss and gain e�ects occur at

prede�ned points. Furthermore we showed that one has two free parameters in the choice of %(�),
i.e. ub(�) and ua(�). These two parameters give the possibility to couple (for example) a drift

di�usion model to the open quantum system. We intend to investigate this coupled system in a

forthcoming paper.

For simplicity we considered imaginary potentials of the form ��2

2
Æ(� � xj). A further step in

order to include recombination and generation into the model is to allow complex potentials, i.e.

Im(V ) = ��2

2
, where � = �(x) 2 Lp for some p > 1. This would give the possibility to model

recombination-generation rates on the whole interval 
.
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