Weierstraß-Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.
Preprint
ISSN 0946 - 8633

Dissipative Schrödinger-type operator as a model for generation and recombination

Michael Baro and Hagen Neidhardt
submitted: 11th April 2002

Weierstrass-Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany,

E-Mail: baro@wias-berlin.de neidhard@wias-berlin.de

No. 737
Berlin 2002

[^0]Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
D - 10117 Berlin
Germany

Fax: $\quad+49302044975$
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

Non-selfadjoint operators play an important role in the modeling of open quantum systems. We consider a one-dimensional Schrödinger-type operator of the form $$
-\frac{1}{2} \frac{d}{d x} \frac{1}{m} \frac{d}{d x}+V-\sum \kappa_{j} \delta\left(\cdot-x_{j}\right), \quad \operatorname{Im}\left(\kappa_{j}\right)>0
$$ with dissipative boundary conditions. An explicit description of the characteristic function, the minimal dilation and the generalized eigenfunctions of the dilation is given. The quantities of carrier and current densities are rigorously defined. Furthermore we will show that the current is not constant and that the variation of the current depend essentially on the chosen density matrix and the imaginary parts of the delta potentials, i.e. $\operatorname{Im}\left(\kappa_{j}\right)$. This correspondence can be used to model a recombination-generation rate in the open quantum system.

2000 Mathematics Subject Classification: 47B44, 47E05, 47A20, 47A55

Keywords: open quantum system, dissipative Schrödinger operator, delta perturbation, recombination, generation, dilation, characteristic function, generalized eigenfunctions, carrier and current densities, density matrix

Contents

1 Introduction

2 Dissipative Schrödinger operators 3
3 The characteristic function 5
4 Dilations 7
5 Eigenfunction expansion 12
6 Carrier density 14
7 Current density 17
8 Current variations 21
9 Remarks 24

1 Introduction

To embed a quantum mechanically described structure into a macroscopic flow, one has to replace the selfadjoint boundary conditions by non-selfadjoint ones [KNR01a, Fre90, BA98, BADM97]. This leads to so-called open quantum systems. One-dimensional Schrödinger-type operators with dissipative boundary conditions have been intensely studied in [KNR01b]. We extend the model used there by adding dissipative delta perturbations, i.e. we consider an operator formally given by

$$
\begin{equation*}
H=-\frac{1}{2} \frac{d}{d x} \frac{1}{m} \frac{d}{d x}+\tilde{V} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{V}(\cdot)=V(\cdot)-\sum_{j=1}^{N} \kappa_{j} \delta\left(\cdot-x_{j}\right) \tag{1.2}
\end{equation*}
$$

$x_{j} \in(a, b), x_{j} \neq x_{i}$ for $i \neq j$, and $\kappa_{j} \in \mathbb{C}_{+}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. The potential V is assumed to be a real-valued $\mathrm{L}^{2}([a, b])$-function and the effective mass $m>0$ satisfies $m, \frac{1}{m} \in \mathrm{~L}^{\infty}(a, b)$. Point interactions of this kind are extensively studied in the literature for self-adjoint boundary conditions and real coupling constants κ_{j}, cf. [AGHH88, AK00] and references therein. Since the boundary conditions are not self-adjoint and the coupling constant are complex the expression (1.1)-(1.2) generates a maximal dissipative operator, see below. Such operators naturally arises if one is interested in mathematical models for semiconductor devices with recombination and generation processes of carriers which are embedded in a macrostructure. This case is not treated in [AGHH88] and [AK00]. To analyze such operators it is fruitful to use the dilation theory for maximal dissipative operators [FN70, D80]. To Schrödinger operators this approach was specified in [P77, P76, P84, P96, P99], see also [A87, A88, A89, A90, A93, A97]. In [KNR01c] this approach was used to define quantities such as steady states, carrier and current density for devices without recombination and generation. In the present article we modified this approach to fit our situation, i.e. where recombination and generation processes are included.

In an one-dimensional drift-diffusion model (cf. [S84, M86, MRS90, J01]) the macroscopic flow is modeled by the continuity equations

$$
\begin{align*}
\frac{\partial}{\partial t} n(x, t)-\frac{\partial}{\partial x} J_{n}(x, t) & =-R(n, p) \\
\frac{\partial}{\partial t} p(x, t)+\frac{\partial}{\partial x} J_{p}(x, t) & =-R(n, p), \tag{1.3}
\end{align*}
$$

where n, p denote the electron and hole densities, J_{n}, J_{p} the corresponding currents and $R(n, p)$ the recombination-generation rate. The stationary continuity equation is given by equation (1.3), where $\frac{\partial}{\partial t} n(x, t)=\frac{\partial}{\partial t} p(x, t)=0$ and $J_{k}(x, t)=J_{k}(x), k=n, p$. Replacing carrier densites n, p and current densities J_{n}, J_{p} by quantum mechanical expressions like [KNR01c] we are able to include recombination-generation effects into the open quantum system determined by (1.1) and (1.2) and to preserve the form of the continuity equations (1.3) for the quantum mechanically described structure. However, this implies that one has to chosen the imaginary parts of the coupling constants κ_{j} in an appropriate manner. We outline how the imaginary parts has to be chosen. In forthcoming papers we have the aim to consider a dissipative Schrödinger-Poisson [BKNR02a] system with recombination and generation effects.

The paper is organized as follows: In section 2 we rigorously define the dissipative Schrödingertype operator and show that the operator H is maximal dissipative. We use the well-know dilation theory as a main tool for our investigations. Therefore, the characteristic function and the minimal dilation corresponding to the maximal dissipative operator are the main objective in the sections 3 and 4. Section 5 is devoted to the generalized eigenfunctions of the dilation operator. In the sections 6 and 7 we give a definition of the density matrix and define the quantities of carrier and current densities in terms of the generalized eigenfunctions of the dilation (cf. [KNR01c]). The motivation for this definition is, that the selfadjoint dilation is regarded as the Hamiltonian of a larger closed system which contains the open system given by the dissipative operator H. In
section 8 we show that, depending on the density matrix, loss and/or gain effect of the open system can be achieved. We close with some remarks and a discussion on how the imaginary parts of the delta potentials have to be chosen in order to include recombination-generation processes within the open quantum model.

2 Dissipative Schrödinger operators

Let $x_{j}, j=1, \cdots, N$, be numbers contained in the bounded interval $\Omega:=(a, b) \subset \mathbb{R}$, such that $a<x_{1}<x_{2}<\cdots<x_{N}<b$. Furthermore let $V \in \mathrm{~L}^{2}(a, b)$ be real-valued, and $m \in \mathrm{~L}^{\infty}(a, b)$, with $m>0$ and $\frac{1}{m} \in \mathrm{~L}^{\infty}(a, b)$. In accordance with [KNR01b] we define the sesquilinear form

$$
\begin{aligned}
\mathfrak{t}[u, v]:=\int_{a}^{b} & \frac{1}{2} \frac{1}{m(x)} u(x) \overline{v(x)}+V(x) u(x) \overline{v(x)} d x \\
& \quad-\kappa_{a} u(a) \overline{v(a)}-\sum_{j=1}^{N} \kappa_{j} u\left(x_{j}\right) \overline{v\left(x_{j}\right)}-\kappa_{b} u(b) \overline{v(b)}
\end{aligned}
$$

for $u, v \in \mathrm{D}(\mathfrak{t})=\mathrm{W}^{1,2}(a, b)$ and $\kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. Mimicking the proof of Theorem 2.20 in [KNR01a], we get that the form \mathfrak{t} is closed on $\mathcal{H}=\mathrm{L}^{2}(a, b)$ and sectorial. Thus we get the existence of a maximal sectorial operator H, such that $(H f, v)=\mathfrak{t}[f, v]$ for all $f \in \mathrm{D}(H)$ and $v \in \mathrm{D}(\mathfrak{t})$. It can be shown that the operator H is given by

$$
\mathrm{D}(H)=\left\{\begin{array}{l|l}
f \in \mathrm{~W}^{1,2}(a, b) & \begin{array}{l}
\frac{1}{m} f^{\prime} \in \mathrm{W}^{1,2}\left(a, x_{1}\right) \oplus \bigoplus_{j=1}^{N-1} \mathrm{~W}^{1,2}\left(x_{j}, x_{j+1}\right) \oplus \mathrm{W}^{1,2}\left(x_{N}, b\right) \\
\frac{1}{2 m(a)} f^{\prime}(a)=-\kappa_{a} f(a) \frac{1}{2 m(b)} f^{\prime}(b)=\kappa_{b} f(b) \\
\frac{1}{2 m\left(x_{j}+0\right)} f^{\prime}\left(x_{j}+0\right)-\frac{1}{2 m\left(x_{j}-0\right)} f^{\prime}\left(x_{j}-0\right)=-\kappa_{j} f\left(x_{j}\right), \\
\forall j=1, \cdots, N
\end{array}
\end{array}\right\}
$$

and

$$
(H f)(x)=(l(f))(x), \quad f \in \mathrm{D}(H)
$$

where

$$
(l(f))(x):=-\frac{1}{2} \frac{d}{d x} \frac{1}{m(x)} \frac{d}{d x} f(x)+V(x) f(x)
$$

Since $\kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$, the operator H is dissipative, i.e. $\operatorname{Im}(H f, f) \leq 0, f \in \mathrm{D}(H)$. This can be seen by

$$
\operatorname{Im}(H f, f)=\operatorname{Im} \mathfrak{t}[f, f]=-\frac{\alpha_{a}^{2}}{2}|f(a)|^{2}-\frac{\alpha_{b}^{2}}{2}|f(b)|^{2}-\sum_{j=1}^{N} \frac{\alpha_{j}^{2}}{2}\left|f\left(x_{j}\right)\right|^{2}
$$

where $\kappa_{a}=q_{a}+\frac{i \alpha_{a}^{2}}{2}, \cdots, \kappa_{b}=q_{b}+\frac{i \alpha_{b}^{2}}{2}$, for some $q_{a}, \cdots, q_{b}, \alpha_{a}, \cdots, \alpha_{b} \in \mathbb{R}, \alpha_{a}, \cdots, \alpha_{b}>0$. A dissipative operator is called maximal dissipative, if it does not admit any proper dissipative extension. Since H is maximal sectorial it is also maximal dissipative. Furthermore, H is purely maximal dissipative (cf. [KNR01a]), i.e. it has no selfadjoint part [FN70]. This implies that H has no real eigenvalues.

Let us introduce some notions. For simplicity we will occasional write $a=x_{0}, \kappa_{a}=\kappa_{0}, \alpha_{a}=\alpha_{0}$, $b=x_{N+1}, \kappa_{b}=\kappa_{N+1}$, and $\alpha_{b}=\alpha_{N+1}$. We set

$$
\Delta(g, f)(x):=\frac{1}{2 m(x+0)} g^{\prime}(x+0)-\frac{1}{2 m(x-0)} f^{\prime}(x-0), \quad \Delta(g)(x):=\Delta(g, g)(x)
$$

For a matrix $A=\left(a_{i j}\right)$, with $a_{i j} \in \mathbb{C}, \bar{A}$ will denote the matrix in which every element is complex conjugated, i.e. $\bar{A}=\left(\bar{a}_{i j}\right)$.

In order to get an explicit description of the resolvent of H we introduce the elementary solutions $v_{a}(x, z)$ and $v_{b}(x, z)$ defined by

$$
\begin{aligned}
& l\left(v_{a}(\cdot, z)\right)(x)-z v_{a}(x, z)=0, v_{a}(a, z)=1, \frac{1}{2 m(a)} v_{a}^{\prime}(a, z)=-\kappa_{a}, \\
& \Delta\left(v_{a}(\cdot, z)\right)\left(x_{j}\right)=-\kappa_{j} v_{a}\left(x_{j}, z\right), \quad \forall j=1, \cdots, N \\
& l\left(v_{b}(\cdot, z)\right)(x)-z v_{b}(x, z)=0, v_{b}(b, z)=1, \frac{1}{2 m(b)} v_{b}^{\prime}(b, z)=\kappa_{b}, \\
& \Delta\left(v_{b}(\cdot, z)\right)\left(x_{j}\right)=-\kappa_{j} v_{b}\left(x_{j}, z\right), \quad \forall j=1, \cdots, N .
\end{aligned}
$$

The existence of these solutions can be proven as in [KNR01b].
The Wronskian of $v_{a}(x, z)$ and $v_{b}(x, z)$ is defined by

$$
W\left(v_{a}(\cdot, z), v_{b}(\cdot, z)\right)(x):=v_{a}(x, z) \frac{1}{2 m(x)} v_{b}^{\prime}(x, z)-v_{b}(x, z) \frac{1}{2 m(x)} v_{a}^{\prime}(x, z)
$$

We note that $W\left(v_{a}(\cdot, z), v_{b}(\cdot, z)\right)(x)$ is constant for $x \in\left(x_{i}, x_{i+1}\right)$. Furthermore, one easily checks that

$$
W\left(v_{a}(\cdot, z), v_{b}(\cdot, z)\right)\left(x_{i}-0\right)=W\left(v_{a}(\cdot, z), v_{b}(\cdot, z)\right)\left(x_{i}+0\right)
$$

Thus we write $W(z):=W\left(v_{a}(\cdot, z), v_{b}(\cdot, z)\right)(x)$.
The functions defined by

$$
v_{* a}(x, z):=\overline{v_{a}(x, \bar{z})}, \quad \text { and } \quad v_{* b}(x, z):=\overline{v_{b}(x, \bar{z})},
$$

are solutions of

$$
\begin{aligned}
& l\left(v_{* a}(\cdot, z)\right)(x)-z v_{* a}(x, z)=0, v_{* a}(a, z)=1, \frac{1}{2 m(a)} v_{* a}^{\prime}(a, z)=-\overline{\kappa_{a}} \\
& \Delta\left(v_{* a}(\cdot, z)\right)\left(x_{j}\right)=-\overline{\kappa_{j}} v_{* a}\left(x_{j}, z\right), \quad \forall j=1, \cdots, N, \\
& l\left(v_{* b}(\cdot, z)\right)(x)-z v_{* b}(x, z)=0, v_{* b}(b, z)=1, \frac{1}{2 m(b)} v_{* b}^{\prime}(b, z)=\overline{\kappa_{b}} \\
& \Delta\left(v_{* b}(\cdot, z)\right)\left(x_{j}\right)=-\overline{\kappa_{j}} v_{* b}\left(x_{j}, z\right), \quad \forall j=1, \cdots, N .
\end{aligned}
$$

Obviously, the Wronskian $W_{*}(z):=W\left(v_{* a}(\cdot, z), v_{* b}(\cdot, z)\right)(x)$ satisfies $W_{*}(z)=\overline{W(\bar{z})}$.
We are now able to write the resolvents of H and H^{*} as integral operators, where the kernels are given in terms of the elementary solutions (see also [K80]).

Theorem 2.1 Let $V \in \mathrm{~L}^{2}(a, b)$ be real valued and $\kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$. Then the resolvent of the maximal dissipative operator H is given by

$$
\begin{equation*}
\left((H-z)^{-1} f\right)(x)=-\frac{v_{b}(x, z)}{W(z)} \int_{a}^{x} v_{a}(y, z) f(y) d y-\frac{v_{a}(x, z)}{W(z)} \int_{x}^{b} v_{b}(y, z) f(y) d y \tag{2.1}
\end{equation*}
$$

for $f \in \mathcal{H}$ and $z \in \varrho(H)$.
The resolvent of the adjoint operator H^{*} admits the representation

$$
\begin{equation*}
\left(\left(H^{*}-z\right)^{-1} f\right)(x)=-\frac{v_{* b}(x, z)}{W_{*}(z)} \int_{a}^{x} v_{* a}(y, z) f(y) d y-\frac{v_{* a}(x, z)}{W_{*}(z)} \int_{x}^{b} v_{* b}(y, z) f(y) d y \tag{2.2}
\end{equation*}
$$

for $f \in \mathcal{H}$ and $z \in \varrho\left(H^{*}\right)$.

We omit the proof, but note that $W(z)=0 \Leftrightarrow z \in \sigma(H)$ and $W_{*}(z)=0 \Leftrightarrow z \in \sigma\left(H^{*}\right)$, where $\sigma(\cdot)$ denotes the spectrum of the corresponding operator.

3 The characteristic function

We define the unclosed operator $\alpha: \mathcal{H} \rightarrow \mathbb{C}^{N+2}$ by

$$
\alpha f=\left(\begin{array}{c}
\alpha_{b} f(b) \\
-\alpha_{N} f\left(x_{N}\right) \\
\vdots \\
-\alpha_{1} f\left(x_{1}\right) \\
-\alpha_{a} f(a)
\end{array}\right), \quad \mathrm{D}(\alpha)=\mathrm{C}(a, b)
$$

Let us introduce the operator valued function $T(z): \mathcal{H} \rightarrow \mathbb{C}^{N+2}$ given by

$$
\begin{equation*}
T(z) f:=\alpha(H-z)^{-1} f \tag{3.1}
\end{equation*}
$$

for $f \in \mathcal{H}$ and $z \in \varrho(H)$. Using the expression (2.1) we get

$$
T(z) f=\frac{1}{W(z)}\left(\begin{array}{c}
-\alpha_{b} \int_{a}^{b} v_{a}(y, z) f(y) d y \\
\alpha_{N} v_{b}\left(x_{N}, z\right) \int_{a}^{x_{N}} v_{a}(y, z) f(y) d y+\alpha_{N} v_{a}\left(x_{N}, z\right) \int_{x_{N}}^{b} v_{b}(y, z) d y \\
\vdots \\
\alpha_{1} v_{b}\left(x_{1}, z\right) \int_{a}^{x_{1}} v_{a}(y, z) f(y) d y+\alpha_{1} v_{a}\left(x_{1}, z\right) \int_{x_{1}}^{b} v_{b}(y, z) d y \\
\alpha_{a} \int_{a}^{b} v_{b}(y, z) f(y) d y
\end{array}\right)
$$

The adjoint operator $T(z)^{*}$ is given by

$$
\begin{aligned}
\left(T(z)^{*} \xi\right)(x)= & \frac{1}{W_{*}(\bar{z})}\left\{-\alpha_{b} v_{* a}(x, \bar{z}) \xi^{b}\right. \\
& +\alpha_{N}\left(v_{* b}\left(x_{N}, \bar{z}\right) v_{* a}(x, \bar{z}) \chi_{\left[a, x_{1}\right)}(x)+v_{* a}\left(x_{N}, \bar{z}\right) v_{* b}(x, \bar{z}) \chi_{\left[x_{N}, b\right]}\right) \xi^{N} \\
& \vdots \\
& +a_{1}\left(v_{* b}\left(x_{1}, \bar{z}\right) v_{* a}(x, \bar{z}) \chi_{\left[a, x_{1}\right)}(x)+v_{* a}\left(x_{1}, \bar{z}\right) v_{* b}(x, \bar{z}) \chi_{\left[x_{1}, b\right]}\right) \xi^{1} \\
& \left.+\alpha_{a} v_{* b}(x, \bar{z}) \xi^{a}\right\}
\end{aligned}
$$

for $x \in[a, b]$, where

$$
\xi=\left(\begin{array}{c}
\xi^{b} \tag{3.2}\\
\xi^{N} \\
\vdots \\
\xi^{1} \\
\xi^{a}
\end{array}\right) \in \mathbb{C}^{N+2}
$$

Similarly, we define $T_{*}(z): \mathcal{H} \rightarrow \mathbb{C}^{N+2}$ by

$$
T_{*}(z) f:=\alpha\left(H^{*}-z\right)^{-1} f
$$

for $f \in \mathcal{H}$ and $z \in \varrho(H)$. Using equation (2.2) one gets

$$
T_{*}(z) f=\frac{1}{W(z)}\left(\begin{array}{c}
-\alpha_{b} \int_{a}^{b} v_{* a}(y, z) f(y) d y \\
\alpha_{N} v_{* b}\left(x_{N}, z\right) \int_{a}^{x_{N}} v_{* a}(y, z) f(y) d y+\alpha_{N} v_{* a}\left(x_{N}, z\right) \int_{x_{N}}^{b} v_{* b}(y, z) d y \\
\vdots \\
\alpha_{1} v_{* b}\left(x_{1}, z\right) \int_{a}^{x_{1}} v_{* a}(y, z) f(y) d y+\alpha_{1} v_{* a}\left(x_{1}, z\right) \int_{x_{1}}^{b} v_{* b}(y, z) d y \\
\alpha_{a} \int_{a}^{b} v_{* b}(y, z) f(y) d y
\end{array}\right)
$$

The adjoint operator has the representation

$$
\begin{aligned}
\left(T_{*}(z)^{*} \xi\right)(x)= & \frac{1}{W(\bar{z})}\left\{-\alpha_{b} v_{a}(x, \bar{z}) \xi^{b}\right. \\
& +\alpha_{N}\left(v_{b}\left(x_{N}, \bar{z}\right) v_{a}(x, \bar{z}) \chi_{\left[a, x_{N}\right)}(x)+v_{a}\left(x_{N}, \bar{z}\right) v_{b}(x, \bar{z}) \chi_{\left[x_{N}, b\right]}\right) \xi^{N} \\
& \vdots \\
& +\alpha_{1}\left(v_{b}\left(x_{1}, \bar{z}\right) v_{a}(x, \bar{z}) \chi_{\left[a, x_{1}\right)}(x)+v_{a}\left(x_{1}, \bar{z}\right) v_{b}(x, \bar{z}) \chi_{\left[x_{1}, b\right]}\right) \xi^{1} \\
& \left.+\alpha_{a} v_{b}(x, \bar{z}) \xi^{a}\right\}
\end{aligned}
$$

for $x \in[a, b]$.
Let us collect some properties of the above operators.
Lemma 3.1 Let $V \in \mathrm{~L}^{2}(a, b)$ be real-valued, and $\kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$. Then we have

$$
\begin{equation*}
\left(H^{*}-z\right)^{-1}-(H-z)^{-1}=-i T_{*}(\bar{z})^{*} T_{*}(z)=-i T(\bar{z})^{*} T(z) \tag{3.3}
\end{equation*}
$$

for $z \in \varrho(H) \cap \varrho\left(H^{*}\right)$.

Proof. A straightforward calculation shows that

$$
\left(H^{*} f, g\right)-\left(f, H^{*} g\right)=i \sum_{j=0}^{N+1} \alpha_{i}^{2} f\left(x_{j}\right) \overline{g\left(x_{j}\right)}
$$

for $f, g \in \mathrm{D}\left(H^{*}\right)$. Setting $f=\left(H^{*}-z\right)^{-1} h$ and $g=\left(H^{*}-\bar{z}\right)^{-1} k$ with $h, k \in \mathcal{H}, z, \bar{z} \in \varrho\left(H^{*}\right)$, we obtain

$$
\left(\left(H^{*}-z\right)^{-1} h, k\right)-\left(h,\left(H^{*}-\bar{z}\right)^{-1} k\right)=-i\left\langle T_{*}(z) h, T_{*}(\bar{z}) k\right\rangle_{\mathbb{C}^{N+2}}
$$

and the first equality in (3.3) is proven. The second relation can be proven in the same fashion.
The characteristic function $\Theta_{H}(\cdot)$ is a crucial element in the study of completely non-selfadjoint operators. It is a purely contractive valued and analytic function on $\overline{\mathbb{C}_{-}}$, where $\mathbb{C}_{-}:=\{z \in$ $\mathbb{C} \mid \operatorname{Im}(z)<0\}$, cf. [FN70]. The characteristic function $\Theta_{H}(\cdot)$ of the maximal dissipative operator H is a $(N+2) \times(N+2)$ matrix-valued function satisfying the relation

$$
\begin{equation*}
\Theta_{H}(z) T(z) f=T_{*}(z) f, \quad z \in \varrho(H) \cap \varrho\left(H^{*}\right), \quad f \in \mathcal{H} \tag{3.4}
\end{equation*}
$$

Let us compute the characteristic function $\Theta_{H}(\cdot)$ of H :

Theorem 3.2 Let $V \in \mathrm{~L}^{2}(a, b)$ be real-valued and $\kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{-}$. Then the characteristic function of H is given by

$$
\begin{align*}
& \Theta_{H}(z)=I_{\mathbb{C}^{N+2}}-\frac{i}{W_{*}(z)} \times \\
& \left(\begin{array}{ccccc}
-\alpha_{b}^{2} v_{* a}(b, z) & \alpha_{b} \alpha_{N} v_{* a}\left(x_{N}, z\right) & \cdots & \alpha_{b} \alpha_{1} v_{* a}\left(x_{1}, z\right) & \alpha_{b} \alpha_{a} \\
\alpha_{N} \alpha_{b} v_{* a}\left(x_{N}, z\right) & -\alpha_{N}^{2} v_{* a}\left(x_{N}, z\right) v_{* b}\left(x_{N}, z\right) & \cdots & -\alpha_{N} \alpha_{1} v_{* a}\left(x_{1}, z\right) v_{* b}\left(x_{N}, z\right) & -\alpha_{N} \alpha_{a} v_{* b}\left(x_{N}, z\right) \\
\vdots & \vdots & & \vdots & \vdots \\
\alpha_{1} \alpha_{b} v_{* a}\left(x_{1}, z\right) & -\alpha_{1} \alpha_{N} v_{* a}\left(x_{1}, z\right) v_{* b}\left(x_{N}, z\right) & \cdots & -\alpha_{1}^{2} v_{* a}\left(x_{1}, z\right) v_{* b}\left(x_{1}, z\right) & -\alpha_{1} \alpha_{a} v_{* b}\left(x_{1}, z\right) \\
\alpha_{a} \alpha_{b} & -\alpha_{a} \alpha_{N} v_{* b}\left(x_{N}, z\right) & \cdots & -\alpha_{a} \alpha_{1} v_{* b}\left(x_{1}, z\right) & -\alpha_{a}^{2} v_{* b}(a, z)
\end{array}\right) \tag{3.5}
\end{align*}
$$

for $z \in \varrho(H) \cap \varrho\left(H^{*}\right)$.
Proof. It remains to verify that $\Theta_{H}(\cdot)$ given by (3.5) satisfies (3.4).

One easily checks, that equation (3.5) can be written as

$$
\begin{equation*}
\Theta_{H}(z)=I_{\mathbb{C}^{N+2}}-i \alpha T(\bar{z})^{*} . \tag{3.6}
\end{equation*}
$$

Using equation (3.3) we get

$$
\Theta_{H}(z) T(z)=T(z)-i \alpha T(\bar{z})^{*} T(z)=\alpha\left(H^{*}-z\right)^{-1}=T_{*}(z)
$$

Thus equation (3.4) is verified.
Since

$$
T(z)^{*} T(z)-T_{*}(z)^{*} T_{*}(z)=-2 \operatorname{Im}(z) T(z)^{*} T(\bar{z}) T(\bar{z})^{*} T(z), \quad \text { for } z \in \varrho(H) \cap \varrho\left(H^{*}\right)
$$

we have for $z \in \mathbb{C}_{-} \cap \varrho(H)$ that

$$
\left\|\Theta_{H}(z) T(z) f\right\|^{2}=\left\|T_{*}(z) f\right\|^{2} \leq\|T(z) f\|^{2}, \quad f \in \mathcal{H}
$$

Thus $\Theta_{H}(z)$ is a contraction for $z \in \mathbb{C}_{-} \cap \varrho(H)$. Since the spectrum of H consists of only isolated eigenvalues in \mathbb{C}_{-}, we get that the characteristic function $\Theta_{H}(z)$ admits a unique continuation to all $z \in \overline{\mathbb{C}_{-}}$, cf. (3.6).

4 Dilations

Since H is a maximal dissipative operator, there exists a larger Hilbert space \mathcal{K} containing \mathcal{H}, i.e. $\mathcal{H} \subseteq \mathcal{K}$, and a selfadjoint operator K on \mathcal{K} such that

$$
\begin{equation*}
P_{\mathcal{H}}^{\mathcal{K}}(K-z)_{\mid \mathcal{H}}^{-1}=(H-z)^{-1}, \quad z \in \mathbb{C}_{+}, \tag{4.1}
\end{equation*}
$$

(see [FN70]). The operator K is called a dilation of $H . K$ is said to be a minimal selfadjoint dilation, if

$$
\begin{equation*}
\underset{z \in \mathbb{C} \backslash \mathbb{R}}{\operatorname{clospan}}(K-z)^{-1} \mathcal{H}=\mathcal{K} \tag{4.2}
\end{equation*}
$$

All minimal selfadjoint dilation of a maximal dissipative operator are isomorphic. In particular, all minimal selfadjoint dilation are unitarily equivalent.

The next step in our investigations is to obtain an explicit description of the selfadjoint dilation of H. Let us introduce the Hilbert space \mathcal{K} defined by

$$
\mathcal{K}:=\mathcal{D}_{-} \oplus \mathcal{H} \oplus \mathcal{D}_{+}
$$

with $\mathcal{D}_{ \pm}:=\mathrm{L}^{2}\left(\mathbb{R}_{ \pm}, \mathbb{C}^{N+2}\right)$. Introducing the domain $\hat{\Omega}$

\mathbb{R}_{-}		\mathbb{R}_{+}	
\mathbb{R}_{-}	$\left[x_{N}, b\right]$	\mathbb{R}_{+}	
\mathbb{R}_{-}	\vdots	\mathbb{R}_{+}	
\mathbb{R}_{-}	$\left[x_{i}, x_{i+1}\right]$	\mathbb{R}_{+}	
\mathbb{R}_{-}	\vdots	\mathbb{R}_{+}	
\mathbb{R}_{-}	$\left[a, x_{1}\right]$	\mathbb{R}_{+}	

we get $\mathcal{K}=\mathrm{L}^{2}(\hat{\Omega}, d x)$. For $\vec{g} \in \mathcal{K}$ we write

$$
\vec{g}:=g_{-} \oplus g \oplus g_{+},
$$

where

$$
g_{-}=\left(\begin{array}{c}
g_{-}^{b}(x) \\
g_{-}^{N}(x) \\
\vdots \\
g_{-}^{1}(x) \\
g_{-}^{a}(x)
\end{array}\right) \quad \text { and } \quad g_{+}=\left(\begin{array}{c}
g_{+}^{b}(x) \\
g_{+}^{N}(x) \\
\vdots \\
g_{+}^{1}(x) \\
g_{+}^{a}(x)
\end{array}\right)
$$

for $x \in \mathbb{R}_{-}$and $x \in \mathbb{R}_{+}$, respectively. Furthermore we will need the $(N+2) \times(N+2)$-matrices $K_{ \pm}^{b}, K_{ \pm}^{a}$, and $K_{ \pm}^{j}, j=1, \cdots, N$, defined by

$$
\begin{gathered}
K_{-}^{b}:=\frac{1}{\alpha_{b}}\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & -\kappa_{b} \\
0 & & \cdots & & 0 \\
\vdots & & & \vdots \\
0 & \cdots & & 0
\end{array}\right), \quad K_{-}^{a}:=\frac{1}{\alpha_{a}}\left(\begin{array}{cccc}
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\kappa_{a}
\end{array}\right) \\
K_{-}^{j}:=\frac{1}{\alpha_{j}}\left(\begin{array}{cccc}
0 & \cdots & 0 \\
\vdots & & \vdots \\
1 & 0 & \cdots & 0 \\
\vdots & & \kappa_{j} \\
0 & \cdots & 0
\end{array}\right) \leftarrow(j+1) \text {-th row, }
\end{gathered}
$$

and $K_{+}^{b}:=\overline{K_{-}^{b}}, K_{+}^{a}:=\overline{K_{-}^{a}}, K_{+}^{j}:=\overline{K_{-}^{j}}$, as well as

$$
E=\left(\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & 0 & 0 \\
\vdots & & & & \vdots \\
0 & 0 & \cdots & \cdots & 0 \\
-1 & 0 & \cdots & \cdots & 0
\end{array}\right)
$$

We set

$$
g_{a}=\left(\begin{array}{c}
\frac{1}{2 m(a)} g^{\prime}(a) \\
0 \\
\vdots \\
0 \\
g(a)
\end{array}\right), \quad g_{b}=\left(\begin{array}{c}
\frac{1}{2 m(b)} g^{\prime}(b) \\
0 \\
\vdots \\
0 \\
g(b)
\end{array}\right), \quad \text { and } \quad g_{j}=\left(\begin{array}{c}
\Delta(g)\left(x_{j}\right) \\
0 \\
\vdots \\
0 \\
g\left(x_{j}\right)
\end{array}\right)
$$

Theorem 4.1 Let $V \in \mathrm{~L}^{2}(a, b), \operatorname{Im}(V)=0, \kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$, and $x_{1}, \cdots, x_{N} \in(a, b)$, such that $x_{1}<x_{2}<\cdots<x_{N}$. Then the operator K defined by

$$
\mathrm{D}(K):=\left\{\begin{array}{l|l}
\vec{g} \in \mathcal{K} & \begin{array}{l}
g_{ \pm} \in \mathrm{W}^{1,2}\left(\mathbb{R}_{ \pm}, \mathbb{C}^{N+2}\right), g \in \mathrm{~W}^{1,2}(a, b), \\
\frac{1}{m} g^{\prime} \in \mathrm{W}^{1,2}\left(a, x_{1}\right) \oplus \bigoplus_{j=1}^{N} \mathrm{~W}^{1,2}\left(x_{j}, x_{j+1}\right) \oplus \mathrm{W}^{1,2}\left(x_{N}, b\right) \\
K_{-}^{a} g_{a}+\sum_{j=1}^{N} K_{-}^{j} g_{j}+K_{-}^{b} g_{b}=g_{-}(0), \\
K_{+}^{a} g_{a}+\sum_{j=1}^{N} K_{+}^{j} g_{j}+K_{+}^{b} g_{b}=g_{+}(0)
\end{array} \tag{4.3}
\end{array}\right\}
$$

and

$$
K \vec{g}:=-i \frac{d}{d x} g_{-} \oplus l(g) \oplus-i \frac{d}{d x} g_{+}, \quad \vec{g} \in \mathrm{D}(K)
$$

is selfadjoint.

The proof is essentially the same as in [KNR01b], so we omit it.
Figure 1 shows the boundary conditions of the operator K with respect to the domain $\hat{\Omega}$.
To show that K is the minimal dilation corresponding to H, let us compute the resolvent of K.

Theorem 4.2 Assume that $V \in \mathrm{~L}^{2}(a, b)$ is real-valued and $\kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$. Then the resolvent of K admits the representation

$$
\begin{align*}
(K-z)^{-1} & \left(f_{-} \oplus f \oplus f_{+}\right)(x) \tag{4.4}\\
= & i \int_{-\infty}^{x} e^{i(x-y) z} f_{-}(y) d y \oplus\left((H-z)^{-1} f\right)(x)+i\left(T_{*}(\bar{z})^{*} \int_{-\infty}^{0} e^{-i y z} f_{-}(y) d y\right)(x) \\
& \oplus i \int_{0}^{x} e^{i(x-y) z} f_{+}(y) d y+i e^{i z x} T(z) f+i \Theta_{H}(\bar{z})^{*} \int_{-\infty}^{0} e^{i(x-y) z} f_{-}(y) d y
\end{align*}
$$

for $\operatorname{Im}(z)>0$ and

$$
\begin{align*}
(K-z)^{-1} & \left(f_{-} \oplus f \oplus f_{+}\right)(x) \tag{4.5}\\
= & -i \int_{x}^{0} e^{i(x-y) z} f_{-}(y) d y-i e^{i z x} T_{*}(z) f-i \Theta_{H}(z) \int_{0}^{\infty} e^{i(x-y) z} f_{+}(y) d y \\
& \oplus\left(\left(H^{*}-z\right)^{-1} f\right)(x)-i\left(T(\bar{z})^{*} \int_{0}^{\infty} e^{-i y z} f_{+}(y) d y\right)(x) \oplus-i \int_{x}^{\infty} e^{i(x-y) z} f_{+}(y) d y
\end{align*}
$$

for $\operatorname{Im}(z)<0$, where $\vec{f}=f_{-} \oplus f \oplus f_{+} \in \mathcal{K}$.

Figure 1: Boundary conditions of the dilation K

Proof. We will only prove equation (4.4) since the equality of (4.5) can be shown in the same
fashion. Let $\operatorname{Im}(z)>0, \vec{f} \in \mathcal{K}$. We set

$$
\begin{align*}
g_{-}(x) & :=i \int_{-\infty}^{x} e^{i(x-y) z} f_{-}(y) d y \\
g(x) & :=\left((H-z)^{-1} f\right)(x)+i\left(T_{*}(\bar{z})^{*} \int_{-\infty}^{0} e^{-i y z} f_{-}(y) d y\right)(x) \\
g_{+}(x) & :=i \int_{0}^{x} e^{i(x-y) z} f_{+}(y) d y+i e^{i z x} T(z) f+i \Theta_{H}(\bar{z})^{*} \int_{-\infty}^{0} e^{i(x-y) z} f_{-}(y) d y \tag{4.6}
\end{align*}
$$

One easily verifies that

$$
(K-z)\left(g_{-} \oplus g \oplus g_{+}\right)=f_{-} \oplus f \oplus f_{+}
$$

Thus it remains to show that \vec{g} satisfies the boundary conditions (4.3). We set $h=(H-z)^{-1} f$ and get

$$
\begin{equation*}
g_{a}=h_{a}+G_{a} g_{-}(0), \quad g_{j}=h_{j}+G_{j} g_{-}(0), \quad g_{b}=h_{b}+G_{b} g_{-}(0), \quad \forall j=1, \cdots, N \tag{4.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& G_{a}:=\left(\begin{array}{cccc}
-\kappa_{a}\left(T_{*}(\bar{z})^{*} e_{b}\right)(a) & \cdots & -\kappa_{a}\left(T_{*}(\bar{z})^{*} e_{1}\right)(a) & \frac{1}{2 m(a)}\left(T_{*}(\bar{z})^{*} e_{a}\right)^{\prime}(a) \\
0 & \cdots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 0 \\
\left(T_{*}(\bar{z})^{*} e_{b}\right)(a) & \cdots & \left(T_{*}(\bar{z})^{*} e_{1}\right)(a) & \left(T_{*}(\bar{z})^{*} e_{a}\right)(a)
\end{array}\right), \\
& G_{b}:=\left(\begin{array}{cccc}
\frac{1}{2 m(b)}\left(T_{*}(\bar{z})^{*} e_{b}\right)^{\prime}(b) & \kappa_{b}\left(T_{*}(\bar{z})^{*} e_{N}\right)(b) & \cdots & \kappa_{b}\left(T_{*}(\bar{z})^{*} e_{a}\right)(b) \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 \\
\left(T_{*}(\bar{z})^{*} e_{b}\right)(b) & \left(T_{*}(\bar{z})^{*} e_{N}\right)(b) & \cdots & \left(T_{*}(\bar{z})^{*} e_{a}\right)(b)
\end{array}\right)
\end{aligned}
$$

and

$$
G_{j}:=\left(\begin{array}{ccccc}
-\kappa_{j}\left(T_{*}(\bar{z})^{*} e_{b}\right)\left(x_{j}\right) & \cdots & \Delta\left(T_{*}(\bar{z})^{*} e_{j}\right)\left(x_{j}\right) & \cdots & -\kappa_{j}\left(T^{*}(\bar{z})^{*} e_{a}\right)\left(x_{j}\right) \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\left(T_{*}(\bar{z})^{*} e_{b}\right)\left(x_{j}\right) & \cdots & \left(T_{*}(\bar{z})^{*} e_{j}\right)\left(x_{j}\right) & \cdots & \left(T^{*}(\bar{z})^{*} e_{a}\right)\left(x_{j}\right)
\end{array}\right)
$$

where $e_{a}, e_{j}, e_{b} \in \mathbb{C}^{N+2}$ are given by

$$
e_{b}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad e_{a}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right), \quad e_{j}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)
$$

Since $h \in \mathrm{D}(H)$,

$$
\begin{equation*}
K_{-}^{a} h_{a}=K_{-}^{j} h_{j}=K_{-}^{b} h_{b}=0, \quad \forall j=1, \cdots, N \tag{4.8}
\end{equation*}
$$

A straightforward calculation shows, that

$$
K_{-}^{a} G_{a} \xi=\xi^{a} e_{a}, \quad K_{-}^{b} G_{b} \xi=\xi^{b} e_{b}, \quad K_{-}^{j} G_{j} \xi=\xi^{j} e_{j}, \quad \forall j=1, \cdots, N
$$

where $\xi \in \mathbb{C}^{N+2}$ (see (3.2)). Therefore we get by (4.7) and (4.8)

$$
K_{-}^{a} g_{a}+\sum_{j=1}^{N} K_{-}^{j} g_{j}+K_{-}^{b} g_{b}=g_{-}(0)
$$

Using (4.6) we get

$$
g_{+}(0)=i T(z) f+\Theta_{H}(\bar{z})^{*} g_{-}(0)
$$

Since

$$
K_{+}^{a} h_{a}=-i \alpha_{a} h(a) e_{a}, \quad K_{+}^{b} h_{b}=i \alpha_{b} h(b) e_{b}, \quad K_{+}^{j} h_{j}=-i \alpha_{j} h\left(x_{j}\right) e_{j}, \forall j=1, \cdots, N
$$

we find by equation (3.1)

$$
K_{+}^{a} h_{a}+\sum_{j=1}^{N} K_{+}^{j} h_{j}+K_{+}^{b} h_{b}=i T(z) f
$$

Note that

$$
\begin{equation*}
\Theta_{H}(\bar{z})^{*}=1+i \alpha T_{*}(\bar{z})^{*} . \tag{4.9}
\end{equation*}
$$

We have

$$
\begin{aligned}
K_{+}^{a} G_{a}= & \left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0 \\
-i \alpha_{a}\left(T_{*}(\bar{z})^{*} e_{b}\right)(a) & \cdots & 1-i \alpha_{a}\left(T_{*}(\bar{z})^{*} e_{a}\right)(a)
\end{array}\right) \\
0 & \cdots \quad 0 \\
\vdots & \cdots
\end{aligned}
$$

and similar

$$
K_{+}^{b} G_{b}=\left(\begin{array}{ccc}
1+i\left\langle\alpha T_{*}(\bar{z})^{*} e_{b}, e_{b}\right\rangle_{\mathbb{C}^{N+2}} & \cdots & i\left\langle\alpha T_{*}(\bar{z})^{*} e_{a}, e_{b}\right\rangle_{\mathbb{C}^{N+2}} \\
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0
\end{array}\right)
$$

$$
K_{+}^{j} G_{j}=\left(\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
i\left\langle\alpha T_{*}(\bar{z})^{*} e_{b}, e_{j}\right\rangle_{\mathbb{C}^{N+2}} & \cdots & 1+i\left\langle\alpha T_{*}(\bar{z})^{*} e_{j}, e_{j}\right\rangle_{\mathbb{C}^{N+2}} & \cdots & i\left\langle\alpha T_{*}(\bar{z})^{*} e_{a}, e_{j}\right\rangle_{\mathbb{C}^{N+2}} \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right)
$$

for all $j=1, \cdots, N$. Hence we get by (4.9)

$$
K_{+}^{a} G_{a}+\sum_{j=1}^{N} K_{+} G_{j}+K_{+} G_{b}=\Theta_{H}(\bar{z})^{*}
$$

and finally

$$
K_{+} g_{a}+\sum_{j=1}^{N} K_{+} g_{j}+K_{+}^{b} g_{b}=g_{+}(0)
$$

which completes the proof.
Using the expressions (4.4) and (4.5) for the resolvent of K, one easily verifies (4.1) and (4.2).

5 Eigenfunction expansion

The selfadjoint operator K is absolutely continuous and $\sigma(K)=\sigma_{a c}(K)=\mathbb{R}$, i.e. the spectrum of K coincides with the real line. Its multiplicity is $N+2$. We are now going to compute the generalized eigenfunction $\vec{\phi}(\cdot, \lambda), \lambda \in \mathbb{R}$, of K. We set

$$
\vec{\phi}(x, \lambda)=\phi_{-}(x, \lambda) \oplus \phi(x, \lambda) \oplus \phi_{+}(x, \lambda)
$$

for $x \in \hat{\Omega}$, where

$$
\phi_{-}(x, \lambda)=\left(\begin{array}{c}
\phi_{-}^{b}(x, \lambda) \\
\phi_{-}^{N}(x, \lambda) \\
\vdots \\
\phi_{-}^{1}(x, \lambda) \\
\phi_{-}^{a}(x, \lambda)
\end{array}\right), \quad x \in \mathbb{R}_{-}, \quad \phi_{+}(x, \lambda)=\left(\begin{array}{c}
\phi_{+}^{b}(x, \lambda) \\
\phi_{+}^{N}(x, \lambda) \\
\vdots \\
\phi_{+}^{1}(x, \lambda) \\
\phi_{+}^{a}(x, \lambda)
\end{array}\right), \quad x \in \mathbb{R}_{+} .
$$

From

$$
\begin{aligned}
(K \vec{\phi})(x, \lambda) & =-i \frac{d}{d x} \phi_{-}(x, \lambda) \oplus l(\phi(\cdot, \lambda))(x) \oplus-i \frac{d}{d x} \phi_{+}(x, \lambda) \\
& =\lambda\left(\phi_{-}(x, \lambda) \oplus \phi(x, \lambda) \oplus \phi_{+}(x, \lambda)\right)
\end{aligned}
$$

$x \in \hat{\Omega}$, we find the equations

$$
\begin{align*}
&-i \frac{d}{d x}\left(\begin{array}{c}
\phi_{-}^{b}(x, \lambda) \\
\phi_{-}^{N}(x, \lambda) \\
\vdots \\
\phi_{-}^{1}(x, \lambda) \\
\phi_{-}^{a}(x, \lambda)
\end{array}\right)=\lambda\left(\begin{array}{c}
\phi_{-}^{b}(x, \lambda) \\
\phi_{-}^{N}(x, \lambda) \\
\vdots \\
\phi_{-}^{1}(x, \lambda) \\
\phi_{-}^{a}(x, \lambda)
\end{array}\right), \quad x \in \mathbb{R}_{-} \tag{5.1}\\
& l(\phi(\cdot, \lambda))(x)=\lambda \phi(x, \lambda), \quad x \in[a, b] \tag{5.2}
\end{align*}
$$

and

$$
-i \frac{d}{d x}\left(\begin{array}{c}
\phi_{+}^{b}(x, \lambda) \tag{5.3}\\
\phi_{+}^{N}(x, \lambda) \\
\vdots \\
\phi_{+}^{1}(x, \lambda) \\
\phi_{+}^{a}(x, \lambda)
\end{array}\right)=\lambda\left(\begin{array}{c}
\phi_{-}^{b}(x, \lambda) \\
\phi_{-}^{N}(x, \lambda) \\
\vdots \\
\phi_{-}^{1}(x, \lambda) \\
\phi_{-}^{a}(x, \lambda)
\end{array}\right), \quad x \in \mathbb{R}_{+}
$$

The equation (5.1) and (5.3) have the solutions

$$
\phi_{-}(x, \lambda)=C_{-} e^{i x \lambda}, \quad C_{-} \in \mathbb{C}^{N+2}, x \in \mathbb{R}_{-}
$$

and

$$
\phi_{+}(x, \lambda)=C_{+} e^{i x \lambda}, \quad C_{+} \in \mathbb{C}^{N+2}, x \in \mathbb{R}_{+}
$$

The solution of (5.2) is given by a linear combination of the elementary solutions $v_{a}(x, \lambda)$ and $v_{b}(x, \lambda)$ on each interval $\left[x_{j}, x_{j+1}\right)$, i.e.

$$
\begin{equation*}
\phi(x, \lambda)=\sum_{j=0}^{N}\left(c_{a}^{j} v_{a}(x, \lambda)+c_{b}^{j} v_{b}(x, \lambda),\right) \chi_{\left[x_{j}, x_{j+1}\right)}(x) \tag{5.4}
\end{equation*}
$$

The eigenfunctions have to satisfy the boundary conditions, i.e.

$$
\begin{equation*}
K_{-}^{a} \phi_{a}(\lambda)+\sum_{j=1}^{N} K_{-}^{j} \phi_{j}(\lambda)+K_{-}^{b} \phi_{b}(\lambda)=\phi_{-}(0, \lambda) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{+}^{a} \phi_{a}(\lambda)+\sum_{j=1}^{N} K_{+}^{j} \phi_{j}(\lambda)+K_{+}^{b} \phi_{b}(\lambda)=\phi_{+}(0, \lambda) . \tag{5.6}
\end{equation*}
$$

Furthermore the condition

$$
\left(c_{a}^{j+1}-c_{a}^{j}\right) v_{a}\left(x_{j}, \lambda\right)+\left(c_{b}^{j+1}-c_{b}^{j}\right) v_{b}\left(x_{j}, \lambda\right)=0, \quad \forall j=0, \cdots, N+1
$$

has to be satisfied. A straightforward calculation shows that

$$
\begin{equation*}
c_{a}^{N+1}=-\frac{\alpha_{b}}{W(z)}, C_{-}^{b}, \quad c_{a}^{j}=c_{a}^{j+1}+\frac{\alpha_{j} v_{b}\left(x_{j}, \lambda\right)}{W(\lambda)} C_{-}^{j}, \quad j=0, \cdots, N \tag{5.7}
\end{equation*}
$$

as well as

$$
\begin{equation*}
c_{b}^{0}=\frac{\alpha_{a}}{W(z)} C_{-}^{a}, \quad c_{b}^{j}=c_{b}^{j+1}-\frac{\alpha_{j} v_{a}\left(x_{j}, \lambda\right)}{W(\lambda)} C_{-}^{j}, \quad j=1, \cdots, N+1 \tag{5.8}
\end{equation*}
$$

Inserting equations (5.7) and (5.8) in (5.4) finally yields

$$
\begin{equation*}
\phi(x, \lambda)=\left(T_{*}(\lambda)^{*} C_{-}\right)(x) \tag{5.9}
\end{equation*}
$$

By inserting (5.9) in (5.6) we find

$$
C_{+}=\Theta_{H}(\lambda)^{*} C_{-}, \quad \lambda \in \mathbb{R}
$$

Therefore we get

$$
\vec{\phi}^{C_{-}}(x, \lambda):=e^{i x \lambda} C_{-} \oplus\left(T_{*}(\lambda)^{*} C_{-}\right)(x) \oplus e^{i x \lambda} \Theta_{H}(\lambda)^{*} C_{-}
$$

$x \in \hat{\Omega}, \lambda \in \mathbb{R}$.
A calculation as in [KNR01b] shows that

$$
\left(\frac{1}{\sqrt{2 \pi}} \vec{\phi}^{C_{-}}(\cdot, \lambda), \frac{1}{\sqrt{2 \pi}} \vec{\phi}^{C_{-}^{\prime}}\left(\cdot, \lambda^{\prime}\right)\right)_{\mathcal{K}}=\delta\left(\lambda-\lambda^{\prime}\right)\left\langle C_{-}, C_{-}^{\prime}\right\rangle .
$$

Introducing the notions

$$
\begin{equation*}
\vec{\phi}(\cdot, \lambda, j):=\frac{1}{\sqrt{2 \pi}} \vec{\phi}^{e_{j}}(\cdot, \lambda), \quad j=0, \cdots, N+1 \tag{5.10}
\end{equation*}
$$

where we have set $e_{a}=e_{0}$ and $e_{b}=e_{N+1}$, we get the following theorem.
Theorem 5.1 Assume $V \in \mathrm{~L}^{2}(a, b), \operatorname{Im}(V)=0$, and $\kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$. Then the functions

$$
\{\vec{\phi}(\cdot, \lambda, a), \vec{\phi}(\cdot, \lambda, 1), \cdots, \vec{\phi}(\cdot, \lambda, N), \vec{\phi}(\cdot, \lambda, b)\}_{\lambda \in \mathbb{R}}
$$

perform a complete orthonormal system of generalized eigenfunctions of K, i.e.

$$
\left(\vec{\phi}(\cdot, \lambda, \tau), \vec{\phi}\left(\cdot, \lambda^{\prime}, \tau^{\prime}\right)\right)_{\mathcal{K}}=\delta\left(\lambda-\lambda^{\prime}\right) \delta_{\tau \tau^{\prime}}, \quad \lambda, \lambda^{\prime} \in \mathbb{R}, \quad \tau, \tau^{\prime}=a, 1, \cdots, N, b
$$

and their linear span, i.e. elements of the form

$$
f(x)=\int_{\mathbb{R}} \sum_{\tau=a, 1, \cdots, N, b} \vec{\phi}(\cdot, \lambda, \tau) g^{\tau}(\lambda) d \lambda
$$

where $g^{\tau}, \tau=a, 1, \cdots, N, b$, are smooth functions with compact support, is dense in \mathcal{K}.
We say that $\left\{e^{a}(\lambda), e^{1}(\lambda), \cdots, e^{N}(\lambda), e^{b}(\lambda)\right\}_{\lambda \in \mathbb{R}}$ is a measurable family of orthogonal bases in \mathbb{C}^{N+2}, if the components of the vectors $e^{\tau}(\lambda), \tau=a, 1, \cdots, N, b$, are Lebesgue measurable functions such that $\left\langle e^{\tau}(\lambda), e^{\xi}(\lambda)\right\rangle=\delta_{\tau, \xi}$ for a.e. $\lambda \in \mathbb{R}$. Thus we get

Corollary 5.2 Suppose that $V \in \mathrm{~L}^{2}(a, b), \operatorname{Im}(V)=0, \kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$, and $x_{1}, \cdots, x_{N} \in$ (a, b) with $x_{1}<x_{2}<\cdots<x_{N}$. If $\left\{e^{a}(\lambda), e^{1}(\lambda), \cdots, e^{N}(\lambda), e^{b}(\lambda)\right\}_{\lambda \in \mathbb{R}}$ is a measurable family of orthogonal bases in \mathbb{C}^{N+2}, then the system of eigenfunctions

$$
\left\{\vec{\phi}\left(\cdot, \lambda, e^{a}(\lambda)\right), \vec{\phi}\left(\cdot, \lambda, e^{1}(\lambda)\right), \cdots, \vec{\phi}\left(\cdot, \lambda, e^{N}(\lambda)\right), \vec{\phi}\left(\cdot, \lambda, e^{b}(\lambda)\right)\right\}_{\lambda \in \mathbb{R}}
$$

where

$$
\vec{\phi}\left(\cdot, \lambda, e^{\tau}(\lambda)\right):=\frac{1}{\sqrt{2 \pi}} \vec{\phi}^{e^{j}(\lambda)}(\cdot, \lambda), \quad \tau=a, \cdots, b
$$

performs a complete orthonormal system of generalized eigenfunctions of K.
The generalized eigenfunctions $\phi(\cdot, \lambda, \tau)$ are usually called the incoming eigenfunctions. By the use of the incoming eigenfunctions, one defines a transform $\mathcal{F}: \mathcal{K} \rightarrow \hat{\mathcal{K}}:=\mathrm{L}^{2}\left(\mathbb{R}, \mathbb{C}^{N+2}\right)$ by

$$
(\mathcal{F} \vec{g})(\lambda)=: \hat{g}(\lambda)=\left(\begin{array}{c}
\hat{g}^{b}(\lambda) \\
\hat{g}^{N}(\lambda) \\
\vdots \\
\hat{g}^{1}(\lambda) \\
\hat{g}^{a}(\lambda)
\end{array}\right)
$$

where

$$
\hat{g}^{\tau}(\lambda):=\int_{\hat{\Omega}}(\vec{g}(x), \vec{\phi}(x, \lambda, \tau))_{\mathcal{K}} d x
$$

\mathcal{F} is a unitary operator and called the incoming Fourier transform. The inverse incoming Fourier transform \mathcal{F}^{-1} is given by

$$
\left(\mathcal{F}^{-1} \hat{g}\right)(x)=\int_{\mathbb{R}^{\tau=a, 1, \cdots, N, b}} \sum_{\vec{\phi}(\cdot, \lambda, \tau) \hat{g}^{\tau}(\lambda) d \lambda, \quad \hat{g} \in \hat{\mathcal{K}}}
$$

We note that

$$
\begin{equation*}
\mathcal{F} K \mathcal{F}^{-1}=M \tag{5.11}
\end{equation*}
$$

where M is the multiplication operator on $\hat{\mathcal{K}}$ given by

$$
\begin{aligned}
\mathrm{D}(M) & :=\{\hat{g} \in \hat{\mathcal{K}} \mid \lambda \hat{g}(\lambda) \in \hat{\mathcal{K}}\}, \\
(M \hat{g})(\lambda) & :=\lambda \hat{g}(\lambda), \quad \hat{g} \in \mathrm{D}(M)
\end{aligned}
$$

6 Carrier density

According to [KNR01c] we call $\varrho: \mathcal{K} \rightarrow \mathcal{K}$ a density matrix, if ϱ is a bounded, non-negative operator. A density matrix ϱ is called a steady state, if it commutes with K. For steady states ϱ there exists a function $\varrho(\cdot) \in L^{\infty}\left(\mathbb{R}, \mathfrak{B}\left(\mathbb{C}^{N+2}\right)\right)$ such that the multiplication operator $\hat{\varrho}$ defined by

$$
\begin{aligned}
\mathrm{D}(\hat{\varrho}) & :=\{\hat{g} \in \mathcal{K} \mid \varrho(\lambda) \hat{g}(\lambda) \in \mathcal{K}\} \\
(\hat{\varrho} \hat{g})(\lambda) & :=\varrho(\lambda) \hat{g}(\lambda), \quad \hat{g} \in \mathrm{D}(\hat{\varrho})
\end{aligned}
$$

is unitarily equivalent to ϱ, i.e.

$$
\varrho=\mathcal{F}^{-1} \hat{\varrho} \mathcal{F}
$$

Since $\varrho \geq 0$ we get $\varrho(\lambda) \geq 0$ for a.e. $\lambda \in \mathbb{R}$.
The time evolution of a given density matrix ϱ is given by

$$
\varrho(t):=e^{-i t K} \varrho e^{i t K}, \quad t \in \mathbb{R}
$$

cf. [LL71]. If ϱ commutes with K, we have $\varrho(t)=\varrho$ for all $t \in \mathbb{R}$. This justifies the definition of steady states.

Definition 6.1 A bounded selfadjoint operator A on a Hilbert space \mathcal{K} is called an observable. We say that the observable A

1. is admissible with respect to ϱ if ϱA is a trace class operator, i.e $\varrho A \in \mathfrak{B}_{1}(\mathcal{K})$,
2. is admissible with respect to K if $E_{K}(\Delta) A \in \mathfrak{B}_{1}(\mathcal{K})$ for each bounded interval $\Delta \subset \mathbb{R}$, where $E_{K}(\Delta)$ denotes the spectral projection of K on Δ.

If the observable A is admissible with respect to ϱ, then its expectation value $\mathbb{E}_{\varrho}(A)$ with respect to the density matrix ϱ is defined by

$$
\mathbb{E}_{\varrho}(A):=\operatorname{tr}(\varrho A)
$$

To calculate the carrier density we consider the observable $U(\omega)$ given by

$$
(U(\omega) \vec{f})(x)=0 \oplus \chi_{\omega}(x) f(x) \oplus 0, \quad \vec{f}=f_{-} \oplus f \oplus f_{+} \in \mathcal{K}
$$

for any Borel subset $\omega \subseteq[a, b]$. We remark that $U(\omega)$ is a projection on \mathcal{K} with $\operatorname{ran}(U(\omega)) \subseteq \mathcal{H}$.
Let us introduce some more notions: We set

$$
\Phi(x, \lambda)=\left(\begin{array}{c}
\phi(x, \lambda, N+1) \\
\vdots \\
\phi(x, \lambda, 0)
\end{array}\right)
$$

and $\overline{\Phi(x, \lambda)}$ denotes the the vector $\Phi(x, \lambda)$ with each element complex conjugated.
As in [KNR01c] one proves the following lemma:

Lemma 6.2 Assume that $m+\frac{1}{m} \in \mathrm{~L}^{\infty}(a, b), V \in \mathrm{~L}^{2}(a, b), \operatorname{Im}(V)=0, \kappa_{a}, \kappa_{1}, \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$, and $x_{1}, \cdots, x_{n} \in(a, b)$ such that $x_{1}<x_{2}<\cdots<x_{N}$.

1. The observable $U(\omega)$ is admissible with respect to the minimal selfadjoint dilation K of the maximal dissipative operator H for any Borel set $\omega \subseteq[a, b]$. Furthermore, we get the representation

$$
\operatorname{tr}\left(\varrho U(\omega) E_{K}(\Delta)\right)=\int_{\Delta} \operatorname{tr}(\varrho(\lambda) U(\omega)(\lambda)) d \lambda
$$

for any bounded Borel set $\Delta \subset \mathbb{R}$ and any steady state ϱ, where

$$
U(\omega)(\lambda):=\int_{\omega} D(x, \lambda) d x
$$

with

$$
D(x, \lambda):=\overline{\Phi(x, \lambda)} \Phi(x, \lambda)^{T}
$$

2. If the steady state ϱ satisfies the condition

$$
\begin{equation*}
C_{\hat{\varrho}}:=\sup _{\lambda \in \mathbb{R}} \sqrt{\lambda^{2}+1}\|\varrho(\lambda)\|_{\mathfrak{B}\left(\mathbb{C}^{N+2}\right)}<\infty \tag{6.1}
\end{equation*}
$$

then the observable $U(\omega)$ is admissible with respect to ϱ for any Borel set $\omega \subseteq[a, b]$. Furthermore we have

$$
\operatorname{tr}(\varrho U(\omega))=\int_{\mathbb{R}} \operatorname{tr}(\varrho(\lambda) U(\omega)(\lambda)) d \lambda
$$

We set

$$
u_{\varrho}(x, \lambda):=\operatorname{tr}(\varrho(\lambda) D(x, \lambda)),
$$

for $x \in[a, b]$ and $\lambda \in \mathbb{R}$. Note that

$$
\begin{equation*}
u_{\varrho}(x, \lambda)=\left\langle\varrho(\lambda)^{T} \Phi(x, \lambda), \Phi(x, \lambda)\right\rangle, \tag{6.2}
\end{equation*}
$$

where $\varrho(\lambda)^{T}$ denotes the transposed matrix of $\varrho(\lambda)$. Since $\varrho(\lambda)$ is non-negative, we get by the representation (6.2) that $u_{e}(x, \lambda) \geq 0$ for $x \in[a, b]$ and a.e. $\lambda \in \mathbb{R}$. If the condition (6.1) is satisfied, we get by Lemma 6.2

$$
\mathbb{E}_{\varrho}(U(\omega))=\int_{\mathbb{R}} \int_{\omega} u_{e}(x, \lambda) d x d \lambda,
$$

for any Borel set $\omega \subseteq[a, b]$. Hence by Fubini's Theorem we get

$$
\begin{equation*}
\mathbb{E}_{\varrho}(U(\omega))=\int_{\omega} u_{e}(x) d x \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{\varrho}(x):=\int_{\mathbb{R}} u_{\varrho}(x, \lambda) d \lambda \geq 0, \quad x \in[a, b], \tag{6.4}
\end{equation*}
$$

thus $u_{e} \in \mathrm{~L}^{1}(a, b)$. Clearly $\mathbb{E}_{\varrho}(U(\cdot))$ defines a measure which is absolutely continuous with respect to the Lebesgue measure. Since $\mathbb{E}_{e}(U(\omega))$ can be interpreted as the number of carriers in $\omega \subseteq[a, b]$, its Radon-Nikodym derivative can be viewed as the carrier density of the system described by K. Since K is the dilation corresponding to the maximal dissipative operator H and $U(\omega)$ acts only on \mathcal{H}, we identify u_{e} with the carrier density of the system described by H.
Note that

$$
\begin{equation*}
u_{e}(x, \lambda)=\mathbb{E}_{\varrho(\lambda)}(D(x, \lambda)), \tag{6.5}
\end{equation*}
$$

for $x \in[a, b]$ and $\lambda \in \mathbb{R}$. We call the matrix $D(x, \lambda)$ the carrier density observable and $u_{e}(x, \lambda)$ the carrier density of the system described by H at point $x \in[a, b]$ and energy $\lambda \in \mathbb{R}$. This is justified since (6.5) can be seen as expectation value of the carrier density observable.
Furthermore we have

$$
u_{\varrho}(x)=\int_{\mathbb{R}} \mathbb{E}_{\varrho(\lambda)}(D(x, \lambda)), \quad x \in[a, b],
$$

i.e. the carrier density for each point x is the sum of the expectation values of the carrier density observable for the point x over all energies.

For real-valued $h \in \mathrm{~L}^{\infty}(a, b)$ we define the multiplication operator $M(h)$ on the Hilbert space \mathcal{K} by

$$
(M(h) \vec{f})(x)=0 \oplus h(x) f(x) \oplus 0, \quad \vec{f}=f_{-} \oplus f \oplus f_{+} \in \mathcal{K} .
$$

We note that $M\left(\chi_{\omega}\right)=U(\omega)$, in particular $M\left(\chi_{\Omega}\right)=U(\Omega)=P_{\mathcal{H}}^{\mathcal{K}}$. Since

$$
\varrho M(h)=\varrho U(\Omega) M(h), \quad h \in \mathrm{~L}^{\infty}(a, b),
$$

we get that the observable $M(h)$ is admissible with respect to ϱ.
Lemma 6.3 Assume that $m+\frac{1}{m} \in \mathrm{~L}^{\infty}, V \in \mathrm{~L}^{2}(a, b)$ real-valued, and $\kappa_{a}, \kappa_{1} \cdots, \kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$. If the steady state ϱ satisfies the condition (6.1), then the carrier density u_{ϱ} defined by (6.4) is a non-negative L^{1}-function such that

$$
\begin{equation*}
\operatorname{tr}(\varrho M(h))=\int_{a}^{b} u_{\varrho}(x) h(x) d x, \tag{6.6}
\end{equation*}
$$

for any real-valued function $h \in \mathrm{~L}^{\infty}([a, b])$. In particular one has

$$
\begin{equation*}
\left\|u_{e}\right\|_{L^{1}(\omega)}=\operatorname{tr}(\varrho U(\omega)) \leq C_{\hat{\varrho}}\left\|(K-i)^{-1} P_{\mathcal{H}}^{\mathcal{K}}\right\|_{\mathfrak{B}_{1}} \tag{6.7}
\end{equation*}
$$

for each Borel set $\omega \subseteq[a, b]$.

Proof. By (6.3) we get that (6.6) holds for $h=\chi_{\Omega}$. By linearity (6.6) can be extended for arbitrary step functions h. Since u_{ϱ} is from $\mathrm{L}^{1}(a, b)$ and $\varrho U(\Omega)$ is of trace class, (6.6) admits a continuation to all L^{∞}-functions h, which proves the first part of the lemma.
Since $(K-i)^{-1} P_{\mathcal{H}}^{\mathcal{K}}$ is a trace class operator and since $\varrho(K-i)$ is a bounded operator whose norm can be estimated by $C_{\hat{\varrho}}$, we obtain

$$
\operatorname{tr}\left(\varrho(K-i)(K-i)^{-1} U(\omega)\right) \leq C_{\hat{\varrho}}\left\|(K-i)^{-1} P_{\mathcal{K}}^{\mathcal{H}}\right\|_{\mathfrak{B}_{1}} .
$$

This verifies (6.7).
Suppose that $\{\varrho(\lambda)\}_{\lambda \in \mathbb{R}}$ is a measurable family of non-negative selfadjoint operators on \mathbb{C}^{N+2}. We can find a family of unitary operators $\{V(\lambda)\}_{\lambda \in \mathbb{R}}$ on \mathbb{C}^{N+2} such that

$$
\varrho(\lambda)=V(\lambda)\left(\begin{array}{ccccc}
\mu_{b}(\lambda) & 0 & \cdots & \cdots & 0 \\
0 & \mu_{N}(\lambda) & 0 & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \cdots & 0 & \mu_{1}(\lambda) & 0 \\
0 & \cdots & \cdots & 0 & \mu_{a}(\lambda)
\end{array}\right) V(\lambda)^{*},
$$

for a.e. $\lambda \in \mathbb{R}$, where $\mu_{\tau}(\lambda), \tau=a, 1, \cdots, N, b$, are the non-negative eigenvalues of the matrix $\varrho(\lambda)$. Hence from equation (6.2) we obtain

$$
u_{\varrho}(x, \lambda)=\left\langle\left(\begin{array}{ccc}
\mu_{b}(\lambda) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mu_{a}(\lambda)
\end{array}\right) V(\lambda)^{T} \Phi(x, \lambda), V(\lambda)^{T} \Phi(x, \lambda)\right\rangle
$$

Introducing the measurable family of orthogonal bases $\left\{e^{a}(\lambda), \cdots, e^{b}(\lambda)\right\}_{\lambda \in \mathbb{R}}$, where $e^{\tau}(\lambda):=$ $V(\lambda) e_{\tau}$, we find

$$
u_{\varrho}(x, \lambda)=\sum_{\tau=a, \cdots, b} \mu_{\tau}(\lambda)\left|\phi\left(x, \lambda, e^{\tau}(\lambda)\right)\right|^{2}
$$

for $x \in[a, b]$ and $\lambda \in \mathbb{R}$, where we used the fact that

$$
V^{T}(\lambda) \Phi(x, \lambda)=\left(\begin{array}{c}
\phi\left(x, \lambda, e_{b}(\lambda)\right) \tag{6.8}\\
\vdots \\
\phi\left(x, \lambda, e_{a}(\lambda)\right)
\end{array}\right)
$$

7 Current density

We define the current density $j_{\varrho}(x, \lambda)$ at point x and energy $\lambda \in \mathbb{R}$ of the system described by the dissipative operator H by

$$
\begin{equation*}
j_{\varrho}(x, \lambda):=\sum_{\tau=0}^{N+1} \mu_{\tau}(\lambda) \operatorname{Im}\left(\frac{1}{m(x)} \phi\left(x, \lambda, e^{\tau}(\lambda)\right)^{\prime} \overline{\phi\left(x, \lambda, e^{\tau}(\lambda)\right)}\right) \tag{7.1}
\end{equation*}
$$

See [LL71] for the motivation for this definition. We note that $\phi\left(x, \lambda, e^{\tau}(\lambda)\right)^{\prime}$ exists only for $x \neq x_{j}$, $j=1, \cdots, N$. Therefore, the definition (7.1) makes only sense for $x \in \bigcup_{j=0}^{N}\left(x_{j}, x_{j+1}\right)$.
Equation (7.1) can be rewritten as

$$
\begin{equation*}
j_{\varrho}(x, \lambda)=\operatorname{Im}\left(\left\langle\varrho(\lambda)^{T} \frac{1}{m(x)} \Phi(x, \lambda)^{\prime}, \Phi(x, \lambda)\right\rangle\right) \tag{7.2}
\end{equation*}
$$

Finally this can be expressed as

$$
j_{\varrho}(x, \lambda)=\operatorname{tr}(\varrho(\lambda) C(x, \lambda))
$$

where

$$
C(x, \lambda):=\operatorname{Im}\left(\begin{array}{ccc}
\frac{1}{m(x)} \phi(x, \lambda, N+1)^{\prime} \overline{\phi(x, \lambda, N+1)} & \cdots & \frac{1}{m(x)} \phi(x, \lambda, 0)^{\prime} \overline{\phi(x, \lambda, N+1)} \tag{7.3}\\
\frac{1}{m(x)} \phi(x, \lambda, N+1)^{\prime} \overline{\phi(x, \lambda, N)} & \cdots & \frac{1}{m(x)} \phi(x, \lambda, 0)^{\prime} \overline{\phi(x, \lambda, N)} \\
\vdots & & \vdots \\
\frac{1}{m(x)} \phi(x, \lambda, N+1)^{\prime} \overline{\phi(x, \lambda, 0)} & \cdots & \frac{1}{m(x)} \phi(x, \lambda, 0)^{\prime} \overline{\phi(x, \lambda, 0)}
\end{array}\right)
$$

The current density is strongly related to the characteristic function of the operator H. This is shown in the next theorem.

Theorem 7.1 Assume that $m+\frac{1}{m} \in \mathrm{~L}^{\infty}(a, b), V \in \mathrm{~L}^{2}(a, b)$, with $\operatorname{Im}(V)=0$, and $\kappa_{a}, \kappa_{1}, \cdots$, $\kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$as well as $x_{1}, \cdots, x_{N} \in(a, b)$ such that $x_{1}<x_{2}<\cdots<x_{N}$. Let ϱ be a steady state. Then the current density $j_{\varrho}(x, \lambda), x \in[a, b], x \neq x_{j}, \lambda \in \mathbb{R}$, is independent of x for $x \in\left(x_{j}, x_{j+1}\right)$ and admits the representation

$$
\begin{equation*}
j_{\varrho}(x, \lambda)=\operatorname{tr}(\varrho(\lambda) C(x, \lambda)) \tag{7.4}
\end{equation*}
$$

where

$$
\begin{equation*}
C(x, \lambda):=\sum_{j=0}^{N} E_{j}(\lambda) \Theta_{H}(\lambda)^{*} \chi_{\left(x_{j}, x_{j+1}\right)}(x) \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{j}(\lambda):=\frac{1}{2 \pi}\left(P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j}-P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j}\right) \tag{7.6}
\end{equation*}
$$

with

$$
P_{-}^{j}:=\sum_{z=0}^{j} P_{z}, \quad P_{+}^{j}:=\sum_{z=j+1}^{N+1} P_{z}, \quad P_{z}:=\left\langle\cdot, e_{z}\right\rangle e_{z}
$$

Moreover, if $\operatorname{tr}(\varrho(\cdot)) \in \mathrm{L}^{1}(\mathbb{R})$, then the total current $j_{\varrho}(x)$ at point $x \in\left(x_{j}, x_{j+1}\right)$,

$$
j_{\varrho}(x):=\int_{\mathbb{R}} j_{\varrho}(x, \lambda) d \lambda
$$

is finite and can be estimated by

$$
\begin{equation*}
\left|j_{\varrho}(x)\right| \leq \frac{1}{2 \pi} \int_{\mathbb{R}} \operatorname{tr}(\varrho(\lambda)) d \lambda \tag{7.7}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
j_{\varrho}(x, \lambda)=\operatorname{tr}(\varrho(\lambda) C(x, \lambda)) \tag{7.8}
\end{equation*}
$$

where $C(x, \lambda)$ is given by (7.3). $C(x, \lambda)$ can be rewritten as

$$
C(x, \lambda)=\frac{1}{i}\left(\begin{array}{ccc}
W(\overline{(\cdot, \cdot \lambda, N+1}), \phi(\cdot, \lambda, N+1))(x) & \cdots & W(\overline{\phi(\cdot, \lambda, N+1}, \phi(\cdot, \lambda, 0))(x) \tag{7.9}\\
W(\overline{\phi(\cdot, \lambda, N)}, \phi(\cdot, \lambda, N+1))(x) & \cdots & W(\overline{\phi(\cdot, \lambda, N)}, \phi(\cdot, \lambda, 0))(x) \\
\vdots & & \vdots \\
W(\overline{\phi(\cdot, \lambda, 0)}, \phi(\cdot, \lambda, N+1))(x) & \cdots & W(\overline{\phi(\cdot, \lambda, 0)}, \phi(\cdot, \lambda, 0))(x)
\end{array}\right) .
$$

Clearly $W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)$ is constant for every x in each subinterval $\left(x_{j}, x_{j+1}\right)$, for every $l, m=0, \cdots, N+1$. Hence, $j_{\varrho}(x, \lambda)_{\mid\left(x_{j}, x_{j+1}\right)}$ is constant.

Let us compute $C(x, \lambda)_{\mid\left(x_{j}, x_{j+1}\right)}$. Since $\phi(x, \lambda, k)$ has to fulfil the boundary conditions (5.5) and (5.6) (see also figure 1), we get

$$
\begin{aligned}
& W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)_{\mid\left(x_{j}, x_{j+1}\right)}= W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))\left(x_{j}+0\right) \\
&= W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))\left(x_{j}-0\right) \\
&-i \alpha_{j}^{2} \overline{\phi\left(x_{j}, \lambda, l\right)} \phi\left(x_{j}, \lambda, m\right)+\delta_{j m} \frac{\alpha_{m}}{\sqrt{2 \pi}} \overline{\phi\left(x_{m}, \lambda, l\right)} \\
&= W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))\left(x_{j-1}+0\right) \\
&-i \alpha_{j}^{2} \overline{\phi\left(x_{j}, \lambda, l\right)} \phi\left(x_{j}, \lambda, m\right)+\delta_{j m} \frac{\alpha_{m}}{\sqrt{2 \pi}} \overline{\phi\left(x_{m}, \lambda, l\right)} \\
& \vdots \\
&= \sum_{\tau=0}^{j}\left\{-i \alpha_{\tau}^{2} \overline{\phi\left(x_{\tau}, \lambda, l\right)} \phi\left(x_{\tau}, \lambda, m\right)+\delta_{\tau, m} \frac{\alpha_{\tau}}{\sqrt{2 \pi}} \overline{\phi\left(x_{\tau}, \lambda, l\right)}\right\},
\end{aligned}
$$

for $l, m=0, \cdots, N+1$ and $l>j$, where $\delta_{\tau, m}=\left\langle e_{\tau}, e_{m}\right\rangle$. Similar we obtain for all $l, m=$ $0, \cdots, N+1, l \leq j$,

$$
\begin{aligned}
& W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)_{\mid\left(x_{j}, x_{j+1}\right)}= W(\overline{\phi(x, \lambda, l)}, \phi(x, \lambda, m))\left(x_{j+1}-0\right) \\
&= W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))\left(x_{j+1}+0\right) \\
&+i \alpha_{j+1} \overline{\phi\left(x_{j+1}, \lambda, l\right)} \phi\left(x_{j+1}, \lambda, m\right)-\delta_{j+1, m} \frac{\alpha_{m}}{\sqrt{2 \pi}} \overline{\phi\left(x_{j+1}, \lambda, l\right)} \\
&= W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))\left(x_{j+2}-0\right) \\
&+i \alpha_{j+1} \overline{\phi\left(x_{j+1}, \lambda, l\right)} \phi\left(x_{j+1}, \lambda, m\right)-\delta_{j+1, m} \frac{\alpha_{m}}{\sqrt{2 \pi}} \overline{\phi\left(x_{j+1}, \lambda, l\right)} \\
& \vdots \\
&= \sum_{\tau=j+1}^{N+1}\left\{i \alpha_{\tau}^{2} \overline{\phi\left(x_{\tau}, \lambda, l\right)} \phi\left(x_{\tau}, \lambda, m\right)-\delta_{\tau, m} \frac{\alpha_{\tau}}{\sqrt{2 \pi}} \overline{\phi\left(x_{\tau}, \lambda, l\right)}\right\} .
\end{aligned}
$$

Note that

$$
\frac{1}{\sqrt{2 \pi}}\left\langle\alpha T_{*}(\lambda)^{*} e_{\xi}, e_{\tau}\right\rangle=-\alpha_{\tau} \phi\left(x_{\tau}, \lambda, \xi\right)
$$

for all $\tau, \xi=0, \cdots, N+1$. Hence we find

$$
\begin{align*}
W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)_{\mid\left(x_{j}, x_{j+1}\right)} & =\frac{1}{\sqrt{2 \pi}} \sum_{\tau=0}^{j}\left\{-i \sqrt{2 \pi} \alpha_{\tau} \phi\left(x_{\tau}, \lambda, m\right)+\delta_{\tau, m}\right\} \alpha_{\tau} \overline{\phi\left(x_{\tau}, \lambda, l\right)} \tag{7.10}\\
& =-\frac{1}{2 \pi} \sum_{\tau=0}^{j}\left\{i\left\langle\alpha T_{*}(\lambda)^{*} e_{m}, e_{\tau}\right\rangle+\left\langle e_{m}, e_{\tau}\right\rangle\right\} \overline{\left\langle\alpha T_{*}(\lambda)^{*} e_{l}, e_{\tau}\right\rangle}
\end{align*}
$$

for $l>j$. Using equation (4.9) we get

$$
\begin{align*}
W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)_{\mid\left(x_{j}, x_{j+1}\right)} & =-\frac{1}{2 \pi} \sum_{\tau=0}^{j}\left\langle\Theta_{H}(\lambda)^{*} e_{m}, e_{\tau}\right\rangle \overline{\left\langle\alpha T_{*}(\lambda)^{*} e_{l}, e_{\tau}\right\rangle} \tag{7.11}\\
& =-\frac{1}{2 \pi}\left\langle P_{-}^{j} \Theta_{H}(\lambda)^{*} e_{m}, \alpha T_{*}(\lambda)^{*} e_{l}\right\rangle
\end{align*}
$$

or

$$
\begin{equation*}
W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)_{\mid\left(x_{j}, x_{j+1}\right)}=-\frac{i}{2 \pi}\left\langle P_{-}^{j} \Theta_{H}(\lambda)^{*} e_{m}, \Theta_{H}(\lambda)^{*} P_{+}^{j} e_{l}\right\rangle \tag{7.12}
\end{equation*}
$$

for $l>j$. If $l \leq j$, then

$$
\begin{align*}
W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)_{\mid\left(x_{j}, x_{j+1}\right)} & =\frac{1}{\sqrt{2 \pi}} \sum_{\tau=j+1}^{N+1}\left\{i \sqrt{2 \pi} \alpha_{\tau} \phi\left(x_{\tau}, \lambda, m\right)-\delta_{\tau, m}\right\} \alpha_{\tau} \overline{\phi\left(x_{\tau}, \lambda, l\right)} \tag{7.13}\\
& =\frac{1}{2 \pi} \sum_{\tau=j+1}^{N+1}\left\{i\left\langle T_{*}(\lambda)^{*} e_{m}, e_{\tau}\right\rangle+\left\langle e_{m}, e_{\tau}\right\rangle\right\} \overline{\left\langle\alpha T_{*}(\lambda)^{*} e_{l}, e_{\tau}\right\rangle} .
\end{align*}
$$

Using again (4.9) we obtain

$$
\begin{align*}
W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)_{\mid\left(x_{j}, x_{j+1}\right)} & =\frac{1}{2 \pi} \sum_{\tau=j+1}^{N+1}\left\langle\Theta_{H}(\lambda)^{*} e_{m}, e_{\tau}\right\rangle \overline{\left\langle\alpha T_{*}(\lambda)^{*} e_{l}, e_{\tau}\right\rangle} \tag{7.14}\\
& =\frac{i}{2 \pi}\left\langle P_{+}^{j} \Theta_{H}(\lambda)^{*} e_{m}, \Theta_{H}(\lambda)^{*} e_{l}\right\rangle
\end{align*}
$$

which yields

$$
\begin{equation*}
W(\overline{\phi(\cdot, \lambda, l)}, \phi(\cdot, \lambda, m))(x)_{\mid\left(x_{j}, x_{j+1}\right)}=\frac{i}{2 \pi}\left\langle P_{+}^{j} \Theta_{H}(\lambda)^{*} e_{m}, \Theta_{H}(\lambda)^{*} P_{-}^{j} e_{l}\right\rangle \tag{7.15}
\end{equation*}
$$

for $l \leq j$. Taking into account (7.9), (7.12) and (7.15) we find

$$
\begin{equation*}
\left.\left\langle C(x, \lambda) e_{m}, e_{l}\right)\right\rangle_{\mid\left(x_{j}, x_{j+1}\right)}=\frac{1}{2 \pi}\left\langle\left\{P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j}-P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j}\right\} \Theta_{H}(\lambda)^{*} e_{m}, e_{l}\right\rangle \tag{7.16}
\end{equation*}
$$

for $m, l=0,1, \ldots, N+1$. Using notation (7.5) and (7.6) we immediately obtain (7.4).
From the above calculations we get for the total current $j_{e}(x), x \in\left(x_{j}, x_{j+1}\right)$,

$$
\left|j_{\varrho}(x)\right| \leq\|\varrho(\lambda) C(x, \lambda)\|_{\mathfrak{B}_{1}\left(\mathbb{C}^{N+2}\right)} \leq \frac{1}{2 \pi}\|\varrho(\lambda)\|_{\mathfrak{B}_{1}\left(\mathbb{C}^{N+2}\right)}\left\|E_{j}(\lambda)\right\|_{\mathfrak{B}\left(\mathbb{C}^{N+2}\right)} .
$$

By (7.6) one gets

$$
E_{j}(\lambda)^{*} E_{j}(\lambda)=P_{+}^{j} \Theta_{H}(\lambda)^{*} P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j}+P_{-}^{j} \Theta_{H}(\lambda)^{*} P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j}
$$

which yields

$$
E_{j}(\lambda)^{*} E_{j}(\lambda) \leq I .
$$

Hence $\left\|E_{j}(\lambda)\right\|_{\mathfrak{B}\left(\mathbb{C}^{N+2}\right)} \leq 1$ which verifies (7.7).
Let us show that piecewise constant matrix-valued function $C(x, \lambda)$ is selfadjoint for each $x \neq x_{j}$. If $x \in\left(x_{j}, x_{j+1}\right)$, then one gets

$$
C(x, \lambda)^{*}=\Theta_{H}(\lambda) E_{j}(\lambda)^{*}=\frac{1}{2 \pi} \Theta_{H}(\lambda)\left\{P_{-}^{j} \Theta_{H}(\lambda)^{*} P_{+}^{j}-P_{+}^{j} \Theta_{H}(\lambda)^{*} P_{-}^{j}\right\} .
$$

One has

$$
\begin{aligned}
C(x, \lambda)^{*}= & \frac{1}{2 \pi}\left\{P_{+}^{j} \Theta_{H}(\lambda) P_{+}^{j} \Theta_{H}(\lambda)^{*} P_{-}^{j}+P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j} \Theta_{H}(\lambda)^{*} P_{-}^{j}\right. \\
& \left.-P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j} \Theta_{H}(\lambda)^{*} P_{+}^{j}-P_{-}^{j} \Theta_{H}(\lambda) P_{-}^{j} \Theta_{H}(\lambda)^{*} P_{+}^{j}\right\} .
\end{aligned}
$$

Since $P_{+}^{j}+P_{-}^{j}=I$ and $\Theta_{H}(\lambda) \Theta_{H}(\lambda)^{*}=I$ we find

$$
\begin{aligned}
C(x, \lambda)^{*}= & \frac{1}{2 \pi}\left\{-P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j} \Theta_{H}(\lambda)^{*} P_{-}^{j}+P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j} \Theta_{H}(\lambda)^{*} P_{-}^{j}\right. \\
& \left.-P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j} \Theta_{H}(\lambda)^{*} P_{+}^{j}+P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j} \Theta_{H}(\lambda)^{*} P_{+}^{j}\right\}
\end{aligned}
$$

which yields

$$
C(x, \lambda)^{*}=\frac{1}{2 \pi}\left\{P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j}-P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j}\right\} \Theta_{H}(\lambda)^{*}=C(x, \lambda)
$$

Since $C(x, \lambda)$ is selfadjoint it is useful, in correspondence to the current density, to make the following definition.

Definition 7.2 The piecewise constant matrix $C(\cdot, \lambda)$ defined by (7.5) is called the current density observable and the piecewise constant function

$$
j_{\varrho}(x, \lambda)=\operatorname{tr}(\varrho(\lambda) C(x, \lambda))
$$

is called the current density at point $x \in[a, b], x \neq x_{j}$, and energy $\lambda \in \mathbb{R}$.
The definition is justified by the fact that the current density is the expectation value of the current density observable at energy $\lambda \in \mathbb{R}$ and point $x \in \mathbb{R}$, i.e. $j_{\rho}(x, \lambda)=\mathbb{E}_{\rho(\lambda)}(C(x, \lambda))$. Using this notion we get

$$
j_{\varrho}(x)=\int_{\mathbb{R}} \mathbb{E}_{\varrho(\lambda)}(C(x, \lambda)) d \lambda
$$

Let us consider the special case, where the steady state ϱ is a function of K, i.e. $\varrho=f(K)$, for some $f \in \mathrm{~L}^{\infty}(\mathbb{R}), f \geq 0$. In this case ϱ belong to the bicommutant of K. As in [KNR01c] we get that in this case the current density is zero. This fact is proven by the following Corollary.

Corollary 7.3 Suppose that $m+\frac{1}{m} \in \mathrm{~L}^{\infty}(a, b), V \in \mathrm{~L}^{2}(a, b)$, such that $\operatorname{Im}(V)=0, \kappa_{a}, \kappa_{1}, \cdots$, $\kappa_{N}, \kappa_{b} \in \mathbb{C}_{+}$, as well as $x_{1}, \cdots, x_{N} \in(a, b)$, with $x_{1}<x_{2}<\cdots<x_{N}$. Furthermore assume that the steady state ϱ is of the form $\varrho=f(K)$, where $f \in \mathrm{~L}^{\infty}(\mathbb{R})$ is non-negative. Then $j_{\varrho}(x, \lambda)=0$ for $x \neq x_{\tau}, \tau=a, x_{1}, \cdots, x_{N}, b$, and a.e. $\lambda \in \mathbb{R}$.

Proof. Clearly we have $\varrho(\lambda)=f(\lambda) I_{\mathbb{C}^{N+2}}, \lambda \in \mathbb{R}$. Thus we get for $x \in\left(x_{j}, x_{j+1}\right)$

$$
j_{\varrho}(x, \lambda)=f(\lambda) \operatorname{tr}_{\mathbb{C}^{N+2}}(C(x, \lambda))
$$

Using (7.5) and (7.6) we obtain

$$
j_{\varrho}(x, \lambda)=f(\lambda) \operatorname{tr}\left(E_{j}(x, \lambda) \Theta_{H}(\lambda)^{*}\right)=f(\lambda) \operatorname{tr}\left(\left(P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j}-P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j}\right) \Theta_{H}(\lambda)^{*}\right) .
$$

Since

$$
\operatorname{tr}\left(P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j} \Theta_{H}(\lambda)^{*}\right)=\operatorname{tr}\left(P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j} \Theta_{H}(\lambda)^{*} P_{+}^{j}\right)=\operatorname{tr}\left(P_{-}^{j} \Theta_{H}(\lambda)^{*} P_{+}^{j} \Theta_{H}(\lambda) P_{-}^{j}\right)
$$

and

$$
\operatorname{tr}\left(P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j} \Theta_{H}(\lambda)^{*}\right)=\operatorname{tr}\left(P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j} \Theta_{H}(\lambda)^{*} P_{-}^{j}\right)
$$

we have

$$
\operatorname{tr}\left(\left(P_{-}^{j} \Theta_{H}(\lambda) P_{+}^{j}-P_{+}^{j} \Theta_{H}(\lambda) p_{-}^{J}\right) \Theta_{H}(\lambda)^{*}\right)=0
$$

which proves $j_{\varrho}(x, \lambda)=0$.

8 Current variations

In Theorem 7.1 we showed that the current density $j_{\varrho}(x, \lambda)$ is piecewise constant in x. Let us calculate the current difference for some $\tilde{a} \in\left(x_{j}, x_{j+1}\right)$ and $\tilde{b} \in\left(x_{j+1}, x_{j+2}\right)$:

$$
\begin{align*}
j_{\varrho}(\tilde{b}, \lambda)-j_{\varrho}(\tilde{a}, \lambda) & =\frac{1}{2 \pi} \operatorname{tr}\left(\varrho(\lambda)\left\{C_{j+1}(\lambda)-C_{j}(\lambda)\right\}\right) \\
& =\frac{1}{2 \pi} \operatorname{tr}\left(\varrho(\lambda)\left\{P_{-}^{j+1} \Theta_{H}(\lambda) P_{-}^{j+1}-P_{-}^{j} \Theta_{H}(\lambda) P_{-}^{j}\right\} \Theta_{H}^{*}(\lambda)\right) \\
& =\frac{1}{2 \pi} \operatorname{tr}\left(\varrho(\lambda)\left\{P_{j+1} \Theta_{H}(\lambda)-\Theta_{H}(\lambda) P_{j+1}\right\} \Theta_{H}^{*}(\lambda)\right) \\
& =\frac{1}{2 \pi} \operatorname{tr}\left(P_{j+1}\left\{\varrho(\lambda)-\Theta^{*}(\lambda) \varrho(\lambda) \Theta_{H}(\lambda)\right\} P_{j+1}\right) \tag{8.1}
\end{align*}
$$

More general we get for $\hat{a} \in\left(x_{j}, x_{j+1}\right)$ and $\hat{b} \in\left(x_{j+k+1}, x_{j+k+2}\right)$

$$
\begin{equation*}
j_{\varrho}(\hat{b}, \lambda)-j_{\varrho}(\hat{a}, \lambda)=\frac{1}{2 \pi} \operatorname{tr}\left(Q\left\{\varrho(\lambda)-\Theta_{H}(\lambda) \varrho(\lambda) \Theta_{H}^{*}(\lambda)\right\} Q\right) \tag{8.2}
\end{equation*}
$$

where $Q=\sum_{\tau=j}^{j+k} P_{\tau}$.
From equation (8.2) we see that the current difference depends essentially on the density matrix $\varrho(\lambda)$. For example, if $\varrho(\lambda)$ commutes with $\Theta_{H}(\lambda)$ we get that the difference is zero. Hence, the current is constant. In the case that the difference in (8.2) is positive, the system is "losing" electrons between the points \tilde{a} and \tilde{b}. If the difference in (8.2) is negative, the system "gains" electrons. The effect of losing and gaining electrons is closely related to a recombination-generation process.

In the following we are going to construct a density matrix $\varrho(\cdot)$, such that the r.h.s. of (8.2) is expressed in terms of the density $u_{\varrho}\left(x_{\xi}, \lambda\right)$ and the α_{j} 's.
Let $\mathcal{R}_{\lambda_{0}}, \mathcal{G}_{\lambda_{0}} \subseteq\{1, \cdots, N\}:=\mathcal{T}$ such that $\mathcal{R}_{\lambda_{0}} \cap \mathcal{G}_{\lambda_{0}}=\emptyset, \mathcal{R}_{\lambda_{0}} \cup \mathcal{G}_{\lambda_{0}}=\mathcal{T}$, and $u\left(\lambda_{0}\right) \in \mathbb{C}^{N+2}$ with

$$
\begin{equation*}
\left\langle u\left(\lambda_{0}\right), e_{\tau}\right\rangle=0, \quad \forall \tau \in \mathcal{R}_{\lambda_{0}}, \text { and }\left\langle u\left(\lambda_{0}\right), \Theta_{H}\left(\lambda_{0}\right) e_{\tau}\right\rangle=0, \quad \forall \tau \in \mathcal{G}_{\lambda_{0}} \tag{8.3}
\end{equation*}
$$

where $\lambda_{0} \in \mathbb{R}$ is fixed. We define the operator $\varrho\left(\lambda_{0}\right)$ by

$$
\varrho\left(\lambda_{0}\right)^{T}:=\overline{u\left(\lambda_{0}\right)} u\left(\lambda_{0}\right)^{T}
$$

The function $f\left(x, \lambda_{0}\right)$ given by

$$
\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
f\left(x, \lambda_{0}\right)
\end{array}\right)=u\left(\lambda_{0}\right)^{T} \Phi(x, \lambda)
$$

satisfies the following boundary conditions:

$$
\begin{align*}
\Delta\left(f\left(\cdot, \lambda_{0}\right)\right)\left(x_{\tau}\right) & =-\kappa_{\tau} f\left(x_{\tau}, \lambda_{0}\right), \tag{8.4}\\
\Delta\left(f\left(\cdot, \lambda_{0}\right)\right)\left(x_{\xi}\right) & =-\overline{\kappa_{\xi}} f\left(x_{\xi}, \lambda_{0}\right), \tag{8.5}
\end{align*} \forall \xi \in \mathcal{R}_{\lambda_{0}},
$$

Let $\omega=[\tilde{a}, \tilde{b}] \subseteq \Omega$ be a given interval and $\mathcal{T}_{\omega}:=\left\{j \in \mathcal{T} \mid x_{j} \in \omega\right\}$. The current difference is then given by

$$
\begin{aligned}
j_{\varrho}\left(\tilde{b}, \lambda_{0}\right)-j_{\varrho}\left(\tilde{a}, \lambda_{0}\right)= & \operatorname{Im}\left(\left\langle u\left(\lambda_{0}\right)^{T} \frac{1}{m(\tilde{b})} \Phi\left(\tilde{b}, \lambda_{0}\right)^{\prime}, u\left(\lambda_{0}\right)^{T} \Phi\left(\tilde{b}, \lambda_{0}\right)\right\rangle\right) \\
& -\operatorname{Im}\left(\left\langle u\left(\lambda_{0}\right)^{T} \frac{1}{m(\tilde{a})} \Phi\left(\tilde{a}, \lambda_{0}\right)^{\prime}, u\left(\lambda_{0}\right)^{T} \Phi\left(\tilde{a}, \lambda_{0}\right)\right\rangle\right) \\
= & \frac{1}{i} \sum_{\tau \in \mathcal{T}_{\omega}}\left\{W\left(\overline{f\left(\cdot, \lambda_{0}\right)}, f\left(\cdot, \lambda_{0}\right)\right)\left(x_{\tau}+0\right)-W\left(\overline{f\left(\cdot, \lambda_{0}\right)}, f\left(\cdot, \lambda_{0}\right)\right)\left(x_{\tau}-0\right)\right\}
\end{aligned}
$$

Using the boundary conditions (8.4) and (8.5) we obtain

$$
\begin{aligned}
j_{\varrho}\left(\tilde{b}, \lambda_{0}\right)-j_{\varrho}\left(\tilde{a}, \lambda_{0}\right)= & \sum_{\tau \in \mathcal{T}_{\omega} \cap \mathcal{G}_{\lambda_{0}}} \alpha_{\tau}^{2}\left|f\left(x_{\tau}, \lambda_{0}\right)\right|^{2}-\sum_{\xi \in \mathcal{T}_{\omega} \cap \mathcal{R}_{\lambda_{0}}} \alpha_{\xi}^{2}\left|f\left(x_{\xi}, \lambda_{0}\right)\right|^{2} \\
= & \sum_{\tau \in \mathcal{T}_{\omega} \cap \mathcal{G}_{\lambda_{0}}} \alpha_{\tau}^{2}\left\langle V\left(\lambda_{0}\right) \Phi\left(x_{\tau}, \lambda_{0}\right), V\left(\lambda_{0}\right) \Phi\left(x_{\tau}, \lambda_{0}\right)\right\rangle \\
& -\sum_{\xi \in \mathcal{T}_{\omega} \cap \mathcal{R}_{\lambda_{0}}} \alpha_{\xi}^{2}\left\langle V\left(\lambda_{0}\right) \Phi\left(x_{\xi}, \lambda_{0}\right), V\left(\lambda_{0}\right) \Phi\left(x_{\xi}, \lambda_{0}\right)\right\rangle \\
= & \sum_{\tau \in \mathcal{T}_{\omega} \cap \mathcal{G}_{\lambda_{0}}} \alpha_{\tau}^{2} u_{\varrho}\left(x_{\tau}, \lambda_{0}\right)-\sum_{\xi \in \mathcal{T}_{\omega} \cap \mathcal{R}_{\lambda_{0}}} \alpha_{\xi}^{2} u_{\varrho}\left(x_{\xi}, \lambda_{0}\right)
\end{aligned}
$$

Clearly a vector $u\left(\lambda_{0}\right)$ with the properties (8.3) always exists. In the following we will construct a vector $u\left(\lambda_{0}\right)$ for almost every $\lambda_{0} \in \mathbb{R}$, such that $u\left(\lambda_{0}\right)$ is determined up to two given parameters. Let $u_{a}\left(\lambda_{0}\right), u_{b}\left(\lambda_{0}\right) \in \mathbb{C}$ be arbitrary. We are now going to construct the vector $u\left(\lambda_{0}\right)=\left(u^{a}\left(\lambda_{0}\right), \cdots, u^{b}\left(\lambda_{0}\right)\right)^{T}$.
We set $P_{\mathcal{G}_{\lambda_{0}}}:=\sum_{j \in \mathcal{G}_{\lambda_{0}}} P_{j}$ and $m_{\mathcal{G}_{\lambda_{0}}}:=\# \mathcal{G}_{\lambda_{0}}$, i.e. the number of elements in $\mathcal{G}_{\lambda_{0}}$.
The first condition in (8.3) implies that $u^{j}\left(\lambda_{0}\right)=0$ for $j \in \mathcal{R}_{\lambda_{0}}$. Furthermore we set $u^{a}\left(\lambda_{0}\right)=$ $u_{a}\left(\lambda_{0}\right)$ and $u^{b}\left(\lambda_{0}\right)=u_{b}\left(\lambda_{0}\right)$. The second condition in (8.3) can be rewritten to

$$
\begin{equation*}
P_{\mathcal{G}_{\lambda_{0}}} \Theta_{H}\left(\lambda_{0}\right)^{*} P_{\mathcal{G}_{\lambda_{0}}} u=-\left(u_{b}\left(\lambda_{0}\right) P_{\mathcal{G}_{\lambda_{0}}} \Theta_{H}\left(\lambda_{0}\right)^{*} e_{b}+u_{a}\left(\lambda_{0}\right) P_{\mathcal{G}_{\lambda_{0}}} \Theta_{H}\left(\lambda_{0}\right)^{*} e_{a}\right) . \tag{8.6}
\end{equation*}
$$

Since $P_{\mathcal{G}_{\lambda_{0}}} \Theta_{H}\left(\lambda_{0}\right)^{*} P_{\mathcal{G}_{\lambda_{0}}}$ can be seen as a $m_{\mathcal{G}_{\lambda_{0}}} \times m_{\mathcal{G}_{\lambda_{0}}}$-matrix, the equation (8.6) has a solution for a.e. λ_{0} if

$$
\operatorname{det}_{m_{\mathcal{G}_{\lambda_{0}}}}\left(P_{\mathcal{G}_{\lambda_{0}}} \Theta_{H}\left(\lambda_{0}\right)^{*} P_{\mathcal{G}_{\lambda_{0}}}\right) \neq 0
$$

where $\operatorname{det}_{m_{\mathcal{G}_{\lambda_{0}}}}(\cdot)$ denotes the determinant in the vector space $\mathbb{C}^{m_{\mathcal{G}_{\lambda_{0}}}}$.
Since $\left\langle\Theta_{H}(\cdot) e_{j}, e_{k}\right\rangle$ is a bounded analytic function on $\overline{\mathbb{C}_{-}}\left(c f\right.$. [FN70]), we get that $\operatorname{det}_{m_{\mathcal{G}_{\lambda_{0}}}}(\cdot)$ is also a bounded analytic function on $\overline{\mathbb{C}_{-}}$. Hence $\operatorname{det}_{m_{\mathcal{G}_{\lambda_{0}}}}\left(\Theta_{H}(\lambda)\right) \neq 0$ for a.e. λ_{0}.

The remaining components of u, i.e. $u^{j}, j \in \mathcal{G}_{\lambda_{0}}$, are then determined as the solution of the linear equation (8.6).

Thus we proved that we can construct a density matrix $\varrho\left(\lambda_{0}\right)$ for a.e. λ_{0}, such that we obtain a loss and gain effect at predefined points x_{j}. Furthermore we showed that one has two degrees of freedom in the choice of $\varrho\left(\lambda_{0}\right)$, namely $u^{b}\left(\lambda_{0}\right)$ and $u^{a}\left(\lambda_{0}\right)$.

By repeating the above procedure for every $\lambda \in \mathbb{R}$ we can construct a density matrix $\varrho(\lambda)$, for every $\lambda \in \mathbb{R}$. It can easily be seen that the condition (6.1) is satisfied if $u^{a}(\lambda)$ and $u^{b}(\lambda)$ decay sufficiently fast, e.g. $u^{a}(\lambda), u^{b}(\lambda)$ have compact support.

We will give some examples: Assume that $u^{b}\left(\lambda_{0}\right), u^{a}\left(\lambda_{0}\right) \in \mathbb{C}$ are given and let $\mathcal{R}_{\lambda_{0}}=\{1, \cdots, N\}$, $\mathcal{G}_{\lambda_{0}}=\emptyset$. Clearly the vector

$$
u_{R}\left(\lambda_{0}\right):=\left(u^{b}\left(\lambda_{0}\right), 0, \cdots, 0, u^{a}\left(\lambda_{0}\right)\right)^{T}
$$

satisfies equation (8.3). Introducing the density matrix by

$$
\varrho_{R}\left(\lambda_{0}\right)^{T}:=\overline{u_{R}\left(\lambda_{0}\right)} u_{R}\left(\lambda_{0}\right)^{T}
$$

we get

$$
j_{\varrho_{R}}\left(\tilde{b}, \lambda_{0}\right)-j_{\varrho_{R}}\left(\tilde{a}, \lambda_{0}\right)=-\sum_{\tau=1}^{N} \alpha_{\tau}^{2} u_{\varrho_{R}}\left(x_{\tau}, \lambda_{0}\right)
$$

i.e. the density matrix $\varrho_{R}\left(\lambda_{0}\right)$ is purely recombinative.

To obtain a density matrix which is purely generative we introduce the vector

$$
u_{G}\left(\lambda_{0}\right):=\Theta_{H}\left(\lambda_{0}\right) u_{R}\left(\lambda_{0}\right)
$$

which satisfies equation (8.3) with $\mathcal{R}_{\lambda_{0}}=\emptyset$ and $\mathcal{G}_{\lambda_{0}}=\{1, \cdots, N\}$. As above we define the density matrix by $\varrho_{G}\left(\lambda_{0}\right)^{T}:=\overline{u_{G}\left(\lambda_{0}\right)} u_{G}\left(\lambda_{0}\right)^{T}$ and get

$$
j_{\varrho_{G}}\left(\tilde{b}, \lambda_{0}\right)-j_{\varrho_{G}}\left(\tilde{a}, \lambda_{0}\right)=\sum_{\tau=1}^{N} \alpha_{\tau}^{2} u_{\varrho_{G}}\left(x_{\tau}, \lambda_{0}\right)
$$

Thus $\varrho_{G}\left(\lambda_{0}\right)$ is purely generative. We note that

$$
\begin{equation*}
\varrho_{G}\left(\lambda_{0}\right)=\Theta_{H}\left(\lambda_{0}\right) \varrho_{R}\left(\lambda_{0}\right) \Theta_{H}\left(\lambda_{0}\right)^{*} \tag{8.7}
\end{equation*}
$$

9 Remarks

The definition of carrier and current density was formulated in terms of the complete orthonormal system of eigenfunctions $\{\vec{\phi}(\cdot, \lambda, a), \cdots, \vec{\phi}(\cdot, \lambda, b)\}_{\lambda \in \mathbb{R}}$. Since the eigenfunctions behave on \mathbb{R}_{-}like free wave, they are called the incoming eigenfunctions. By equation (5.10) we can define another system of orthogonal eigenfunctions by

$$
\vec{\phi}_{\text {out }}(\cdot, \lambda, j):=\frac{1}{\sqrt{2 \pi}} \vec{\phi}^{\Theta(\lambda) e_{j}}(\cdot, \lambda), \quad j=0, \cdots, N+1
$$

which are called the outgoing eigenfunctions. By equation (6.8) the following relation holds

$$
\Theta_{H}(\lambda) \Phi_{\mathrm{in}}(x, \lambda)=\left(\begin{array}{c}
\phi_{\mathrm{out}}(x, \lambda, b) \tag{9.1}\\
\vdots \\
\phi_{\mathrm{out}}(x, \lambda, a)
\end{array}\right):=\Phi_{\mathrm{out}}(x, \lambda),
$$

where we have set $\Phi_{\text {in }}(x, \lambda)=\Phi(x, \lambda)$.
Using the outgoing eigenfunction we define the "outgoing" carrier and current density by

$$
\begin{aligned}
u_{\varrho}^{\mathrm{out}}(x, \lambda) & :=\left\langle\varrho(\lambda)^{T} \Phi_{\mathrm{out}}(x, \lambda), \Phi_{\mathrm{out}}(x, \lambda)\right\rangle \\
j_{\varrho}^{\mathrm{out}}(x, \lambda) & :=\operatorname{Im}\left\langle\varrho(\lambda)^{T} \frac{1}{m(x)} \Phi_{\mathrm{out}}(x, \lambda)^{\prime}, \Phi_{\mathrm{out}}(x, \lambda)\right\rangle
\end{aligned}
$$

Using (9.1) we get

$$
u_{\varrho}^{\text {out }}(x, \lambda)=u_{\Theta_{H} \text { in }_{H}^{*}}(x, \lambda), \quad j_{\varrho}^{\text {out }}(x, \lambda)=j_{\Theta_{H} \text { in }_{H}}(x, \lambda),
$$

where $u_{\varrho}^{\mathrm{in}}(x, \lambda), j_{\varrho}^{\mathrm{in}}(x, \lambda)$ denotes the carrier, respectively current, density defined in the previous sections.

The incoming and the outgoing carrier and current densities coincide, if $\varrho(\lambda)$ commutes with the characteristic function $\Theta_{H}(\lambda)$. As already mentioned above in this case neither loss nor gain effects will occur.

In the previous section we gave an example for a purely recombinative density matrix $\varrho_{R}(\lambda)$ and an example for a strict generative matrix $\varrho_{G}(\lambda)$. Using the relations (9.1) and (8.7) we get

$$
j_{\varrho_{G}}^{\mathrm{in}}(x, \lambda)=j_{\varrho_{R}}^{\text {out }}(x, \lambda)
$$

i.e. the generative matrix ϱ_{G} in the incoming representation becomes a recombinative matrix in the outgoing representation.

Introducing the notions $P_{j}^{\text {in }}=\left\langle\cdot, e_{j}\right\rangle e_{j}$ and $P_{j}^{\text {out }}=\left\langle\cdot, E_{j}\right\rangle E_{j}$, where $E_{j}=\Theta_{H}^{*}(\lambda) e_{j}$, we can rewrite (8.1) as follows

$$
j_{\varrho}(\tilde{b}, \lambda)-j_{\varrho}(\tilde{a}, \lambda)=\frac{1}{2 \pi} \operatorname{tr}\left(\varrho(\lambda)\left\{P_{j}^{\text {in }}-P_{j}^{\text {out }}\right\}\right)
$$

Let us consider two different dissipative Schrödinger operator H_{n} and H_{p} for the two different species of particles (electron and holes), with $m_{n}, m_{p}, V_{n}, V_{p}, \kappa_{j, n}, \kappa_{j, p}, j=1, \cdots, N$, and let x_{j}, $j=1, \cdots, N$, be numbers within the interval (a, b) such that $a<x_{1}<\cdots<x_{N}<b$. We denote by $u_{\varrho_{k}}(x, \lambda)$, respectively $j_{\varrho_{k}}(x, \lambda)$, the carrier density, respectively current density, corresponding to the density matrix ϱ_{k} and the operator $H_{k}, k=n, p$.

Assume that the sets $\mathcal{G}_{\lambda}=\mathcal{G}$ and $\mathcal{R}_{\lambda}=\mathcal{R}$ are given. Let $\varrho_{n}(\lambda)$ and $\varrho_{p}(\lambda)$ density matrices
satisfying equation (6.1) such that

$$
\begin{align*}
& j_{\varrho_{n}}(\tilde{b}, \lambda)-j_{\varrho_{n}}(\tilde{a}, \lambda)=\sum_{\tau \in \mathcal{R} \cap \mathcal{T}_{\omega}} \alpha_{\tau, n}^{2} u_{\varrho_{n}}\left(x_{\tau}, \lambda\right)-\sum_{\xi \in \mathcal{G} \cap \mathcal{T}_{\omega}} \alpha_{\xi, n}^{2} u_{\varrho_{n}}\left(x_{\xi}, \lambda\right), \quad \text { for a.e. } \quad \lambda \in \mathbb{R} \quad \text { (9.2) } \tag{9.2}\\
& j_{\varrho_{p}}(\tilde{b}, \lambda)-j_{\varrho_{p}}(\tilde{a}, \lambda)=-\left(\sum_{\tau \in \mathcal{R} \cap \mathcal{T}_{\omega}} \alpha_{\tau, p}^{2} u_{\varrho_{p}}\left(x_{\tau}, \lambda\right)-\sum_{\xi \in \mathcal{G} \cap \mathcal{T}_{\omega}} \alpha_{\xi, p}^{2} u_{\varrho_{p}}\left(x_{\xi}, \lambda\right)\right), \quad \text { for a.e. } \lambda \in \mathbb{R} . \tag{9.3}
\end{align*}
$$

By the consideration of section 8 , such density matrices exists. Integrating (9.2) and (9.3) with respect to λ yields

$$
\begin{align*}
& j_{\varrho_{n}}(\tilde{b})-j_{\varrho_{n}}(\tilde{a})=\sum_{\tau \in \mathcal{R} \cap \mathcal{T}_{\omega}} \alpha_{\tau, n}^{2} u_{\varrho_{n}}\left(x_{\tau}\right)-\sum_{\xi \in \mathcal{G} \cap \mathcal{T}_{\omega}} \alpha_{\xi, n}^{2} u_{\varrho_{n}}\left(x_{\xi},\right), \tag{9.4}\\
& j_{\varrho_{p}}(\tilde{b})-j_{\varrho_{p}}(\tilde{a})=-\left(\sum_{\tau \in \mathcal{R} \cap \mathcal{T}_{\omega}} \alpha_{\tau, p}^{2} u_{\varrho_{p}}\left(x_{\tau}\right)-\sum_{\xi \in \mathcal{G} \cap \mathcal{T}_{\omega}} \alpha_{\xi, p}^{2} u_{\varrho_{p}}\left(x_{\xi}\right)\right) . \tag{9.5}
\end{align*}
$$

Integrating the stationary continuity equation (cf. (1.3)) over ω gives

$$
\begin{equation*}
j_{\varrho_{n}}(\tilde{b})-j_{\varrho_{n}}(\tilde{a})=-\left(j_{\varrho_{p}}(\tilde{b})-j_{\varrho_{p}}(\tilde{a})\right) \tag{9.6}
\end{equation*}
$$

Matching equation (9.6) with (9.4) and (9.5) leads to a condition on the $\alpha_{j, n}^{2}$'s and $\alpha_{j, p}^{2}$'s, i.e.

$$
\begin{equation*}
\alpha_{j, n}^{2}=u_{\varrho_{p}}\left(x_{j}, \lambda\right), \quad \text { and } \quad \alpha_{j, p}^{2}=u_{\varrho_{n}}\left(x_{j}, \lambda\right), \quad j=1, \cdots, N \tag{9.7}
\end{equation*}
$$

The equations (9.4),(9.5) can now be viewed as a stationary continuity equation with recom-bination-generation term given by

$$
\int_{\omega} R\left(u_{\varrho_{n}}(x), u_{\varrho_{p}}(x)\right) d x=\sum_{j \in \mathcal{T}_{\omega} \cap \mathcal{R}} u_{\varrho_{n}}\left(x_{j}\right) u_{\varrho_{p}}\left(x_{j}\right)-\sum_{j \in \mathcal{T}_{\omega} \cap \mathcal{G}} u_{\varrho_{n}}\left(x_{j}\right) u_{\varrho_{p}}\left(x_{j}\right)
$$

To solve the nonlinear equation given by (9.7) we introduce the operators $\mathcal{N}_{k}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}^{N}$, given by

$$
\mathcal{N}_{k}\left(\alpha_{1, k}^{2}, \cdots, \alpha_{N, k}^{2}\right)=\left(u_{\varrho_{k}}\left(x_{1}\right), \cdots, u_{\varrho_{k}}\left(x_{N}\right)\right)
$$

where $k=n, p$.
A solution of (9.7) is thus given by a fix point of the operator \mathcal{E} defined by

$$
\mathcal{E}\left(\alpha_{1, n}^{2}, \cdots, \alpha_{N, n}^{2}\right):=\mathcal{N}_{p}\left(\mathcal{N}_{n}\left(\alpha_{1, n}^{2}, \cdots, \alpha_{N, n}^{2}\right)\right)
$$

As in [KNR01c, BKNR02a] one can set up a dissipative Schrödinger-Poisson system using the definition of carrier densities introduced in this article. In addition to the Schrödinger-Poisson system considered in [BKNR02a] the current is not constant. This system will be discussed in a forthcoming paper.
In section 8 we constructed explicitly a density matrix $\varrho(\cdot)$ such that loss and gain effects occur at predefined points. Furthermore we showed that one has two free parameters in the choice of $\varrho(\cdot)$, i.e. $u_{b}(\lambda)$ and $u_{a}(\lambda)$. These two parameters give the possibility to couple (for example) a drift diffusion model to the open quantum system. We intend to investigate this coupled system in a forthcoming paper.
For simplicity we considered imaginary potentials of the form $-\frac{\alpha^{2}}{2} \delta\left(\cdot-x_{j}\right)$. A further step in order to include recombination and generation into the model is to allow complex potentials, i.e. $\operatorname{Im}(V)=-\frac{\alpha^{2}}{2}$, where $\alpha=\alpha(x) \in \mathrm{L}^{p}$ for some $p>1$. This would give the possibility to model recombination-generation rates on the whole interval Ω.

Acknowledgments

The authors like to thank Prof. P. Degond, H.-Ch. Kaiser, and J. Rehberg for fruitful discussions. The financial support of DFG (Grant RE 1480/1-2) is also gratefully acknowledged.

References

[AGHH88] S. Albeverio, F. Gesztesy, R. Høgh-Krohn, H. Holden, Solvable models in quantum mechanics, Text and Monographs in Physics, Springer, New York 1988.
[AK00] S. Albeverio, P. Kurasov, Singular perturbations of differential operators, Lecture Note Series 271, Cambridge University Press, Cambridge 2000.
[A87] B. P. Allakhverdiev, On dissipative extensions of the symmetric Schrödinger operator in Weyl's limit-circle case, Dokl. Akad. Nauk SSSR Vol 293, 777-781 1987.
[A88] B. P. Allakhverdiev, F. G. Maksudov, On the theory of the characteristic function and spectral analysis of a dissipative Schrödinger operator, Dokl. Akad. Nauk SSSR 303, No.6, 1307-1309, 1988.
[A89] B. P. Allakhverdiev, Schrödinger type dissipative operator with a matrix potential, in Spectral theory of operators and its applications No.9, 11-41, "Élm", Baku, 1989.
[A90] B. P. Allakhverdiev, On dilation theory and spectral analysis of dissipative Schrödinger operators in Weyl's limit-circle case, Izv. Akad. Nauk SSSR, Ser. Mat. 54, No.2, 242257, 1990.
[A93] B. P. Allakhverdiev, On the theory of non-selfadjoint operators of Schrödinger type with a matrix potential, Izv. Ross. Akad. Nauk, Ser. Mat. 56, No. 2, 193-205 1993.
[A97] B. P. Allakhverdiev, A. Canoglu, Spectral analysis of dissipative Schrödinger operators, Proc. R. Soc. Edinb., Sect. A, Math 127, No. 6, 1113-1121, 1997.
[BKNR02a] M. Baro, H.-Ch. Kaiser, H. Neidhardt, J. Rehberg, Dissipative Schrödinger-Poisson systems, submitted, WIAS-Preprint 719, Weierstrass-Institute for Applied Analysis and Stochastics, Berlin 2002, http://www.wias-berlin.de/publications/preprints/719.html .
[BA98] N. Ben Abdallah, A hybrid kinetic-quantum model for stationary electron transport in a resonant tunneling diode, J.Stat. Phys. 90, no. 3-4, 627-662, 1998.
[BADM97] N. Ben Abdallah, P. Degond, P.A. Markowich, On a one-dimensional SchrödingerPoisson scattering model, Z. angew. Math. Phys. 48, 135-155, 1997.
[D80] E. B. Davies, One-parameter semigroups. Academic Press, London 1980.
[FN70] C. Foias, B. Sz.-Nagy, Harmonic analysis of operators on Hilbert space, Akadémia Kiadó, Budapest, North-Holland Publishing Company, Amsterdam-London, 1970.
[Fre90] W. R. Frensley, Boundary conditions for open quantum systems driven far from equilibrium, Reviews of Modern Physics 62, 745, 1990.
[J01] A. Jüngel, Quasi-hydrodynamic semiconductor equations, Progress in nonlinear differential equations and their applications, Birkhäuser Verlag, Basel-Boston-Berlin 2001.
[KNR01a] H.-Ch. Kaiser, H. Neidhardt, J. Rehberg, Macroscopic current induced boundary conditions for Schrödinger-type operators, erscheint in Intgr. Equ. Oper. Theory, WIASPreprint 650, Weierstrass-Institute for Applied Analysis and Stochastics, Berlin 2001, http://www.wias-berlin.de/publications/preprints/650.html.
[KNR01b] H.-Ch. Kaiser, H. Neidhardt, J. Rehberg, On one dimensional dissipative Schrödingertype operators their dilation and eigenfunction expansions, submitted, WIAS-Preprint 664, Weierstrass-Institute for Applied Analysis and Stochastics, Berlin 2001, http://www.wias-berlin.de/publications/preprints/664.html .
[KNR01c] H.-Ch. Kaiser, H. Neidhardt, J. Rehberg, Density and current of a dissipative Schrödinger operator, submitted, WIAS-Preprint 728, Weierstrass-Institute for Applied Analysis and Stochastics, Berlin 2002, http://www.wias-berlin.de/publications/preprints/728.html .
[K80] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin-Heidel-berg-New York, second edition, 1980.
[LL71] L. A. Landau, E. M. Lifschitz, Quantenmechanik, Akademie-Verlag, Berlin, 1971.
[M86] P. A. Markowich, The stationary semiconductor device equations, Springer-Verlag, Wien-New York 1986.
[MRS90] P. A. Markowich, Ch. A. Ringhofer, Ch. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien-New York 1990.
[P77] B. S. Pavlov, Self-adjoint dilation of the dissipative Schrödinger operator and its resolution in terms of eigenfunctions, Mat. Sbornik 102(144), 511-536, 1977.
[P76] B. S. Pavlov, Dilation theory and spectral analysis of non-selfadjoint differential operators, Transl., II. Ser., Am. Math. Soc. 115, 103-142, 1981; translation from Proc. 7th. Winter School, Drogobych 1974, 3-69, 1976.
[P84] B. S. Pavlov, Spectral theory of non-selfadjoint operators, in Proc. Int. Congr. Math., Warszawa 1983, Vol.2, 1011-1025, 1984.
[P96] B. S. Pavlov, Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model, Partial differential equations 8, 95-163, in Partial Differential Equations VIII. Encycl. Math. Sci. 65, 87-153, 1996.
[P99] B. S. Pavlov, Irreversibility, Lax-Phillips approach to resonance scattering and spectral analysis of non-selfadjoint operators in Hilbert space, Int. J. Theor. Phys. 38, No.1, 21-45, 1999.
[S84] S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Verlag, Wien, 1984.

[^0]: 2000 Mathematics Subject Classification. 47B44, 47E05, 47A20, 47A55.
 Key words and phrases. open quantum system, dissipative Schrödinger operator, delta perturbation, dilation, characteristic function, generalized eigenfunctions, carrier and current densities, density matrix.

