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Abstract. A well-known discrete approach to modeling biological reg-
ulatory networks is the logical framework developed by R. Thomas. The
network structure is captured in an interaction graph, which, together
with a set of Boolean parameters, gives rise to a state transition graph
describing the dynamical behavior. Together with E. H. Snoussi, Thomas
later extended the framework by including singular values representing
the threshold values of interactions. A systematic approach was taken in
[10] to link circuits in the interaction graph with character and number
of attractors in the state transition graph by using the information in-
herent in singular steady states. In this paper, we employ the concept of
local interaction graphs to strengthen the results in [10]. Using the local
interaction graph of a singular steady state, we are able to construct
attractors of the regulatory network from attractors of certain subnet-
works. As a comprehensive generalization of the framework introduced
in [10], we drop constraints concerning the choice of parameter values to
include so-called context sensitive networks.

1 Introduction

In biology, regulatory networks are often visualized as cartoons that illustrate
which components of a system interact with each other. In addition, a verbal
description of the system’s behavior is provided that clarifies the processes cap-
tured graphically in the cartoon. Logical approaches are an intuitive way to
model such systems in a mathematical framework. In the 70’s, R. Thomas intro-
duced a discrete formalism, which, over the years, has been further developed and
successfully applied to biological problems (see [13], [14] and references therein).
Network components are represented by Boolean variables. The structure of the
network is captured in a directed, signed graph called interaction graph. Edges
represent interactions between network components. The sign of an edge signifies
whether an activating or inhibiting influence is exerted, provided the tail com-
ponent of the edge is active, i. e., has value 1. Boolean parameter values specify a
function that determines the behavior of the system. Thomas used the so-called
asynchronous update method to derive a state transition graph from the Boolean
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function. Two successive states differ in at most one component, resulting in a
non-deterministic representation of all possible behavior of the system.

This framework has been extended over the years. Network components were
allowed to have more than two activity levels, interactions were associated with
a threshold value determining when the interaction becomes effective. Thomas,
together with E.H. Snoussi, used the threshold values, which they called singular
values, to obtain a better understanding of the system’s dynamics. In [11], they
focussed on the relation between singular steady states and feedback circuits in
the interaction graph of the network. We adapted these ideas to a Boolean setting
in [10]. Despite the high level of abstraction, the introduction of singular states
proved a useful tool for uncovering relations between structure and dynamics of
bioregulatory networks. In this paper, we generalize and develop the results in
[10] further. As a first step, we allow characteristics, i. e., the sign of network
interactions to depend on the current state of the system. Whether a component
has an activating or inhibiting influence on its target may depend on the activity
of certain co-factors. We call systems including such interactions context sensi-
tive. Adaptations in the definition of interaction graphs, parameters and singular
steady states allow us to include context sensitive systems in our considerations.
Furthermore, we exploit the concept of local interactions graphs. It was already
successfully used in [6] and [5], and allows for a better understanding of what
structures in the interaction graph influence the system’s behavior in a given
state. This view enables us to focus on the behavior of subnetworks obtained by
projection, and from that draw conclusions about the network dynamics.

The organization of the paper is as follows. in Sect.2 we introduce the Boolean
framework used to describe regulatory networks. This framework includes sys-
tems that display context sensitivity, since we allow parallel edges in the interac-
tion graph. We show in Sect.3 that the set of functions arising from interaction
graphs and associated parameter values corresponds to the set of Boolean func-
tion f : Bn → Bn. We then define the local interaction graph of a given state.
Subsequently, we introduce singular steady states. In Sect.5, we employ the con-
cept of local interaction graphs for singular steady states. The resulting view
on the network dynamics allows us to derive certain characteristics of the state
transition graph from the behavior of suitable subnetworks. We end the paper
with concluding remarks and perspectives for future work.

2 Regulatory Networks

As mentioned in the introduction, a directed, signed graph is used in the Thomas
formalism to capture the network structure of a regulatory system. However, we
are interested in a more general representation that allows for the sign of the
interaction, to depend on the current state of the system. To accurately describe
the structure of such context sensitive networks we use directed multigraphs that
allow for parallel edges. Multigraphs have been used in a similar way in [2]

Throughout the text we set B := {0, 1}.
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Definition 1. An interaction (multi-)graph (or bioregulatory (multi-)graph) I
is a labeled directed multigraph with vertex set V := {α1, . . . , αn}, n ∈ IN, and
edge set E ⊆ V × V × {+,−}.

The vertices α1, . . . , αn represent the components of the regulatory network such
as genes, RNA, or proteins. We view each component αi as a variable that adopts
values in B. The value 1 signifies that the component is active, i. e., it influences
its interaction targets according to the interaction signs. For example, if some
substance concentration needs to cross a threshold in order to influence some
target component, then the corresponding Boolean value is 0 as long as the
concentration is below, and 1 if the concentration is above the threshold.

When analyzing the interaction graph of a network we are interested in cer-
tain structural motives. In this paper we focus on so-called (feedback) circuits.
Here, a circuit is a tuple (e1, . . . , er) of edges ei = (ki, li, ε) ∈ E such that all ki,
i ∈ {1, . . . , r}, are pairwise distinct, and li = ki+1 for all i ∈ {1, . . . , r} modulo
r. The sign of a circuit is the product of the signs of its edges. Note that in a
multigraph a circuit is not uniquely determined by its vertices. Figure 1 shows
an interaction graph that contains two different circuits consisting of the vertices
α2 and α3: the positive circuit ((α2, α3,+), (α3, α2,+)) and the negative circuit
((α2, α3,+), (α3, α2,−)).

To simplify notation, we identify each vertex αi with its index i. Furthermore,
we denote eε

ij := (i, j, ε) for all (i, j, ε) ∈ E. For each αi we denote by Pred(αi)
the set of predecessors of αi, i. e., the set of vertices αj such that there is an edge
(αj , αi, ε) for some ε ∈ {+,−} in E.

Since we are not only interested in the structure of a given regulatory network
but also in its dynamics, we have to find behavioral rules for the system consistent
with the structural description. The notation is based on ideas introduced in [1]
and [8].

Definition 2. Let I = (V,E) be an interaction graph comprising n vertices. A
state of the system described by I is a tuple s ∈ Bn. The set of (regular) resource
edges Rj(s) = RI

j (s) of αj in state s is the set

{(αi, αj , ε) ∈ E | (ε = + ∧ si = 1) ∨ (ε = − ∧ si = 0)}.

Given a set
K(I) := {Kj,Rj(s) | j ∈ {1, . . . , n}, s ∈ Bn}

of (logical) parameters, which adopt values in B, we define the Boolean function
f = fK(I) : Bn → Bn, s 7→ (K1,R1(s), . . . ,Kn,Rn(s)). The pair N := (I, f) is
called bioregulatory network.

The behavior of a component αj is determined by the influences its predecessors
exert on it. The set of resource edges Rj(s) contains all edges that contribute to
an activation of αj in state s. Note that here the absence of an inhibiting influence
(represented by a negative edge) is interpreted as an activating influence on the
target component. With this interpretation we have that Rj(s) for all s ∈ Bn

contains an edge (αi, αj , ε), if there are two edges from αi to αj in the interaction
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Fig. 1. Interaction graph of a system comprising three components. In the middle, a
list of all parameters with an assignment of Boolean values. On the right, the state
transition graph corresponding to the interaction graph and parameter values. The
heavier gray edges indicate attractors.

graph. If there is only one edge (αi, αj , ε), then Rj(s) may or may not contain
that edge depending on ε and the component value si. Let MI

j = Mj be the set
of all sets M ⊂ E such that M contains only edges ending in αj . More specific,
M contains one and only one edge from αi to αj , if I includes two distinct edges
from αi to αj , and at most one edge from αi to αj , if there is only one edge
from αi to αj in I. Then we have Mj = {Rj(s) | s ∈ Bn} and thus the set of
parameters satisfies K(I) = {Kj,M | j ∈ {1, . . . , n}, M ∈ Mj}.

The choice of parameter values should be consistent with the information
inherent in the interaction graph. We require that the character of an edge as
given by the sign of the edge is reflected in the dynamical impact of that edge.
Therefore, we pose the following condition on the parameter values:

∀j ∈ {1, . . . , n} ∀ M,M ′ ∈ Mj : M ⊆ M ′ ⇒ Kj,M ≤ Kj,M ′ . (1)

The condition signifies that the addition of an activating influence or the removal
of an inhibiting influence (both represented by an edge addition to the set of
resource edges) cannot induce a decrease in activity level of αj .

A different aspect of consistency of interaction graph and parameters is the
following. Whenever there is an edge in the interaction graph, there should be
a notable effect of that edge on the system dynamics. The edge e from αi to
αj has no dynamical effect, if Kj,M = Kj,M\{e} for all M ∈ Mj in case there is
no other edge from αi to αj in the interaction graph. If there is another edge
e′ from αi to αj , then e is dynamically ineffective, if Kj,M = Kj,M\{e}∪{e′} for
all M ∈ Mj . We can then delete the edge e from the interaction graph and still
obtain the same behavior. In the following, we always assume that all edges in
the interaction graph are functional, that is, for all j ∈ {1, . . . , n} and every edge
e = (αi, αj , ε) in the interaction graph I the condition

∃ M ∈ Mj : Kj,M > Kj,M\{e}, if e is the only edge from αi to αj in I,
∃ M ∈ Mj : Kj,M > Kj,M\{e}∪{e′}, if e′ 6= e is an edge from αi to αj in I,

holds. This concept of functionality is an adaptation of the notion of functionality
introduced in [10].
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In Fig. 1 all the parameters corresponding to the interaction graph given in
the figure are listed. For α1 and α3 the parameters depend on whether or not
the single positive edge ending in α1 resp. α3 is effective or ineffective. Thus
M1 = {∅, {e+

11}} and M3 = {∅, {e+
23}}. The choice of Boolean values for the

parameters satisfies condition (1) and ensures the functionality of the edges e+
11

and e+
23. The component α2 is influenced by both α1 and α3 via two parallel

edges, respectively. Thus there is no state such that α2 is without an activating
influence, i. e., an ineffective negative edge or an effective positive edge reaching
α2. We have M2 = {{e+

12, e
+
32}, {e

+
12, e

−
32}, {e

−
12, e

+
32}, {e

−
12, e

−
32}}. Again the choice

of parameter values renders all edges functional. A closer look allows the fol-
lowing interpretation. If α1 has activity level 0, then the influence of α3 on α2

corresponds to an activating influence. That is, if α3 is inactive α2 tends to inac-
tivity represented by the parameter K2,{e−12,e−32}

= 0, and if α3 is active α2 tends
to activity since K2,{e−12,e+

32}
= 1. If α1 has value 1, then the situation is reversed

and the influence of α3 on α2 is inhibiting. This is an example for a context
sensitive system. In [10], the parameters correspond to sets of resource vertices,
i. e., the influence of one component on another cannot change depending on the
current state of the system. The network shown in Fig.1 cannot be represented
with that restriction. However, the notion of resource edges and resource vertices
are equivalent, if there are no parallel edges in the interaction graph.

The parameters determine the behavior of the system as follows. The Boolean
value of the parameter Kj,Rj(s) indicates how the activity level, i. e., the value
of the component αj will evolve from its value in state s. It will increase ( resp.
decrease) if the parameter value is greater (resp. smaller) than si. The activity
level stays the same if both values are equal. Thus, the function f maps a state
s to the state the system tends to evolve to. However, if a state and its image
differ in more than one component, we take the following consideration into
account. In a biological system two different processes of change in activity level
represented by the value change of two distinct components will not take the
exact same amount of time. Thus we assume that in the discrete dynamical
representation a state differs from its successor in at most one component. This
procedure is called asynchronous update in Thomas’ framework. By applying
this idea we derive a non-deterministic representation of the dynamics which we
again formalize as a directed graph.

Definition 3. The state transition graph SN describing the dynamics of the
network N is a directed graph with vertex set Bn. There is an edge s → s′ if and
only if s′ = f(s) = s or s′i = fi(s) for some i ∈ {1, . . . , n} satisfying si 6= fi(s)
and s′j = sj for all j 6= i.

On the right in Fig. 1 we see the state transition graph corresponding to the
given interaction graph and parameters. The dynamics are non-deterministic.
For example, there are two edges leaving the state (0,1,0), representing two
different behaviors of the system.
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3 Boolean Functions and Local Interaction Graphs

As we have seen above, the formalism we introduced in the preceding section
allows us to model context sensitive systems. The dynamical behavior is deter-
mined by a Boolean function that is consistent with the underlying interaction
graph. In the following we show that for every Boolean function g : Bn → Bn

there exists an interaction graph that is consistent with g.

Proposition 1. Let g : Bn → Bn be a Boolean function. Then there exists an
interaction graph I = (V,E) and a set of specified parameters K(I) such that
g = fK(I).

Proof. Let I1 = (V,E1) be the interaction graph with V := {α1, . . . , αn} and
E1 := V × V × {+,−}, i. e., I1 includes every possible edge. We set Ki,R1

i (s) :=

gi(s) for all i ∈ {1, . . . , n} and s ∈ Bn, with R1
i (s) := RI1

i . Now, we show that
the set of parameters satisfies condition (1).

Let j ∈ {1, . . . , n}. We have shown in Sect. 2 that for every s ∈ Bn there
exists one and only one M ∈ M1

j such that R1
j (s) = M , where M1

j := MI1

j is
the set introduced following Def. 2. By definition, every M ∈ M1

j contains one
and only one edge from αi to αj for all i ∈ {1, . . . , n}. Thus cardM = n for all
M ∈ M1

j , where cardM denotes the cardinality of M . It follows that M 6⊆ M ′

for all M,M ′ ∈ M1
j . Therefore, every choice of parameter values corresponding

to I1 and in particular the parameter values given above satisfy condition (1).
However, we have yet to consider the functionality of the edges in I1. This can

be done componentwise via the condition characterizing functional edges given
in Sect. 2. We then eliminate edges that are not functional and derive a new
interaction graph and corresponding parameter values in an iterative procedure.

Let e be an edge ending in αj . If e is functional, we make no alterations on
the interaction graph and parameters. If e is not functional, we define a new
interaction graph I2 = (V,E2) with E2 := E1 \ {e}. Clearly, we have M2

j :=
MI2

j = {M \ {e} | M ∈ Mj}. We set Kj,M\{e} := Kj,M for all M ∈ M1
j , and

keep all other parameters as introduced above. It is easy to see that condition (1)
holds for I2 and the corresponding parameters. Let M,M ′ ∈ M1

j with M ⊆ M ′.
In the cases M,M ′ ∈ M1

j , M,M ′ /∈ M1
j , and M ∈ M1

j and M ′ /∈ M1
j , condition

(1) follows from the fact that every set M ′′ ∈ M2
j \M1

j satisfies M ′′ ∪{e} ∈ M1
j ,

the definition of the parameters corresponding to I2, and the fact the I1 with
its corresponding parameters satisfies condition (1). If M /∈ M1

j and M ′ ∈ M1
j ,

then M ∪ {e} ∈ M1
j . There exists an edge e′ parallel to e in I1 since otherwise

M ∈ M1
j . Then for every M ′′ ∈ M1

j holds either e ∈ M ′′ or e′ ∈ M ′′. It follows
that e′ ∈ M ′ and M ∪ {e′} ∈ M1

j . According to the definition of the parameter
values and since e is not functional, we have Kj,M = Kj,M∪{e} ≤ Kj,M∪{e′}.
Since I1 satisfies (1), we have Kj,M∪{e′} ≤ Kj,M ′ , i. e., (1) holds for I2 and the
corresponding parameters. Clearly, the function fK(I∈) derived from the new
parameters still coincides with g.
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(a) (b) (c)

Fig. 2. Local interaction graphs corresponding to the graph and parameters given in
Fig. 1. I((0, 0, 0)) in (a), I((1, 0, 0)) in (b), I((θ, 0, 0)) in (c).

We repeat the procedure, starting always with the last defined interaction
graph and corresponding parameters, for every edge in I1. After 2n2 steps we
obtain an interaction graph and parameters consistent with g. ut

In Sect. 2 we emphasized the point that we only deal with interaction graphs
all the edges of which are functional. We demand that each edge has to have an
impact on the dynamics. However, this influence does not have to be effective in
the whole state space Bn. If we want to understand the way the structure and
dynamics of a system relate to each other, then it is useful to have a closer look
on the effective interactions depending on the current state of the system. To
capture those local structural aspects we introduce the concept of local interac-
tion graphs. It has already been used in [6] and [5] (see also references therein). In
the following, we denote with si the state that coincides with s in all components
j 6= i and takes the value 1− si in the i-th component.

Definition 4. Let I = (V,E) be an interaction graph with parameter set K(I).
Let s ∈ Bn. Then we denote by I(s) the graph with vertex set V and edge set
E(s) ⊆ E. An edge (i, j, ε) is in E(s) if and only if

Kj,Rj(s) 6= Kj,Rj(si) ∧ ε = + ⇔ si = Kj,Rj(s) .

We call I(s) the (local) interaction graph in state s.

Clearly, every edge in a local interaction graph I(s) is also contained in I, since
we use the parameters of the interaction graph I to characterize the edges in a
local interaction graph. More precisely, I is the union of all graphs I(s), s ∈ Bn.
We call I also the global interaction graph. Note that there are no parallel edges
in a local interaction graph in state s ∈ Bn. Figure 2(a) and (b) show the graphs
I((0, 0, 0)) and I((1, 0, 0)) corresponding to the example given in Fig. 1. The
local interaction graphs give us a finer understanding of the way the network
components interact. They can be seen as a visualization of the discrete Jacobian
matrix of the Boolean function fI as introduced in [9].
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4 Singular States

In our formalism we only consider whether a component is active or not. We
now incorporate a threshold value that allows us to express uncertainty in the
sense that we do not know if a certain interaction is effective. We already used
this concept in [10] for networks without context sensitivity. Again, we mainly
use notation introduced in [8]. Throughout this section let N := (I, f = fK(I))
be a bioregulatory network comprising n components.
Definition 5. Set Bθ := {0, θ, 1}, where θ is a symbolic representation of the
threshold value and satisfies the order 0 < θ < 1. We allow each regulatory
component αi to take values in Bθ. The values 0 and 1 are called regular values
and θ is called singular value. The elements of Bn

θ are called states. If a state
comprises only regular components it is called regular state. Otherwise it is called
singular state. For every state s we define J(s) := {i ∈ {1, . . . , n} | si = θ}.
We call |a, b| a qualitative value if a, b ∈ B and a ≤ b. The qualitative value |0, 0|
is identified with the regular value 0, |1, 1| with the regular value 1, and |0, 1|
with the singular value θ. The relations <, >, and = are used with respect to
this identification.
Definition 6. We define for all i ∈ {1, . . . , n}

fθ = fK(I),θ : Bn
θ → Bn

θ by fθ
i (s) = |Ki,min(s),Ki,max(s)| ,

where Ki,min(s) := min{Ki,Ri(s′) | s′ ∈ Bn , s′j = sj for all j /∈ J(s)} and
Ki,max(s) := max{Ki,Ri(s′) | s′ ∈ Bn , s′j = sj for all j /∈ J(s)}. We call s ∈ Bn

θ

a steady state if fθ(s) = s.
The definition of Ki,min(s) and Ki,max(s) ensures that the image of a regular state
under fθ is again a regular state. More specific, we have fθ|Bn = f . If a state has
singular components, then Ki,min(s) and Ki,max(s) reflect the dynamical behavior
of the component i in the two extreme cases that either all singular predecessors
of αi have no activating influence on αi or they all contribute to an activation
of αi.

Thomas and Snoussi already link singular states to circuits in the interaction
graph, albeit in a different framework (see [11]). We have adapted their ideas to
a Boolean framework without context sensitivity in [10].
Definition 7. Let C = (αi1 , . . . , αir ) be a circuit in I. A state s ∈ Bn

θ is called
characteristic state of C if sil

= θ for all l ∈ {1, . . . , r}.
In general, a characteristic state of a circuit is not unique. The state (θ, . . . , θ)
is characteristic for every circuit in I. A simple modification of the reasoning in
[10] leads to the following statement.
Theorem 1. Every singular steady state is characteristic of some circuit in I.
A singular steady state s can be characterized using only regular states and the
function f . The idea is to check componentwise the behavior for regular states
s+ and s− that satisfy Ki,Ri(s+) = Ki,max(s) and Ki,Ri(s−) = Ki,min(s) for some
i ∈ {1, . . . , n}. The proofs for networks that are not context sensitive are given
in [10] and can be easily adapted.
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5 Attractors and Local Interaction Graphs of Singular
Steady States

In this section we link structural properties of (local) interaction graphs with the
dynamical behavior of the system by considering singular steady states. Every
possible behavior of the system is captured in the corresponding state transition
graph introduced in Sect.2. In the following let N := (I = (V,E), f = fK(I))
be a bioregulatory network comprising n components and SN the corresponding
state transition graph. In addition to standard terminology from graph theory
such as paths and cycles we us the following concepts.

Definition 8. An infinite path (s0, s1, . . . ) in SN is called trajectory. A nonempty
set of states D is called trap set if every trajectory starting in D never leaves
D. A trap set A is called attractor if for all s1, s2 ∈ A there is a path from s1 to
s2 in SN . A cycle C := (s1, . . . , sr, s1), r ≥ 2, is called a trap cycle if every sj,
j ∈ {1, . . . , r}, has only one outgoing edge in SN , i. e., the trajectory starting in
s1 is unique.

In other words, the attractors correspond to the terminal strongly connected
components of the graph. Regular steady states as well as trap cycles are at-
tractors. The attractors in the state transition graph given in Fig. 1 are the sets
containing the steady states, i. e., {(0, 0, 0)} and {(0, 1, 1)}, and the set containing
the states of the trap cycle in the graph, i. e., {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 0)}.

The behavior of a system becomes, at least to some degree, predictable and
stable inside an attractor. Often, a sensible biological interpretation can be found
for an attractor. In cell differentiation, the different stable states reached at the
end of development may be represented by distinct steady states in the state
transition graph. Attractors of cardinality greater than one imply cyclic behavior,
and thus can often be identified with homeostasis of sustained oscillatory activity,
as can be found in the cell cycle or circadian rhythm.

State transition graphs always contain at least one attractor. The proof of
the following more precise statement can be found in [10].

Proposition 2. For every state s ∈ Bn exists a trajectory in SN which starts
in s and leads to an attractor.

If some vertex αi in I does not have a predecessor, then clearly ai = Ki,∅ for
every state a in an attractor. Similarly, we know the values aj for vertices the
only predecessor of which is αi, and so on. Throughout this section we assume
that every vertex in I has a predecessor. Note that an input value in the sense of
a component that maintains its current activity level independent of the values
of the other components is represented as a vertex with its only incoming edge
being a positive selfloop.

In the following we have a closer look at the information concerning the
network dynamics in general and the attractors in particular that is inherent in
the existence and properties of singular steady states. We also want to exploit
structural information. As a first step we adapt the concept of local interaction
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(1, 1)(0, 1)
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Fig. 3. Local interaction graph I((0, θ, θ)) on the left, Iθ((0, θ, θ)) and corresponding
state transition graph on the right of (a). Local interaction graph I((1, θ, θ)) on the left,
Iθ((1, θ, θ)) and corresponding state transition graph on the right of (b). Attractors
are indicated by heavier gray edges.

graphs to singular states. Recall that J(s) is the set of all singular components
of a state s ∈ Bn

θ

Definition 9. Let s ∈ Bn
θ . We denote by I(s) the (multi-)graph with vertex set

V and edge set E(s). An edge e is in E(s) if and only if there exists a regular
state s′ such that s′i = si for all i /∈ J(s) and e ∈ E(s′), where E(s′) denotes
the edge set of the interaction graph I(s′) in s′. Again, we call I(s) the (local)
interaction graph in s.

Note that the interaction graph in a singular state may have parallel edges. In
Fig. 2 (c) we see the local interaction graph in state (θ, 0, 0), which is the union
of the graphs I((0, 0, 0)) and I((1, 0, 0)) given in (a) and (b).

A singular steady state s yields stability in the dynamical behavior for
the components that do not belong to J(s). To make a more precise state-
ment we introduce notation for a specific subgraph of I(s). By Iθ(s) we de-
note the (multi-)graph with vertex set V θ(s) := J(s) and edge set Eθ(s) :=
{(i, j, ε) ∈ E(s) | i, j ∈ J(s)}. That is, we only keep the singular compo-
nents and interactions between them. We call a graph Z component of Iθ(s),
if Z = (VZ , EZ) is a maximal subgraph of Iθ(s) such that for every k, k′ ∈ VZ

exist vertices k1, . . . , kr ∈ VZ with k1 = k, kr = k′, and (ki, ki+1, ε) ∈ Eθ(s) or
(ki+1, ki, ε) ∈ Eθ(s) for some ε ∈ {+,−} and all i ∈ {1, . . . , r − 1}. In Fig. 3
we see for our running example introduced in Fig. 1 the graphs I((0, θ, θ)) and
Iθ((0, θ, θ)) in (a), as well as the graphs I((1, θ, θ)) and Iθ((1, θ, θ)) in (b). Lastly,
let C be a circuit in I(s) such that all edges of C are in Iθ(s). Then there exists
a component of Iθ(s) that contains C. We denote this component by JC(s).

The next lemma shows that the stability of the regular components of a
singular steady state is not influenced by value changes in a component Z of
Iθ(s). Moreover, if Iθ(s) has more than one component, the component dynamics
are independent of each other. This property is crucial for the remaining results
in this section. The proof of the lemma is an adaptation of a similar, less general
statement in [10]. Note that in [10] a different definition of Iθ(s) is used that
does not take the effectiveness of interactions in state s into account.
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Lemma 1. Let s be a singular steady state, and let Z1, . . . , Zm be the compo-
nents of Iθ(s). Consider a union Z of arbitrary components Zj. Let s̃ ∈ Bn

θ such
that s̃i = si for all i /∈ Z. Then fθ

i (s̃) = fθ
i (s) = si = s̃i for all i /∈ Z.

Proof. First, let us consider i ∈ J(s) \ Z. Then sj = s̃j for every j ∈ Pred(αi),
since there are no predecessors of αi in Z. Therefore, the sets of resource edges
of αi are not influenced by value changes in Z, i. e., {Ri(s′) | s′ ∈ Bn, s′j =
sj for all j /∈ J(s)} = {Ri(s′) | s′ ∈ Bn, s′j = s̃j for all j /∈ J(s̃)}. It follows
that Ki,min(s) = Ki,min(s̃) and Ki,max(s) = Ki,max s̃, and thus fθ

i (s̃) = fθ
i (s) =

si = s̃i.
Now, let i /∈ J(s). Since sj = θ for all j ∈ Z, we have J(s̃) ⊆ J(s). Therefore,

{s′ ∈ Bn | s′j = s̃j for all j /∈ J(s̃)} ⊆ {s′ ∈ Bn | s′j = sj for all j /∈ J(s)}.
It follows that Ki,min(s) ≤ Ki,min s̃ ≤ Ki,max(s̃) ≤ Ki,max(s). Since fθ

i (s) = si is
regular, we know Ki,min(s) = Ki,max(s) = si. Thus, Ki,min(s̃) = Ki,max(s̃) = si

and fθ
i (s̃) = si = s̃i. ut

The above lemma shows that we can construct attractors of the state transition
graph SN from attractors of the dynamics restricted to the components of Iθ(s).
To give a clear understanding of this construction we need the following notation.

Let s be a singular steady state and Z a component of Iθ(s) with k :=
cardVZ . We may assume that VZ = {αl+1, . . . , αl+k} for some l ∈ {0, . . . , n−1}.
Then Z is an interaction graph comprising k vertices. Now, we want to define the
dynamics of Z as the projection of the dynamics of I with respect to s. We define
a parameter set K(Z) according to Def. 2 as the set of all parameters KZ

i,RZ
i (z)

:=

Ki,Ri(s̃) for z ∈ Bk and s̃ ∈ Bn with s̃i = si for all i /∈ J(s) and s̃i = zi−l for all
i ∈ Z. The parameters are well defined since there are no predecessors of vertices
in Z in J(s) \ Z. We set fK(Z) = fZ : Bk → Bk, z 7→ (KZ

1,RZ
1 (z)

, . . . ,KZ
k,RZ

k (z)
).

We then have fZ = πZ ◦ fθ ◦ ρZ , where ρZ : Bk → Bn with ρZ
i (z) = si for

i /∈ Z and ρZ
i (z) = zi−l for i ∈ Z, and πZ : Bn → Bk is the projection on the

components of Z. Again, note that fZ yields always regular values, since the
singular values in J(s) \ Z do not influence the components in Z. The resulting
network NZ := (Z, fZ) inherits condition (1) from N = (I, f). The definitions
of parameters and Iθ(s) also ensure that all edges in Z are functional. According
to Prop. 2 the state transition graph SNZ contains an attractor. This fact leads
to the next theorem.

Theorem 2. Let s be a singular steady state, and Z1, . . . , Zm be the components
of Iθ(s). For all j ∈ {1, . . . ,m} let Aj be an attractor of the state transition
graph corresponding to the network NZj as defined above. Then there exists an
attractor A in the state transition graph SN such that ai = si for all a ∈ A,
i /∈ J(s), and πZj (A) = Aj for all j ∈ {1, . . . ,m}.

Proof. Without loss of generality we may assume that Z1 contains the vertices
α1, . . . , αcard Z1 , Z2 contains the vertices αcard Z1+1, . . . , αcard Z1+card Z2 , etc. We
set k := 1 +

∑m
i+1 cardZi and A := A1 × · · · ×Am × {(sk, . . . , sn)}.

First, we show that A is a trap set, i. e., every successor of a state in A is again
in A. Let x ∈ A and x′ be a successor of x in SN . Assume x 6= x′. Then there
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exists i ∈ {1, . . . , n} such that x′i = f i(x) 6= xi and x′j = xj for all j 6= i. Lemma 1
yields that fj(x) = xj = sj for all j ∈ {k, . . . , n}. Thus, we find l ∈ {1, . . . ,m}
such that i ∈ Zl. Now, we only have to show that πZl(x′) ∈ Al. Per definition we
have fZl(πZl(x)) = πZl ◦fθ◦ρZl(πZl(x)). Lemma 1 allows us to ignore the values
of components in J(s) \Zl and we obtain πZl ◦ fθ ◦ ρZl(πZl(x)) = πZl(fθ(x)) =
πZl(f(x)). Since i ∈ Zl, we then have fZl

i−card Zl−1
(πZl(x)) = fi(x) = x′i 6= xi =

πZl

i−card Zl−1
(x), where we set cardZ0 = 0. Per definition there is an edge between

πZl(x) and πZl(x′) in SNZl and, since Al is an attractor, we have πZl(x′) ∈ Al.
Now, we have to show that there is a path from x to x′ in SN for all distinct

x, x′ ∈ A. First, we prove that if there is an edge from state z to state z′, z 6= z′,
in SNZl , l ∈ {1, . . . ,m}, then there is an edge from x to x′ in SN for all states
x, x′ ∈ A satisfying πZl(x) = z, πZl(x′) = z′, and xj = x′j for all j /∈ Zl.
According to the definition there is i ∈ Z such that zp 6= z′p = fZl

p (z) with
p = i− cardZl−1. With Lemma 1 follows that zp 6= fZl

p (z) = πZl
p ◦ fθ ◦ ρZl(z) =

πZl
p (f(x)) = fi(x) for all x ∈ A with xj = zj for all j ∈ Zl. For every such x the

state x′ satisfying x′j = xj for all j 6= i and x′i = fi(x) 6= zi = xi is also in A,
and there is an edge from x to x′ in SN .

Let x, x′ ∈ A. We set x1
i := xi for all i /∈ Z1 and x1

i := x′i for all i ∈ Z1. For
l ∈ {2, . . . ,m} we set xl

i := xl−1
i for all i /∈ Zl and xl

i := x′i for all i ∈ Zl. Then
there exists a path in SNZ1 from πZ1(x) to πZ1

(x1), since A1 is an attractor. As
seen above, we then can find a path γ1 from x to x1 in SN such that x̃j = xj for
every state x̃ ∈ γ1 and every j /∈ Z1. In the same fashion we find a path γ2 from
x1 to x2 in Sn such that x̃j = x1

j for all x̃ ∈ γ2 and j /∈ Z2. We continue the
procedure for Z3, . . . , Zm. Since xm = x′ per definition, combining the paths γi

in the order of their indices yields a path from x to x′ in SN . ut
We illustrate the theorem by considering our running example in Fig. 1. As
shown in Fig. 3 (a), the graph Iθ((0, θ, θ)) has only one component Z consisting
of a positive circuit containing α2 and α3. We derive the parameters K(Z)
from those given in Fig. 1 for the global interaction graph. Since s1 = 0, we
obtain, according to the above definition, the parameters KZ

2,∅ := K2,{e−12,e−32}
= 0

and KZ
2,{e+

32}
:= K2,{e−12,e+

32}
= 1. The parameters for α3 stay the same, i. e.,

KZ
3 , ω = K3,ω for ω ∈ {∅, {e+

23}}. The resulting state transition graph SZ
N is also

given in Fig. 3 (a) and contains the attractors {(0, 0)} and {(1, 1)}. It follows from
Theorem 2 that the sets {(0, , 0, 0)} and {(0, 1, 1)} are attractors in SN . Similarly,
we derive a state transition graph from Iθ((1, θ, θ)) which consists of a negative
circuit. The state transition graph is shown in Fig. 3 (b) and contains only one
attractor, the set {(0, 0), (1, 0), (1, 1), (0, 1)}, which has cardinality greater than
one. Thus, we find an attractor {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1)} in SN . The
state transition graph SN is given in Fig. 1 with the attractors emphasized.

In [4] it is shown that isolated circuits always display a characteristic be-
havior depending on their sign. A positive circuit gives rise to two attractors,
more precisely two steady states, a negative circuit results in a cyclic attractor,
i. e., an attractor with cardinality greater than one. The situation is much more
difficult to analyze if there are many circuits in I, possibly even intertwined.
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Thomas conjectured in 1981 that the existence of a positive resp. negative cir-
cuit in the interaction graph is a necessary condition for the existence of two
attractors resp. a cyclic attractor in the state transition graph. The conjectures
haven been proven in different settings (see e. g. [12], [5] and [7]). For regulatory
networks without context sensitivity, we formulated in [10] a sufficient condition
for circuits to display their characteristic behavior using singular steady states.
The proof in [10] can be easily adapted to show the next statement.

Lemma 2. Let I be an interaction graph such that there is only one circuit C
in I. If C is a positive circuit, then f has two fixed points. If C is negative, then
there exists an attractor with cardinality greater than one in the state transition
graph.

We make some short remarks on the proof. Recall our assumption that every
vertex in I has a predecessor. Since every edge is functional, the state (θ, . . . , θ)
is steady. In [10], it is shown that I then has a particular structure. It consists of
the circuit C with possibly directed trees coming out of vertices of C. Those trees
may also be interconnected. This structure allows us to explicitly specify values
for the vertices of C that remain fix under fθ in the case of C being positive, or
behave like a trap cycle, if C is negative. From this core behavior we can then
infer the behavior of the whole graph. Here, we also have to consider that there
may be parallel edges outside the circuit C. However, the proof method is still
valid. The necessary technical adaptations to the proofs in [10] correspond to
those made in the proof of Lemma 1.

The above lemma together with Theorem 2 immediately leads to the following
theorem.

Theorem 3. Let C be a circuit in I and s a singular steady state characteristic
of C. Assume that C is the only circuit in the component JC(s) of Iθ(s). If C
is a positive circuit, then fθ has at least three fixed points and SN contains at
least two attractors. If C is negative, there is an attractor in SN with cardinality
greater than one.

Proof. We may assume that JC(s) comprises the vertices α1, . . . , αr for some r ∈
{1, . . . , N}. Let at first C be positive. Then fJC(s) has two fixed points x, x′ ∈ Br

according to Lemma 2. We define states s1 and s2 in Bn
θ by s1

i := s2
i := si for

all i /∈ JC(s), s1
i := xi and s2

i := x′i for all i ∈ {1, . . . , r}. From Lemma 1 follows
that the states s1 and s2 are steady states. Thus fθ has three fixed points, since
s is distinct from s1 and s2. According to Theorem 2 we find attractors A1 and
A2 in SN such that πJC(s)(A1) = {s1} and πJC(s)(A2) = {s2}.

If C is negative, we find an attractor A′ in the state transition graph of
the component graph JC(s) with cardinality greater than one. Then Theorem 2
yields an attractor A in SN with πJC(s)(A) = A′. Thus A also has cardinality
greater than one. ut

The above theorem is a stronger result than the one obtained in [10], even for
regulatory networks without context sensitivity. This is due to the fact that we

13



α1

α2 α3

+

−

−

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)+

−

−
−

+

α1

α3

+ −

−
−

+

(a) (c)(b)

Fig. 4. We choose the parameters corresponding to the interaction graph in (a) as
K

1,{e+
11,e+

31}
= K

1,{e−11,e−31}
= K

2,{e−12,e+
22}

= K
3,{e−13,e−23}

= 1 and set all other param-

eters 0. In (b) the graph Iθ(s) for the singular steady state s = (θ, 0, θ). In (c) the
corresponding state transition graph.

use the notion of local interaction graphs. They render a more refined picture of
the dynamics possible in restricted parts of the state space.

Our running example from Fig. 1 together with Fig. 3 illustrates the theorem.
Figure 4 shows that the statement does not hold, if the circuit C is not the only
circuit in JC(s). The state (θ, 0, θ) is steady for the bioregulatory network derived
from the interaction graph in (a) and the parameters specified in the caption.
There are four distinct circuits in Iθ((θ, 0, θ)), two negative and two positive
circuits. However, the state transition graph contains only one attractor, namely
the set {(0, 0, 1)}, as is shown in (c). Thus, neither the behavior characteristic for
positive circuits nor that characteristic for negative circuits is displayed. Further
examples can be found in [10]. However, a system may display the behavior
characteristic for a circuit of a given sign, although there is no singular steady
s such that the circuit is the only one in the corresponding component of Iθ(s).
The condition is therefore not necessary. Examples illustrating this point are
given in Fig. 4 of [10].

6 Conclusion

In [10] we started a systematic investigation of the relation between singular
steady states and attractors in the state transition graph of regulatory networks,
which are described by an interaction graph and Boolean parameters. Among
other results, we found sufficient conditions concerning singular steady states and
circuits in the interaction graph ensuring the existence of two distinct attractors
resp. a cyclic attractor. In this paper, we considerably refine and generalize
the results in [10]. We are now able to deal with systems that display context
sensitivity resulting in interaction graphs with parallel edges. In Sect.3 we have
shown that in this framework the set of functions arising from interaction graphs
and associated parameter values corresponds to the set of Boolean functions
f : Bn → Bn. To obtain a better understanding of the relation between the
structure and the behavior of the system, we employ local interaction graphs,
which consist of the interactions influencing the behavior of the system in a
given state. Using the local interaction graph of a singular steady state, we
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are able to construct attractors of the given regulatory network from attractors
of subsystems of the network. We also obtain a result linking the existence of
circuits in the interaction graph to the existence of multiple attractors resp. an
attractor with cardinality greater than one, which generalizes the corresponding
statement in [10]. Both results demonstrate possibilities to study the network’s
dynamics without the explicit use of the state transition graph.

There are several starting points for future work. Although we have a good
grasp on the behavior arising from circuits in the interaction graph, which are
in some sense isolated, we have no clear understanding of the impact of inter-
twined circuits. In [3] the authors propose the concept of functionality context
of a circuit, describing a set of states that ensure the effectiveness of the cir-
cuit interactions. Combining this idea with the notion of singular steady states
may yield an approach to analyzing the behavior of networks containing inter-
twined circuits. Besides extending the results for regulatory networks described
by Boolean functions, a further goal is to generalize the approach to multi-valued,
discrete functions, since they allow a refined modeling of bioregulatory networks.
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