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Abstra
tThis paper analyzes a model for phase transformation in shape-memoryalloys indu
ed by temperature 
hanges and by me
hani
al loading. We as-sume that the temperature is pres
ribed and formulate the problem withinthe framework of the energeti
 theory of rate-independent pro
esses. Exis-ten
e and uniqueness results are proved.1 Introdu
tionShape-memory alloys (SMA) have some surprising thermo-me
hani
al behavior; one
an observe that severely deformed alloys re
over their original shape after a ther-mal 
y
le (shape-memory e�e
t). The exploitation in innovative and 
ommer
iallyvaluable appli
ations stimulates the interest in the development of mathemati
almodels for shape-memory materials. Many underlying one-dimensional models areavailable in the literature but multi-dimensional models allowing for multiaxial load-ings and anisotropies are rare. For the isothermal setting su
h models are dis
ussedin [MTL02, GMH02, KMR05℄.In this paper, we are 
on
erned with quasi-stati
 evolution of shape-memory ma-terials in a small-strain regime under non-isothermal 
onditions. More pre
isely,we study a ma
ros
opi
 phenomenologi
al model for shape-memory poly
rystallinematerials undergoing phase transformation driven by stress or temperature 
hanges.This model was originally proposed by Souza et al. [SMZ98℄ and later addressedand extended by Auri

hio et al. [AuP02, AuP04, AMS07℄. We follow the mathe-mati
al study of a temperature-driven phase transformation as proposed by Mielkein [Mie07℄.The temperature θ is given a priori as an applied load and we write θ = θappl(t, x).This assumption is used in engineering models and it is a

eptable if the body issmall in at least one dire
tion. Then, the ex
essive or missing heat 
an be balan
edthrough the environment.Our model is des
ribed by a stored-energy density W (e, z, θappl), where e = e(u) =
1
2
(∇u+∇uT) and z is a ma
ros
opi
 internal variable keeping tra
k of the phasedistribution. The potential energy takes the following form

E(t, u, z)
def
=

∫

Ω

W (e(u), z, θappl(t, ·)) +
σ

2
|∇z|2 dx − 〈l(t), u〉, σ > 0,1



where l denotes the time-dependent applied loading. Moreover we spe
ify the dissi-pation potential by
R(ż)

def
=

∫

Ω

ρ|ż| dx = ρ‖ż‖L1(Ω), ρ > 0,where z ∈ Z
def
= W 1,2(Ω). The set F of admissible displa
ements is spe
i�ed as thosefun
tions u ∈ W 1,2(Ω) satisfying the Diri
hlet data at the part ΓDir ⊂ ∂Ω. Then, ourproblem 
an be posed like the energeti
 formulation for rate-independent problems.For a given initial value (u(0), z(0)) = (u0, z0) ∈ F × Z, we have to �nd a fun
tion

(u, z) : [0, T ] → F × Z su
h that for all t ∈ [0, T ], the global stability 
ondition (S)and the global energy 
onservation (E) are satis�ed, i.e.(S) ∀(u, z) ∈ F ×Z : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + R(z̄−z(t)),(E) E(t, u(t), z(t)) +

∫ t

0

R(ż(s)) ds = E(0, u0, z0) +

∫ t

0

∂sE(s, u(s), z(s)) ds.The paper is organized as follows. In Se
tion 2, the mathemati
al formulation of theproblem within the framework of the energeti
 theory of rate-independent pro
essesis presented. In Se
tion 3, we spe
ify the exa
t assumptions, and then some help-ful estimates on the 
onstitutive fun
tion W are obtained. These estimates implythat the partial derivative ∂tE(t, u, z) is de�ned whenever E(t, u, z) < ∞. Then,with standard arguments we to show that for all stable initial data (u0, z0) an en-ergeti
 solution exists. Finally, in Se
tion 6 using uniform 
onvexity of E(t, ·, ·) andthe temporal smoothness of solutions obtained in Se
tion 5, we prove the unique-ness result. The model dis
ussed here is mu
h simpler than the ones treated in[CHM02, BC*04, KMR05℄, sin
e it is essentially restri
ted to isotropi
 behavior inpoly
rystals. However, this allows us to go mu
h further in the mathemati
al anal-ysis. For the more elaborate models only existen
e result are known, while here weare able to derive Lips
hitz dependen
e of the solutions on the initial data.2 Mathemati
al formulationWe 
onsider a body with referen
e 
on�guration Ω ⊂ Rd. This body may undergophase transformation and elasti
 displa
ements u : Ω → R
d. The phase transfor-mation will be 
hara
terized by the internal variable z : Ω → R

d×ddev denoting themesos
opi
 transformation strain where R
d×ddev is the spa
e of symmetri
 d×d tensorswith vanishing tra
e. We will denote by Rd×dsym the spa
e of symmetri
 d×d tensorsendowed with the s
alar produ
t v:w

def
= tr(vTw) and the 
orresponding norm is givenby |v|2

def
= v:v for all v, w ∈ R

d×dsym. Here (·)T and tr(·) denote the transpose and thetra
e of the matrix (·), respe
tively.The set of admissible displa
ements F def
= {u ∈ W 1,2(Ω; Rd) | u|ΓDir = 0} is 
hosen asa suitable subspa
e of W 1,2(Ω; Rd) by des
ribing Diri
hlet data at the part ΓDir of2



∂Ω. The internal variable z lies in Z = W 1,2(Ω; Rd×ddev ). We will denote the states by
q

def
= (u, z) and the norm and the s
alar produ
t in Q

def
= F × Z by ‖·‖Q and 〈·, ·〉Q,respe
tively.The material behavior will depend on the temperature θ, whi
h will be 
onsideredas a time dependent given parameter. Hen
e, we will not solve an asso
iated heatequation, but we will treat θ as an applied load and denote it by θappl : [0, T ]×Ω →

[θmin, θmax]. This approximation for the temperature is used in engineering modelsand we may justify it in the 
ase where the 
hanges of the loading are slow and thebody is small in at least one dire
tion su
h that ex
ess of heat 
an be transportedvery fast to the surfa
e and then radiated into the environment.The linearized strain tensor e = e(u) is given by e(u)
def
= 1

2
(∇u+∇uT) ∈ R

d×ddev . Weassume that Ω is su
h that there exists cΩ > 0 su
h that Korn's inequality holds,i.e.
v ∈ W 1,2(Ω; Rd) : cΩ‖v‖

2
W 1,2 ≤ ‖v‖2

L2 + ‖e(v)‖2
L2.Moreover, ΓDir ⊂ ∂Ω is assumed to be big enough su
h that there exists cKorn > 0with

∀u ∈ F : ‖e(u)‖2
L2 ≥ cKorn‖u‖2

W 1,2. (2.1)For more details on Korn's inequality and its 
onsequen
es, we refer to [DuL76℄.The potential energy takes then the following form
Ê(t, q, θ)

def
=

∫

Ω

W (e(u), z, θ) +
σ

2
|∇z|2 dx − 〈l(t), u〉, (2.2)where W : Rd×dsym×R

d×ddev ×[θmin, θmax] → R takes the form
W (e(u), z, θ)

def
=

1

2
(e(u)−z):C(θ):(e(u)−z) + h(z, θ)with h(·, θ) : R

d×ddev → R 
onvex. Here σ is a positive 
oe�
ient that measures somenonlo
al intera
tion e�e
t for the internal variable z, C(θ) is the elasti
ity tensorwhi
h depends on the temperature θ, and l(t) denotes the applied me
hani
al loadingin the form
〈l(t), u〉

def
=

∫

Ω

fappl(t, x)·u(x) dx +

∫

∂Ω

gappl(t, x)·u(x) dγ.Sin
e θ is given we denote the potential energy by E(t, q)
def
= Ê(t, q, θappl(t)).The dissipation potential is de�ned by

R(ż)
def
=

∫

Ω

ρ|ż| dx = ρ‖ż‖L1(Ω), ρ > 0. (2.3)As usual, the notation (˙) denotes the time derivative d
dt
. One 
an prove that R :

Z → R is 
onvex, lower semi
ontinuous and positively homogeneous of degree 1, i.e.for all γ ≥ 0 and v ∈ Z, R(γv) = γR(v). Its subdi�erential is de�ned by
∂R(v) =

{
σ ∈ Z∗

∣∣∀w ∈ Z : R(w) ≥ R(v) +

∫

Ω

σ:(w−v) dx
}

.3



The evolution of smooth pro
esses q : [0, T ] → Q is governed by the following doublynonlinear subdi�erential in
lusion (
f. [CoV90, Col92℄)
(

0
∂R(ż)

)
+

(
∂uE(t, q)
∂zE(t, q)

)
∋

(
0
0

)
, (2.4)where ∂uE(t, q) = −div (C(θ):(e(u)−z)) − l(t) and ∂zE(t, q) = −C(θ):(e(u)−z) +

∂zh(z, θ) − σ∆z. Using DqE(t, q)
def
= (∂uE(t, q), ∂zE(t, q))T and the de�nition of thesubdi�erential ∂R(ż) leads to the variational inequality

∀v ∈ Q : 〈DqE(t, q), v−q̇〉Q + R(v) −R(ż) ≥ 0. (2.5)It 
an be easily seen that (2.5) is equivalent to two lo
al 
onditions:(S)lo
 ∀v ∈ Q : 〈DqE(t, q), v〉Q + R(v) ≥ 0,(E)lo
 〈DqE(t, q), q̇〉Q + R(ż) ≤ 0.Sin
e E(t, ·) : Q → R is 
onvex, our problem has an equivalent energeti
 formulationin the sense of rate-independent pro
esses, for the details the reader is referred to[MiT04, MTL02, MaM05, FrM06, Mie05℄. A fun
tion q : [0, T ] → Q is 
alled anenergeti
 solution of the rate-independent problem asso
iated with E and R if forall t ∈ [0, T ] the global stability 
ondition (S) and the global energy balan
e (E) aresatis�ed, i.e.(S) ∀q̄ = (ū, z̄) ∈ Q : E(t, q(t)) ≤ E(t, q̄) + R(z̄−z(t)),(E) E(t, q(t)) +

∫ t

0

R(ż(s)) ds = E(0, q(0)) +

∫ t

0

∂sE(s, q(s)) ds.Following the Souza et al. [SMZ98℄ and Auri

hio et al. [Aur01, AuP04℄, weare parti
ularly interested in h = hSA with
hSA(z, θ)

def
= c1(θ)

√
δ2+|z|2 + c2(θ)|z|

2 +
1

δ
(|z|−c3(θ))

3
+, (2.6)where ci(θ) > 0, i = 1, 2, 3, are given in term of the temperature θ. Observe that

c1(θ) is an a
tivation threshold for initiation of martensiti
 phase transformations,
c2(θ) measures the o

urren
e of some hardening phenomenon with respe
t to theinternal variable z, and c3(θ) represents the maximum modulus of transformationstrain that 
an be obtained by alignment of martensiti
 variants. Let

WSA(e, z, θ)
def
=

1

2
(e−z):C(θ):(e−z) + hSA(z, θ).For re
ent further development we refer to [AuS05, AuS04, AMS07℄. The originalmodel is obtained in the limit δ → 0 and σ → 0, in this 
ase

horg(z, θ)
def
= c1(θ)|z| + c2(θ)|z|

2 + χ(z),where χ : R
d×ddev → [0, +∞] is the indi
ator fun
tion of the ball {z ∈ R

d×ddev : |z| ≤
c3(θ)}. For mathemati
al purposes we need to keep δ, σ > 0 �xed.4



3 The mathemati
al assumptionsWe 
larify now the assumptions and establish some preliminary results that we willuse in the next se
tions. In the Appendix we will show that h(z, θ) = hSA(z, θ)ful�lls these assumptions.Assumptions on h. There exist positive 
onstants Ch, Ch
θj
, ch

θj
, Ch

zθ, Ch
z and

γd ∈ [3,∞) with γd ≤ 2d
d−2

if d ≥ 3 su
h that for all t ∈ [0, T ], θ ∈ [θmin, θmax] and
z, ẑ ∈ R

d×ddev , we have
h ∈ C3(Rd×ddev ; C2([θmin, θmax])), (3.1a)
h(z, θ) ≥ Ch(|z|2−1), (3.1b)
∀j = 1, 2 : |∂j

θh(z, θ)| ≤ Ch
θj

(h(z, θ)+ch
θj

), (3.1
)
∀i = 0, 1, 2 ∀j = 0, 1 : (3.1d)
|∂j

θ∂
i
zh(z, θ)−∂

j
θ∂

i
zh(ẑ, θ)| ≤ Ch

zθ(1+|z|+|ẑ|)γd−i−1|z−ẑ|,

∀i = 1, 2, 3 ∀j = 0, 1 : |∂j
θ∂

i
zh(z, θ)| ≤ Ch

z (1+|z|)γd−i−j. (3.1e)Assumptions on CCC. The elasti
ity tensor C(θ) : Rd×dsym → Rd×dsym is a symmetri
positive de�nite map su
h that
C ∈ C1([θmin, θmax]; Lin(Rd×dsym; Rd×dsym)), (3.2a)
∃α > 0 ∀e ∈ R

d×dsym ∀θ ∈ [θmin, θmax] : e:C(θ):e ≥ α|e|2. (3.2b)For later use, we de�ne
CC def

= sup
{
|C(θ)|

∣∣θ ∈ [θmin, θmax]} and CC

θ

def
= sup

{
|∂θC(θ)|

∣∣θ ∈ [θmin, θmax]}. (3.3)In parti
ular, if λ, µ ∈ C1([θmin, θmax]) with λ(θ) ≥ 0 and µ(θ) ≥ α then C(θ):z
def
=

λ(θ)tr(z)1 + 2µ(θ)z satis�es the assumptions given above. Here λ(θ) and µ(θ) aretemperature dependent Lamé 
oe�
ients, and 1 denotes the identity matrix. Thelatter de
omposition is not exploited in our analysis but it is 
learly suggested bythe me
hani
al appli
ation. From (3.1b) and (3.2b) we may dedu
e that there exist
c, C > 0 su
h that

∀e ∈ R
d×dsym ∀z ∈ R

d×d
dev : W (e, z, θ) ≥ c(|e|2+|z|2) − C. (3.4)The applied temperature will insert or extra
t energy a

ording to ∂θW (e(u), z, θappl)

θ̇appl. To 
ontrol this term we assume that θappl is smooth enough (
f. Se
tion 4)and we prove in the following lemma that the derivatives ∂
j
θW exist for j = 1, 2 andthey 
an be estimated linearly via W .Lemma 3.1 Assume that C satis�es above assumptions and h satis�es (3.1
). Thenthere exist CW

0 , CW
1 > 0 su
h that for all j = 1, 2,

|∂j
θW (e, z, θ)| ≤ CW

1 (W (e, z, θ)+CW
0 ). (3.5)5



Proof. These estimates are obtained using (3.1
) and (3.2). �Lemma 3.2 Under the assumptions of Lemma 3.1, for all θ1 ∈ [θmin, θmax], we have
W (e, z, θ1) + CW

0 ≤ exp(CW
1 |θ1−θ|)(W (e, z, θ)+CW

0 ). (3.6)Proof. We 
onsider (e, z) to be �xed and de�ne w(θ) = W (e, z, θ)+CW
0 . Lemma 3.1provides exa
tly |w′(θ)| ≤ CW

1 w(θ), and Gronwall's lemma yields the desired result
w(θ1) ≤ exp(CW

1 |θ1 − θ|)w(θ) for all θ, θ1 ∈ [θmin, θmax]. �4 The existen
e resultFor a given temperature pro�le θappl and a given external loading l with
θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])), (4.1a)
l ∈ C1([0, T ]; W 1,2(Ω; Rd)∗), (4.1b)we now study the potential energy E as de�ned in (2.2).Proposition 4.1 Under the above assumptions the following holds:(i) If for some (t∗, q) ∈ [0, T ] × Q we have E(t∗, q) < ∞, then E(·, q) lies in

C1([0, T ]) and
∂tE(t, q) =

∫

Ω

∂θW (e(u), z, θappl(t))θ̇appl(t) dx − 〈l̇(t), u〉. (4.2)(ii) There exist CE
0 , CE

1 > 0 su
h that E(t, q) < ∞ implies that |∂tE(t, q)| ≤
CE

1 (E(t, q)+CE
0 ).(iii) For ea
h ε > 0 and E ∈ R there exists δ > 0 su
h that E(t1, q) ≤ E and

|t1−t2| < δ imply |∂tE(t1, q)−∂tE(t2, q)| ≤ ε.Proof. Observe that (3.4) and Korn's inequality (2.1) lead to
E(t, q) ≥

ccKorn
2

‖u‖2
W 1,2 + min

(
c,

σ

2

)
‖z‖2

W 1,2 − C|Ω| −
1

2ccKorn‖l(t)‖2
(W 1,2)′ ,whi
h implies that there exist c0, C0 > 0 su
h that

E(t, q) ≥ c0‖q‖
2
Q − C0. (4.3)6



We show now the di�erentiability of E(t, q) with respe
t to t using Lemma 3.1 andassumption (4.1). For all h 6= 0 and t∗ +h ∈ [0, T ] the mean-value theorem providessome s ∈ (0, 1) su
h that
1

h
(E(t∗+h, q)−E(t∗, q))

=

∫

Ω

∂θW (e(u), z, θappl)θ̇appl(t∗+sh) dx − 〈l(t∗+h)−l(t∗), u〉.
(4.4)We observe that Lemma 3.2 leads to

sup
θ1∈[θmin,θmax] W (e, z, θ1) ≤ exp

(
cW
1 (θmax−θmin))(W (e, z, θappl)+CW

0

)
− CW

0 . (4.5)Sin
e E(t∗, q) < ∞ we have 0 ≤ W (e(u), z, θappl(t)) ∈ L1(Ω) whi
h implies that theright-hand side of (4.5) belongs to L1(Ω). On the other hand, (4.1a) gives θ̇appl ∈
C0([0, T ]; L∞(Ω)) and we may pass to the limit h → 0 in (4.4) using Lebesgue'stheorem. This proves (4.2).For part (ii), one 
an see that assumptions (4.1) lead to the following estimate

|∂tE(t, q)| ≤ Θ

∫

Ω

|∂θW (e(u), z, θappl)| dx + ‖l̇(t)‖(W 1,2)′‖u‖W 1,2, (4.6)where Θ
def
= ‖θ̇appl‖L∞ . Carrying (3.5) for j = 1 into (4.6) and using Cau
hy-S
hwarz's inequality, we have

|∂tE(t, q)| ≤ Θ

∫

Ω

CW
1

(
W (e(u), z, θappl)+CW

0

)
dx +

1

2
‖l̇(t)‖2

(W 1,2)′ +
1

2
‖u‖2

W 1,2,whi
h implies that
|∂tE(t, q)| ≤ CW

1 ΘE(t, q) +
1

2

(
1+CW

1 Θ
)
‖u‖2

W 1,2 + CW
0 CW

1 |Ω|Θ

+
1

2

(
CW

1 ‖l‖2
(W 1,2)′‖θ̇appl‖W 1,2+‖l̇‖2

(W 1,2)′

)
.

(4.7)Using (4.3) in (4.7), the desired result (ii) follows immediately.For part (iii), we use
|∂tE(t1, q)−∂tE(t2, q)| ≤ Θ

∫

Ω

|∂θW (e(u), z, θappl(t1))−∂θW (e(u), z, θappl(t2))| dx

+

∫

Ω

|∂θW (e(u), z, θappl(t1))| dx ‖θ̇appl(t1)−θ̇appl(t2)‖L∞

+ ‖l̇(t1)−l̇(t2)‖(W 1,2)′‖u‖W 1,2. (4.8)The mean-value theorem provides some s ∈ (0, 1) su
h that
|∂θW (e(u), z, θappl(t1))−∂θW (e(u), z, θappl(t2))|
= |∂2

θW (e(u), z, θappl(t1+s(t2−t1)))||θappl(t1)−θappl(t2)|. (4.9)7



Introdu
ing (3.5) in (4.9) and then using (3.6), we obtain
|∂θW (e(u), z, θappl(t1))−∂θW (e(u), z, θappl(t2))|
≤ KW

1 (W (e(u), z, θappl(t1))+CW
0 )|θappl(t1)−θappl(t2)|, (4.10)where KW

1
def
= CW

1 exp(CW
1 |θmax−θmin|). One 
an see that (3.5) and (3.6) lead to

|∂θW (e(u), z, θappl(t1))| ≤ KW
1 (W (e(u), z, θappl)+CW

0 ). (4.11)Carrying (4.10) and (4.11) into (4.8), we obtain
|∂tE(t1, q)−∂tE(t2, q)|

≤

∫

Ω

KW
1 (W (e(u), z, θappl(t1))+CW

0 )|θappl(t1)−θappl(t2)| dx ‖θ̇appl(t1)‖L∞

+

∫

Ω

KW
1 (W (e(u), z, θappl(t1))+CW

0 ) dx ‖θ̇appl(t1)−θ̇appl(t2)‖L∞

+ ‖l̇(t1)−l̇(t2)‖(W 1,2)′‖u‖W 1,2,whi
h implies that
|∂tE(t1, q)−∂tE(t2, q)|

≤

∫

Ω

KW
1 (E(t1, q)+CW

0 )) dx‖θappl(t1)−θappl(t2)‖L∞Θ

+

∫

Ω

KW
1 (E(t1, q)+CW

0 ) dx‖θ̇appl(t1)−θ̇appl(t2)‖L∞

+ KW
1 ‖l(t1)‖(W 1,2)′‖u‖W 1,2

(
‖θappl(t1)−θappl(t2)‖L∞‖θ̇appl(t1)‖L∞

+ ‖θ̇(t1)−θ̇(t2)‖L∞

)
+ ‖l̇(t1)−l̇(t2)‖(W 1,2)′‖u‖W 1,2.

(4.12)
One 
an observe that (4.1) leads to the following estimate

‖l̇(t1)−l̇(t2)‖(W 1,2)′ + ‖θ̇appl(t1)−θ̇appl(t2)‖L∞ ≤ ω(|t1−t2|). (4.13)Here ω : [0,∞) → [0,∞) is a modulus of 
ontinuity, i.e. ω is nonde
reasing and
ω(τ) → 0 for τ ց 0. Sin
e E(t1, q) ≤ E, (4.3) and (4.13) hold, there exists c̄ > 0su
h that

|∂tE(t1, q)−∂tE(t2, q)| ≤ c̄
(
ω(|t1 − t2|)+|t1−t2|

)
.Thus, the proposition is established. �We prove now that the energeti
 formulation (S) and (E) has at least one solution q :

[0, T ] → Q for a given stable initial datum q0 ∈ Q, i.e. q0 satis�es the global stability
ondition (S) at t = 0. The existen
e theory was developed in [MaM05, Mie05,FrM06℄ and it is based on in
remental minimization problems. More pre
isely, fora given partition Π = {0 = t < t1 < . . . < tN = T}, we de�ne the in
rementalproblem as follows:(IP)Π { For k = 1, . . . , N �nd
qk

def
= (uk, zk) ∈ Argmin{E(tk, q̃) + R(z̃−zk) : q̃ = (ũ, z̃) ∈ Q}.8



De�ne the pie
ewise 
onstant interpolant qΠ : [0, T ] → Q with qΠ(t) = qj−1 for
t ∈ [tj−1, tj) for j = 0, . . . , N . Then, one shows that a subsequen
e has a limit andthis limit fun
tion satis�es the energeti
 formulation (S) and (E).Theorem 4.2 Assume that E and R satisfy the assumptions (2.1), (3.1), (3.2) and(4.1). Let q0 ∈ Q be stable for t = 0, i.e. E(0, q0) ≤ E(0, q) + R(z−z0) for all
q = (u, z) ∈ Q. Then there exists an energeti
 solution q = (u, z) : [0, T ] → Q with
q(0) = q0 and

u ∈ L∞([0, T ]; W 1,2(Ω; Rd)),

z ∈ L∞([0, T ]; W 1,2(Ω; Rd×d
dev )) ∩ BV ([0, T ]; L1(Ω; Rd×d

dev )).Moreover, let Πk = {0 = tk0 < tk1 < . . . < tkNk
= T}, k ∈ N, be a sequen
e ofpartitions with �neness ∆(Πk)

def
= max{tkj − tkj−1 : j = 1, . . . , Nk} tending to 0for k → ∞. Let qΠk

def
= (uΠk, zΠk) : [0, T ] → Q be the pie
ewise 
onstant inter-polants asso
iated with the in
remental problem (IP)Πk

, then there exist a subse-quen
e (ūn, z̄n)
def
= (uΠkn , zΠkn ) and an energeti
 solution q̃

def
= (ũ, z̃) : [0, T ] → Q su
hthat for all t ∈ [0, T ] the following holds

z̄n(t) ⇀ z̃(t) in Z,

E(t, q̄n(t)) → E(t, q̃(t)),
∫ t

0

R( ˙̄zn(s)) ds →

∫ t

0

R( ˙̃z(s)) ds.Proof. We use the abstra
t result of [FrM06℄ whi
h relies on the following abstra
tassumptions (H1)�(H5), where F and Z are 
onsidered as topologi
al spa
es 
ar-rying the weak topology of W 1,2(Ω). All topologi
al notions are to be understoodin the �sequential� sense.(H1) ∀z1, z2, z3 ∈ Z: R(z1) = 0 ⇔ z1 = 0 and R(z1−z3) ≤ R(z1−z2) +R(z2−z3),(H2) R : Z → [0,∞] is 
ontinuous,(H3) ∀t ∈ [0, T ]: E(t, ·) : Q → [0,∞) has 
ompa
t sublevels,(H4) there exist CE
0 , CE

1 > 0 su
h that for all q ∈ Q:
E(0, q) < ∞ =⇒

{
∂tE(·, q) : [0, T ] → R is 
ontinuous and
|∂tE(t, q)| ≤ CE

1 (E(t, q)+CE
0 ),(H5) ∀E > 0 ∀ε > 0 ∃δ > 0 :

(
E(t1, q) ≤ E, |t1−t2| ≤ δ

)
⇒ |∂tE(t1, q)−∂tE(t2, q)| <

ε. 9



(H1) follows from the de�nition (2.3) of the dissipation potential R. Sin
e R isstrongly 
ontinuous in L1(Ω), the 
ompa
t embedding of W 1,2(Ω) into L1(Ω) pro-vides (H2).On the one hand, E(t, ·) is 
oer
ive be
ause of (3.1b), (3.2b) and (2.1). On theother hand, by E(t, ·) is weakly lower semi-
ontinuous, as the integrand is 
onvexin (∇u,∇z) and 
ontinuous in z. This provides (H3). Finally, (H4) and (H5) werealready obtained in Proposition 4.1.Sin
e the assumptions (H1)�(H5) are ful�lled, the abstra
t theory is appli
able,and the theorem is proved. �The above result does not need any 
onvexity assumption on h(·, θ), hen
e solutionsmay have jumps in general and uniqueness 
an not be expe
ted.For the original Souza-Auri

hio model, i.e. δ = 0 in (2.6), but still σ > 0, it isalso possible to obtain existen
e of solutions. For the 
ase σ = 0 the question ofexisten
e is still open, even in the isothermal 
ase, see [AMS07℄.5 Temporal regularity via uniform 
onvexityWe assume that h(·, θ) is αh-uniformly 
onvex on R
d×ddev , namely there exists a mod-ulus of 
onvexity αh > 0 su
h that for all z0, z1 ∈ R
d×ddev and λ ∈ [0, 1] we have

h(zλ, θ) ≤ (1−λ)h(z0, θ) + λh(z1, θ) −
αh

2
λ(1−λ)|z1−z0|

2, (5.1)where zλ
def
= (1−λ)z0+λz1. By (3.2b) the expression (e−z):C(θ):(e−z) is α-uniformly
onvex in (e−z). With qλ

def
= (1−λ)q0 + λq1, we 
on
lude

∃κ̂ > 0 ∀q0, q1 ∈ Q ∀t ∈ [0, T ] ∀λ ∈ [0, 1] :

E(t, qλ) ≤ (1−λ)E(t, q0) + λE(t, q1) −
κ̂

2
λ(1−λ)‖q1−q0‖

2
B,

(5.2)where κ̂
def
= min(α, αh, σ) and ‖q‖2

B
def
= ‖e(u)−z‖2

L2 +‖z‖2
W 1,2 . Using Korn's inequality(2.1), we �nd ‖q‖B ≥ c0‖q‖Q. Hen
e, we dedu
e from (5.2) that

∀q0, q1 ∈ Q ∀t ∈ [0, T ] ∀λ ∈ [0, 1] :

E(t, qλ) ≤ (1−λ)E(t, q0) + λE(t, q1) −
κ

2
λ(1−λ)‖q1−q0‖

2
Q,

(5.3)where κ = κ̂c0. In other words, one has proved that E(t, q) is κ-uniformly 
onvex inthe variable q. Observe that (5.3) implies that
∀q, q̂ ∈ Q : E(t, q̂) ≥ E(t, q) + 〈DqE(t, q), q̂−q〉Q +

κ

2
‖q−q̂‖2

Q. (5.4)We establish now an estimate that is 
ru
ial to prove the temporal regularity resultgiven in Theorem 5.2. 10



Lemma 5.1 Let assumption (3.2) on C and assumption (4.1) on the loadings besatis�ed. Then for all R > 0, there exists CR > 0 su
h that
∀t ∈ [0, T ] ∀q, q̂ ∈ Q with ‖q‖Q, ‖q̂‖Q ≤ R :

|∂tE(t, q)−∂tE(t, q̂)| ≤ CR‖q−q̂‖Q.Proof. We denote by w(u, z, θ)
def
= 1

2
(e(u)−z):∂θC(θ):(e(u)−z). First, we point outthat

∂tE(t, q) =

∫

Ω

∂θW (e(u), z, θappl)θ̇appl dx − 〈l̇(t), u〉, (5.5)where ∂θW (e(u), z, θ) = w(u, z, θ) + ∂θh(z, θ). Then, we dedu
e from (5.5) and(4.1b) that
|∂tE(t, q)−∂tE(t, q̂)| ≤ I‖θ̇appl‖L∞ + ‖l̇(t)‖(W 1,2)′‖u−û‖W 1,2, (5.6)where I

def
=

∫
Ω
|∂θW (e(u), z, θappl)−∂θW (e(û), ẑ, θappl)| dx. This gives

I ≤

∫

Ω

|w(u, z, θappl)−w(û, ẑ, θappl)| dx +

∫

Ω

|∂θh(z, θappl)−∂θh(ẑ, θappl)| dx.The �rst integral is estimated by using (3.3) and Cau
hy-S
hwarz's inequality. These
ond one by (3.1d) with i = 0 and j = 1 and Hölder's inequality to give
I ≤ CC

θ

(
‖q‖Q + ‖q̂‖Q

)
‖q−q̂‖Q + Ch

zθ‖1+|z|+|ẑ|‖γd−1
Lγd ‖z−ẑ‖Lγd . (5.7)Sin
e W 1,2(Ω) ⊂ Lγd(Ω) (re
all that γd ≤ 2d

d−2
if d ≥ 3), then the last term on theright-hand side of (5.7) is estimated by CCh

zθ

(
1 + ‖z‖W 1,2 + ‖ẑ‖W 1,2

)γd−1
‖z−ẑ‖W 1,2where C > 0. Then, we dedu
e that

I ≤ max(CC

θ , CCh
zθ)

(
1 + ‖q‖Q + ‖q̂‖Q

)γd−1
‖q−q̂‖Q. (5.8)Introdu
ing (5.8) in (5.6) the assertion (5.5) follows. �Theorem 5.2 (Lips
hitz 
ontinuity). Assume that (3.1a), (3.1
) for j=1, (3.3),(4.1), and (5.4) hold. Then any energeti
 solution q is Lips
hitz 
ontinuous. In fa
t,let R

def
= ‖q‖L∞([0,T ];Q) and CR > 0 given by Lemma 5.1, then ‖q̇(t)‖Q ≤ CR

κ
for a.e.

t ∈ [0, T ] where κ is de�ned in (5.3).Proof. Considering (5.4) for t
def
= s and q

def
= q(s) we have

∀q̂ ∈ Q : E(s, q̂) ≥ E(s, q(s)) + 〈DqE(s, q(s)), q̂−q(s)〉Q +
κ

2
‖q̂−q(s)‖2

Q. (5.9)For arbitrary s ∈ [0, T ] we know that q(s) ful�lls (S)loc. Choosing v
def
= q̂ − q(s) in(S)loc we dedu
e from (5.9) that for all q̂ ∈ Q we have

κ

2
‖q̂−q(s)‖2

Q ≤ E(s, q̂) − E(s, q(s)) + R(ẑ−z(s)). (5.10)11



Then, for all t ∈ [0, T ] and s ∈ [0, t], we have
κ

2
‖q(t)−q(s)‖2

Q ≤ E(s, q(t)) − E(s, q(s)) + R(z(t)−z(s))

≤ E(s, q(t)) − E(s, q(s)) +

∫ t

s

R(ż(r)) dr

= −

∫ t

s

∂rE(r, q(t)) dr +

∫ t

s

∂rE(r, q(r)) dr

≤ CR

∫ t

s

‖q(r)−q(t)‖Q dr.The �rst inequality is obtained by 
hoosing q̂
def
= q(t) in (5.9), the se
ond one 
omesfrom the 
onvexity of R(·), the third identity follows from the energy identity (E),and the last one results from (5.5). Note that this estimate is exa
tly the assumptionsof the following Lemma 5.3, hen
e the result follows. �Lemma 5.3 Let q ∈ L∞([0, T ];Q) and C > 0 be given su
h that for all t ∈ [0, T ]and s ∈ [0, t] we have

κ

2
‖q(t)−q(s)‖2

Q ≤ C

∫ t

s

‖q(r)−q(t)‖Q dr.Then, q ∈ CLip([0, T ];Q) with ‖q̇(t)‖Q ≤ C
κ
for a.e. t ∈ [0, T ].Proof. The proof is obtained using the same te
hniques detailed in the proof ofTheorem 7.5 in [MiT04℄. Sin
e it is quite a routine to adapt this proof to our 
ase,we let the veri�
ation to the reader. �6 Uniqueness resultUniqueness results in rate-independent hysteresis models are rather ex
eptional, asusually one needs strong assumptions on the nonlinearities, see [MiT04, MiR07℄.To show uniqueness we 
onsider two solutions q0 and q1 and prove our result usingthe te
hniques developed in [MiT04℄. For this we introdu
e now some 
onvenientnotations. For i = 0, 1 and j = 0, 1, 2, let

wi
def
= e(ui) − zi and Dj

qEi
def
= Dj

qE(t, qi(t)).We denote by QR
def
= {q ∈ Q : ‖q‖Q ≤ R}.

12



Proposition 6.1 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then
DqE(t, q)[q̂] =

∫

Ω

(
ŵ:C(θappl):w + ∂zh(z, θappl):ẑ + σ∇z:∇ẑ

)
dx − 〈l(t), û〉, (6.1a)

∂tDqE(t, q)[q̂] =

∫

Ω

θ̇appl

(
ŵ:∂θC(θappl):w + ∂θ∂zh(z, θappl):ẑ

)
dx − 〈l̇(t), û〉, (6.1b)

D2
qE(t, q)[q̂, q̂] =

∫

Ω

(
ŵ:C(θappl):ŵ + ẑ:∂2

zh(z, θappl):ẑ + σ|∇ẑ|2
)
dx, (6.1
)where w

def
= e(u) − z and ŵ

def
= e(û) − ẑ. For R > 0, we have E(t, ·) ∈ C2,Lip(QR; R).Proof. First, using (3.1e) and (3.2a), one 
an dedu
e from Lebesgue's theorem that

DqE(t, q), ∂tDqE(t, q) and D2
qE(t, q) exist and (6.1) holds. On the other hand, oneobserves using (3.3) and (3.1d) with i = 2 and j = 0 that

|D2
qE(t, q)[q̂, q̂]| ≤ CC

θ ‖ŵ‖2
L2 + Ch

z ‖1+|z|‖γd−2
Lγd ‖ẑ‖2

Lγd + σ‖∇ẑ‖2
L2 . (6.2)Sin
e W 1,2(Ω) ⊂ Lγd(Ω) with γd ≤ 2d

d−2
, the se
ond term on the right side of (6.2) isestimated by C1C

h
z (1 + ‖z‖W 1,2)γd−2‖ẑ‖2

W 1,2 where C1 > 0 and it follows that
|D2

qE(t, q)[q̂, q̂]| ≤ C
(
1+‖q‖Q

)γd−2
‖q̂‖2

Q, (6.3)where C
def
= max(2CC

θ , C1C
h
z , σ). Observe now that (3.1d) with i = 2 and j = 0 andHölder's inequality give

|D2
qE1[q̂, q̂]−D2

qE0[q̂, q̂]| ≤ Ch
zθ‖1+|z0|+|z1|‖

γd−3
Lγd ‖ẑ‖2

Lγd‖z1−z0‖Lγd .Sin
e W 1,2(Ω) ⊂ Lγd(Ω) with γd ≤ 2d
d−2

then the latter estimate implies that thereexists C2 > 0 su
h that
|D2

qE1[q̂, q̂]−D2
qE0[q̂, q̂]| ≤ C2C

h
zθ

(
1+‖q0‖Q+‖q1‖Q

)γd−3
‖q̂‖2

Q‖q1−q0‖Q. (6.4)Hen
e, E(t, ·) ∈ C2,Lip(QR; R) for every R > 0. �We establish now some estimates in the following lemma that are 
ru
ial to obtainthe uniqueness result given in Theorem 6.3.Lemma 6.2 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then for ea
h R >

0, there exist C1, C2 > 0 su
h that for all q0, q1 ∈ QR, we have
‖∂tDqE1−∂tDqE0‖Q′ ≤ C1‖q1−q0‖Q, (6.5a)
‖DqE1−i−DqEi+D2

qEi[qi−q1−i]‖Q′ ≤ C2‖q1−q0‖
2
Q. (6.5b)Proof. De�ning Wi

def
= W (e(ui), zi, θappl) for i = 0, 1, we observe that

‖∂tDqE1−∂tDqE0‖Q′ = sup
‖bq‖Q≤1

∣∣∣
∫

Ω

θ̇appl(∂θDqW1−∂θDqW0

)
:q̂ dx

∣∣∣,13



where q̂ = (û, ẑ)T ∈ Q. With ŵ = e(û)−ẑ and wj = e(uj)+zj it follows
‖∂tDqE1−∂tDqE0‖Q′ ≤ sup

‖(bu,bz)‖
W1,2≤1

(∫

Ω

|∂θ∂zh(z1, θappl)−∂θ∂zh(z0, θappl)||ẑ|dx

+

∫

Ω

|(w1−w0):∂θC(θappl):ŵ|dx

)
Θ,

(6.6)where Θ
def
= ‖θ̇appl‖L∞ < ∞ due to (4.1a). On the one hand, using (3.1d), with i = 1and j = 1, and Cau
hy-S
hwarz's inequality one has

∫

Ω

|∂θ∂zh(z1, θappl)−∂θ∂zh(z0, θappl)||ẑ| dx ≤ Ch
zθ‖1+|z0|+|z1|‖

γd−2
Lγd ‖z1−z0‖Lγd‖ẑ‖Lγd .Sin
e W 1,2(Ω) ⊂ Lγd(Ω) with γd ≤ 2d

d−2
, we dedu
e from the latter inequality thatthere exists C > 0 su
h that

∫

Ω

|∂θ∂zh(z1, θappl)−∂θ∂zh(z0, θappl)||ẑ| dx

≤ CCh
zθ

(
1+‖z0‖W 1,2+‖z1‖W 1,2

)γd−2
‖z1−z0‖W 1,2‖ẑ‖W 1,2.

(6.7)On the other hand, using (3.3) and Cau
hy-S
hwarz's inequality, we obtain
∫

Ω

|∂θC(θappl)||w1−w0||ŵ| dx ≤ CC

zθ

(
‖u1−u0‖W 1,2+‖z1−z0‖L2

)
‖q̂‖W 1,2. (6.8)Introdu
ing (6.7) and (6.8) in (6.6), we obtain (6.5a).For i = 0, 1, let us evaluate now

‖DqE1−i−DqEi+D2
qEi[qi−q1−i]‖Q′

=
∥∥∥
∫ 1

0

(
DqE(t, qi+ρ(q1−i−qi))+D2

qEi

)
[qi−q1−i] dρ

∥∥∥
Q′

,whi
h implies by using (6.4) that there exists CR > 0 su
h that
‖DqE1−i−DqEi+D2

qEi[qi−q1−i]‖Q′ ≤

∫ 1

0

CRρ‖q1−i−qi‖
2
Q dρ =

CR

2
‖q0−q1‖

2
Q. (6.9)Thus, (6.5b) follows. �Theorem 6.3 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then for ea
hstable initial 
ondition q0, there exists a unique energeti
 solution q. In parti
ular,for ea
h R > 0 there exist 
onstants C, c > 0 su
h that for all stable initial 
onditions

q0(0), q1(0) ∈ QR, the solutions q0 and q1 satisfy
‖q1(t)−q0(t)‖Q ≤ C exp(ct)‖q1(0)−q0(0)‖Q for all t ∈ [0, T ].14



Proof. The uniqueness result will follow from the estimates obtained in the Lemma6.2 and Gronwall's lemma. Given two solutions q0 and q1, there exists R > 0 su
hthat ‖qj‖C0([0,T ],Q) ≤ R for j = 0, 1. De�ne
γ(t)

def
= 〈DqE1−DqE0, q1−q0〉.Then, by κ-uniform 
onvexity (see (5.4)), we have

‖q1(t)−q0(t)‖
2
Q ≤

γ(t)

κ
. (6.10)On the other hand, the derivative of γ(t) denoted by γ̇(t) is given by

γ̇(t) = 2〈DqE1−DqE0, q̇1 − q̇0〉 + 〈∂tDqE1−∂tDqE0, q1−q0〉

+

1∑

i=0

〈DqE1−i−DqEi+D2
qEi[qi−qi−1], q̇i〉.

(6.11)Taking the test fun
tions v
def
= q̇1−i in (2.5) for i = 0, 1 and then adding the bothinequalities, we obtain
〈DqE1−DqE0, q̇1−q̇0〉 ≤ 0. (6.12)Using (6.12) in (6.11), we have

γ̇(t) ≤ 〈∂tDqE1−∂tDqE0, q1−q0〉 +
1∑

i=0

〈DqE1−i−DqEi+D2
qEi[qi−qi−1], q̇i〉

≤ ‖∂tDqE1−∂tDqE0‖Q′‖q1−q0‖Q +
1∑

i=0

‖DqE1−i−DqEi+D2
qEi[qi−qi−1]‖Q′‖q̇i‖Q.Then, Theorem 5.2 and Lemma 6.2 enable us to dedu
e

γ̇(t) ≤ C3‖q1(t)−q0(t)‖
2
Q ≤

C3

κ
γ(t) with C3 = 2(C1+C2CR).Hen
e, the 
lassi
al Gronwall's lemma and (6.10) lead to

‖q1(t)−q0(t)‖
2
Q ≤

1

κ
exp

(
C3

κ
t

)
γ(0). (6.13)Using q0(0), q1(0) ∈ QR and E(0, ·) ∈ C1,Lip(QR; R) we have

γ(0) ≤ C‖q0(0)−q1(0)‖2
Q,with C > 0, and the result follows. �
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A Appendix: On the Souza-Auri

hio modelWe prove now that the assumptions on h introdu
ed in Se
tion 3 are satis�ed for
hSA given in (2.6). More pre
isely, we establish the following lemma:Lemma A.1 Assume that ci ∈ C2([θmin, θmax]), i = 1, 2, 3, for all θ ∈ [θmin, θmax]and ci(θ) > 0. Then there exist positive 
onstants Ch, Ch

θj
, ch

θj
, Ch

θ , Ch
zθ, Ch

z su
hthat for all t ∈ [0, T ], θ ∈ [θmin, θmax], z, ẑ ∈ R
d×d
dev , we have,

hSA(·, θ) is αhSA-uniformly 
onvex and belongs to C3(Rd×d
dev ) with (A.1a)

αhSA def
= min{c1(θ) : θ ∈ [θmin, θmax]},

hSA(z, θ) ≥ Ch(|z|2−1), (A.1b)
∀j = 1, 2 : |∂j

θhSA(z, θ)| ≤ Ch
θj

(hSA(z, θ)+ch
θj

), (A.1
)
∀i = 0, 1 : |∂θ∂

i
zhSA(z, θ)−∂θ∂

i
zhSA(ẑ, θ)| ≤ Ch

zθ(1+|z|+|ẑ|)|z−ẑ|, (A.1d)
∀i = 0, 1, 2 : |∂i

zhSA(z, θ)−∂i
zhSA(ẑ, θ)| ≤ Ch

zθ(1+|z|+|ẑ|)3−i|z−ẑ|, (A.1e)
∀i = 1, 2, 3 ∀j = 0, 1 : |∂j

θ∂
i
zhSA(z, θ)| ≤ Ch

z (1+|z|)3−i−j . (A.1f)Proof. Note that hSA(·, θ) is a sum of three non-negative 
onvex and belonging to
C3(Rd×ddev ):

h1(z, θ)
def
= c1(θ)

√
δ2+|z|2, h2(z, θ)

def
= c2(θ)|z|

2, h3(z, θ)
def
=

1

δ
(|z|−c3(θ))

3
+.Moreover, the quadrati
 term is α-uniformly 
onvex and 
oer
ive. Hen
e (A.1a)and (A.1b) hold. De�ne for i = 1, 2, 3, c′i(θ)

def
= ∂θci(θ) and c′′i (θ)

def
= ∂2

θ ci(θ). Theestimates (A.1
) will result from the appli
ation of Young's inequality. First, wedi�erentiate hSA(z, θ) with respe
t to θ and we obtain easily the following inequality
|∂θhSA(z, θ)| ≤ |c′1(θ)|

√
δ2+|z|2 + |c′2(θ)||z|

2 +
3

δ
|c′3(θ)(|z|

2−c3(θ))
2
+|. (A.2)The last term on the right-hand side of (A.2) is estimated by Young's inequalityand then (A.1
) for j = 1 follows.We di�erentiate ∂θhSA(z, θ) with respe
t to θ and obtain the estimate

|∂2
θhSA(z, θ)| ≤ |c′′1(θ)|

√
δ2+|z|2 + |c′′2(θ)||z|

2 +
3

δ
|2c′3(θ)|(|z|

2−c3(θ))+

+
3

δ
|c′′3(θ)|(|z|

2−c3(θ))
2
+.

(A.3)On
e again, we use Young's inequality to estimate the last two terms on the right-hand side of (A.3) and obtain (A.1
) for j = 2.We note that (A.1d) will be obtained by a simple 
al
ulus explained below andsin
e it is quite a routine, we let the details to the reader. First, we de�ne µi
def
=16



supθ∈[θmin,θmax]|ci(θ)| and ηi
def
= supθ∈[θmin,θmax]|c′i(θ)|, i = 1, 2, 3. On the one hand,using the previous notation, we obtain

|∂θhSA(z, θ)−∂θhSA(ẑ, θ)| ≤ η1

∣∣√δ2+|z|2−
√

δ2+|ẑ|2
∣∣ + η2

∣∣|z|2−|ẑ|2
∣∣

+
3η3

δ

∣∣(|z|−c3(θ))
2
+−(|ẑ|−c3(θ))

2
+

∣∣,whi
h implies that
|∂θhSA(z, θ)−∂θhSA(ẑ, θ)| ≤ |z−ẑ|

[(η1

δ2
+ η2

)
(|z|+|ẑ|) + (2η3+|z|+|ẑ|)

]
. (A.4)Then, the desired inequality (A.1d) for i = 0 follows from (A.4). On the other hand,one 
an observe that

|∂θ∂zhSA(z, θ)−∂θ∂zhSA(ẑ, θ)| ≤ η1

∣∣∣∣∣
z√

δ2+|z|2
−

ẑ√
δ2+|ẑ|2

∣∣∣∣∣ + 2η2|z−ẑ|

+
12η3

δ

∣∣z(|z|−c3(θ))+−ẑ(|ẑ|−c3(θ))+

∣∣,whi
h leads to
|∂θ∂zhSA(z, θ)−∂θ∂zhSA(ẑ, θ)|

≤ |z−ẑ|
[η1

δ

(
1+

1

δ

)
(1+|z|+|ẑ|) + 2η2 +

12η3

δ
(1+|z|+|ẑ|)

]
.Then, one easily dedu
es (A.1d) for i = 1 by using the latter inequality.One 
an show easily that

|hSA(z, θ)−hSA(ẑ, θ)| ≤
(
µ1+

µ2

2δ

)
(|z|+|ẑ|)|z−ẑ| + (|z|+|ẑ|)2|z−ẑ|,whi
h gives (A.1e) for i = 0. We may also observe that

|∂zhSA(z, θ)−∂zhSA(ẑ, θ)| ≤ cδµ1(1+|z|+|ẑ|)|z−ẑ| + µ2|z−ẑ| +
6

δ
(1+|z|+|ẑ|)|z−ẑ|,where cδ

def
= max

(
1
δ
, 1

δ2

). Then (A.1e) for i = 1 follows from the latter estimate. Letus remark now that there exists C > 0 su
h that
|∂2

zhSA(z, θ)−∂2
zhSA(ẑ, θ)| ≤ Ccδ

(
µ1(|z|+|ẑ|)|z−ẑ| + (1+|z|+|ẑ|)|z−ẑ|

)
,whi
h implies (A.1e) for i = 2.Finally, one 
an easily obtain (A.1f), the veri�
ation is let to the reader. �A
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