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Abstract

This paper analyzes a model for phase transformation in shape-memory
alloys induced by temperature changes and by mechanical loading. We as-
sume that the temperature is prescribed and formulate the problem within
the framework of the energetic theory of rate-independent processes. Exis-
tence and uniqueness results are proved.

1 Introduction

Shape-memory alloys (SMA) have some surprising thermo-mechanical behavior; one
can observe that severely deformed alloys recover their original shape after a ther-
mal cycle (shape-memory effect). The exploitation in innovative and commercially
valuable applications stimulates the interest in the development of mathematical
models for shape-memory materials. Many underlying one-dimensional models are
available in the literature but multi-dimensional models allowing for multiaxial load-
ings and anisotropies are rare. For the isothermal setting such models are discussed

in [MTL02, GMH02, KMRO05|.

In this paper, we are concerned with quasi-static evolution of shape-memory ma-
terials in a small-strain regime under non-isothermal conditions. More precisely,
we study a macroscopic phenomenological model for shape-memory polycrystalline
materials undergoing phase transformation driven by stress or temperature changes.
This model was originally proposed by Souza et al. [SMZ98| and later addressed
and extended by Auricchio et al. [AuP02, AuP04, AMS07]. We follow the mathe-
matical study of a temperature-driven phase transformation as proposed by Mielke
in [Mie07].

The temperature 6 is given a priori as an applied load and we write 6 = Gap,,1 (2, ).
This assumption is used in engineering models and it is acceptable if the body is
small in at least one direction. Then, the excessive or missing heat can be balanced
through the environment.

Our model is described by a stored-energy density W (e, 2z, 0.pp1), Where e = e(u) =
$(Vu+VuT) and z is a macroscopic internal variable keeping track of the phase
distribution. The potential energy takes the following form

E(t,u, z) = / Wi(e(u), z, Oappi(t, ) + %|Vz|2 dz — (I(t),u), o >0,
Q



where [ denotes the time-dependent applied loading. Moreover we specify the dissi-
pation potential by

R(2) & / oz dz = pllAllis p> 0,
Q

where z € Z = W'2(Q). The set F of admissible displacements is specified as those
functions u € W12(Q) satisfying the Dirichlet data at the part I'p;, C 9. Then, our
problem can be posed like the energetic formulation for rate-independent problems.
For a given initial value (u(0), 2(0)) = (ug, 20) € F x Z, we have to find a function
(u,2) :[0,T] — F x Z such that for all t € [0,T], the global stability condition (S)
and the global energy conservation (E) are satisfied, i.e.

(S) Y(u,2) € Fx Z: E(t,u(t),z(t) < E(t,u,z) +R(z—=2(t)),
(E) E(t,u(t) /R ))ds = £(0, ug, 20) /855u() z(s)) ds.

The paper is organized as follows. In Section 2, the mathematical formulation of the
problem within the framework of the energetic theory of rate-independent processes
is presented. In Section 3, we specify the exact assumptions, and then some help-
ful estimates on the constitutive function W are obtained. These estimates imply
that the partial derivative 0,E(t,u, z) is defined whenever £(¢,u,z) < oco. Then,
with standard arguments we to show that for all stable initial data (ug, z0) an en-
ergetic solution exists. Finally, in Section 6 using uniform convexity of £(t, -, ) and
the temporal smoothness of solutions obtained in Section 5, we prove the unique-
ness result. The model discussed here is much simpler than the ones treated in
|[CHMO02, BC*04, KMRO5|, since it is essentially restricted to isotropic behavior in
polycrystals. However, this allows us to go much further in the mathematical anal-
ysis. For the more elaborate models only existence result are known, while here we
are able to derive Lipschitz dependence of the solutions on the initial data.

2 Mathematical formulation

We consider a body with reference configuration 0 C R%. This body may undergo
phase transformation and elastic displacements u : £ — R? The phase transfor-
mation will be characterized by the internal variable z : Q — Rgexvd denoting the
mesoscopic transformation strain where Rg:vd is the space of symmetric dxd tensors

with vanishing trace. We will denote by ]ngxrff the space of symmetric dxd tensors

endowed With the scalar product v:w = tr(vTw) and the corresponding norm is given
by [v]? = v for all v,w € R&xd Here (-)7 and tr(-) denote the transpose and the
trace of the matrix (- ), respectively.

The set of admissible displacements F = {u € W2(Q;R?) | u|r,,, = 0} is chosen as
a suitable subspace of W12(Q; RY) by describing Dirichlet data at the part I'p; of



OS2 The internal variable z lies in Z = W2(Q; R%*%). We will denote the states by

dev
q¢ = (u, z) and the norm and the scalar product in @ = F x Z by ||| and (-, ),
respectively.

The material behavior will depend on the temperature 6, which will be considered
as a time dependent given parameter. Hence, we will not solve an associated heat
equation, but we will treat 6 as an applied load and denote it by @y, : [0, 7] x Q —
[Omin, Omax). This approximation for the temperature is used in engineering models
and we may justify it in the case where the changes of the loading are slow and the
body is small in at least one direction such that excess of heat can be transported
very fast to the surface and then radiated into the environment.

The linearized strain tensor e = e(u) is given by e(u) = L(Vu+VuT) € REL We
assume that €2 is such that there exists cq > 0 such that Korn’s inequality holds,
i.e.

ve WO RY) : callv][fre < llvll7z + [le(v)]|72.
Moreover, I'p;, C 0f) is assumed to be big enough such that there exists cgom > 0
with

Vu € F i [le(u)||72 > exomlluffye- (2.1)
For more details on Korn’s inequality and its consequences, we refer to [DuL.76].

The potential energy takes then the following form
Et,q,) d:ef/W(e(u),z,G) + 29 d — (1(2), ), (2.2)
Q

where W : R R [0in, Omax] — R takes the form

sym dev

ar 1
2

with h(-,0) : RI*% — R convex. Here o is a positive coefficient that measures some
nonlocal interaction effect for the internal variable z, C(0) is the elasticity tensor
which depends on the temperature 6, and [(t) denotes the applied mechanical loading
in the form

Wi(e(u), z,0) (e(u)—2):C(0):(e(u)—z) + h(z,0)

(I(t),w) d:d/Qfappl(t,x)-u(x) d:L'—I—/ Gappl (t, T)-u(x) dy.

o
Since 6 is given we denote the potential energy by E(t,q) = A(t, ¢, Oappi (1)).
The dissipation potential is defined by

R [ plilde = plley o >0 (23)
Q
As usual, the notation () denotes the time derivative %. One can prove that R :

Z — R is convex, lower semicontinuous and positively homogeneous of degree 1, i.e.
for all v > 0 and v € Z, R(yv) = yR(v). Its subdifferential is defined by

OR(v) = {0 €z

VwEZ:R(w)ZR(v)—l—/

Qa:(w—v) dx}.

3



The evolution of smooth processes ¢ : [0, 7] — Q is governed by the following doubly
nonlinear subdifferential inclusion (cf. [CoV90, Col92|)

(ot )+ (e )= (0): (2.4)

where 0,E(t,q) = —div (C(0):(e(u)—=2)) — I(t) and 0,E(t,q) = —C(6):(e(u)—2) +
D.h(z,0) — oAz, Using D,E(t,q) = (0.£(t,q),0.£(t,q))T and the definition of the
subdifferential OR(2) leads to the variational inequality

Voe Q: (DE(t,q),v—4)o + R(v) —R(2) > 0. (2.5)
It can be easily seen that (2.5) is equivalent to two local conditions:

(Shoe Vv € Q1 (D€(t,q),v) + R(v) =0,
(E)loc <Dq€(ta Q)> q)Q + R(Z) <0.

Since £(t,-) : @ — R is convex, our problem has an equivalent energetic formulation
in the sense of rate-independent processes, for the details the reader is referred to
[MiT04, MTL02, MaMO05, FrM06, Mie05|. A function ¢ : [0,7] — Q is called an
energetic solution of the rate-independent problem associated with £ and R if for
all t € [0,T] the global stability condition (S) and the global energy balance (E) are
satisfied, i.e.

(S) Vg =(u,z) € Q: E(t,qt)) < EX, ) + R(Z—=(1)),

(E) & /R /055(]

Following the SOuzA ET AL. [SMZ98| and AURICCHIO ET AL. [Aur01, AuP04|, we
are particularly interested in h = hga with

hsa(z,0) d—Efcl 0)\/02+]|z|% + co(0 |z| + = (|z|—03(9))3’r, (2.6)

where ¢;(0#) > 0, i = 1,2, 3, are given in term of the temperature 6. Observe that
¢1(0) is an activation threshold for initiation of martensitic phase transformations,
¢2(0) measures the occurrence of some hardening phenomenon with respect to the
internal variable z, and c3(6) represents the maximum modulus of transformation
strain that can be obtained by alignment of martensitic variants. Let

Weale, 2,0) Ef;(e 2):C(0):(e—=2) + hsa (2, 0).

For recent further development we refer to [AuS05, AuS04, AMS07|. The original
model is obtained in the limit 6 — 0 and ¢ — 0, in this case

horg(2,0) = ¢1(0)|2] + c2(0)|2* + x(2),

where y : R%*% — [0, +00] is the indicator function of the ball {z € R . |z| <

dev dev

c3(0)}. For mathematical purposes we need to keep d,0 > 0 fixed.
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3 The mathematical assumptions

We clarify now the assumptions and establish some preliminary results that we will
use in the next sections. In the Appendix we will show that h(z,0) = hga(z,0)
fulfills these assumptions.

Assumptions on h. There exist positive constants C*, ng, cgj, Ch,, Ch and
Ya € [3,00) with 74 < 2% if d > 3 such that for all ¢ € [0,7], 6 € [fmin, Omax] and

2,7 € R4 we have

h € CP R C2([Omin, Omax))) (3.1a)
h(z,6) > C"(|2]*~1), (3.1b)
Vi=1,2: [9h(z,0)] < Cj (h(z,0)+c), (3.1c)
Vi=0,1,2Vj=0,1: (3.1d)
500Dz, 0)—050Lh(Z, 0)| < Cly(1+|2|+[2]) 4 2=2],

Vi=1,2,3Vj=0,1: |90.h(2,0)] < CM(1+]|z|)@". (3.1e)

Assumptions on C. The elasticity tensor C(9) : R — RIX? is a symmetric
positive definite map such that

C € C'([Bmin, Omax]; Lin (R R, (3.2a)
Jdoa > 0 Ve € ]ngxn‘f VO € [Omin, Omax) : €:C(0):e > alel?. (3.2b)

For later use, we define

CC = sup {|C(0)]]6 € [Brnin, Omax] } and Cf = sup {|0C(0)]|0 € [Ormin, Omax) }- (3.3)
In particular, if A, & € C*([fmin, Omax]) With A(8) > 0 and p(8) > « then C(#):z =
A(@)tr(z)1 + 2u(0)z satisfies the assumptions given above. Here A(6) and u(f) are
temperature dependent Lamé coefficients, and 1 denotes the identity matrix. The
latter decomposition is not exploited in our analysis but it is clearly suggested by
the mechanical application. From (3.1b) and (3.2b) we may deduce that there exist
¢,C' > 0 such that

Ve € R4 vy € R W (e, 2,0) > c(|e]*+]2]?) — C. (3.4)

sym dev

The applied temperature will insert or extract energy according to dW (e(u), 2, fapp1)
éappl. To control this term we assume that 6,,, is smooth enough (cf. Section 4)
and we prove in the following lemma that the derivatives %W exist for j = 1,2 and
they can be estimated linearly via W.

Lemma 3.1 Assume that C satisfies above assumptions and h satisfies (3.1c). Then
there exist C3V, OV > 0 such that for all j = 1,2,

09 (e,2,0)| < CIY (W(e, 2,0)+Cy"). (3.5)



Proof. These estimates are obtained using (3.1c) and (3.2). O

Lemma 3.2 Under the assumptions of Lemma 3.1, for all 6 € [Onin, Omax|, we have

Wie, z,01) + C} < exp(C}V|6,—0])(W (e, z,0)+CV). (3.6)

Proof. We consider (e, 2) to be fixed and define w(f) = W (e, z,0)+C}". Lemma 3.1
provides exactly [w/(0)] < C}Vw(#), and Gronwall’s lemma yields the desired result
w(0y) < exp(CV10; — 0])w(0) for all 6,0, € [Ormin, Omax)- O

4 The existence result

For a given temperature profile 0,,, and a given external loading [ with

Oappt € CH([0, T; L (2; [Brnin Omax])) (4.1a)
1€ CY[0, T]; WH(Q; RY)"), (4.1b)

we now study the potential energy £ as defined in (2.2).

Proposition 4.1 Under the above assumptions the following holds:

(i) If for some (t.,q) € [0,T] x Q we have E(t.,q) < oo, then E(-,q) lies in
CY([0,T)) and

0€(t,q) = /QGQW(e(u), 2, Oappl (£))appi (1) Az — (I(1), ). (4.2)

(ii) There erist CE.CE > 0 such that E(t,q) < oo implies that |0:E(t,q)| <
CE(E(t q)+CF).

(iii) For each ¢ > 0 and E € R there exists § > 0 such that E(t1,q) < E and
|t1—ta| <0 imply [0, (t, q) =0 (t2, q)] < .

Proof. Observe that (3.4) and Korn’s inequality (2.1) lead to

CCKorn . g 1
£(t,0) = S fulfps +min (e, ) 211 = €I = GO ey,
which implies that there exist ¢q, Cy > 0 such that
E(t,q) > collqlly — Co. (4.3)



We show now the differentiability of £(t, q) with respect to ¢ using Lemma 3.1 and
assumption (4.1). For all h # 0 and ¢, +h € [0, 7] the mean-value theorem provides
some s € (0,1) such that

(4.4)

We observe that Lemma 3.2 leads to
sup W(e, z, ‘91) S €xp (Cll/V(emax_emin)) (W(e, <, 9app1)+C(I)/V) - Cgv (4.5)

01 € [eminyemax}

Since E(t., q) < oo we have 0 < W(e(u), 2, Oappi(t)) € L'(2) which implies that the
right-hand side of (4.5) belongs to L'(Q). On the other hand, (4.1a) gives Gapp €
C°([0,T]; L>=(Q2)) and we may pass to the limit &~ — 0 in (4.4) using Lebesgue’s
theorem. This proves (4.2).

For part (ii), one can see that assumptions (4.1) lead to the following estimate

0.£(1,q)] < 9/9|39W(6(U),Z>9app1)| dz + [|{(t) [l w2y [|ullwe, (4.6)

def

where © = |[uppillz. Carrying (3.5) for j = 1 into (4.6) and using Cauchy-
Schwarz’s inequality, we have

1. 1
et )] <6 [ CIF(W(e(w), 2 o) +CF) da o+ OBy + Gl
which implies that
1
[DE(t, q)| < CYNOE(E q) + 5 (14C1 O) [Jullfyrz + C 1O

1 . .
5 (O Ny | Bapm w2+ B2 ).

Using (4.3) in (4.7), the desired result (i) follows immediately.

(4.7)

For part (iii), we use
|0 (11, 0) =0 (L2, q)] < @/lﬁeW(e(u)azﬁappl(tl))—aew(e(u)aza9appl(t2))|dx

/ 0 (e(1), 2, Bappr(t1))] A2 [Bappr(t1)—Gappr(£2)] 1=

+ 11t =i (t) ey llullwra.

(4.8)
The mean-value theorem provides some s € (0, 1) such that
|06W (e(w), 2, Oappi (1)) =g W (€(w), 2, Oappi (t2) )]

= [05W (e(w), 2, Oapp (t1+5(t2—11)))| [Bappi (t1) — Oappa (£2)|.

7
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Introducing (3.5) in (4.9) and then using (3.6), we obtain

|06 W (e(w), 2, Oappi (1)) =g W (e(u), 2, Oappi (£2))]

< Y (W (600, 2 B () £ O a0 )],

where KV = CV exp(CY [Bmax—bmin|). One can see that (3.5) and (3.6) lead to
[06W (e(u), 2, Bappi (t1))] < K7 (W (e(w), 2, Oappi) +Cy ). (4.11)

Carrying (4.10) and (4.11) into (4.8), we obtain

|8t t17 ) atg(t27 )‘

/ KW (W (e(u), 2, Ouppn (1)) - O ) Bappt(£2) —Bap (£2)| 2 |Gy (£1) | 1

/KW ) 2 eappl(tl))+CW) dxHeappl(tl) eappl(t2)||L°°

+ [0t =i (t2) |y [z,
which implies that
|8t t17 ) atg(t27 )‘

/ KW (E(t1, )+ )) A Bappt (b1 )~ Gapp (£2)] 1O

_'_/Kl (8(t1’q>+cgv) dx||éapp1(t1)_éappl(t2)||L°° (4'12)
Q

+ K¥V||l(tl) ||(W1’2)’ ||u||W1’2 (||9appl(tl)_9appl(t2)||L°° ||9.auppl(tl)||Lc><>
+110(t1)=0(t2) [ <) + [1(t) =1(E2) [ w2y [[ullwre-

One can observe that (4.1) leads to the following estimate

11(t0) = 1(E2) || w2y + [|Bappt (1) —Oappi (t2) [ e < w([ti—t2]). (4.13)

Here w : [0,00) — [0,00) is a modulus of continuity, i.e. w is nondecreasing and
w(r) — 0 for 7\, 0. Since E(t1,q) < E, (4.3) and (4.13) hold, there exists ¢ > 0
such that

|0, (t1,9) =& (ta, q)| < E(w([tr — ta| )+ [t1—ta]).
Thus, the proposition is established. O]

We prove now that the energetic formulation (S) and (E) has at least one solution ¢ :
[0,7] — Q for a given stable initial datum ¢y € Q, i.e. g satisfies the global stability
condition (S) at t = 0. The existence theory was developed in [MaMO05, Mie05,
FrMO06] and it is based on incremental minimization problems. More precisely, for
a given partition I = {0 = ¢ < t; < ... < ty = T}, we define the incremental
problem as follows:

(1p) For k=1,..., N find
ar = (ug, z) € Argmin{E&(ty, 7)) + RE—2) : = (W, 2) € Q}.

8



Define the piecewise constant interpolant ¢ : [0,7] — Q with ¢''(t) = ¢;_; for
t € [tj_1,t;) for j =0,...,N. Then, one shows that a subsequence has a limit and
this limit function satisfies the energetic formulation (S) and (E).

Theorem 4.2 Assume that € and R satisfy the assumptions (2.1), (3.1), (3.2) and
(4.1). Let qo € Q be stable for t = 0, i.e. £(0,q0) < £(0,q9) + R(z—=zy) for all
q = (u,z) € Q. Then there exists an energetic solution ¢ = (u, z) : [0,T] — Q with
q(0) = qo and

w e L=([0,T]; WH(Q; RY)),
z € L([0, T]; WHA(Q; R n BV ([0, T]; L*(; RIX4)).

dev dev

Moreover, let T, = {0 = tf < th < ... < t’ka =T}, k € N, be a sequence of
partitions with fineness A(Il) = max{t;? — t?_l :j = 1,...,Ng} tending to 0

def

for k — oo. Let ¢'' = (ull 21¥) . [0,T] — Q be the piecewise constant inter-
polants associated with the incremental problem (IP)Hk, then there exist a subse-

quence (i, Z,) = (ukn, 2Mn) and an energetic solution § = (,%) : [0,T] — Q such
that for all t € [0, T] the following holds

(1) = 3(t) in 2,
Ga()) — E(L,(t)),

/Rzn ds—>/R

Proof. We use the abstract result of [FrM06| which relies on the following abstract
assumptions (H1)—(H5), where F and Z are considered as topological spaces car-
rying the weak topology of W12(€Q). All topological notions are to be understood
in the “sequential” sense.

H1) Vz1,29,23 € Z: R(z1) =04 21 =0 and R(z1—23) < R(z1—22) + R(z2—23),

(H1)
(H2) R : Z — [0, 00] is continuous,

(H3) Vvt € [0,T]: £(t,-) : @ — [0,00) has compact sublevels,
(H4) there exist C¥, CF > 0 such that for all ¢ € O:

£(0,q) <00 = E(-q) [0, T]E—> R is con]gmuous and
0,£(t,q)] < CE(E(t, q)+CF),

(H5) VE >0Ve >030 >0: (5(t1,q) < FE, ‘tl_tQ‘ < 5) = |8t5(t1,q)—8t5(t2,q)\ <
£.



(H1) follows from the definition (2.3) of the dissipation potential R. Since R is
strongly continuous in L'(€2), the compact embedding of W12(Q) into L'(Q) pro-
vides (H2).

On the one hand, £(¢,-) is coercive because of (3.1b), (3.2b) and (2.1). On the
other hand, by £(¢,-) is weakly lower semi-continuous, as the integrand is convex
in (Vu,Vz) and continuous in z. This provides (H3). Finally, (H4) and (H5) were
already obtained in Proposition 4.1.

Since the assumptions (H1)—(H5) are fulfilled, the abstract theory is applicable,
and the theorem is proved. [

The above result does not need any convexity assumption on (-, ), hence solutions
may have jumps in general and uniqueness can not be expected.

For the original Souza-Auricchio model, i.e. 6 = 0 in (2.6), but still ¢ > 0, it is
also possible to obtain existence of solutions. For the case 0 = 0 the question of
existence is still open, even in the isothermal case, see |[AMS07|.

5 Temporal regularity via uniform convexity

We assume that h(-, 0) is aj-uniformly convex on REX? namely there exists a mod-

ulus of convexity ay, > 0 such that for all zy, 2; € ]Rfilexvd and \ € [0, 1] we have
h(zx,0) < (1=A)h(z0,0) + Ah(z1,0) — %A(l—k)\zl—zoﬁ (5.1)

where 2y < (1—\)zo+Az;. By (3.2b) the expression (e—z):C(6):(e—z) is a-uniformly
def

convex in (e—z). With ¢y = (1—X\)go + Aq1, we conclude
x>0 Yqo,qn € Q Vt € [O,T] VA € [0,1] :

R (5.2)
E(t, @) < (1=NE(t,q0) + AE(t @) = A=V la1—aoll5,
where % = min (e, ay, o) and [|g||3 = |le(u)—2||2, + || 2[|?,12. Using Korn’s inequality
(2.1), we find ||q|lz > col|q]|o. Hence, we deduce from (5.2) that
Vgo,q1 € QVt € [0, T] VA €[0,1]:
(5.3)

K
E(t,qn) < (1-NE(t, @) + NE(t, q1) — §>\(1—)‘)||Q1—QO||2Q>

where k = Reg. In other words, one has proved that (¢, q) is k-uniformly convex in
the variable ¢g. Observe that (5.3) implies that

~ o~ ~ K
Vg, 7€ Q: E(t,q) > E(t,q) + (DE(t,q), —q) o + §|lq—fﬂl2g (5.4)

We establish now an estimate that is crucial to prove the temporal regularity result
given in Theorem 5.2.

10



Lemma 5.1 Let assumption (3.2) on C and assumption (4.1) on the loadings be
satisfied. Then for all R > 0, there exists Cr > 0 such that

vt [0,T] Vg, g€ Q with [lqllolldlle < R:
0:E(t, q)—0E(X, )| < Crlla—0lle-

Proof. We denote by w(u,z,60) = 2(e(u)—2):0oC(0):(e(u)—z). First, we point out
that

0E(t,q) = /QOQW(e(u), z,@appl)éappl dr — <Z(t),u>, (5.5)

where 0pW (e(u), z,0) = w(u,z,0) + 0gh(z,0). Then, we deduce from (5.5) and
(4.1b) that

0:E(t, q)=0E (1. Q)] < I[|appll = + E(E) w2y u—TT] .z, (5.6)

where I = [ |0pW (e(u), 2, Oapp1) — W (e(1d), 2, Oapp1)| d. This gives

1< /|w(u,z,93ppl)—w(ﬁ, Z, Oappl) | da:+/|89h(z,93ppl)—8gh(3, Oappr)| dz.
Q Q

The first integral is estimated by using (3.3) and Cauchy-Schwarz’s inequality. The
second one by (3.1d) with ¢ = 0 and j = 1 and Holder’s inequality to give

I <G5 (lalle + l1dlle) la=alle + Clyll 1+l + 2134 2= 2l v (5.7)

Since Wh2(Q) C L7(Q) (recall that v4 < 2% if d > 3), then the last term on the

right-hand side of (5.7) is estimated by CC% (1 + ||z|lw12 + ||3||W1,2)7d_1||z—3||W1,z
where C' > 0. Then, we deduce that

a—1
I < max(Cy, CCL)(L+ llalle + 1[dlle)™ la—dlle. (5.8)

Introducing (5.8) in (5.6) the assertion (5.5) follows. O

Theorem 5.2 (Lipschitz continuity). Assume that (3.1a), (3.1¢) for j=1, (3.3),
(4.1), and (5.4) hold. Then any energetic solution q is Lipschitz continuous. In fact,

let R= gl (o.11,0) and Cr > 0 given by Lemma 5.1, then ||§(t)]o < <& for a.e.
t € [0, T] where k is defined in (5.3).

Proof. Considering (5.4) for t = s and ¢ = ¢(s) we have
~ ~ ~ R~
Vi€ Q: E(5,) = E(s,4(5)) + (Dy€(5,a(5)), G—a(s)) e + 5 [lT—a(s)o (5.9)

For arbitrary s € [0,7] we know that g(s) fulfills (S),_. Choosing v = g — ¢(s) in
(S)1,. we deduce from (5.9) that for all g € Q we have

g lg—a(s)Ig < £(s.2) — E(5,4(5)) + R(Z—2(s)). (5.10)
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Then, for all t € [0,7] and s € [0,¢], we have
g la(t)—a(s)lIe < E(s,q(t) — E(s,q(s)) + R 2(s))

(2(t)—
< E(s,q(t) = E(s,q(s)) + [ R((r))dr

S

= [osqmars [ae0.avar
< Cn / la(r)—a(t) | o dr.

The first inequality is obtained by choosing §= ¢(¢) in (5.9), the second one comes
from the convexity of R(-), the third identity follows from the energy identity (E),
and the last one results from (5.5). Note that this estimate is exactly the assumptions
of the following Lemma 5.3, hence the result follows. 0

Lemma 5.3 Let g € L>([0,T]; Q) and C > 0 be given such that for all t € [0,T]
and s € [0,t] we have

t
K
S la=a(s)1 = € [ latr)=a(®lladr
Then, q € CYP([0,T]; Q) with ||§(t)||o < £ for a.e. t €[0,T).

Proof. The proof is obtained using the same techniques detailed in the proof of
Theorem 7.5 in [MiT04]. Since it is quite a routine to adapt this proof to our case,
we let the verification to the reader. 0

6 Uniqueness result

Uniqueness results in rate-independent hysteresis models are rather exceptional, as
usually one needs strong assumptions on the nonlinearities, see [MiT04, MiR07]|.
To show uniqueness we consider two solutions ¢y and ¢; and prove our result using
the techniques developed in [MiT04|. For this we introduce now some convenient
notations. For: = 0,1 and 7 =0, 1,2, let

W; d:ef €(U7,) — Z; and D‘Zlgz d:ef Dég(ta QZ(t))

def

We denote by Qp ={q¢ € Q: |lg|lo < R}.
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Proposition 6.1 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then
D,£E(t,q)q] = /Q(@:C(Happl):w + 0.0(2, Oapp1):Z + 0V 2:VZ) dz — (I(t),T), (6.1a)
ODE (L, q)[q) = /Q Ot (0:05C (Bt ):w + Fpoh(2, Ouppr ):2) dar — (1), @), (6.1b)
D2E(t, 7,7 = /Q(@:(C(Qappl):@ + Z:02h(2, Oapp) ):Z + 0| VZ]?) da, (6.1¢)
where w = e(u) — z and © = e(@) — 2. For R > 0, we have E(t,-) € C*MP(Qp; R).

Proof. First, using (3.1e) and (3.2a), one can deduce from Lebesgue’s theorem that
D,E(t,q), 0:DgE(t, q) and DIE(L, q) exist and (6.1) holds. On the other hand, one
observes using (3.3) and (3.1d) with i = 2 and j = 0 that

IDFE(t, @)@, dl < Cll@lT: + O+ Nz + ol VEIZ.  (6.2)

Since W2(Q) C LY() with 74 < 24, the second term on the right side of (6.2) is
estimated by C1C(1 + ||z|lw1.2)72||Z]|3,1. where C; > 0 and it follows that

ID2E(t,¢)[3, )l < C(1+]qllo)™ 211313, (6.3)

where C' = max(2CS, C1C", ). Observe now that (3.1d) with i = 2 and j = 0 and
Holder’s inequality give

IDZE1(7, @ -D3E0(a, dll < Clll L+ zol+Hzal 1342 1120 a1 =200l 7o

Since Wh2(Q) C L%(Q) with 74 < 2% then the latter estimate implies that there
exists Cy > 0 such that

D261(7, @1-D20[3, @)l < CoCly (14 a0l ot larlle) ™ lldlelan—allo  (64)

Hence, £(t,-) € C*MP(Qg; R) for every R > 0. O

We establish now some estimates in the following lemma that are crucial to obtain
the uniqueness result given in Theorem 6.3.

Lemma 6.2 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then for each R >
0, there exist C1,Cy > 0 such that for all qo,q1 € Qr, we have

10:D&1—0:Dy&ollor < Chllq1—aollo; (6.5a)
||Dqgl—i_Dq€i+D25i[Qi_(h—i]||Q’ < Oollgi—qoll%- (6.5b)

Proof. Defining W; = W (e(w;), 2, fappt) for i = 0,1, we observe that

[0:D€1—0:Dy&ollor = sup

lallo<1

)

/ Oappt (0sDgW1— 0D Wy )7 dar
Q
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where g = (4,2)" € Q. With @ = e(0)—Z and w; = e(u;)+2; it follows

10:DyE1—0:D&ollor < sup (/|898Zh(z1,Happl)—agazh(zo,eappl)Hg‘dx
1(@,2)[lyy1,2<1 \JQ

+/Q|(wl_wo):aec(eappl)imdg;) o (6.6)

where © = [|f,pp1|| > < 00 due to (4.1a). On the one hand, using (3.1d), with i = 1
and 7 = 1, and Cauchy-Schwarz’s inequality one has

/\%@h(zhHappl)—ﬁe@h(%,Happl)H?I dz < Clyll 1+ 20l +zal 1752 12120l a2
Q

Since W12(Q) € L(Q) with 74 < 2%, we deduce from the latter inequality that
there exists C' > 0 such that

[ 1000-1e1 Bu) 000, B [
Q (6.7)
< CCly(1+ )z lwra+lz1llwr2) ™ llz1—=20llwrz | Ellw 2.

On the other hand, using (3.3) and Cauchy-Schwarz’s inequality, we obtain

/Ié‘o@(%ppl)llwl—wollﬂ dz < O (lui—uollwretlar—20]lz2) [dllwrz. (6.8)
Q

Introducing (6.7) and (6.8) in (6.6), we obtain (6.5a).

For 7 =0, 1, let us evaluate now
||Dqgl—i_Dqgi‘l'Dggi[Qi_QI—i]||Q’

‘/01 (DyE(t, gi+p(q1—i—a:))+D2E) [gi—qi—i] deQ,’

which implies by using (6.4) that there exists C'’zr > 0 such that

1
Cr
IDg€1-i—De&i+D2E [gi— 1] || o S/ Crollgi—i—ail|bdp = 3 lgo—a: 1l (6.9)
0
Thus, (6.5b) follows. O
Theorem 6.3 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then for each
stable initial condition qq, there exists a unique energetic solution q. In particular,

for each R > 0 there exist constants C,c > 0 such that for all stable initial conditions
700(0),1(0) € Qg, the solutions qo and q; satisfy

la(t)=qo(t)ll@ < C exp(ct)[|q1(0)=qo(0) |l for all t € [0,T].
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Proof. The uniqueness result will follow from the estimates obtained in the Lemma

6.2 and Gronwall’s lemma. Given two solutions ¢y and ¢, there exists R > 0 such
that HQjHCO([O,T],Q) < R for j = O, 1. Define

v(t) = (Dy&1—Dy&o, 1 —qo)-

Then, by k-uniform convexity (see (5.4)), we have

(-5 < 12

(6.10)
On the other hand, the derivative of v(¢) denoted by #(¢) is given by
Y(t) =2(DgE1—Dy&o, 41 — o) + (0:DE1—=0:DyEo, 1 —qo)
+ i(Dqé’l_i—DquLDg&[qi—qi_l], ). (6.11)
i=0

Taking the test functions v S G1—; in (2.5) for © = 0,1 and then adding the both
inequalities, we obtain

(Dg€1—=Dy&o, G1—Go) < 0. (6.12)
Using (6.12) in (6.11), we have

1
7(15) < <8th51—8th507 Q1—QO> + Z(Dqgl—i_Dqgi_'_Dggi[q —q@—1]7 Qz)

=0
1
< 10:D4&1—0:Dyoll o llg1—aoll o + ZHDq&—i—DqEﬁDi&[q-—qi—l] lorllgillo-

1=0

Then, Theorem 5.2 and Lemma 6.2 enable us to deduce

) C! .
Y(t) < Csllqu(t)—qo(t) || < ?3 v(t) with Cs5 = 2(C1+C5CR).

Hence, the classical Gronwall’s lemma and (6.10) lead to

om0l < - exp () 200,

- (6.13)
Using ¢0(0), ¢1(0) € Qg and £(0,-) € CYP(QR; R) we have

7(0) < Cllao(0)=a1 (02
with C' > 0, and the result follows. O
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A Appendix: On the Souza-Auricchio model

We prove now that the assumptions on h introduced in Section 3 are satisfied for
hsa given in (2.6). More precisely, we establish the following lemma:

Lemma A.1 Assume that ¢; € C*([Omin, Omax]); 1 = 1,2,3, for all 0 € [Omin, Omax)
and ¢;(0) > 0. Then there exist positive constants C", CI ' Ce , Ch, Ch o O such

that for allt € [0, T], 6 € [Omin, Omax), 2,2 € ]Rgexvd, we have

hsa(:,0) is ang, -uniformly convex and belongs to C*(RIXY) with (A.la)
g, = min{ci(0) : 0 € [Bmin, Omax] }»

hsa(z,0) > C"(|z|*-1), (A.1b)
Vi=1,2: |Rhsa(z,0)] < Cg;(th(z,H)—l—cgj), (A.1c)
Vi=0,1: |00 hsa(z,0)—0s0 hsa(Z,0)] < CM(1+|2|+|2])|2—2], (A.1d)
Vi=0,1,2: [0 hsa(z,0)—0 hsa(Z,0)| < C(1+|2|+|2))* 272, (A.le)
Vi=1,2,3Yj=0,1: |00 hsa(z,0)] < Cl(1+|z])>". (A.1f)

Proof. Note that hga(-,0) is a sum of three non-negative convex and belonging to
Cg(RdXd).

dev

hi(2,0) = ¢1(0)7/024]2]2, ho(z,0) = c3(0)|2]?, hs(z,0) d:fl(|z|—03(9))i

Moreover, the quadratic term is c-uniformly convex and coercive. Hence (A.la)
and (A.1b) hold. Define for i = 1,2,3, ¢,(0) = 9yci(0) and ¢/(9) = 92c;(0). The
estimates (A.1c) will result from the application of Young's inequality. First, we
differentiate hga(z, 0) with respect to 6 and we obtain easily the following inequality

|Ophsa(2,0)] O)|V/ 02+ ]2 + [ch(O)] 2] + |C§,(9)(|Z|2—03(9))i|- (A.2)

The last term on the right-hand side of (A.2) is estimated by Young’s inequality
and then (A.1lc) for j =1 follows.

We differentiate dphsa(z,60) with respect to 6 and obtain the estimate
/! /! 3 /
|05 hsa(z,0)] < |c](0)]/0%+]2]? + |Cz(9)||2|2+5|203(9)|(|Z|2—C3(9))+ A3
3., '
+ 5|C§(9)|(|Z\2—03(9))3-

Once again, we use Young’s inequality to estimate the last two terms on the right-
hand side of (A.3) and obtain (A.1c) for j = 2.

We note that (A.1d) will be obtained by a simple calculus explained below and
since it is quite a routine, we let the details to the reader. First, we define p; &
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supee[emim@max]|cz~(9)| and 7; det supge[gmimemax}|c§(9)|, i = 1,2,3. On the one hand,
using the previous notation, we obtain

[Gohsa(2,0)=0phsa(Z,0)] <m|v/02+ |22 =/ + 22| + ma |2~ |21

N % (12 —c3(0))2 = (121 —cs(6))2]

which implies that
Gohsa (2, 0)=0uhsa (2,0)] < 12=21 [ (%5 + ) (12l +121) + @not 21 +2D)]. (A4)

Then, the desired inequality (A.1d) for i = 0 follows from (A.4). On the other hand,
one can observe that

~

\/52+| RRVOEEE
-+ %’ (121 —c3(6))+—2(|21 —c3(6))+ |,

|090.hsa(z,0)—0p0.hsa(Z,0)] < m + 2mp|z—2]

which leads to
|8982hsA(z, 9)—868thA(/Z\> 9)|
1213

< 21| (1) (el +12) + 2+ T2 (12|21

Then, one easily deduces (A.1d) for i = 1 by using the latter inequality.

One can show easily that
hsa(z.0)~hsa (5,6)] < (m+22) (214 ED]e=21 + (2l [21))=—3]
which gives (A.le) for i = 0. We may also observe that
|0:hsa(2,0)=0:hsa (2, 0)] < cspn(1+|2]+[2])|2—2] + pa|2—2] + ?(1+|Z\+\ zZP)l===l,

where ¢; = max(%, &). Then (A.le) for i = 1 follows from the latter estimate. Let
us remark now that there exists C' > 0 such that

|02hs(2,0)—02hsa (2,0)] < Ces(m(|2l+[2D)]2—2] + (L+|2|+[2]) |2—21),

which implies (A.le) for i = 2.
Finally, one can easily obtain (A.1f), the verification is let to the reader. O
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