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Abstract

We present a generic non-nested Monte Carlo procedure for com-
puting true upper bounds for Bermudan products, given an approxi-
mation of the Snell envelope. The pleonastic “true” stresses that, by
construction, the estimator is biased above the Snell envelope. The key
idea is a regression estimator for the Doob martingale part of the ap-
proximative Snell envelope, which preserves the martingale property.
The so constructed martingale can be employed for computing tight
dual upper bounds without nested simulation. In general, this martin-
gale can also be used as a control variate for simulation of conditional
expectations. In this context, we develop a variance reduced version of
the nested primal-dual estimator (Andersen and Broadie, 2004). Nu-
merical experiments indicate the efficiency of the proposed algorithms.

Keywords: Early exercise options, Monte Carlo simulation, linear re-
gression.

1 Introduction

In recent years, much research on pricing of high-dimensional Bermudan
derivatives was devoted to the approximation of the optimal exercise policy.
Once a “good” but generally sub-optimal policy is known, a lower biased ap-
proximation of the Bermudan price can be found by straightforward Monte
Carlo simulation of the underlying trajectories, stopped according to this
policy. Most popular in this respect are the regression-based approaches
of Carriere (1996), Longstaff and Schwartz (2001), Tsistsiklis and Van Roy
(1999) and Clement et al. (2002). Another notable approach is backward
construction of the exercise boundary using its suitable parametrization.
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This method is utilized by Andersen (2000) in the context of Bermudan
swaptions. An important feature of these methods is their efficiency: by a
relatively low computational costs an approximative exercise policy can be
constructed, a straightforward Monte Carlo simulation giving thereafter a
lower price.

The goal of this paper is an efficient method for computing an upper
bound, given an approximation of the Snell envelope, for example, in the
form of a pre-computed exercise boundary. Rogers (2001) and independently
Haugh and Kogan (2004) developed a dual method which provides an upper
bound for the Bermudan price, given an approximation of the Snell envelope.
A multiplicative version of this method is studied by Jamshidian (2006). A
comparative study of multiplicative and additive duals is provided in Chen
and Glasserman (2005). Via the Doob martingale part of a “good” approxi-
mation of the Snell envelope, the dual approach gives a tight upper bound
for the Bermudan price. The martingale part of the (generally unknown)
Snell envelope would even result in the exact Bermudan price. Due to this
fact the martingale part M of any“reasonable” approximation Y of the Snell
envelope is a promising candidate for a “good” upper bound. Andersen and
Broadie (2004) suggested to estimate this type of martingale upper bound
by a simulation within a simulation approach. By the Doob decomposition
we have

(1.1) MTj+1
−MTj

= YTj+1
− ETj [YTj+1

].

An inner Monte Carlo simulation is used to estimate the conditional ex-
pectation in (1.1), and an outer simulation is used to compute an outer
expectation that determines the corresponding upper bound. Although the
demand for nested simulation makes the Andersen and Broadie algorithm
computationally extensive, it guarantees that the estimator for M , which
fails to satisfy the martingale property in general, induces an upper bound
estimate that is biased high. This important “biased high”-property is not
shared in general, if faster estimation procedures such as regression meth-
ods are applied to estimate the conditional expectation in (1.1). The first
attempt to overcome this difficulty was made in Glasserman and Yu (2005),
where a special regression algorithm for preserving the martingale property
of (1.1) is proposed. This algorithm, however, requires strong conditions on
the basis functions, that may be hard to check in practice. As an alterna-
tive, Kolodko and Schoenmakers (2004) propose a different estimator which
allows for a substantially reduced amount of inner simulations. While their
procedure may be effective, it has a drawback: Their alternative estimator
may fail to give an upper bound when the number of inner simulations used
is too low.

In this paper we avoid estimating the conditional expectation in (1.1).
Instead we construct, in a Brownian morion setting, an estimator for M that
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is based on the martingale representation theorem (Section 2). The main ad-
vantage is that the thus constructed estimators inherit the martingale prop-
erty from M , if conditional expectations are estimated in a non-anticipative
way. In particular the conditional expectations can be estimated by the pop-
ular linear regression method on basis functions without any restrictions on
the basis (Section 3). The corresponding estimator M̂ for M is a martingale
and consequently induces an upper bound. Therefore, if the lower bound Y
is constructed by linear regression, a linear regression estimator M̂ for M
can be implemented with comparable computational cost. Some results on
the convergence of M̂ to M are presented in Theorem 2.2 and Remark 3.1.

In Section 4 we analyze how the estimator M̂ can alternatively be applied
as control variate for the primal-dual algorithm of Andersen and Broadie
(2004). Moreover, the martingale M̂ can be used to derive estimates for
the hedge parameters of the Bermudan option in a complete market, as is
stressed in Section 5.

Finally we present numerical examples in Section 6. In two case studies,
the max-call on an asset basket and the Bermudan swaption in a multi-factor
Libor market model, we find that the fast non-nested estimator introduced
in this paper yields very good results. We also demonstrate a significant
variance reduction effect when M̂ is used as a control variate for the primal-
dual algorithm. Section 7 concludes.

2 Constructing dual upper bounds

We consider a Bermudan option that can be exercised at one date from the
set E = {T0, . . . , TJ}. To simplify the notation we shall assume that T0 = 0
and define T := TJ. Let us further assume that we have a given pricing
measure Q connected with a given discounting numeraire N on some filtered
probability space. According to the Bermudan contract, when exercising at
time Tj ∈ E, the holder of the option receives a discounted payment of the
form

HTj
:= h(Tj ,XTj

),

where h(Tj , ·) is Lipschitz continuous and Xt is the solution of the SDE

dXt = a(t,Xt)dt + b(t,Xt)dWt(2.1)

X0 = x.(2.2)

The coefficient functions a : [0, T ] × R
D → R

D and b : [0, T ] × R
D →

R
D×D are supposed to be Lipschitz in space and 1/2-Hölder continuous

in time, with D denoting the dimension of the Brownian motion W =
(W 1, . . . ,WD)⊤ under the pricing measure Q. For now we do not assume
additional regularity conditions on the diffusion coefficient b(·, ·). Through-
out (Ft; 0 ≤ t ≤ T ) is the augmented filtration generated by this Brownian
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motion. All expectations and conditional expectations are taken under the
pricing measure Q. Conditional expectations underQ with respect to Ft will
be denoted by Et[·]. The numeraire N is positive, adapted, and N0 := 1.

We think of X as a vector of financial quantities which is determined
by some arbitrage free system of tradable quantities on the background. Of
course all components of X may be tradable themselves, but for example X
may be also a set of (Libor) interest rates which are determined by a system
of (tradable) bonds.

Recall that for any martingale MTj
, 0 ≤ j ≤ J with respect to the

filtration (FTj
; 0 ≤ j ≤ J) starting at M0 = 0

(2.3) Y up(M) := E

[
max
0≤j≤J

(HTj
−MTj

)

]

is an upper bound for the price of the Bermudan option with cash-flow HTj
.

Moreover, the Bermudan price is attained at the martingale part of the Doob
decomposition of the discounted price process (Snell envelope). The latter
process is denoted by Y ∗

Tj
.

Suppose some approximation YTj
of the Snell envelope is given. If Y is

a good approximation and it is decomposed in its Doob decomposition

(2.4) YTj
= Y0 +MTj

+ UTj
,

where the martingale M and the predictable process U start at zero, then
we expect Y up(M) to be a close upper bound of Y ∗

0 . In principle, U and M
can be found from Y via the relations

UTj+1
− UTj

= ETj [YTj+1
] − YTj

,

MTj+1
−MTj

= YTj+1
− ETj [YTj+1

].(2.5)

If one estimates the conditional expectations in the above expressions – say,
by standard regression methods –, the estimated version of M will loose the
martingale property in general. In particular, it is not guaranteed that it
induces an upper bound. We will now exploit the structure of the Brownian
filtration to construct an approximation of M in a way that all conditional
expectations can be estimated without loosing the martingale property.

Indeed, under the assumption that MT is square integrable there is a
square integrable (row vector valued) process Zt = (Z1

t , . . . , Z
D
t ) satisfying

(2.6) MTj
=

∫ Tj

0
ZtdWt, j = 0, . . . , J.

Hence, our aim is to approximate Z instead of M and then make use of
relation (2.6). Of course, we can estimate Z only at a finite number of time
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points. So we introduce a partition π = {t0, . . . , tI} such that t0 = 0, tI = T ,
and E ⊂ π. We write formally, by (2.4) and (2.6),

YTj+1
− YTj

≈
∑

tl∈π;Tj≤tl<Tj+1

Ztl(Wtl+1
−Wtl) + UTj+1

− UTj
.

Multiplying by the increment of the dth Brownian motion (W d
ti+1

−W d
ti
) and

taking conditional expectations we obtain, by the (FTj
)j=1...,J-predictability

of U

Zd
ti
≈ 1

ti+1 − ti
Eti

[
(W d

ti+1
−W d

ti
)YTj+1

]
, Tj ≤ ti < Tj+1.

This formal argumentation motivates the definition

(2.7) Zπ
ti

:=
1

∆π
i

Eti
[
(∆πWi)

⊤YTj+1

]
, Tj ≤ ti < Tj+1

with an obvious definition of the increments, e.g. ∆πW d
i := W d

ti+1
−W d

ti
.

The corresponding approximation of the martingale M is

(2.8) Mπ
Tj

:=
∑

ti∈π;0≤ti<Tj

Zπ
ti
(∆πWi).

Remark 2.1. In practice one often has an approximation (τ1, . . . , τJ) of the
optimal stopping policy at hand. Such family of stopping times induces an
approximation of the Snell envelope via YTj

:= ETj [Hτj
]. Thanks to the

tower property of conditional expectations, (2.7) can be rewritten as

(2.9) Zπ
ti

:=
1

∆π
i

Eti
[
(∆πWi)

⊤Hτj+1

]
, Tj ≤ ti < Tj+1.

Hence, there is no need to compute the conditional expectations in the
definition of Y .

The following theorem shows that the martingale Mπ based on the dis-
cretized Itô integral converges to the original one, M .

Theorem 2.2. (i) We have,

lim
|π|→0

E

[
max
0≤j≤J

|Mπ
Tj

−MTj
|2
]

= 0

where |π| denotes the mesh of π.
(ii) Suppose that either YTj

= u(Tj ,XTj
) or YTj

= u(Tj ,X
π̄
Tj

), j = 1, . . . , J,

where the functions u(Tj , ·) are Lipschitz continuous and X π̄
ti

is the Euler
approximation of Xt corresponding to a partition π̄ ⊃ π. Then there exists
a constant C > 0 such that

E

[
max
0≤j≤J

|Mπ
Tj

−MTj
|2
]
≤ C|π|
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The proof is postponed to the Appendix.
Note that, for two martingales M (1) and M (2) starting in 0, one can

obtain by straightforward manipulations

(2.10) |Y up(M (1)) − Y up(M (2))|2 ≤ E

[
max
0≤j≤J

|M (1)
Tj

−M
(2)
Tj

|2
]

Hence, we obtain the following immediate corollary:

Corollary 2.3. (i) It holds that

lim
|π|→0

Y up(Mπ) = Y up(M)

(ii) Under the assumption of Theorem 2.2, (ii), we have

|Y up(Mπ) − Y up(M)|2 ≤ C|π|

The above corollary states that the upper bounds due to M and Mπ do
not differ much, when the mesh of the partition π is sufficiently small. The
main advantage of Mπ is that (2.8) remains a martingale, even if the con-
ditional expectations in (2.7) are estimated (of course in a non-anticipative
manner). Denoting such martingale (with the conditional expectations in

(2.7) estimated) by M̂π, Y up(M̂π) therefore always defines an upper bound
of the Bermudan price Y ∗

0 . This is in contrast to the representation of M
in (2.5). Estimating the conditional expectations in (2.5) can in general de-
stroy the martingale property and so the estimated version may not induce
an upper bound.

3 Upper bounds without nested Monte Carlo

We now describe an algorithm based on the construction of the martingales
Mπ that allows to calculate dual upper bounds without nested Monte Carlo.
To this end we suppose that the approximative Snell envelope YTj

is of the
form

YTj
= u(Tj ,X

π̄
Tj

).

We emphasize that numerical methods to approximate the Snell envelope
typically yield approximations of this form. It is then straightforward that
the conditional expectations in the definition of Z are, in fact, regressions
on X π̄

ti
. Precisely,

Zπ
ti

=
1

∆π
i

EXπ̄
ti

[
(∆πWi)

⊤u(Tj+1,X
π̄
Tj+1

)
]
, Tj ≤ ti < Tj+1.

Next we approximate Zπ
ti

by simulation based least squares regression on
basis functions as was suggested by Longstaff and Schwartz (2001) for lower
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bounds. To this end we simulate Ñ independent samples of the Brownian
increments ∆πW d

i , i = 1, . . . , I, d = 1, . . . ,D,

∆π
· W̃

d
i := (∆π

nW̃
d
i )

n=1,...,N
.

Given row vectors of (possibly time dependent) basis functions ψd(ti, ·) =
(ψd

k(ti, ·), k = 1, . . . ,K), d = 1, . . . ,D, and Ñ independent samples (ti, nX̃
π̄
ti
),

n = 1, . . . , Ñ of the Euler scheme X π̄
ti

constructed from the above Brownian

increments ∆π
nW̃i, we define, for Tj < ti ≤ Ti+1,

β̂d
ti

:= arg min
β∈RK





N∑

n=1

∣∣∣∣∣
∆π

nW̃
d
i

∆π
i

u(Tj+1, nX̃
π̄
Tj+1

) − ψd(ti, nX̃
π̄
ti
)β

∣∣∣∣∣

2


 .

Then, the corresponding approximative regression mapping ẑπ(ti, x) =
(ẑπ

1 (ti, x), . . . , ẑ
π
D(ti, x)) for Zπ

ti
is defined by

ẑπ
d (ti, x) = ψ(ti, x)β̂

d
ti
,

After having obtained the functions ẑπ(ti, x) in (3.1) by the above de-
scribed regression procedure, we next construct an approximation of Mπ by
plugging in the Euler approximation of the system (2.1), which we suppose
to be independent of the Brownian increments simulated above:

M̂π
Tj

:= m̂π(Tj ,X
π̄,∆πW ) :=

∑

ti∈π;0≤ti<Tj

ẑπ(ti,X
π̄
ti
)(∆πWi).

Clearly M̂π
Tj

is a martingale with respect to the enlarged filtration

FN
Tj

:= FTj
∨ GN

0 , j = 0, ..., J,

where GN
0 := σ(∆π

nW̃i; i = 1, . . . I, n = 1, . . . , Ñ). Obviously, the under-
lying stopping problem does not change by this enlargement of filtration
and, consequently, Y up(M̂π) is an upper bound for the discounted Bermu-
dan option price. By sampling a new set of N independent trajectories
(ti, nX

π̄
ti
), n = 1, . . . , N , of X π̄ an unbiased estimator for Y up(M̂π) is ob-

tained by

(3.1) Ŷ up(M̂π) =
1

N

N∑

n=1

max
0≤j≤J

[
h(Tj , nX

π̄
Tj

) − m̂π(Tj , nX
π̄
Tj
,∆π

nW )
]
.

Remark 3.1. If the functions u(Tj , ·) are Lipschitz continuous, it can be
deduced from the results on simulation of forward backward SDE by Lemor
et al. (2006) and Bender and Denk (2006) that the error

|Y up(M̂π) − Y up(Mπ)|
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becomes arbitrarily small, provided the basis is appropriately chosen and the
number N of simulated trajectories is sufficiently large. It is, however, well
understood that the quality of this approximation heavily depends on the
choice of π. The finer one chooses π, the better the quality of the conditional
expectation estimator (i.e. better basis, more simulated paths) is required,
in order to obtain a stable estimate. In Section 6 we suggest a way to get
around this problem in practice.

4 Variance reduced primal-dual algorithm

From Corollary 2.3 and Remark 3.1 we may deduce that Y up(M̂π) is a close
approximation of Y up(M), provided the partition π is sufficiently fine and
the numerical regression is appropriately tailored. From (2.5) and the fact

that M̂π is a martingale we see that ηπ
j defined by

ηπ
j := ETj−1

[
YTj

]
+ επj

επj = YTj
− ETj−1

[
YTj

]
− (M̂π

Tj
− M̂π

Tj−1
)(4.1)

is an unbiased estimator of ETj−1YTj
. Thus, M̂π

Tj
− M̂π

Tj−1
may be seen as

a control variate (see for example Glasserman, 2003; Milstein and Schoen-
makers, 2002) for the standard Monte Carlo estimator of ETj−1YTj

. Note
that by (2.5) and (4.1),

επj = (MTj
− M̂π

Tj
) − (MTj−1

− M̂π
Tj−1

).

Clearly, for any partition π we have ETj−1επj = 0 and, loosely speaking, the
variance of επj is closer to zero the more effort one puts into the construction

of M̂π.
We will now discuss, how the martingale M̂π can be used to reduce the

variance in the primal-dual algorithm of Andersen and Broadie (2004). To
this end let M be a martingale such that

ETj−1
[
MTj

]
= E

XTj−1

[
MTj

]
= MTj−1

,

and let

(4.2) ηj := ETj−1
[
YTj

]
+ εj := YTj

−
(
MTj

−MTj−1

)
, j = 1, ..., J.

(We will specialize from M to M̂π later). On a given trajectory X we
consider for each j, j = 1, ..., J, independent copies lηj = ETj−1

[
YTj

]
+ lεj,

l = 1, ..., L, of (4.2) under the (regular) conditional measure P
XTj−1 , and

define the (pathwise) unbiased estimator

(4.3) s
(L)
j :=

1

L

L∑

l=1

lηj
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for ETj−1

[
YTj

]
. It thus holds,

ETJ

[
s
(L)
j

]
= ETj−1

[
YTj

]
, V arTJ

[
s
(L)
j

]
=

1

L
V arTj−1 [εj ] , ETj−1 [εj ] = 0.

Naturally we next consider the (pathwise) estimator

U(L) := max
0≤i≤J


HTi

−
i∑

j=1

(
YTj

− s
(L)
j

)

 ,

and, based on N independent copies nU(L), 1 ≤ n ≤ N, the estimator

(4.4) Ŷ up
N,L(M) :=

1

N

N∑

n=1

nU(L).

Note that Ŷ up
N,L(0) is the estimator introduced in the primal-dual algorithm

of Andersen and Broadie (2004). So Ŷ up
N,L(M ) may be considered a variance

reduced version of this algorithm with control variate M .

Theorem 4.1. It holds that

Y up(M) ≤ E
[
Ŷ up

N,L(M )
]
≤ Y up(M) + min


E [εsum] ,

√√√√ J

L

J∑

j=1

E
[
ε2j

]



= Y up(M) + min

(
E [εsum] ,

√
J

L
E
[(
MTJ

−MTJ

)2]
)
,

where εsum :=
∑J

j=1 (εj)+.

In particular, the estimator Ŷ up
N,L(M) is biased up.

Proof. To prove the first inequality we note that

E
[
Ŷ up

N,L(M)
]

= E
[
ETJ

[
U(L)

]]
≥ E


max

0≤i≤J
ETJ


HTi

−
i∑

j=1

(
YTj

− s
(L)
j

)





= E


max

0≤i≤J


HTi

−
i∑

j=1

(
YTj

−ETj−1Yj

)



 = Y up(M).
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For the second inequality, let us write using (4.2) and (4.3),

ETJ

[
U(L)

]
=ETJ


max

0≤i≤J


HTi

−
i∑

j=1

(
YTj

− s
(L)
j

)





≤ max
0≤i≤J


HTi

−
i∑

j=1

(
YTj

− ETj−1 [Yj]
)



+

J∑

j=1

ETj−1

[(
s
(L)
j − ETj−1 [Yj]

)
+

]

= max
0≤i≤J


HTi

−
i∑

j=1

(
YTj

− ETj−1 [Yj]
)

+

J∑

j=1

ETj−1



(

1

L

L∑

l=1

lεj

)

+


 .

It then follows that

E
[
Ŷ up

N,L(M )
]
≤ Y up(M) +

J∑

j=1

E



(

1

L

L∑

l=1

lεj

)

+




=: Y up(M) + (∗).

So we have on the one hand, by convexity of the ()+ operator,

(∗) ≤
J∑

j=1

E
[
(εj)+

]
= E [εsum] .

On the other hand, by respectively Cauchy-Schwartz and Jensen’s inequality,
we have

(∗)2 ≤ J

J∑

j=1



E



(

1

L

L∑

l=1

lεj

)

+







2

≤ J

J∑

j=1

E



(

1

L

L∑

l=1

lεj

)2



=
J

L

J∑

j=1

E
[
(εj)

2
]
.

The last equality follows by a telescoping sum using E
[
ε2j

]
=

E
[
(MTj

−MTj
)2 − (MTj−1

−MTj−1
)2
]
.

Choosing M = M̂π, we deduce from Theorem 4.1 that E
[
Ŷ up

N,L(M̂π)
]

converges to the true dual upper bound Y up(M), when the number of paths
L tends to infinity or the numerical effort for computing the regression mar-
tingale M̂π is increased.
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Remark 4.2. The martingale estimator can also be applied to reduce the
variance when estimating inner conditional expectations for the consumption
based upper bound by Belomestny and Milstein (2006) or in the policy
improvement procedure of Kolodko and Schoenmakers (2006). For the policy
improvement, this looks promising in particular in combination with the
variance reduction for the outer simulation suggested in Bender et al. (2006).

5 Connection with hedge controls and ‘deltas’

Let us now suppose that X in (2.1) is a system of tradable securities with
D ≤ D (not more Brownian motions than securities) and that the numeraire
N is tradable also. As N should be positive, we additionaly assume that its
dynamics are given by

dNt

Nt

= µN(t,Xt)dt+ σN(t,Xt)dWt, N0 = 1,

for some smooth and bounded scalar function µN(·, ·) and row vector func-
tion σN(·, ·). Thus, by assumption, X/N is a martingale under Q. We more-
over assume some extra structural assumptions on the coefficient functions
a, b, µN, and σN, such that the system (X,N) constitutes a complete market
(see e.g. Schoenmakers, 2005, Ch. 1 for details).

In this case of a complete market there is a direct connection between the
process Z in (2.6) and the hedge coefficients for replication of the European
claim with discounted pay-off YTj

in the interval [Tj−1, Tj ]. Let us assume
that YTj

is a function of XTj
. Then, by completeness, the claim with pay-

off NTj
YTj

can be perfectly hedged by a self-financing portfolio (ϑ, θ;X,N)
with coefficients ϑ, θ being functions (t,X,N). The i-th component of the
D-dimensional row vector function ϑ(t,X,N) denotes the number of shares
to hold in Xi and θ(t,X,N) the amount of units to carry in N, for realizing
a perfect dynamic hedge in a self-financing way. We thus have

NTj
YTj

= NTj−1
ETj−1YTj

+

∫ Tj

Tj−1

ϑ(t,Xt,N)dXt +

∫ Tj

Tj−1

θ(t,Xt,N)dNt.

By a standard lemma connected with Itô’s formula (e.g. Lemma 1.1 in
Schoenmakers, 2005), it then follows that

YTj
= ETj−1YTj

+
∫ Tj

Tj−1
ϑ(t,X,N)d(N−1

t Xt)(5.1)

= ETj−1YTj
+
∫ Tj

Tj−1
N−1

t ϑ(t,Xt,N)(b(t,Xt) −XtσN(t,Xt))dWt.

We note that the latter equation follows easily from Itô’s lemma using the
fact that N−1X is a martingale. From (2.6) and (5.1) we conclude that

(5.2) N−1
t ϑ(t,Xt,N)(b(t,Xt) −XtσN(t,Xt)) = Zt =: z(t,Xt).
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So, after estimating the function z(·, ·) by an independent regression pro-
cedure we may determine the hedge coefficients ϑ(·, ·, ·) from (5.2). For
example, if D = D and the matrix b is invertible, completeness implies that
also b−xσN is invertible, so then the hedge coefficients are unique and follow
from

ϑ(t, x, n) = nz(t, x)(b(t, x) − xσN(t, x))−1.

Given that Y is a reasonably good approximation of the Snell envelope, the
linear regression estimator for z hence provides us with an estimator for the
Bermudan hedge at all times and states.

If we drop the assumption of (N,X) being a complete system of tradable
assets, we can still find an analogous connection between z(t, x) and the
delta. By the Markovianity of X and by the fact that E(t,Xt)YTj

:= EtYTj
is

a martingale from Tj−1 ≤ t ≤ Tj , we obtain via application of Itô’s formula
to E(t,Xt)YTj

,

z(t, x) = ∇xE
t,xYTj

b(t, x), .(5.3)

As Y is an approximation of the Snell envelope, we get an estimate for the
Bermudan delta at all times and states via the linear regression estimate for
z. This delta estimate based on (2.7) can be viewed as a linear regression
version of the so called covariation delta method. This method is discussed
and compared to other methods in the framework of a plain Monte Carlo
implementation in Detemple et al. (2005).

6 Numerical examples

In our implementation study we first construct a family of stopping rules τj :
Ω → {Tj , . . . , TJ} by the Longstaff-Schwartz algorithm. This basically boils
down to choosing a basis (φk(t, x), k = 1, . . . ,K) and estimating vectors of
regression coefficients (αl ∈ R

K , l = 0, . . . , J). Once the coefficients {αl} are
estimated, we can define

τj := min{j ≤ l ≤ J : α⊤
l φ(Tl,XTl

) ≤ HTl
}

and
YTj

:= ETjHτj
, j = 1, . . . , J.

We stress that stopping rules {τj} are estimated only once and remain fixed
thereafter. Having {YTj

} at hand we proceed generally as described in Sec-
tion 3. Recall that we do not need to calculate the conditional expectations
in the definition of Y as explained in Remark 2.1, but may consider (2.9)
instead. To ensure a stable estimate based on regression in practice, we
suggest the following generic procedure: Firstly one can easily compute re-
gression estimates Ĉi of Ci := EtiHτj+1

, for (i, j) such that Tj < i ≤ Tj+1,
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while running the Longstaff-Schwartz algorithm. Then, replacing Hτj+1
by

Hτj+1
− Ĉi in (2.9) is expected to significantly reduce the conditional vari-

ance in (2.9), but does not change the conditional expectation. Hence, we
actually solve the least squares problems, for Tj < ti ≤ Tj+1,

β̂d
ti

:= arg min





N∑

n=1

∣∣∣∣∣
∆π

nW̃
d
i

∆π
i

(
nHτj+1

− nĈi

)
− ψd(ti, nX̃

π̄
ti
)β

∣∣∣∣∣

2

; β ∈ R
K





along the simulated paths nX̃
π̄, n = 1, . . . , Ñ . Secondly, the choice of par-

tition π is important to guarantee a stable estimate. In this respect, we
recommend to calculate the regression coefficients on a comparably rough
partition only, and then interpolate them locally constant to a very fine par-
tition. To be precise, we run the regression only on the set of exercise dates
(hence π = E) to obtain β̂Ti

, Ti ∈ E, and set β̂t = β̂Ti
for t ∈ [Ti, Ti+1).

Then we define zE
d (t, x) := ψd(t, x)β̂d

t for all t ∈ [0, T ], and we can consider
an estimated martingale by summing over the finer partition π̄ (on which
the Euler scheme is performed). That is, with a slight abuse of notation, we
define

M̂E
Tj

:= M̂E,π̄
Tj

:=
∑

t∈π̄;0≤t<Tj

ẑE(t,X π̄
t )(∆π̄Wt), Tj ∈ E.

Moreover, this specific implementation guarantees that the complexity of the
algorithm with interpolated β̂t corresponds to the one of the usual Longstaff-
Schwartz method, because regression is only performed on the exercise grid.

Finally, the choice of the basis functions is essential to achieve tight up-
per bounds. As one expects the integrand of the martingale representation
to be less regular than Y itself, more care should be taken when choosing
the basis for the upper bound procedure. We next suggest a basis, when
some soft problem information is available. To be precise, we suppose that
an analytical (approximation) formula for the discounted price of the corre-
sponding European options is available. This is the case for many practically
relevant derivatives such as the max-call-option and swaptions. Then, by
Itô’s formula, for 0 ≤ t ≤ Tj ,

(6.1) Et[HTj
] =: uE

Tj
(t,Xt) = E[HTj

] +

∫ t

0
∇xu

E
Tj

(s,Xs)b(s,Xs)dWs.

If the analytical formula for uE is not exact this identity may still hold ap-
proximately. Equation (6.1) suggests to include some of the integrands on
the right hand side into the basis. As a minimal basis for calculating the
regression coefficient β̂d

Tj
of the dth component over the period [Tj , Tj+1] we

propose the three functions, 1, the dth component of ∇xu
E
Tj+1

(s, x)b(s, x),

and the dth component of ∇xu
E
TJ

(s, x)b(s, x), which contain information
about the still alive European options with the shortest and with the longest

13



maturity. This simple basis, consisting of three functions only, works very
well in our numerical examples. Of course, this basis can be easily ex-
tended by adding information about more European options and/or inter-
acting terms.

Bermudan max-calls on D assets

This is a benchmark example studied in Andersen and Broadie (2004),
Glasserman (2003), Haugh and Kogan (2004) Rogers (2001), and others.
Specifically, a model withD identically distributed assets is considered where
each asset yields dividends with rate δ. The risk-neutral dynamic of this as-
set system is given by

dXd
t = (r − δ)Xd

t dt+ σXd
t dW

d
t , d = 1, ...,D,

where W d
t , k = 1, ...,D, are independent one-dimensional Brownian motions

and r, δ, σ are constants. At one time t ∈ {T0, ..., TJ} the holder of the option
may exercise to receive the payoff

h(Xt) = (max(X1
t , ...,X

D
t ) − κ)+.

We consider an example when Tj = jT/J, j = 0, ..., J, with T = 3 and
J = 9. The stopping rules {τj} are estimated by regression using 5 × 104

Monte Carlo paths and (following Andersen and Broadie (2004)) a set of
basis functions consisting of all monomials in the underlying of degree less
than or equal to three, the European max-call option with maturity T , its
square, and its cube. The Euler scheme is performed on an equidistant
partition π̄ with |π̄| = 0.01. The coefficients β̂ti , ti ∈ π are estimated using
the same number of paths, and the three-function basis motivated by (6.1)
as described (generically) above. Here, we utilize the analytical expression

D∑

l=1

X l
0

e−δT

√
2π

∫

(−∞,dl
+

]
exp[−1

2
z2]

D∏

l′=1
l′ 6=l

N




ln
Xl

0

Xl′

0

σ
√
T

− z + σ
√
T


 dz

− κe−rT + κe−rT

D∏

l=1

(
1 − N

(
dl
−

))
,

where

dl
− :=

ln
Xl

0

κ
+ (r − δ − σ2

2 )T

σ
√
T

, dl
+ = dl

− + σ
√
T ,

and N denotes the cumulative standard Gaussian distribution, for the price
of the European max-call option.

The results for D = 2 and D = 5 are presented in Table 1 in dependence
of x0 with X0 = (X1

0 , . . . ,X
D
0 )T , X1

0 = ... = XD
0 = x0. The price intervals
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in the last column are quoted from Andersen and Broadie (2004), where
the upper bounds are computed by the primal-dual algorithm, hence by
nested Monte Carlo. These values are almost exact, however, computed
with considerable computational effort (10 000 inner simulations used for
the upper bounds). As we see, the results for the fast non-nested estimator
are quite close to these almost exact values.

It is instructive to look at the quality of dual upper bounds in depen-
dence of the choice of a regression basis. Figure 1 shows upper bounds (with
95% confidence intervals) corresponding to 5 different choices of regression
bases. The description of the sets is given in the Table 2, where EP(t,X;T )
is the price of a European max-call option with maturity T at time t, and
Poln(y) is the set of monomials of degree less than or equal to n in the
components of a vector y. The set SI is used for the computation of Table
1. The set SV corresponds to estimating constant volatility parameters be-
tween the exercise times. This simplistic choice of a martingale results in
a rather poor upper bound. Standard bases, built upon polynomials (SIII,
SIV), significantly improve the quality of the upper bound estimator. They
are reasonably tight, but nonetheless they are still about 5% off relatively.
Finally the bases consisting of European deltas (SI, SII) yield almost the
exact values. Hence, the main conclusion, drawn from this figure, is that
the problem specific information captured in the European deltas, is ex-
tremely useful when estimating the shape of the martingale integrand of Y
by regression.

Finally, Figure 2 compares the Andersen-Broadie algorithm with its vari-
ance reduced version suggested in Section 4. Again we consider the out-of-
the-money Bermudan max-call on two assets. The martingale for the vari-
ance reduction is calculated using basis SI. The figure illustrates a reasonable
performance of the proposed control variate.

Bermudan swaptions in the LIBOR market model

We here recall the example of Bermudan swaptions in the Libor market
model considered in Kolodko and Schoenmakers (2006). For a fixed tenor
structure 0 = T0 < T1 < . . . < TD+1, the forward Libor Li(t), 1 ≤ i ≤
D, (that is the annualized effective rate on a loan over period [Ti,Ti+1]
contracted at date t which is to be payed at Ti+1) is governed by the SDE
(e.g., Jamshidian (1997))

(6.2) dLi =

i∑

j=κ(t)

δjLiLj γi · γj

1 + δjLj
dt+ Li γi · dW ∗, 0 ≤ t ≤ Ti,

where δi = Ti+1−Ti are day count fractions, t→ γi(t) = (γi,1(t), . . . , γi,D(t))
are deterministic volatilities defined in [0,Ti] (factor loadings), and κ(t) :=
min{m : Tm ≥ t} is the next reset date after time t. In (6.2), (W ∗(t) | 0 ≤
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t ≤ Tn−1) is a standard Wiener process in R
D under the spot Libor measure

P ∗ where 1 ≤ D ≤ D. This measure is induced by the numeraire

B∗(0) := 1, B∗(t) :=
Bκ(t)(t)

B1(0)

κ(t)−1∏

i=1

(1 + δiLi(Ti)) , t > 0,

with
∏0

i=1 := 1, and Bi(t) being the value of a zero coupon bond with face
value $1 at time t ≤ Ti.

A Bermudan (payer) swaption with strike θ on a $1 principal issued at
t = 0, gives the right to exercise (once) the cash-flow of a swap,

(6.3) STi
:=

D∑

j=i

Bj+1(Ti)δj (Lj(Ti) − θ)

at a date Ti ∈ E := {T1, ..., TJ} :⊂ {T1, ...,TD+1}, where E is a given set of
exercise dates. (Of course when STi

< 0 there will be no exercise.)
As in Kolodko and Schoenmakers (2006) we take a Libor volatility struc-

ture,

γi(t) = cg(Ti − t)ei, where g(s) = g∞ + (1 − g∞ + as)e−bs

and ei are D-dimensional unit vectors, decomposing some input correlation
matrix of rank D. From a full-rank basis correlation structure

(6.4) ρij = exp(−ϕ|i− j|), i, j = 1, . . . ,D, ϕ > 0,

we deduce for different D, D ≤ D, a rank-D correlation matrices ρD with
decomposition ρD

ij = ei · ej , 1 ≤ i, j ≤ D, by principal component analysis in
order to generate a Libor models withD driving Brownian motions (factors).
For the numerical experiments we take a flat 10% initial curve over a 40
period quarterly tenor structure, the parameters

(6.5) D = 40, δi = 0.25, c = 0.2, a = 1.5, b = 3.5, g∞ = 0.5, ϕ = 0.0413,

and consider Bermudan swaptions with yearly exercise opportunities, i.e.
Ti = T4i, i = 1, . . . , 10. For the numerical integration of the SDE (6.2) the
log-Euler scheme is used with ∆t = δ/5.

A lower approximation Y0 is constructed by the Longstaff-Schwartz al-
gorithm using a basis which consists (at exercise date Ti) of the European
swaption

STi
(Li(Ti), . . . , LD(Ti)) := B∗(Ti)E

Ti

(
STi+1

(Li+1(Ti+1), . . . , LD(Ti+1))

B∗(Ti+1)

)
,

which can be exercised at Ti+1, and all powers up to second order of the
payoff STi

. Although closed form expressions for European swaptions do
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not exist in a Libor market model, there do exist very accurate (typically
better than 0.3% relative error) formulas which we use for the computation of
Si (e.g. see Schoenmakers (2005)). Following our previous recommendations
we use the derivatives of these European swaptions with respect to Libors in
the set of basis functions for estimating the martingale in the representation
of the dual upper bound.

Based on 5 × 104 simulated Libor trajectories, we estimate the coeffi-
cients βt on the exercise partition E using regression and then interpolate
them constantly on the tenor grid {T1, ...,TD+1}. A new simulation of 105

trajectories is used to get values for Y up
0 (M̂π), which are presented in Table

3 for different strikes θ and numbers D of Brownian motions. The price
intervals in the last column are quoted from Kolodko and Schoenmakers
(2006), where the lower bounds are obtained via a one step policy itera-
tion procedure and the (dual) upper bounds correspond to Andersen (2000)
lower bounds (strategy I) using 500 inner simulations. As we see all esti-

mates Y up
0 (M̂π) are about 1% (relative to price, one exception of 2%) close

to the ‘true’ values.

7 Concluding remarks

Nowadays the primal-dual algorithm is likely to be the most popular algo-
rithm to compute Bermudan upper bounds, although its requirement for
nested simulations does make it computationally extensive. In this paper
we presented, in a Brownian motion setting, an alternative to this algorithm
which is fast, as it requires linear simulation cost only. In our simulation
study for two high-dimensional case studies we found that the new algorithm
yields surprisingly tight upper bounds particularly if closed form approxima-
tions of the corresponding European option prices are at hand. If nonetheless
for a certain product a higher accuracy is required (e.g. if such information
about Europeans is not available), we propose a variance reduced version of
the primal-dual algorithm which allows to compute upper bounds with the
same accuracy as the latter one at lower costs.
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A Proof of Theorem 2.2

Fix some Tj < T and consider ti, Tj ≤ ti < Tj+1. Then, by (2.6) and Itô’s
isometry, we get for the dth component of Zπ

ti

Zπ,d
ti

=
1

∆π
i

Eti
[
(∆πW d

i )
(
YTj+1

− ETj [YTj+1
]
)]

(A.1)

=
1

∆π
i

Eti

[(∫ ti+1

ti

dW d
s

)(∫ Tj+1

Tj

ZsdWs

)]

=
1

∆π
i

Eti

[∫ ti+1

ti

Zd
s ds

]
.

It follows from (A.1) that without any further assumptions,

(A.2) lim
|π|→0

E


 ∑

ti∈π,Tj≤ti<Tj

∫ ti+1

ti

|Zs − Zπ
ti
|2ds


 = 0

as noted e.g. in Lemor et al. (2006). Since, by Doob’s inequality and Itô’s
isometry,

E

[
max
0≤j≤J

|Mπ
Tj

−MTj
|2
]
≤ 4E

[
|Mπ

T −MT |2
]

= 4E




J−1∑

j=0

∑

ti∈π,Tj≤ti<Tj

∫ ti+1

ti

|Zs − Zπ
ti
|2ds


 ,(A.3)

assertion (i) immediately follows.
We now prove (ii) and first consider the case YTj

= u(Tj ,XTj
). Note

that, on [Tj , Tj+1], Z is the control part of the simple forward-backward
SDE (FBSDE)

Xt = XTj
+

∫ t

Tj

b(s,Xs)ds +

∫ t

Tj

b(s,Xs)dWs

Ȳt = u(Tj+1,XTj+1
) −

∫ Tj+1

t

ZtdWt.

Due to the Lipschitz continuity of u(Tj+1, ·) results on L2-regularity obtained
for the control part of FBSDEs in more general situations by Zhang (2004)
and Bender and Zhang (2006) can be applied. In combination with (A.1)
these results imply that (A.2) can be strengthened to

E


 ∑

ti∈π,Tj≤ti<Tj

∫ ti+1

ti

|Zs − Zπ
ti
|2ds


 ≤ Cj|π|
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for some constant Cj . Hence, (ii) follows in the case YTj
= u(Tj ,XTj

) with
constant C =

∑
j Cj thanks to (A.3).

To prove (ii) in the case YTj
= u(Tj ,X

π̄
Tj

), denote the martingale part in

the Doob decomposition of ȲTj
= u(Tj ,XTj

) by M̄ . Moreover, define

Z̄π
ti

:=
1

∆π
i

Eti
[
(∆πWi)

⊤u(Tj ,XTj
)
]
, Tj ≤ ti < Tj+1

M̄π
Tj

:=
∑

ti∈π;0≤ti<Tj

Z̄π
ti
(∆πWi).

Then,

E

[
max
0≤j≤J

|Mπ
Tj

−MTj
|2
]

≤ 12E
[
|Mπ

T − M̄π
T |2 + |M̄T − M̄π

T |2 + |MT − M̄T |2
]

= 12[(I) + (II) + (III)]

From the previous case, the second term is of order |π|. From the Lipschitz
continuity of u(Tj , ·) we get

(III) = E


|

J∑

j=1

u(Tj ,X
π̄
Tj

) − u(Tj ,XTj
) − ETj−1 [u(Tj ,X

π̄
Tj

) − u(Tj ,XTj
)]|2



≤ K

J∑

j=1

E
[
|X π̄

Tj
−XTj

|2
]
≤ K|π̄| ≤ K|π|

where the generic constant K may differ from application to application. To
estimate (I), note that, for Tj ≤ ti < Tj+1,

Eti
[
(∆πWi)

⊤(u(Tj+1,X
π̄
Tj+1

) − u(Tj+1,XTj+1
))
]2

(∆π
i )−1

= Eti
[
(∆πWi)

⊤(Eti+1 [u(Tj+1,X
π̄
Tj+1

) − u(Tj+1,XTj+1
)]

−Eti [u(Tj+1,X
π̄
Tj+1

) − u(Tj+1,XTj+1
)])
]2

(∆π
i )−1

≤ Eti
[
Eti+1 [u(Tj+1,X

π̄
Tj+1

) − u(Tj+1,XTj+1
)]2

−Eti [u(Tj+1,X
π̄
Tj+1

) − u(Tj+1,XTj+1
)]2
]
.

Thus,

(I) =

J−1∑

j=0

∑

Tj≤ti<Tj+1

E
[
(∆πWi)

⊤(u(Tj+1,X
π̄
Tj+1

) − u(Tj+1,XTj+1
))
]2

(∆π
i )−1

≤
J−1∑

j=0

E
[
|u(Tj+1,X

π̄
Tj+1

) − u(Tj+1,XTj+1
)|2
]

≤ KE[|X π̄
Tj+1

−XTj+1
|2] ≤ K|π̄| ≤ K|π|.
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Table 1: Bounds (with 95% confidence intervals) for Bermudan max call
with parameters κ = 100, r = 0.05, σ = 0.2, δ = 0.1 and different D and x0

D x0 Lower Bound Upper Bound A&B Price

Y0 Y up
0 (M̂π) Interval

90 8.0242±0.075 8.0891±0.068 [8.053, 8.082]
2 100 13.859±0.094 13.958±0.085 [13.892, 13.934]

110 21.330±0.109 21.459±0.097 [21.316, 21.359]

90 16.575±0.072 16.681±0.070 [16.602, 16.655]
5 100 26.104±0.085 26.273±0.079 [26.109, 26.292]

110 36.701±0.098 36.902±0.091 [36.704, 36.832]

Table 2: Sets of basis functions in Fig. 1

Basis functions at (t, x) with Tj−1 ≤ t < Tj

SI
{
1, Xk ∂ EP(t,X; Tj)

∂xk , Xk ∂ EP(t,X; TJ)
∂xk

}
, k = 1, . . . ,D

SII
{
1, Xk ∂ EP(t,X; Tj)

∂xk

}
, k = 1, . . . ,D

SIII Pol3(X,EP(t, x; Tj))
SIV Pol3(X)
SV 1

Table 3: Prices of bermudan swaptions ×104

θ D Lower Bound Upper Bound K&S Price

Y0 Y up
0 (M̂π) Interval

1 1108.8±1.41 1109.6±0.86 [1108.9±2.4, 1109.4±0.7]
0.08 2 1101.6±1.53 1104.7±0.91 [1100.5±2.4, 1103.7±0.7]

10 1096.4±1.61 1103.2±0.98 [1096.9±2.1, 1098.1±0.6]

1 121.0±0.71 122.4±0.87 [121.0±0.6, 121.3±0.4]
0.12 2 113.3±0.75 115.2±0.89 [113.8±0.5, 114.9±0.4]

10 100.1±0.83 103.4±0.96 [100.7±0.4, 101.5±0.3]
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Figure 1: Upper bounds Y up
0 (M̂π), x0 = 90, D = 2, with 95% confidence

intervals for five different regression bases used for estimating M̂π.
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Figure 2: Upper bounds Y up
0 (0) (solid line) and Y up

0 (M̂π) (dotted line) in
dependence on the number of inner Monte Carlo paths L, the number of
outer paths N being equal to 10000.
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