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Abstract

In this paper we propose a jump-diffusion Libor model with jumps in a
high-dimensional space (R™) and test a stable non-parametric calibration
algorithm which takes into account a given local covariance structure.
The algorithm returns smooth and simply structured Lévy densities, and
penalizes the deviation from the Libor market model. In practice, the
procedure is FFT based, thus fast, easy to implement, and yields good
results, particularly in view of the severe ill-posedness of the underlying
inverse problem.

1 Introduction

The calibration of financial models has become an important topic in financial
engineering because of the need to price increasingly complex options consistent
with prices of standard instruments liquidly traded in the market. The choice
of an underlying model is crucial with respect to its statistical relevance on the
one hand, and the possibility of calibrating it with ease on the other. In order
to cover stylized facts in financial data such as implied volatility smiles, more
complex models, i.e. models beyond Black-Scholes, are called for.

During the last decade Lévy-based models have drawn much attention, as
these models are capable to describe complex but realistic behavior of financial
time series. In particular, these models may cover jumps, heavy tails, and
are principally able to match implied volatility surfaces observed in stock and
interest rate markets. For modelling stock prices, pure jump Lévy processes
were already proposed in Eberlein and Keller (1995), Eberlein, Keller and Prause
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(1998). In Cont and Tankov (2003) regularized approaches for calibrating jump-
diffusion stock price models were considered.

In the interest rate world the Libor market model developed by Brace,
Gatarek, Musiela (1997), Jamshidian (1997), and Miltersen, Sandmann, Son-
dermann (1997), has become one of the most popular and advanced tools for
modelling interest rates and interest rate derivatives. This in spite of a main
drawback; the Libor market model cannot explain implied volatility surfaces
typically observed in the cap markets. In order to handle this issue different
extensions of the Libor market model using processes with jumps have been
proposed. Glasserman and Kou (2003) developed a jump diffusion Libor model
and gave some useful explicit specifications. Eberlein and Ozkan (2005) study
the Lévy Libor model and the respective pricing of caps and floors. The most
general framework for Libor models driven by jump measures is provided in
Jamshidian (2001).

The central theme in this paper is a well structured jump-diffusion Libor
model which allows for robust and efficient calibration. Our starting point will
be a given Libor market model with known deterministic volatility structure.
For instance, this market model might be obtained from a calibration proce-
dure involving at the money (ATM) caps, ATM swaptions, and/or a historically
identified forward rate correlation structure. Meanwhile, calibration procedures
for Libor market models are well studied in the literature (e.g. Schoenmakers
(2005), or Brigo and Mercurio (2001)). Yet, our main goal is the development of
a specific jump-diffusion Libor model which can be calibrated to the cap-strike
matrix in a robust way and which is, in a sense, as near as possible to the given
market model. In particular, this model will be furnished in such a way that
the (local) covariance structure of the jump-diffusion model coincides with the
(local) covariance structure of the market model. We have three main reasons
for doing so: (1) The price of a cap in a Libor market model does not depend
on the (local) correlation structure of the forward Libors. However, this corre-
lation structure may contain important information such as, for instance, prices
of ATM swaptions. We therefore do not want to destroy this correlation struc-
ture as given by the input market model when calibrating the extended model
to the cap(let)-strike volatility matrix. (2) The lack of smile behavior of the
input market model, which is regarded as a rough intermediate approximation
of a smile explaining jump-diffusion model, is considered to be a consequence of
Gaussianity of the driving random forces (Wiener processes). So, loosely speak-
ing, we want to perturb these forces to non-Gaussian ones by using jumps, while
maintaining the (local) covariance structure of the given market model, hence
the correlation structure implicitly. (3) Last but not least, by preserving the
covariance structure we obtain a very robust calibration procedure.

Many papers on calibration methods for models based on Lévy processes
have focused on certain parametrizations of the underlying Lévy process. Since
the characteristic triplet of a Lévy process is a priori an infinite-dimensional
object, the parametric approach is always exposed to the problem of misspec-
ification, in particular when there is no inherent economic foundation of the
parameters and they are only used to generate different shapes of possible jump



distributions. Therefore, we employ a nonparametric approach of Belomestny
and Reiss (2004) which utilizes explicit inversion of a Fourier based pricing
formula and a regularization in the spectral domain.

The outline of the paper is as follows. We recall in Section 2 the general
arbitrage-free Libor framework developed in Jamshidian (2001). It will serve as
the baseplate of this article. The covariance preserving jump-diffusion extension
of the Libor market model is constructed in Section 3. In Section 4 we recap
Fourier-based representations for Caplet prices in the spirit of Car and Madan
(1999), Glasserman and Merener (2003). The algorithm for calibrating to a full
cap-strike matrix is developed in Section 5, and a real life calibration is carried
out in Section 6. Technical details and derivations are given in the Appendix-
section.

2 General framework for Libor models with jumps

Consider a fixed sequence of tenor dates 0 =: Ty < T} < Ty < ...T,, called
a tenor structure, together with a sequence of so called day-count fractions
0; :=Ti41—T;, i =1,...,n—1. With respect to this tenor structure we consider
zero bond processes B;, i = 1,...,n, where each B; lives on the interval [0, T}]
and ends up with its face value B;(T;) = 1. With respect to this bond system
we deduce a system of forward rates, called Libor rates, which are defined by

1 [ Bi(t) ‘
() d; (Bz'+1(t) ) 0 r=n

Note that L; is the annualized effective forward rate to be contracted for at the
date t, for a loan over a forward period [T}, T;+1]. Based on this rate one has to
pay at T;41 an interest amount of $0;L;(T;) on a $1 notional.

2.1 Arbitrage free dynamics

On a filtered measurable space (2, F, F;) we consider a Libor model under the
terminal measure P, within the following framework (Jamshidian (2001)),
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with w — p(dt, du,w), being a random point measures on Ry x E, where E is an
abstract Lusin space, and v(")(dt, du,w) is the (P,, F)-compensator on R, x E
of p. In (1), W™ is a d-dimensional standard Brownian motion under P,, and



the filtration (F;);>0 is assumed to contain the natural filtrations generated by
W) and p, respectively. Further, (w,t) — v;(t,-,w) are predictable processes
of functions on E and 7; are d-dimensional predictable column vector processes.
The random measure y is assumed to be of the form

= Z L7, (w)=t0(t, 8: () (AL, du), (2)

n>1

where [ is in general an optional process and T),, n = 1,2, .. is a sequence of

stopping times with disjoint graphs, i.e. T}, (w) # T,,(w) for n # m.

The framework (1) may be casted into a somewhat different form. Let us
m

consider a partition E := |J Ey, where Fy,...,F,, are Lusin spaces with

EyNE; = o for k # 1, and define py := plg,, Vi == Vil gy, V](cn) = y(”)|Ek7 for
k=1,...,m. Then (1) becomes
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;11+5L ni midt +n; dW
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In particular, it easily follows that V,(c”) is the P,,-compensator of uj with respect
to F. Note that in general foka V,in) (w,dt,du) is the compensator of pj with
respect to the restricted filtration ]—'t(k) = FNno{u(0,s] xC):s <t,C €
B(Ex)}, t > 0 (thus not ulin)). As shown in Belomestny and Schoenmakers
(2006), the representation (3) is in fact equivalent to (1), but somewhat more
natural as it suggest the use of a system of m point processes with phase space
Ry x R as in the papers of Glasserman and Kou (2001), and Glasserman and
Merener (2003).

Henceforth we consider in (1) only random point measures with finite activ-
ity, i.e., p is of the form (2) and for each t > 0, u([0,t] X F) < co. In order to
guarantee that the Libor processes L; are nonnegative we further require that
¥; > —11in (1), and then set ¢; := In(¢); + 1). Let (s;,w;), I = 1, ..., Ny, denote
the jumps of p up to time ¢ for an w € Q. Using the fact that at a jump time
s1, ALi(s1,w) = Li(s1—,w)i(s1, wp,w) = Li(s;—,w)(e?+#%) — 1), and hence
Li(s;,w) = Li(s;—,w)e?i(301:9) we obtain by the Tto-substitution rule for jump



processes (with w suppressed),
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The logarithmic analogon of (3) directly follows from (4),
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with @i, == In(¢ir, + 1) and (s, (k) ( )) l=1,. Nt(k), denoting the jumps of
pr up to time ¢. The logarithmlc reprebentatlon (4) (or equivalently (5)) will be
the basic framework for our purposes.

3 Jump diffusion extension of a Libor market
model

We first specialize to a jump-diffusion Libor model which is driven by a Poisson
random measure with marks in some multi-dimensional space.

3.1 Poisson driven multi-dimensional jumps

Consider the Lusin product space EF := FE; X - - - X E,,, with Ey Lusin for
k=1,...,m (eg. Er = R). Suppose that on a common probability space,
equipped with some probability measure P,,, we are given random measures py
on Ry x Ej. We then consider the product Lusin space £ := FE; x ... X Ep,
(e.g. E = R™), and on R}y x E the random measure pu(dt,du,w) such that
for any t > 0, p({t},,w) == pi({t},,w) @ ... @ pum({t},-,w). We assume that
the random measures uj are such that almost surely for each ¢ > 0 either
e ({t}, Br,w) = 1 for all k, or pg({t}, Fx,w) = 0 for all k. Thus, all random
measures fy, throw a point in Ej at the same time. Then each ux({t}, ,w)



can be seen as the image of u({t},-,w) under the projection of E onto Ff. In
addition, we assume that given py({t}, Ex,w) = 1 for all k, the Dirac measures
pk =: O(t,u;,) are mutually independent for k = 1, ..., m, independent of ¢, and wuy,
is distributed on Fj with probability pg(dug). The (simultaneous) jump-times,
ie. times ¢t at which ux({t}, Fx,w) = 1 for all k, are assumed to be Poisson
distributed with locally finite intensity measure A(t)dt. We then consider (4)
(or (1)) for the thus constructed jump measure p with respect to the filtration
(Fi)i>0 which is generated by p and W) where the P, standard Brownian
motion W) is independent of x. Under these assumptions it follows that the
(P, F)-compensator of u is deterministic and is given by

VM (dt, duy, ..., di) = ANE)p1(du) - - - po(dug, )dt =: X(t)p(du)dt.

3.2 Extending the Libor market model

Within the particular framework constructed above we now introduce a jump-
diffusion Libor model which in a sense can be seen as an extension or perturba-
tion of a (given) Libor market model. Let 7;(t) € R? be the (given) deterministic
volatility structure of the market model, resulting for instance from some stan-
dard calibration procedure to ATM caps and ATM swaptions or historical data.
To exclude local redundancies we assume that the matrix (7;,:(%))1<i<n,1<i<d
has full rank d for all t. Let E := R™ for some integer m and consider deter-
ministic vector functions ;(¢t) € R™, i = 1,...,n — 1. We then take a sequence
of constants r; with —1 < r; < 1, and set

ni =1 =1y, @i(t,u) =1 u' Bi(t) (6)

in (4) to yield,
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Note that in (7) the market model is retrieved by taking r; = 0, and so, for
small r;, (7) may be seen as a jump diffusion perturbation of the Libor market
model.

3.3 The jump drift of In I; under P,

Let us consider the third term in (7), i.e. the “log jump drift” of In L; under the
terminal measure P,. The computation of this term is of particular importance,



for example, in a Monte Carlo simulation of the model. For a fixed time ¢ > 0
we consider the expression

n—1

()= [ ptdn) (exprau B0~ 1) ] [14 6L, Oexplryu 550)] - ()

j=i+1

Using the abbreviation z; := &;L;_(t) exp(r;u’ 3;(t)), the product in (8) my be
expanded as
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Let us take a generic term of degree 1 < d < n — i (with ¢ suppressed),
T T
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for ¢ < j1 < j2 <--- < jqg <mn, and observe that
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with ¢, being the characteristic function of p;. Note that the existence of ¢, (2)
in some ball {z € C : |z] < A} has to be assumed. By analogue computations
and collecting terms we thus obtain
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Once the model inputs r;, jump loadings ¢ — G;(t) for 1 < i < n, and jump
component measures p; with characteristic functions ¢, for 1 <1 < m, are cal-
ibrated or simply given, the real valued functions t — o?""(t), t — Qf;ﬂ]d (t),
1<i<n,i<j<jo<--<jg<n,can be computed in closed form and, in
principle, even be stored outside the Monte Carlo simulator. Thus considering
these functions as given, the simulation of In L; in the terminal measure may be

carried out straightforwardly via the formula
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We underline that the structure of the dynamics (9), hence the feasibility of stan-
dard Monte Carlo simulation of every forward Libor in the terminal measure,
is a consequence of our model design in Sections 3.1 and 3.2. In particular it is
due to the special product structure of the principally high dimensional jump
measure p and the linear structure of the log-Libor factor loadings (6).

Remark 1 Based on (9) we may consider different Libor model approxima-
tions. For example we may freeze L;_ at zero (see Glasserman and Merener
(2003)), hence replace L;_ with L;(0) in (9). As an alternative, if the r; are
small enough and the magnitudes of §;L; are small enough as well, one could
drop in (9) the terms of order (6§;L;)? and higher. Of course, any such attempt
needs careful investigation which is considered beyond the scope of this article.
For related approximations in the context of the standard Libor market model,
see for instance Kurbanmuradov, Sabelfeld and Schoenmakers (2002).

3.4 Dynamics of L; under P,

We now consider for ¢ = 1,...,n — 1 the dynamics of L; under P;;;. From (7)
we see that the logarithm of the last Libor rate L,,_; has the following simple
dynamics in the P, measure,

1
dinL,_; = —5(1 — 72 DAn_1Pdt 4+ /1 =2y AW 4

Ny
rac1d 3w B (s1) — A(t)dt / (el Bu) 1) pldu)  (10)
=1



and thus belongs to the class of additive models, i.e., the process X, _1(t) :=
InL,—1(t) — InL,_1(0) has independent increments. By using Lemma 2 be-
low for instance, we can derive straightforwardly the characteristic function of
Xn—l(t)7

D, (z;t) :=FEp, explizX,,—1(t)] = exp [Yn(z;t)] with (11)
22 ! !
wneit) = =3 (=2 0) [ paa@Pas =i [ [50-r2)ha(s)Past
)\(s)ds/m (exp(rn_1 u' Bpo1(s)) — 1) p(du)]

t
+/ )\(s)ds/ (eizr"‘luTﬁ"‘l(s) — Dp(du). (12)
0 m

For 1 <i < n—1 the dynamics of of L; under P, is more complicated. By the
fact that L; is a martingale under P;;; we observe from the general framework
(1) that

dL; , .
T =l dw D 4 / bi(t, ) (u - y<z+1)) (dt, du), (13)
i— E
where
n—1 6 I, )
(i+1) _ _ JHi— ) n
dw Z 1+6ij_77jdt+dW
Jj=i+1

is a standard Brownian motion under P;y;, and

n—1
_ 0;Li—1p;(t,u)
(’L+1) — (n) M
v (dt, du) = v (dt,du)jZIHI 1 (1+ oL, (14)

is the compensator process of p under the measure P; ;. For the more specialized
setup introduced in this section, which is based on (6), (14) reads

n—1 T o TA
l/(i-‘rl) (dhdu) _ )\(t)p(du)dt H 1 + 6].[/]7 eXP(Tj u ﬁ])7 (15)
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and (13) reads

i—

i =1,...,n — 1. The logarithmic version of (16) is seen from (7) to be

1 .
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N
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In particular, for ¢ < n — 1 the compensator (15) is non-deterministic in the
present setup and, as a consequence, In L; is generally not additive under P; 4
for i < n — 1. However, by freezing in (15) the Libor terms, i.e. replacing L;_
by L;—(0), we may get a deterministic approximative compensator and so an
additive approximation of In L; under P;y;.

3.5 Preserving the local covariance structure

We recall the following standard lemma proved in Belomestny and Schoenmakers
(2006).

Lemma 2 If J(t) = ZlNztl (s, ur) is a compound Poisson process in RY with
Jump intensity \(t)dt, independent jumps in a measurable space E with prob-
ability measure p(du), and ¢ : Ry x E — R? is deterministic, then (i) the
characteristic function of J(t) is given by

¢
Be'® 7 = exp [/ )\(s)ds/ (eizT“”(S’“) — )p(du) |, z € RY.
0 E
and (ii) for the expectation and covariance structure of J(t) we have
¢
EJi(t) = / )\(s)ds/ wi(s, u)p(du),
0 E

Cov(Ji(t), Ju (1)) = / A(s)ds /E orls, w)pn (s, wp(du),  1<LI <q.

Let us now write the integrated random term in (7) as

t Ny
&i(t) i=1/1— rfA v AW ™ o ;ufﬁi(sl)

— 1= 2eP(0) + il (0. (18)

By Lemma 2 the characteristic function of the jump process &7 is then given by

t n—1
EeiZTf'I(t) = exp / )\(S)ds d)p Z Zjﬁj(s) -1 )
0 j=1

with ¢,(y) := [ p(du) exp [iuTy} , ¥ € R™ being the characteristic function of
p. For the covariance matrix Lemma 2 yields

Cov(&] (. /0) = [ Ms)ds [ 67 (spua” 5, (5)p(ew

: / A(s)dsB] ()28, (s)
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with Xz := [urwp(du) being the cross moments of jump components uy and
u;. Since the Brownian motion and the jumps are assumed to be independent,
we have for the local covariance of the random term in (7),

Cov(d&i(t), d&;(t)/dt = \/ (1 = r7)(1 = r3)" (89 () + rars AB)BT (£)20;(2).
(19)
Our main idea is to consider jump diffusion extensions of a (given) pure
Libor market model which preserve the (given) local covariance structure of the

market model. To this aim we consider in (7) the case where r := r; for all i.
Then (19) yields

Cov(dé;, d&;)/dt = (1 — 1)y v + 1208 25,
We then assume 3; = Av; for some m x d matrix A which gives
Cov(d&;, d¢;)/dt =~ (I —r?T 4+ r*AATSA)y;.

Now the requirement that the local covariances (19) coincide with the local
covariances of the market model leads to the condition

MTYSA=1,,

and in particular m > d. Since X is (time independent) positive definite there is
a unique positive symmetric m x m matrix C such that ¥ = C2. Then for any
column-orthogonal m x d matrix @ we have a solution

A=\"12c1Q.

Note that in general () and A may depend on t. Without loss of generality
(i.e. without affecting the input Libor market model) we may assume that the
(n — 1) x d matrix (v;,r) is an upper triangular matrix in the sense

Ym—jg=0 for 1<i<d—-37+1, j=1,..4d
We assume (for technical reasons in fact) that the (n — 1) x m matrix (3;,) is
also an upper triangular matrix,

d
ﬁn—j,l = ZAZ,’I"YTL—j,T' =0, for 1<l<m-— J+1l, g= L..,m. (20)
r=1

In particular this entails that the jumps of L,_; are driven by a single jump
measure. We will achieve (20) by the additional requirement m = d (dimension
of the jump space equal to the number of Brownian motions) and by taking the
orthogonal matrix @ such that C~1Q, hence A4, is a lower triangular (square)
matrix with positive diagonal elements. Thus, A is uniquely determined by

AAT = 71 A is lower triangular with positive diagonal. (21)

11



As a further specialization we take A to be time independent. Note that u' 3; =
(Du) " D~13; for any regular diagonal matrix D. So, multiplication of all jump
random variables with an arbitrary factor and respective components of §; with
this factors inverse yields the same model. We thus need to standardise the
jump components in a suitable way. Without any restriction we may fix the
jump variances «y defined as

ap = /uipk(duk)flii where

Kl = /Ukpk(duk)

is the mean of the kth jump component, as we like. As a convenient choice we

take them all equal, i.e. we set oy, =: o, k = 1,...,m. We will choose a such
that |[Allr == /> p =1 [Ak|? = v/m = ||Iu]| r, which is equivalent to
—1)2 1
c HF:ZE:Amv (22)
k=1

where )\E, k = 1,...,m, denote the eigenvalues of ¥. Then by the result of
Appendix 7.1 it follows that (22) is equivalent to

m

m—1 E 2

a+ m Hp
p=1

m

§ : 2
o+ Ky

p=1

It is easy to show that this quadratic equation in « has one positive and one
negative solution, and that for large m the positive solution a; ~ 1/A. We
therefore set

a\ =

1
o= Xzak, k=1,...,m.
For all k,l = 1,...m, ¢l ¢, = e] C%¢; = Sy = a0k + kiky. We so have in
particular 3,_1,;(s) =0 for 1 <[l < m, and
ﬁn—l,m(s) = Am,m'Yn—Lm(S) = )\—1/2(6;:1026771)—1,7”_17"1(8)

_ ’Yn—l,m(s) _ ’Yn—l,m(s) (23)
VAatrz)  JIiam,
Hence the dynamics of In L,,_; is driven by a single jump variable u,, under a
jump distribution with density p,, with mean &,, and variance A~!.

4 Pricing caplets
A caplet for the period [T}, T} 1] with strike K is an option which pays (L;(T;)—

K)"6; at time T4, where 1 < j < n. It is well-known that under the 7} - for-
ward measure the caplet price has the following simple representation. Writing

12



E;4, for the expectation under this measure, we have
Cj(K) = Bj1(0)Ej41 [(L;(Ty) — K) ' 45

for price of the j-th caplet at time zero. Thus the j-th caplet price is determined
by the dynamics of L; under P;; only. We now recall the FF'T pricing method
of Carr and Madan, which basically goes as follows. It turns out natural to
transform for a fixed j the strike variable into a log-forward moneyness variable
defined by
K
L;(0)

In terms of log-forward moneyness the j-th caplet price is then given by

v:=1In

C;(v) = 8;Bj11(0) L (0) Bja[(e™ D) — )],
where X;(t) :=InL;(t) — InL;(0). We further introduce an auxiliary function

O;(v) = ;B4 (0) L5 (0)Cj(v) — (1 —e”)*

J
= Ej+1(€X 3T5) — )t —(1—e")"
= L0 Bj41 (e — )T 4+ 1yco By (e¥ — e T) T,
where the third expression is basically due to the put-call parity and follows
from the identity (a —b)T =a —b+ (b —a)* and the fact Fj1eX:(T3) = 1. In

Appendix we derive further characteristic properties of the function O;. The
Fourier transform of O; is given by

{O } / O wzd (bi?;(zi_)i§Tj)- (24)

This can be proved via a straightforward reformulation of a similar result in
Cont and Tankov (2003), in the context of jump-diffusion asset model (see
Belomestny and Schoenmakers (2006)).

Most importantly, if the characteristic function of X;(T}) is explicitly given,
for example by (11), and (12) in the case j = n — 1, we obtaln an analytical
caplet pricing formula via Fourier inversion,

Ci(K) = §;Bj+1(0)(L;(0) — K)* +
6;B;+1(0)L;(0) /°° 1= @y (2 —6T5) ~ieh ol o (25)
27 o 2(z —1) '

For a fixed j, j < n—1, let now In L; be given by (17). As noted at the end

of Section 3, we may then obtain an additive approximation X 5 (T;) of X;(T})
via (17) by replacing U+ with the approximative compensator

n—1
» 1+ 8 Ly(0) exp(riu’ §)
J+1) =
v (dﬁ, du) . A(t)dtp(dUJ H 1+ 51Ll(0)

1=j+1

(26)
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Hence, approximative caplet prices 5j (K) are obtained from (25), using an ap-
proximation ff)j+1 of the characteristic function ®;;, which in turn is obtained
by replacing in (11)-(12), n — 1,n, and v (dt,du) = \(dt)p(du), respectively
with j,7 + 1, and 2V (dt, du) from (26).

5 Calibration

Let us first consider the calibration to a panel of caplets corresponding to matu-
rity T,,—1 and different strikes K_n < -+ < K 1 < Kg:=L,1(0)< K3 <--- <
K. So, suppose that caplet prices C,,_1 ; corresponding to K;, —N < j < N,
are available. We first transform the observations C),_1 ; and strikes K; to

On-1,j =0, B, (0)L, 21 (0)Croj — (1 —€™) T, (27)
K.
c=1] J _N < 4j<N. 2
SR Loy TS =

Our calibration procedure relies essentially upon the next formula which follows
from (11), (12), (24), and taking the assumptions of Section 3.5 into account.

Dn(2Tnr) = L(® (23 Tr)) = Ln(1 (2 F{On 1} (= + i))

62 22
= = 12— G+ GoaB o1} (), (29)

with abbreviations

Trn_1
2, = (112 ) / s (5) s,
0
o = ATh. / (exp(rn1 wn—1m(5)) — 1) pm () du (30)
R
1 [T 2 2
T N PR 2>
0
C"l—l = )\Tn—lv (31)
Th-1
fnoa() = TOY / r By (5) P (i By () ) s, (32)

with Ln(w) = In|w| + iArgw, —7 < Argw < 7 denoting the main branch of
the logarithm, and p,, being the density of p,, which we now assume to exist.
In principle, the constants 9,2%1, #n—1, Cn_1, and the mixed density p,_1
can be recovered via (29) from complete knowledge of function O,_1, hence
a complete system of model consistent caplet prices C,—1(K), 0 < K < oo.
Indeed, since F{pn—1}(z) tends to zero as |z| — oo due to the Riemann-Lebesgue

14



lemma, we have

02—1 = -2 IHE 2721/)11(2; Tn—l)
Myl = — lirf 21 Im Yn(z;Th-1), and next,
. 9%_122 .
Cnfl = ZE{POO _'l/)n(Z, Tnfl) - 5 —Wp1z |,

and then the function §{un—1}(z) can be found from (29). In practice this ap-
proach breaks down due to incomplete knowledge of O,,_; and lack of numerical
stability however.

In Belomestny and Reiss (2004) a more stable procedure is developed which
estimates all spot characteristics 62 _,, s, 1, Cu—1, and p,—1(+), for a given set
of noisy observations (27) due to a discrete set of strikes (28). This procedure
consists basically of four steps: (i) first, a continuous piece-wise linear approxi-
mation (5n_1 of O,,_1 is built from the data; (i) from (571—1 an approximation
Jn of 1, is obtained; (i) next the coefficients of the quadratic polynomial on
the right-hand side in (29) are estimated from {/;n, under the presence of the
nonparametric nuisance part F{,—1} (which vanishes at infinity) using appro-
priate weighting schemes; (4v) finally an estimator for y,,—1 is obtained via FFT
inversion of the remainder. The steps (i)—(iv) are spelled out in detail below.

(i) In view of Appendix 7.2, we construct a continuous piece-wise linear func-
tion v — 6n_1(11) on agrid v;,, —-N—1<j < N+1, with v_y_1 <
vy < s < wogp <y i=0< v < - < vy K UN41, , such that
(5n_1(v) fits the data at v;,j # 0, (5n_1(v_N_1) = 5n_1(vN+1) = 0,
and 6;_1(07) -0 (04+) = 1. The boundary strikes v_y_1,vn41 are

n—1

included to reflect the fact that lim, . +o Op—1(v) = 0.

(i) By straightforward FFT we compute §{O,_1}(z +1i) and so obtain

Un(2) = Ln(l —z(z + i)%{@n_l}(z + i)), zeR. (33)

(i4i) With an estimate @Zn of ¢, at hand, we obtain estimators for the paramet-
ric part (62_,, »,_1,(n_1) by an averaging procedure using the polynomial
structure in (29) and the decay property of §{u,—1}. For suitable weight
functions wg, w,., and w¢ constructed in Section 5.1, which have bounded

support U := [-U, U] with U > 0, and satisfy

/wgdu =0, /qug(u)du = -2, /uw%(u)du =1, (34)
/quC(u)du =0, /wg(u)du = -1,

15



we compute the estimates
oy = [ Re(n(w)u(u)du, (35)
e o= [ (@ 0)) 0w
o i= [ Re(n () (u)du

for the parameters 02, 55, 1, and (,_1, respectively.
(iv) The estimate for u,_; is obtained via the inverse Fourier transform,
=1 1 i 52 1.2 x
1= GF T (Fu) + 5P = iFa () + Gt )T, (36)
where u € R and 1 is the indicator function of the set U.

The computational complexity of this estimation procedure is very low. The
only time consuming steps are the three integrations in step (i) and the inverse
Fourier transform (inverse FFT) in step (iv).

5.1 Determination of the weights wy, w,., and w,

Let us assume that for some natural number p and C > 0,

(Q) <
qax flpp sl @) < © (37)

and consider for some U > 0 the following weight functions,

U, p+3
W) = gy g Qe =2 T veengms)s 39
p+2 .
wgm(u) = U P+2 |u|pSIgn(u)1‘u/U\§lv

U,p o p+1 PO . .
et (W) = g —pyger U 2 e suguis ~ o),

which satisfy the conditions (34) by straightforwardly checking.
Following Belomestny and Reiss (2005), we can estimate

62, — 62|

n

IN

n \ [ Re(@ -} @)
(30)

| [ Re(Gta) = )
W)+ (@).
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The second term can be estimated using the identity (u)PF{pn—1}Hu) = 3{,“5?_)1 (u),
two times Parseval’s isometry, and (38),

S
U,p _ )P u we,p(u) u
(2) < ] / §{n 1} (u)wy P (w)du| = / ()" {n 1} )( . )d
UP(y wdP(-
= |/3{M§lp_)1 (@(W) b :% / Elp—)l(s)g_l{&.)i)}(S)ds
el 50] Clp+3) o )P +3)
T OVER | OF L, VA2 D) = e

for some C7 > 0, which explains the construction of wg P: for fixed p and U
large, (2) falls with O(U~(®*+5/2)), The first term (1) is due to the noise and
lack of data. It can be estimated by

” ” 2(p +3)
— Up = — o
~ p+3
< ol — ¢n||L°°(u)W7

for some Cy > 0. So we have,

5 - p+3 (p+1)(p+3)
|072L—1 - 0%—1| S CQH/I/}" - 7/’n|‘L°°(Z/1) U2 + Cl Up+5/2 . (40)
In a similar way we obtain for s, _1, and (,_1,
=~ ~ p+2 (p+2)
|51 = sm—1] < Cs|[thn — YnllLew) Up+ 1) +Cy Uriae (41)
> - p+1(+3)
Gt =Gl < Calldn — tnllimoo+3) + 0 EEIEED - (g9

for some Cs3,Cy, Cs,Cs > 0. Note that even when ||/¢L51q_)1 | Lo (r) is finite for very
large ¢ it is not wise in view of (42) to take p too large. In practice one needs to
accomplish that ||1Zn — Ynl|Lo @) is small for a large enough U and then p = 1
or 2 turns out to be a proper choice.

Correction of i, 1

Due to numerical as well as statistical errors the estimated fi,,—1 may not be a
probability density and thus needs to be corrected. Besides that we also want
the variance of X,,_; to be equal to the Black variance T},_1(y2_;)?, where

1 Tn—l
Wi [ healas
Tn—l 0
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In order to accomplish all these requirements we construct a new estimate ﬁiA
as a solution of the following optimization problem,

17—y = Fin-1ll72() — min, inf ZF_(z) >0 (43)
zER

subjected to

/ﬁz_l(v)dv =1, /v2ﬁz_1(v)dv =

The solution has a rather simple form and is given by

Th1 (%?71)2 -02_,
Cnfl

(44)

ﬁi—l(x;ga 77) = ma’X{O7ﬁnfl(m) - € - 77$2}7 T e Ra

where £ and 1 need to be determined such that (44) is satisfied. Note that by
representing " as a mixture of given densities, (43)-(44) boils down to a finite
dimensional quadratic optimization problem.

5.2 Procedure for calibration against terminal caplets

For U > 0 we denote the estimates (35) obtained using the weight functions
(38) by 0,,—1(U), 32n—1(U), ¢u—1(U), and the corrected Lévy density is denoted
by pf ,(;U). From (30) and (31) we can directly infer estimates 7, 1(U)
and A(U), respectively. We further have to identify a jump density p,, from
i (;U) via (32), while taking into account (23). Since the function 3 is usu-
ally not constant this might be not easy in general. We therefore go the following
pragmatic way. Let us define in the spirit of (23) 2 | := 5 | /\/1 + Ak2,. We
then consider as candidate jump density

Pm(wU) = a1 (U)B7 11 (raa1(U) By us U)

n1(U)y2 n1 (U2
_ r 1( )fYn—l :u:';—l r 1( )771—1 wlU (45)
1+ AU)kK2, 14+ AU)kK2,
Due to the very construction
2 (U)(E)
S 00 = [ =200 )

and so by (45) it holds [ u?p,,(u; U) du = A\=1(U) + k2,. By next requiring that
the first moment of the r.h.s. in (45) is equal to &, we simply obtain
K

km (U) := Wy (47)

with s,+ and o+ denoting the expectation and the variance, respectively, of a
random variable with density ;" | (;U). Substituting (47) in (45) then yields

~ 1 U)y) n-1(U)75
bt — et e (O )

n—1
VR A 1+ KS g

18



Finally we consider in view of (32)

n—1 Q/1+I€ +/OLH+
ir_(5U) = /

Tn 1 Tn— 1 ’yn 1m()

W14+ ff”Jr/czMJr
;U | ds. (49)

Tn—1 (U)’Yn—lﬂn(s) K

X Pm

Note that the second moments of 7if ; and u!_, coincide and are given by the
r.h.s. of (46) (the first moments coincide approximately).

Choice of U
We find U* as a solution of the following minimization problem

N
U* = arginf, Z 1Crir1 (Kis U) = Crmil?, (50)
1=—N

where C'n,l (+; U) are prices computed from the model due to 8,,—1(U), »,—1(U),
Cna(U), and i (5 U).

5.3 Calibration to other caplets
With U* is determined via (50) and p,, := p,,(U*), we introduce the shifted

densities
pj(U) = an(U — Ry + Km)a
hence

Kj = /Ruﬁj(u)du, j=1,...,m. (51)

Because we want to preserve the input local covariance structure we set r; =
rm(U*), j=1,...,m — 1. Let U be the upper triangular m x m matrix with
positive diagonal elements such that ¥ = Ui/ T. This decomposition exists be-
cause ¥ is invertible. From (21) we then have A = A\~*/2%/~T. Let us define

2512, E<rr <m,k =1,..,m. Since U is an upper triangular we have
»E) =y EYENT and A®) = \=2@*F)=T with A®) and U*) defined anal-
ogously to () Thus, for knowing A®*) it is sufficient to know 2%,

Now let us suppose that m = n — 1. We determine «;, j = 1,...,n — 1,

recursively in the following way. For j =n — 1, k,_1 is determined from (47),

then B,_1 -1 from (23), and Egln 117)1 1 =0+ K2 .. Suppose B,k is determined
forl=j,....n—1,k=1,....n—1, where j > 1. For j = m = n — 1 we are in the
situation of Section 5.2. We then consider the matrix
-
G-1)/,. L o+ K2 1| Kj—1a
TV (ki) = { Hj,laj ) 5 (52)
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J ), is assumed

with a := [k, -+, n—1] ', and where the (n—j) x (n— j) matrix 7.
to be already determined. Note that o = A~ (U*) is the common jump variance.
In fact the only unknown parameter to be determined in (52) is x;_1. Further,
it easily follows that,

1/2

UG (1) = (a+r2, (1—a"(z0))"a))

/ij_laT(u(j))fT
U

and so
) . -T
FUD(rj1) = (u(rl)) (Kj-1) =

(a+r7 ., (1- a—'—(E(j))*la))_l/2
—(a+r7, (1- aT(E(j))_la))_l/2 Kj—1a

o) ]
Next, set according to (20)

k
Bi—1k(kj—1) = A7/ Z Féfr_l)(ﬁj—l)%—l,m k=j—-1,..,n-1,
r=j—1
ﬁj—Lk(Hj—l) =0, 1< k< 7 —1

By a simple trial and error search we then determine x;_; such that the least
squares fit error of the T;_; caplet panel is as small as possible. For each guess
of k;j_1 the model caplet prices may be computed by Monte Carlo simulation
of the model, or as an alternative by approximating caplet prices as proposed
at the end of Section 4.

6 Calibration to real data

In this section we calibrate the model (7) to market data given on 11.01.2004.
The caplet-strike volatility matrix is partially shown in Table 1. The corre-
sponding implied volatility surface is shown in Figure 1.

Figure 1: Smoothed caplet implied volatility surface o .

Pronounced smiles are clearly observable. Due to the structure of the given
data we are going to calibrate the jump diffusion model based on semi-annual
tenors, i.e. §; = 0.5, with n = 41, and where the initial calibration date 01.11.04
is identified with Ty = 0.

In a pre-calibration a standard market model is calibrated to ATM caps and
ATM swaptions using Schoenmakers (2005). However, we emphasize that the
method by which this input market model is obtained is not essential nor a
discussion point for this paper. For the pre-calibration we have used a volatility
structure of the form

vi(t) = cig(Ti —t)e;, 0<t<min(T;,T;), 1<i,j<n,
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]K/T \ 0150 0200 0.225 0250 0300 0400 0500  0.600

0.50 | 0.2604 0.1735 0.1819 0.1969 0.2453 0.2708 0.3197 0.3407
0.75 | 0.2678 0.2036 0.2052 0.2136 0.2401 0.2598 0.3052 0.3258
1.75 | 0.2832 0.2587 0.2475 0.2365 0.2227 0.2246 0.2539 0.2733
2,50 | 0.2850 0.2651 0.2513 0.2334 0.2125 0.2051 0.2234 0.2412
3.50 | 0.2804 0.2581 0.2432 0.2233 0.2016 0.1856 0.1924 0.2071
450 | 0.2720 0.2474 0.2319 0.2142 0.1934 0.1720 0.1711 0.1821
5.50 | 0.2625 0.2381 0.2219 0.2079 0.1872 0.1625 0.1566 0.1640
6.50 | 0.2531 0.2314 0.2144 0.2039 0.1824 0.1557 0.1470 0.1510
7.50 | 0.2447 0.2270 0.2092 0.2016 0.1788 0.1510 0.1407 0.1418
8.50 | 0.2375 0.2241 0.2058 0.2002 0.1761 0.1477 0.1367 0.1355
9.50 | 0.2315 0.2224 0.2036 0.1995 0.1740 0.1454 0.1342 0.1311
11.50 | 0.2212 0.2206 0.2011 0.1988 0.1707 0.1424 0.1312 0.1253
14.50 | 0.2149 0.2201 0.2003 0.1987 0.1689 0.1410 0.1302 0.1228
19.50 | 0.2111 0.2200 0.2001 0.1987 0.1678 0.1404 0.1300 0.1219

Table 1: Caplet volatilities & for different strikes and different tenor dates (in
years).

where ¢ is a simple parametric function and e; are unit vectors. The calibration
routine returned e; € R*® with
el ej = pij = exp[—0.005)i — j|] 1 <4,j <41,
such that the matrix (e; ) is upper triangular, and
g(s) = 0.8 +0.2¢7 205,

The ¢; can be readily computed from

using the initial Libor curve, which is obtained by a standard stripping procedure
from the yield curve at 11.01.04, and is given in Table 2.

The further steps are as follows

1. The model for L,,_q is calibrated as described in Section 5.2 and the cal-
ibrated parameters are shown in Table 3. The calibrated density p;,(z)
is plotted in Figure 2. Note that the variance of the distribution corre-
sponding to p,, is equal to 1/A = 10.0 in order to ensure (22).
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|t no|n| Lo n] L] 5] L]
0.5 | 0.0238176 | 5.5 | 0.0451931 | 10.5 | 0.0509249 | 15.5 | 0.0539696
1 | 0.0264201 6 | 0.0465074 11 | 0.0512114 16 | 0.0540521
1.5 | 0.0292798 | 6.5 | 0.0475881 | 11.5 | 0.0515804 | 16.5 | 0.0540931
2 | 0.0320656 7 1 0.0484201 12 | 0.0520317 17 | 0.0540933
2.5 | 0.0345508 | 7.5 | 0.0490942 | 12.5 | 0.0524639 | 17.5 0.054053
3 | 0.0366693 8 | 0.0496402 13 | 0.0528456 18 | 0.0539728
3.5 | 0.0385821 | 8.5 | 0.0500331 | 13.5 | 0.0531757 | 18.5 | 0.0538533
4 0.040381 9 | 0.0502848 14 | 0.0534529 19 0.053695
4.5 | 0.0420863 | 9.5 | 0.0504889 | 14.5 | 0.0536757 | 19.5 | 0.0534984
5| 0.0437079 | 10 | 0.0506932 15 | 0.0538451 20 0.053268

Table 2: Initial Libor curve.

ERENET
0.7 [ 0.1 [ -0.005 |

Table 3: Parameters calibrated using terminal caplet volas arﬁl -

2. Remaining parameters x;, j = 1,...,39, are calibrated sequentially as
described in Section 5.3 with approximation formula (26) being used for
pricing caplets. It turned out experimentally that x; can be taken on the
line

I{j:H40*0.0751*(40*j), j:40,,1

The quality of the calibration can be seen in Figure 3, where calibrated
volatility curves are shown for several caplet maturities together with orig-
inal caplet volas and ATM caplet volas. The overall root-mean-square fit
we have reached shows to be 0.5%-5%, when the number of caplet panels
ranges from 2 to 20. Fitting all the 40 caplet panels with an acceptable ac-
curacy (e.g. <5%), would require a more flexible structure for p;, j < m,
however.
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Figure 2: Density p,,(z) calibrated using terminal caplet volas o

K
Thn-1

Figure 3: Caplet volas from the calibrated model (solid lines), original caplets
volas o (points) and ATM caplet volas o4 7™ (dashed lines) for different caplet

maturities T

7 Appendix

7.1 Summed reciprocal eigenvalues of

Consider the determinant

a1 + /{% K1Kk2 K1K3 K1KRm—1 K1Km
Kok1 Qs + m% Koks3 KokKm,
2
K3k K3kKo a3 + K3
D,, =
2
Km—1K1  Km—1K2 Am-1t+ K1 Em—1Km
Kmk1 Km k2 KmBm—1 Ay, + "07271
a1 + K,% K1K2 K1K3 K1Km—1 K1Km
Kok o + Ii% KoK3 KoKkm
K3K1 K3K2 as + /{%
2
Rm—1K1  RKm—-1K2 Q1+ Kp_1  Em—1Km
_Em
P a7 0 0 (679
R1k2 K1K3 K1Km—1 R1Km
as + n% KoK3 KokKm,
2
KEm m—1| K3K2 a3 + K3
OémDm_l — al(—l)
K1
2
Km—1K2 Km—1K3 Am—1+ K1 Km—1Km
Since
R1k2 K1K3 K1Km—1 K1Km
o + /1% Kok3 KoKm
K3ko a3 + /{% K3Km
2
Rm—1K2 QAm—1+ Rm—1 Rm—1Km
(65 0 0
0 Qa3
_ _ m—2 _ m—2
= ... = RK1km(-1) 0 = R1km(—1) Q9+ Q1
0
0 0 Ay —1
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we obtain

m m—2
D,, =an,Dpy_1 — ?Oél(*l) K16m(—1) s Q1
1
2
- amD 1+ Ry Q1 Q2 QAm—1 =

Hence,

p=1 q=1
ZH(Oéq—)\)—i—ZK%H(Oéq—)\) + KA+ |3
q=1 p=1 q=1,
q#p

where the coefficient of A is given by

K= 3Tl 20 T e
p=1qg=1, p=1r=1,
q#p r#p q#p q;ﬁr
We finally obtain
D IMea+d 3 % H %

p=1g=1, p=1r=1,

1 o K o q#p r#p q#p q#r
Z}TZ _E - m m m
= [ew > ]
q=1 p=1 g¢=1,
q#p
m m m 2
1 K
DD ah
p=1 p=1r=1,
_ r#p
- m 2
13
p=1

7.2 Characteristic properties of O;
By denoting the density of L;(7T}) with pr (r,) we may write

Cj(K) BJ+1 (O)EJ-H (L (Tj) )+5 ]

= Bj1( 5/ K)pr, 1, (y)dy,
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and then by differentiating two times with respect to K we obtain
CY(K) = Bj11(0)d;pL, (1;) (K).

The density of X; := InL;(T;) — InL;(0) is obviously given by px,(v) :=
pL;(r;)(L;(0)e”)L; (0)e; so

px;(v) = Bj}(0)8; 1O (L;(0)e")Ly(0)e”
= B;1(0)6; L1 (0) (Cf (v) = Cj(v)) e
= (0} (v) = Oj(v)) e™", v #0,
where O — O extends continuously at v = 0. In particular, O; satisfies
Oj(v) = Oj(v) >0 and O'(0-) - O'(0+) =1. (53)

On the grid v;, —N —1 < j < N + 1 we consider a continuous piecewise
linear approximation O,,_; of O, _1,

On_l(v) =
N+1 L
Z m(on—l,j—lvj —0j 1051 +V(On—1; — On_1;-1)) 1, 1,0, (V)
j=—N J J—

with v; and O,_1 ;-1 given by (27) and (28), extended with O,y _n_1 =
Ont+1n—1 = 0 (note that vy := 0). Then it follows that (with suppressed
subscript n — 1)

d distr . N+1 0. — O'—l
— O(v) = -3 i
dv Py

1[Uj—17vj)(v) (54)

Vj —Vj-1

in (Schwartz) distribution sense. Differentiating in distribution again yields

d2 distr ~ O_N ON
— o) = —9, —
dv? (U) VN —V_N_1 V-N-1 + UN41 — UN UN+1
N
Oi1—0; O O;
> ( S e 1)% (55)
J=—N Vj+1 — V5 Vj —Vj-1
Because O satisfies
d2 distr d distr
" ! _ v 4
0" (v) — O'(v) 7o (@) 7 O, v#£0,
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we consider for v # 0,

d2 distr _ d distr ~ .
( 5 G)er = 01=00 ey Ox

7 9 - 5 v
dv? dv n Uil —UN Tt

O,N o O,N a
p—— e 1 , v (56
V_N —V_N-1 —N—16 V_N — V_N-1 [Ufolﬂ—N)('U)e ( )
N

+ Z Oj1 = 0; — 0; = 0i S, e Vi — Ml (v)e™
Vi — U Vs — s i Vs — v, Wivitn) )
j=—n LN T AN 1~ Vj
J#0

which follows from (54) and (55) and some rearranging of terms. Since the
generalised function (56) should be an approximation of the density px, .,
integrals over each interval [v;_1,v;), j = —N,..N + 1, should be non-negative.
This leads to

0 < <Oj+1 -0; 0O Oj—1> o _ Oir1=0;

/l[vj)vjﬂ)(v)e*”dv

Vj4+1 — Uy Vj —Vj-1 Vjt1 — V5
0j41—0; 0; — 0,
_ j+1 J _—vj J =1 . . .
= It evinn D T Tlevi o j—=_N,...—N, j#0. (57)
Vj+1 — V5 Vj —Vj-1

Note that (57) holds if the input data are consistent with a function O which
is convex on both v < 0 and v > 0, and if the grid v; is fine enough. Fur-
ther, the total mass of (56) should be one. This leads straightforwardly to the
requirement,

Oy—0_1 01 -0

—UV_1 (%

:]_7

which is a discretisation of the boundary condition (53) in fact.
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