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tIn this paper we propose a Libor model with a high-dimensional spe-
ially stru
tured system of driving CIR volatility pro
esses. A stable
alibration pro
edure whi
h takes into a

ount a given lo
al 
orrelationstru
ture is presented. The 
alibration algorithm is FFT based, so fastand easy to implement.1 Introdu
tionSin
e Bra
e, Gatarek, Musiela (1997), Jamshidian (1997), and Miltersen, Sand-mann and Sondermann (1997), almost independently, initiated the developmentof the Libor market interest rate model, resear
h has grown immensely towardsimproved models that �t market quotes of standard interest rate produ
ts su
has 
ap and swaption pri
es for di�erent strikes and maturities. As a matterof fa
t, while 
aps 
an be pri
ed using a Bla
k type formula and swaptionsvia 
losed form approximations with high a

ura
y, an important drawba
k ofthe market model is the impossibility of mat
hing 
ap and swaption volatilitysmiles and skews observed in the markets. As a remedy, various alternatives tothe standard Libor market model have been proposed. They 
an be roughly
ategorized into three streams: lo
al volatility models, sto
hasti
 volatilitymodels, and jump-di�usion models. Espe
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volatility models are popular due to their e
onomi
ally meaningful behavior,and the greater 
exibility they o�er 
ompared to lo
al volatility models for in-stan
e. For lo
al volatility Libor models we refer to Brigo and Mer
urio (2006).Jump-di�usion models for assets go ba
k to Merton (1976) and Eberlein (1998).Jamshidian (2001) developed a general semimartingale framework for the Liborpro
ess whi
h 
overs the possibility of in
orporating jumps as well as sto
has-ti
 volatility. Spe
i�
 jump-di�usion Libor models are proposed, among oth-ers, by Glasserman and Kou (2003) and Belomestny and S
hoenmakers (2006).Levy Libor models are studied by Eberlein and �Ozkan (2005). In
orporation ofsto
hasti
 volatility has been proposed by Andersen and Brotherton-Rat
li�e(2001), Piterbarg (2004), Wu and Zhang (2006), Zhu (2007).In the present arti
le we fo
us on a 
exible parti
ularly stru
tured Hestontype sto
hasti
 volatility Libor model that, due to its very 
onstru
tion, 
an be
alibrated to the 
ap/strike matrix in a robust way. In this model we in
orporatea 
ore idea from Belomestny and S
hoenmakers (2006), who propose a jump-di�usion Libor model as a perturbation of a given input Libor market model. Asa main issue, Belomestny and S
hoenmakers (2006) furnish the jump-di�usionextension in su
h a way that the (lo
al) 
ovarian
e stru
ture of the extendedmodel 
oin
ides with the (lo
al) 
ovarian
e stru
ture of the market model. Theapproa
h of perturbing a given market model while preserving its 
ovarian
estru
ture, has turned out to be fruitfull and is 
arried over into the design ofthe sto
hasti
 volatility Libor model presented in this paper. In fa
t, this idea issupported by the following arguments (see also Belomestny and S
hoenmakers(2006)).1. Cap pri
es do not depend on the (lo
al) 
orrelation stru
ture of forwardLibors in a Libor market model but, typi
ally, do depend only weakly onthis in a more general model. Sin
e this 
orrelation stru
ture 
ontainsimportant information about, for example, pri
es of ATM swaptions, wedo not want to destroy this (input) 
orrelation stru
ture while 
alibratingthe extended model to the 
ap(let)-strike matrix.2. The la
k of smile behavior of a Libor market model is 
onsidered a 
onse-quen
e of Gaussianity of the driving random sour
es (Wiener pro
esses).Therefore we want to perturb this Gaussian randomness to a non-Gaussianone by in
orporating a CIR volatility pro
ess, while maintaining the (lo-
al) 
orrelation stru
ture of the Libor market model we started with.3. Preserving the 
orrelation stru
ture allows for robust 
alibration, sin
eit signi�
antly redu
es the number of parameters to be 
alibrated whileholding a realisti
 
orrelation stru
ture.Spe
i�
ally, the perturbation part of the presented model will involve CIRvolatility pro
esses, and so the 
onstru
tion will �nally resemble a Heston typeLibor model (Heston (1993)). The CIR model, as developed by its foundersCox, Ingersoll, Ross (1985), was originally derived in a framework based onequilibrium assumptions. 2



The idea of utilizing a Heston type pro
ess has already been formulated inWu and Zhang (2006), and Zhu (2007). However, the present arti
le di�ers fromthese works in the following respe
ts.1. As opposed to a one-dimensional sto
hasti
 volatility pro
ess as in Wu &Zhang, or a (possibly) ve
tor valued one whi
h inhibits only one sour
eof randomness as in Zhu (2007), we will study multi-dimensional CIRve
tor volatility pro
esses with ea
h 
omponent being driven by its ownBrownian motion. This leads to a more realisti
 lo
al 
orrelation stru
tureand renders the model more 
exible for 
alibration.2. We suggest a multi-dimensional partial-Gaussian and partial-Heston typemodel, where ea
h forward Libor is driven by a linear 
ombination of CIRpro
esses.3. While in both papers the issue of robust 
alibration has not been ad-dressed, we give full 
onsideration to this problem using novel ideas men-tioned above.Furthermore, approximative analyti
 pri
ing formulas for 
aplets and swaptionsare derived for this new Libor model whi
h allow for fast 
alibration to theseprodu
ts. Ultimately, 
omplex stru
tured Over The Counter produ
ts may bepri
ed by Monte Carlo using guidelines for simulating Heston type models asgiven in Kahl and J�a
kel (2006).2 Dynami
s of the Libor ModelConsider a �xed sequen
e of tenor dates 0 =: T0 < T1 < : : : < Tn, 
alleda tenor stru
ture, together with a sequen
e of so 
alled day-
ount fra
tionsÆi := Ti+1�Ti; i = 1; : : : ; n�1. With respe
t to this tenor stru
ture we 
onsiderzero bond pro
esses Bi; i = 1; : : : ; n; where ea
h Bi lives on the interval [0; Ti℄and ends up with its fa
e value Bi(Ti) = 1. With respe
t to this bond systemwe dedu
e a system of forward rates, 
alled Libor rates, whi
h are de�ned byLi(t) := 1Æi � Bi(t)Bi+1(t) � 1� ; 0 � t � Ti; 1 � i � n� 1:Note that Li is the annualized e�e
tive forward rate to be 
ontra
ted at thedate t, for a loan over a forward period [Ti; Ti+1℄. Based on this rate one has topay at Ti+1 an interest amount of $ÆiLi(Ti) on a $1 notional.For a pre-spe
i�ed volatility pro
ess 
i 2 Rm ; adapted to the �ltration gen-erated by some standard Brownian motion W 2 Rm ; the dynami
s of the 
or-responding Libor model have the form,dLiLi = (:::)dt + 
>i dW (1)i = 1; :::; n�1: The drift term, adumbrated by the dots, is known under di�erentnumeraire measures, su
h as the risk-neutral, spot, terminal and all measures3



indu
ed by individual bonds taken as numeraire. If the pro
esses t ! 
i(t) in(1) are deterministi
, one speaks of a Libor market model.In this work we study extensions of a Libor market model, whi
h is givenvia a deterministi
 volatility stru
ture 
; with respe
t to an extended Brownian�ltration. In parti
ular, we 
onsider extensions with the following stru
ture,dLiLi = (:::)dt +q1� r2i 
>i dW + ri�>i dU; 1 � i < n; (2)dUk = pvkdfWk 1 � k � d;dvk = �k(�k � vk)dt+ �kpvk ��kdfWk +q1� �2kdW k� ; (3)where fW and W are mutually independent d-dimensional standard Brownianmotions, both independent of W . In (2), �i 2 Rd are 
hosen to be deterministi
ve
tor fun
tions. They will be spe
i�ed later. The ri are 
onstants that maybe 
onsidered "allotment" or "proportion" fa
tors, quantifying how mu
h of theoriginal input market model should be in play. For ri = 0 for all i, it is easily seenfrom (2) that the 
lassi
al market model is retrieved. As su
h, for small valuesof the ri; the extended model may be regarded as a perturbation of the former.Finally, from a modeling point of view system (2) is obviously overparameterizedin the following sense. By setting �ik =: �k e�ik and vk =: ��2k evk, �k =: ��2k e�k;�k =: ��1k e�k; we retrieve exa
tly the same model. From now on we thereforenormalize by setting �k � 1 without loss of generality.It is helpful to think of the Libor model as a ve
tor-valued sto
hasti
 pro
ess ofdimension n � 1 driven by m + 2d standard Brownian motions with dynami
sof the form dLiLi = (:::)dt+ �>i dW ; i = 1; :::; n� 1;where �i = 0BBBBBBBBBBBB�
p1� r2i 
i1p1� r2i 
i2��p1� r2i 
imri�i1pv1��ri�idpvd

1CCCCCCCCCCCCA dW = 0BBBBBBBBBBBB�
dW1dW2��dWmdfW1��dfWd

1CCCCCCCCCCCCA : (4)
In (4) the square-root pro
esses vk are given by (3) (with �k � 1).In our approa
h we will work throughout under the terminal measure Pn. Fol-lowing Jamshidian (1997, 2001), the Libor dynami
s in this measure are given4



by dLiLi = � n�1Xj=i+1 ÆLj1 + ÆLj  m+dXk=1 �jk�ik! dt+ �>i dW(n): (5)Often it turns out te
hni
ally more 
onvenient to work with the log-Libor dy-nami
s. A straightforward appli
ation of Itô's lemma to (5) yields,d lnLi = �12 j�ij2dt� n�1Xj=i+1 ÆLj1 + ÆLj  m+dXk=1 �jk�ik! dt+ �>i dW(n); 1 � i < n:(6)3 Redu
tion of parameters by 
ovarian
e assump-tionWithin the parti
ular framework 
onstru
ted above, one 
ould interpret these
ond di�usion part in (2), namely ri�>i dU , as an extension or perturbation ofa given Libor market model.Let us integrate the di�usion part of (6) from zero to t and de�ne the resultingzero-mean random variable by�i(t) := Z t0 �>i dW(n): (7)Re
all that 
i 2 Rm is the (given) deterministi
 volatility stru
ture of theinput market model obtained by some 
alibration pro
edure to ATM 
aps andATM swaptions. We assume further that the matrix (
i;j(t))1�i<n;1�j�m hasfull rank m for all t. The deterministi
 ve
tor fun
tions �i 2 Rd will allowadditional degrees of freedom for the up
oming �tting to the volatility 
urve.We will now see that under the 
ovarian
e assumption we will have to restri
tourselves to spe
i�ed values for the �i.For the 
ovarian
e fun
tion of �i(t) in the terminal measure we obtainEn(�i(t)�j(t)) =q1� r2iq1� r2j Z t0 
>i 
jds+ rirjEn Z t0 �>i dU � Z t0 �>j dU=q1� r2iq1� r2j Z t0 
>i 
jds+ rirj dXk=1En Z t0 �ik�jk dhUki=q1� r2iq1� r2j Z t0 
>i 
jds+ rirj dXk=1 Z t0 �ik�jk Envk ds=:q1� r2iq1� r2j Z t0 
>i 
jds+ rirj Z t0 �>i �(t)�j ds (8)5



where �(t) denotes a diagonal matrix in Rd�d whose elements are the expe
tedvalues �k = Envk 2 R:The square-root di�usions in (2) have a limiting stationary distribution. Thetransition law of the general CIR pro
essv(t) = v(u) + Z tu ��(� � v(s))ds+ �pv(s)dW (s)� ;is known. In parti
ular, we have the representationv(t) = �2 �1� e��(t�u)�4� �2�;
; t > u;where �2�;
 is a non
entral 
hi-square random variable with � degrees of freedomand non
entrality 
; where� := 4���2 ; 
 := 4�e��(t�u)�2 �1� e��(t�u)�v(u):For the expe
tation we haveE[v(t) j Fu℄ = (v(u)� �)e��(t�u) + �; t � u; (9)e.g. see Glasserman (2003) for details. It is natural to take the limit expe
tationas the starting value of the pro
ess. Thus, we setvk(0) = �k = 1; for k = 1; : : : ; d;to obtain Evk(t) � 1; hen
e � = I is 
onstant.Let us now introdu
e the 
ovarian
e restri
tion mentioned in the introdu
tion,whi
h will be in fa
t a modi�ed version of the 
ovarian
e restri
tion in Be-lomestny and S
hoenmakers (2006). In the latter arti
le one requires (in ajump-di�usion 
ontext) En(�i(t)�j(t)) = Z t0 
>i 
jds: (10)In view of (8) and as a next simpli�
ation, we set ri � r; to yield from (10),Z t0 
>i 
jds = Z t0 �>i �jds; (11)whi
h is obviously satis�ed by taking � � 
; and then, in parti
ular, we haved = m: However, in order to obtain 
losed-form expressions for 
hara
teristi
fun
tions later on, we would like �(t) to be pie
ewise 
onstant in time. For abetter tra
tability we even assume �(t) to be time independent. In either 
ase6



this means that (11) has to be relaxed. As a �rst relaxation of (11) we requireonly Z Tk0 
>i 
jdt = Z Tk0 �>i �jdt; k � min(i; j); (12)whi
h 
an be satis�ed by taking �(t) suitably pie
ewise 
onstant. Unfortunately,for time independent �, (12) 
an still not be mat
hed in general. As a pragmati
solution for this 
ase, we therefore relax (12) further to�>i �j = 1min(i; j) min(i;j)Xk=1 1Tk Z Tk0 
>i 
jdt; (13)or as an alternative, �>i �j = 1Tmin(i;j) Z Tmin(i;j)0 
>i 
jdt: (14)It 
an be shown that in both 
ases the matrix (�>i �j) is positive de�nite and sode�nes a 
ovarian
e stru
ture.Of 
ourse there are further variations possible. Note that even when m <n�1; exa
t �tting of (13) or (14), respe
tively, may require d = n�1: Dependingon the readers preferen
es however, one may 
hoose any d; d < n� 1, and then�t (13) or (14) after dimension redu
tion via prin
ipal 
omponent analysis ofthe respe
tive symmetri
 right-hand-sides.4 Dynami
s under various measures4.1 Dynami
s under forward measuresSo far the Libor dynami
s have been 
onsidered under the terminal measure.In order to pri
e 
aplets later on, however, we will need to represent the abovepro
ess under various forward measures. In what follows we denote the timeindependent solution for � of either (13), (14), or any other sensible 
hoi
e ofthe reader for the 
ovarian
e 
onstraint, by 
 2 R(n�1)�d : Thus, spelling out(5) with ri � r yieldsdLiLi = � n�1Xj=i+1 ÆjLj1 + ÆjLj "(1� r2)
>i 
j + r2 dXk=1 
ik
jkvk# dt+p1� r2
>i dW (n) + r dXk=1pvk
ikdfW (n)k (15)with 
orresponding volatility pro
essesdvk = �k(1� vk)dt+ �kpvk ��kdfW (n)k +q1� �2kdW (n)k � ; (16)7



under the measure Pn: By rearranging terms we may write,dLiLi =p1� r2
>i 0�dW (n) �p1� r2 n�1Xj=i+1 ÆjLj1 + ÆjLj 
jdt1A+ r dXk=1 
ikpvk0�dfW (n)k � r n�1Xj=i+1 ÆjLj1 + ÆjLj 
jkpvkdt1A=:p1� r2
>i dW (i+1) + r dXk=1 
ikpvkdfW (i+1)k : (17)Sin
e Li is a martingale under Pi+1, we have that both W (i+1) and fW (i+1)in (17) are standard Brownian motions under Pi+1. In terms of these newBrownian motions the volatility dynami
s be
omesdvk = �k(1� vk)dt+ r�k�k n�1Xj=i+1 ÆjLj1 + ÆjLj 
jkvkdt+ �k�kpvkdfW (i+1)k +q1� �2k�kpvkdW (n;i+1)k : (18)As shown in the Appendix, the pro
ess W (n;i+1) in (18) is standard Brownianmotion under both measures Pi+1 and Pn:By freezing the Libors at their initial values in (18), we obtain an approxi-mative CIR dynami
sdvk � �(i+1)k ��(i+1)k � vk� dt+ �kpvk ��kdfW (i+1)k +q1� �2kdW (i+1)k � (19)with reversion speed parameter�(i+1)k := �k � r�k�k n�1Xj=i+1 ÆjLj(0)1 + ÆjLj(0)
jk; (20)and mean reversion level �(i+1)k := �k�(i+1)k : (21)The approximative dynami
s (19) for the volatility pro
ess will be used for
alibration in Se
tion 5.4.2 Dynami
s under swap measuresAn interest rate swap is a 
ontra
t to ex
hange a series of 
oating interestpayments in return for a series of �xed rate payments. Consider a series of8



payment dates between Tp+1 and Tq ; q > p. The �xed leg of the swap pays ÆjKat ea
h time Tj+1; j = p; : : : ; q�1 where Æj = Tj+1�Tj . In return, the 
oatingleg pays ÆjLj(Tj) at time Tj+1, where Lj(Tj) is the rate �xed at time Tj forpayment at Tj+1. Thus, the time t value of the interest rate swap isq�1Xj=p ÆjBj+1(t)(Lj(t)�K):The swap rate Sp;q(t) is the value of the �xed rate K, su
h that the presentvalue of the 
ontra
t is zero, hen
e after some rearrangingSp;q(t) = Pq�1j=p ÆjBj+1(t)Lj(t)Pq�1j=p ÆjBj+1(t) = Bp(t)�Bq(t)Pq�1j=p ÆjBj+1(t) : (22)So Sp;q is a martingale under the probability measure Pp;q , indu
ed by theannuity numeraire Bp;q =Pq�1j=p ÆjBj+1(t). Therefore we may writedSp;q(t) = �p;q(t)Sp;q(t)dW(p;q)(t); (23)where dW(p;q)(t) is standard Brownian motion under Pp;q . From (22) we see thatthe swap rate 
an be expressed as a weighted sum of the 
onstituent forwardsrates, Sp;q(t) = q�1Xj=pwj(t)Lj(t)with wj(t) = ÆjBj+1(t)Bp;q :An appli
ation of Ito's Lemma yieldsdSp;q(t) = q�1Xj=p �Sp;q(t)�Lj(t) dLj(t) + q�1Xj=p q�1Xi=p �2Sp;q�Lj(t)�Li(t)dLj(t)dLi(t)= q�1Xj=p �Sp;q(t)�Lj(t) Lj(t)�>j hdW(n) + (: : :)dti : (24)Equating (23) and (24), givesdSp;q(t) = Sp;q(t)24q�1Xj=p �j(t)�>j 35 dW(p;q)(t)with W(p;q) = (W (p;q);fW (p;q)) and�j(t) := �Sp;q(t)�Lj(t) Lj(t)Sp;q(t) :9



The 
hange of measure from W(n) to W(p;q) 
an be found in S
hoenmakers(2005). In parti
ular,dW (p;q) = dW (n) �p1� r2 q�1Xi=p wi n�1Xj=i+1 ÆjLj1 + ÆjLj 
jdtand dfW (p;q) = dfW (n)k � r q�1Xi=p wi n�1Xj=i+1 ÆjLj1 + ÆjLj 
jkpvkdt:In terms of these new Brownian motions the volatility pro
esses read,dvk = �k(1� vk)dt+ r�k�k q�1Xi=p wi(t) n�1Xj=i+1 ÆjLj1 + ÆjLj 
jkvkdt+ �k�kpvkdfW (p;q)k +q1� �2k�kpvkdW (p;q;n)k : (25)As shown in the Appendix, the pro
ess W (p;q;n) in (25) is standard Brownianmotion under both measures Pp;q and Pn: Assuming now that �Sp;q(t)�Lj(t) and Lj(t)Sp;q(t)are approximately 
onstant in time, we freeze the weights at their initial timet = 0. Then the swap rate dynami
 is approximately given bydSp;q(t) � Sp;q(t)24q�1Xj=p �j(0)�>j 35 dW(p;q)(t): (26)Similarly, freezing the Libors in the drift term of (25) leads to an approximatedvolatility pro
ess vk given bydvk � �(p;q)k ��(p;q)k � vk� dt+ �kpvk ��kdfW (p;q)k +q1� �2kdW (p;q;n)k � (27)with reversion speed parameter�(p;q)k := �k � r�k�k q�1Xi=p wi(0) n�1Xj=i+1 ÆjLj(0)1 + ÆjLj(0)
jk ; (28)and mean reversion level �(p;q)k := �k�(p;q)k : (29)5 Calibration to Caplet pri
esA 
aplet for the period [Tj ; Tj+1℄ with strike K is an option that pays (Lj(Tj)�K)+Æj at time Tj+1, where 1 � j < n: It is well-known that under the forwardmeasure Pj+1 the j-th 
aplet pri
e at time zero is given byCj(K) = ÆjBj+1(0)Ej+1(Lj(Tj)�K)+:10



Thus, under Pj+1 the j-th 
aplet pri
e is determined by the dynami
s of Lj only.The FFT-method of Carr and Madan (1999) 
an be straightforwardly adaptedto the 
aplet pri
ing problem as done in Belomestny and S
hoenmakers (2006).We here re
ap the main results.In terms of the log-moneyness variablev := ln KLj(0) (30)the j-th 
aplet pri
e 
an be expressed asCj(v) := Cj(evLj(0)) = ÆjBj+1(0)Lj(0)Ej+1 �eXj (Tj) � ev�+ ;where Xj(t) = lnLj(t)� lnLj(0): One then de�nes the auxiliary fun
tionOj(v) := Æ�1j B�1j+1(0)L�1j (0)Cj(v)� (1� ev)+ (31)and 
an show the following proposition.Proposition 1 For the Fourier transform of the fun
tion Oj de�ned above and'j+1(�; t) denoting the 
hara
teristi
 fun
tion of the pro
ess Xj(t) under Pj+1we have F fOjg (z) = Z 1�1Oj(v)eivzdv = 1� 'j+1(z � i;Tj)z(z � i) : (32)The proof 
an be found in Belomestny/Rei� (2006). Next, 
ombining (30),(31), and (32) yieldsCj(K) = ÆBj+1(0) (Lj(0)�K)+ (33)+ ÆBj+1(0)Lj(0)2� Z 1�1 1� 'j+1(z � i;Tj)z(z � i) e�iz ln KLj (0) dz:We now outline a 
alibration pro
edure for the Libor stru
ture (2), under thefollowing additional assumptions.(i) The input market Libor volatility stru
ture 
 2 R(n�1)�m is assumed tobe of full rank, that is m = n� 1: (Stri
tly speaking it would be enoughto require the right-hand-sides of (13) or (14) to be of full rank.)(ii) The terminal log-Libor in
rement d lnLn�1 is in
uen
ed by a single sto-
hasti
 volatility sho
k dUn�1, the one but last, hen
e d lnLn�2; by onlydUn�1 and dUn�2, and so forth. Put di�erently, we assume � 2 R(n�1)�dto be a squared upper triangular matrix of rank n� 1; hen
e d = n� 1:(iii) The ri are taken to be 
onstant, that is ri � r; and the matrix � isdetermined as the time independent upper triangular solution 
 of the
ovarian
e 
ondition (13) or (14), depending on the readers preferen
e.11



(iv) Re
all that vk(0) � �k � 1; 1 � k < n:For the Libor dynami
s stru
tured in the above way we thus haved lnLi(t) = �12 "(1� r2) j
ij2 + r2 n�1Xk=i 
2ikvk# dt+p1� r2
>i dW (i+1)+ r n�1Xk=i 
ikpvkdfW (i+1)k ; 1 � i < n; (34)where for i = n� 1 the dynami
s of vn�1 is given by (16), and for i < n� 1 thedynami
s of vk ; i � k < n; is approximately given by (19).We will 
alibrate the stru
ture to pri
es of 
aplets a

ording to the followingroadmap.1. First step i = n � 1. Calibrate r and the parameter set (�n�1 ; �n�1 =1 ; �n�1 ; �n�1 ) to the Tn�1 
olumn of the 
ap-strike matrix via (33) usingthe expli
itly known 
hara
teristi
 fun
tion 'n of ln[Ln�1(Tn�1)=Ln�1(0)℄(see Appendix (8.0.1)).2. For i = n� 2 down to 1 
arry out the next iteration step:3. The k-th step i = n�k:Transform the yet known parameter set (�j ; �j ; �j)i < j < n ; via (20) and (21) into the 
orresponding set(�(i+1)j ; �(i+1)j ; �(i+1)j ; �(i+1)j ); i < j < n: By the upper triangular stru
-ture of the square matrix 
 we obviously have �(i+1)i = �i; hen
e by(21) �(i+1)i = 1: Then 
alibrate the at this stage unknown parameter set(�i; �i; �i ) to the Ti 
olumn of the 
ap-strike matrix via (33) using theexpli
itly known 
hara
teristi
 fun
tion 'i+1 of ln[Li(Ti)=Li(0)℄ under theapproximation (17)-(19) (see Appendix (8.0.1)).The above 
alibration algorithm in
ludes at ea
h step, as usual, the minimiza-tion of some obje
tive fun
tion. As su
h fun
tion we take the weighted sumof squares of the 
orresponding di�eren
es between observed market pri
es andpri
es indu
ed by the model. The weights are taken to be proportional to Bla
k-S
holes vegas. As an initial values for the lo
al optimization routine at timestep i+ 1 the values of estimated parameters at time step i are used.6 Calibration to swaption pri
esA European swaption over a period [Tp; Tq℄ gives the right to enter at Tp intoan interest rate swap with strike rate K. The swaption value at time t � Tp is12



given by Swpnp;q(t) = Bp;q(t)EFtp;q(Sp;q(Tp)�K)+:Sin
e the approximative model (26)-(27) for Sp;q has an aÆne stru
ture with
onstant 
oeÆ
ients one 
an write down the 
hara
teristi
 fun
tion of Sp;q ana-lyti
ally under Pp;q and follow the lines of the previous se
tion to 
alibrate themodel.Remark 2 Due to the 
ovarian
e restri
tions (13)-(14), one 
an expe
t thatthe model pri
es of ATM swaptions are not far from market pri
es be
ause ourmodel employs a 
ovarian
e stru
ture of LMM 
alibrated to the market pri
es ofATM swaptions.7 Calibration to real dataIn this se
tion we 
alibrate the model (17)-(19) to market data available on14.08.2007. The 
aplet-strike volatility matrix is partially shown in Table 1.The 
orresponding implied volatility surfa
e is shown in Figure 1.
Te

no
rs

Strikes

C
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Figure 1: Caplet implied volatility surfa
e �KT .13



T/K 2 2.25 2.5 3 3.5 40 24.80 22.60 21.00 18.50 14.90 10.600.5 24.80 22.60 21.00 18.50 14.90 10.601.0 22.71 20.81 19.45 17.25 14.90 12.471.5 20.62 19.02 17.89 16.01 14.90 14.342 21.31 19.59 18.51 16.67 15.40 14.632.5 21.99 20.17 19.13 17.34 15.91 14.923.0 21.72 20.27 19.21 17.40 15.99 14.983.5 21.45 20.37 19.29 17.46 16.08 15.054.0 20.85 20.26 19.17 17.44 16.01 15.064.5 20.23 20.15 19.04 17.43 15.95 15.065.0 20.46 19.92 18.87 17.15 15.71 14.785.5 20.69 19.69 18.69 16.87 15.48 14.496.0 20.92 19.46 18.51 16.59 15.25 14.226.5 21.16 19.22 18.33 16.31 15.01 13.937.0 20.81 19.09 18.15 16.21 14.92 13.887.5 20.46 18.95 17.97 16.11 14.82 13.828.0 20.11 18.82 17.78 16.01 14.72 13.768.5 19.75 18.68 17.60 15.91 14.62 13.709.0 19.40 18.54 17.41 15.81 14.52 13.64Table 1: Caplet volatilities �KT (in %) for di�erent strikes and di�erent tenordates (in years).Pronoun
ed smiles are 
learly observable. Due to the stru
ture of the givendata we are going to 
alibrate the jump di�usion model based on semi-annualtenors, i.e. Æj � 0:5; with n = 41; and where the initial 
alibration date14.08.2007 is identi�ed with T0 = 0.In a pre-
alibration a standard market model is 
alibrated to ATM 
aps andATM swaptions using S
hoenmakers (2005). However, we emphasize that themethod by whi
h this input market model is obtained is not essential nor adis
ussion point for this paper. For the pre-
alibration we have used a volatilitystru
ture of the form
i(t) = 
ig(Ti � t)ei; 0 � t � Ti; 1 � i < n;where g is a simple parametri
 fun
tion and ei are unit ve
tors. The pre-
14




alibration routine returns ei 2 Rn�1 su
h that (ei;k) is upper triangular ande>i ej = �ij = exp��jj � ijm� 1 (� ln �1�� i2 + j2 + ij �mi�mj � 3i� 3j + 3m+ 2(m� 2)(m� 3) �� ; (35)i; j = 1; : : : ;m := n� 1; 0 � � � � ln �1;with n = 41; �1 = 0:23; � = 1:42: The fun
tion g is given byg(s) = g1 + (1� g1 + as)e�bs:with a = 0:32; b = 0:07; and g1 = 0:58. The loading fa
tors 
i 
an be readily
omputed from(�ATMTi )2Ti = 
2i Z Ti0 g2(s) ds; i = 1; : : : ; n� 1;using the initial Libor 
urve, whi
h is obtained by a standard stripping pro
edurefrom the yield 
urve at 14.08.2007. Table 2 shows the 
alibrated values of 
i.Finally, the 
alibration pro
edure presented in Se
tion 5 delivers the following1 2 3 4 5 6 7 8 9 100.096 0.090 0.101 0.111 0.106 0.101 0.099 0.097 0.092 0.08711 12 13 14 15 16 17 18 19 200.084 0.081 0.078 0.076 0.073 0.071 0.068 0.066 0.064 0.06221 22 23 24 25 26 27 28 29 300.060 0.059 0.058 0.057 0.056 0.055 0.054 0.0534 0.0526 0.051831 32 33 34 35 36 37 38 39 400.051 0.050 0.050 0.049 0.049 0.048 0.049 0.048 0.047 0.047Table 2: The values of loadings fa
tors 
i 
alibrated to ATM 
aplets volatilities.parameter values: r = 0:18 and �; �; � varying a
ross several 
hosen maturitiesas shown in Table 3. The quality of the 
alibration 
an be seen in Figure 2, whereTenor 20 19 18 17� -0.7832 -0.7832 -0.7832 -0.7832� 7.4920 7.4920 6.2427 5.0198� 2.3376 2.3376 3.9385 4.5590Table 3: Parameters estimates for 
hosen tenors.15
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Figure 2: Caplet volas from the 
alibrated model (solid lines) and market 
apletsvolas �KT (dashed lines) for di�erent 
aplet periods.
alibrated volatility 
urves are shown for several 
aplet periods (
orrespondingto Table 7) together with the market 
aplet volas. The overall relative root-mean-square �t we have rea
hed shows to be 0.5%-5%, when the 
aplet maturityranges from 0.5 to 20.8 Appendix8.0.1 The Conditional Chara
teristi
 Fun
tionWe need to determine the 
onditional 
hara
teristi
 fun
tion of lnLj(T ) givenLj(0) for all j = 1; :::; n� 1: under the relevant measure Pj+1 when the HestonCIR-pro
ess has for ea
h 
omponent k = 1; :::; n� 1 the general formdvk = �(j+1)k (�(j+1)k � vk)dt+ �k�kpvkdfW (j+1)k + �kq(1� �2k)pvkdW (j+1)k ;(36)16



In this 
ase and a forward Libor dynami
 given by (34) , with general v 2 Rn�1 ,the solution is of the form'j+1(z ;T; l; v) = Ej+1 heiz lnLj(T )���Lj(0) = l; vk(0) = vk; k = 1; :::; n� 1i= 'j+1;0 (z ;T ) exp(iz ln l) n�1Yk=j 'j+1;k (z;T ) (37)where'j+1;0(z ;T ) = exp��12(1� r2)�2j (T ) �z2 + iz�� ; �2j (T ) = Z T0 j
j j2 dtand ea
h 'j+1;k (z ;T ) = 'j+1;k (z ;T; l; vk) satis�es the paraboli
 equation�'j+1;k�T = �(j+1)k (�(j+1)k � vk)�'j+1;k�vk � 12r2
2jkvk �'j+1;k�l + 12�2kvk �2'j+1;k�v2k+ 12r2
2jkvk �2'j+1;k�l2 + �k�kr
jkvk �2'j+1;k�vk�lwith the terminal 
ondition 'j+1;k(z ; 0; l; vk) = 1;as 
an be easily veri�ed by the Feynman-Ka
 formula.Sin
e 
j are 
onstant, the above equation 
an be solved expli
itly. The ansatz'j+1;k(z;T; l; vk) = exp (Aj;k(z;T ) + vkBj;k(z;T ))will yieldAj;k(z;T ) = �(j+1)k �(j+1)k�2k �(aj;k + dj;k)T � 2 ln �1� gj;kedj;kT1� gj;k ��Bj;k(z;T ) = (aj;k + dj;k)(1� edj;kT )�2k(1� gj;kedj;kT ) ;where aj;k = �(j+1)k � ir�k�k
jkzdj;k =qa2j;k + r2
2jk�2k(z2 + iz)gj;k = aj;k + dj;kaj;k � dj;k :Note that the �rst lower index j + 1 at the 
hara
teristi
 fun
tion refers tothe measure, whereas the �rst index j at the introdu
ed 
oeÆ
ients refers to17



relevant forward Libor. The se
ond index refers to the 
omponent.It is again the 
hoi
e of 
 that enables the produ
t in (37) to be startet at j.This 
ru
ial feature will show to be bene�
ial in the 
alibration part. Whenj = n�1, for example, only the last ln-Libor will 
ontribute a non-trivial fa
torto the 
hara
teristi
 fun
tion. For all others we have'n;k � 1 ; k = 1; :::; n� 2 :8.0.2 CIRConsider a CIR model of the formdv(t) = �(� � v(t))dt + �pv(t)dW (t); �; �; � > 0:Given v(u), v(t) with t > u is distributed with density��2d(�x; �)where �2d(x; �) is the density of a non
entral 
hi-square random variable with ddegrees of freedom and non
entrality parameter � and� = 4��2(1� e��(t�u))� = 4�e��(t�u)�2(1� e��(t�u))v(u)d = 4���2 :The 
onditional mean of v(t) is given byE(v(t)jv(u)) = ��1(� + d) = (v(u)� �)e��(t�u) + �and the 
onditional se
ond moment isE(v2(t)jv(u)) = (2(d+ 2�) + (� + d)2)�2= �1 + 2d� [E(v(t)jv(u))℄2 � 2de�2�(t�u)v2(u):8.0.3 Measure Invarian
eWhy is dW (n;i+1)k invariant under the various measures?See Jamshidian for the 
ompensator, whi
h is given by�i+1W (n)k = hW (n)k ; lnMi:18



with M = �n�1j=i+1(1 + ÆLj):That is, we havehW (n)k ; lnMi = dW (n)k d lnM = dW (n)k d0� n�1Xj=i+1 ln (1 + ÆLj)1A= n�1Xj=i+1 dW (n)k d ln(1 + ÆLj)= n�1Xj=i+1 ÆLj1 + ÆLj dW (n)k d lnLjA 
loser look at (15) reveils that all terms are negligible, sin
e of higher orderthan dt, or zero due to independen
e of W and W or fW , respe
tively. We thushave hW (n)k ; lnMi = 0or in other words, as indi
ated by dW (n;i+1)k :dW (n)k = dW (i+1)k :Analoguosly we obtain by ex
hanging W k with fWk thathfW (n)k ; lnMi = dfW (n)k d lnM= n�1Xj=i+1 ÆLj1 + ÆLj dfW (n)k d lnLj= n�1Xj=i+1 rÆLj1 + ÆLj �jkqvkt dt
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