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volatility models are popular due to their eonomially meaningful behavior,and the greater exibility they o�er ompared to loal volatility models for in-stane. For loal volatility Libor models we refer to Brigo and Merurio (2006).Jump-di�usion models for assets go bak to Merton (1976) and Eberlein (1998).Jamshidian (2001) developed a general semimartingale framework for the Liborproess whih overs the possibility of inorporating jumps as well as stohas-ti volatility. Spei� jump-di�usion Libor models are proposed, among oth-ers, by Glasserman and Kou (2003) and Belomestny and Shoenmakers (2006).Levy Libor models are studied by Eberlein and �Ozkan (2005). Inorporation ofstohasti volatility has been proposed by Andersen and Brotherton-Ratli�e(2001), Piterbarg (2004), Wu and Zhang (2006), Zhu (2007).In the present artile we fous on a exible partiularly strutured Hestontype stohasti volatility Libor model that, due to its very onstrution, an bealibrated to the ap/strike matrix in a robust way. In this model we inorporatea ore idea from Belomestny and Shoenmakers (2006), who propose a jump-di�usion Libor model as a perturbation of a given input Libor market model. Asa main issue, Belomestny and Shoenmakers (2006) furnish the jump-di�usionextension in suh a way that the (loal) ovariane struture of the extendedmodel oinides with the (loal) ovariane struture of the market model. Theapproah of perturbing a given market model while preserving its ovarianestruture, has turned out to be fruitfull and is arried over into the design ofthe stohasti volatility Libor model presented in this paper. In fat, this idea issupported by the following arguments (see also Belomestny and Shoenmakers(2006)).1. Cap pries do not depend on the (loal) orrelation struture of forwardLibors in a Libor market model but, typially, do depend only weakly onthis in a more general model. Sine this orrelation struture ontainsimportant information about, for example, pries of ATM swaptions, wedo not want to destroy this (input) orrelation struture while alibratingthe extended model to the ap(let)-strike matrix.2. The lak of smile behavior of a Libor market model is onsidered a onse-quene of Gaussianity of the driving random soures (Wiener proesses).Therefore we want to perturb this Gaussian randomness to a non-Gaussianone by inorporating a CIR volatility proess, while maintaining the (lo-al) orrelation struture of the Libor market model we started with.3. Preserving the orrelation struture allows for robust alibration, sineit signi�antly redues the number of parameters to be alibrated whileholding a realisti orrelation struture.Spei�ally, the perturbation part of the presented model will involve CIRvolatility proesses, and so the onstrution will �nally resemble a Heston typeLibor model (Heston (1993)). The CIR model, as developed by its foundersCox, Ingersoll, Ross (1985), was originally derived in a framework based onequilibrium assumptions. 2



The idea of utilizing a Heston type proess has already been formulated inWu and Zhang (2006), and Zhu (2007). However, the present artile di�ers fromthese works in the following respets.1. As opposed to a one-dimensional stohasti volatility proess as in Wu &Zhang, or a (possibly) vetor valued one whih inhibits only one soureof randomness as in Zhu (2007), we will study multi-dimensional CIRvetor volatility proesses with eah omponent being driven by its ownBrownian motion. This leads to a more realisti loal orrelation strutureand renders the model more exible for alibration.2. We suggest a multi-dimensional partial-Gaussian and partial-Heston typemodel, where eah forward Libor is driven by a linear ombination of CIRproesses.3. While in both papers the issue of robust alibration has not been ad-dressed, we give full onsideration to this problem using novel ideas men-tioned above.Furthermore, approximative analyti priing formulas for aplets and swaptionsare derived for this new Libor model whih allow for fast alibration to theseproduts. Ultimately, omplex strutured Over The Counter produts may bepried by Monte Carlo using guidelines for simulating Heston type models asgiven in Kahl and J�akel (2006).2 Dynamis of the Libor ModelConsider a �xed sequene of tenor dates 0 =: T0 < T1 < : : : < Tn, alleda tenor struture, together with a sequene of so alled day-ount frationsÆi := Ti+1�Ti; i = 1; : : : ; n�1. With respet to this tenor struture we onsiderzero bond proesses Bi; i = 1; : : : ; n; where eah Bi lives on the interval [0; Ti℄and ends up with its fae value Bi(Ti) = 1. With respet to this bond systemwe dedue a system of forward rates, alled Libor rates, whih are de�ned byLi(t) := 1Æi � Bi(t)Bi+1(t) � 1� ; 0 � t � Ti; 1 � i � n� 1:Note that Li is the annualized e�etive forward rate to be ontrated at thedate t, for a loan over a forward period [Ti; Ti+1℄. Based on this rate one has topay at Ti+1 an interest amount of $ÆiLi(Ti) on a $1 notional.For a pre-spei�ed volatility proess i 2 Rm ; adapted to the �ltration gen-erated by some standard Brownian motion W 2 Rm ; the dynamis of the or-responding Libor model have the form,dLiLi = (:::)dt + >i dW (1)i = 1; :::; n�1: The drift term, adumbrated by the dots, is known under di�erentnumeraire measures, suh as the risk-neutral, spot, terminal and all measures3



indued by individual bonds taken as numeraire. If the proesses t ! i(t) in(1) are deterministi, one speaks of a Libor market model.In this work we study extensions of a Libor market model, whih is givenvia a deterministi volatility struture ; with respet to an extended Brownian�ltration. In partiular, we onsider extensions with the following struture,dLiLi = (:::)dt +q1� r2i >i dW + ri�>i dU; 1 � i < n; (2)dUk = pvkdfWk 1 � k � d;dvk = �k(�k � vk)dt+ �kpvk ��kdfWk +q1� �2kdW k� ; (3)where fW and W are mutually independent d-dimensional standard Brownianmotions, both independent of W . In (2), �i 2 Rd are hosen to be deterministivetor funtions. They will be spei�ed later. The ri are onstants that maybe onsidered "allotment" or "proportion" fators, quantifying how muh of theoriginal input market model should be in play. For ri = 0 for all i, it is easily seenfrom (2) that the lassial market model is retrieved. As suh, for small valuesof the ri; the extended model may be regarded as a perturbation of the former.Finally, from a modeling point of view system (2) is obviously overparameterizedin the following sense. By setting �ik =: �k e�ik and vk =: ��2k evk, �k =: ��2k e�k;�k =: ��1k e�k; we retrieve exatly the same model. From now on we thereforenormalize by setting �k � 1 without loss of generality.It is helpful to think of the Libor model as a vetor-valued stohasti proess ofdimension n � 1 driven by m + 2d standard Brownian motions with dynamisof the form dLiLi = (:::)dt+ �>i dW ; i = 1; :::; n� 1;where �i = 0BBBBBBBBBBBB�
p1� r2i i1p1� r2i i2��p1� r2i imri�i1pv1��ri�idpvd

1CCCCCCCCCCCCA dW = 0BBBBBBBBBBBB�
dW1dW2��dWmdfW1��dfWd

1CCCCCCCCCCCCA : (4)
In (4) the square-root proesses vk are given by (3) (with �k � 1).In our approah we will work throughout under the terminal measure Pn. Fol-lowing Jamshidian (1997, 2001), the Libor dynamis in this measure are given4



by dLiLi = � n�1Xj=i+1 ÆLj1 + ÆLj  m+dXk=1 �jk�ik! dt+ �>i dW(n): (5)Often it turns out tehnially more onvenient to work with the log-Libor dy-namis. A straightforward appliation of Itô's lemma to (5) yields,d lnLi = �12 j�ij2dt� n�1Xj=i+1 ÆLj1 + ÆLj  m+dXk=1 �jk�ik! dt+ �>i dW(n); 1 � i < n:(6)3 Redution of parameters by ovariane assump-tionWithin the partiular framework onstruted above, one ould interpret theseond di�usion part in (2), namely ri�>i dU , as an extension or perturbation ofa given Libor market model.Let us integrate the di�usion part of (6) from zero to t and de�ne the resultingzero-mean random variable by�i(t) := Z t0 �>i dW(n): (7)Reall that i 2 Rm is the (given) deterministi volatility struture of theinput market model obtained by some alibration proedure to ATM aps andATM swaptions. We assume further that the matrix (i;j(t))1�i<n;1�j�m hasfull rank m for all t. The deterministi vetor funtions �i 2 Rd will allowadditional degrees of freedom for the upoming �tting to the volatility urve.We will now see that under the ovariane assumption we will have to restritourselves to spei�ed values for the �i.For the ovariane funtion of �i(t) in the terminal measure we obtainEn(�i(t)�j(t)) =q1� r2iq1� r2j Z t0 >i jds+ rirjEn Z t0 �>i dU � Z t0 �>j dU=q1� r2iq1� r2j Z t0 >i jds+ rirj dXk=1En Z t0 �ik�jk dhUki=q1� r2iq1� r2j Z t0 >i jds+ rirj dXk=1 Z t0 �ik�jk Envk ds=:q1� r2iq1� r2j Z t0 >i jds+ rirj Z t0 �>i �(t)�j ds (8)5



where �(t) denotes a diagonal matrix in Rd�d whose elements are the expetedvalues �k = Envk 2 R:The square-root di�usions in (2) have a limiting stationary distribution. Thetransition law of the general CIR proessv(t) = v(u) + Z tu ��(� � v(s))ds+ �pv(s)dW (s)� ;is known. In partiular, we have the representationv(t) = �2 �1� e��(t�u)�4� �2�;; t > u;where �2�; is a nonentral hi-square random variable with � degrees of freedomand nonentrality ; where� := 4���2 ;  := 4�e��(t�u)�2 �1� e��(t�u)�v(u):For the expetation we haveE[v(t) j Fu℄ = (v(u)� �)e��(t�u) + �; t � u; (9)e.g. see Glasserman (2003) for details. It is natural to take the limit expetationas the starting value of the proess. Thus, we setvk(0) = �k = 1; for k = 1; : : : ; d;to obtain Evk(t) � 1; hene � = I is onstant.Let us now introdue the ovariane restrition mentioned in the introdution,whih will be in fat a modi�ed version of the ovariane restrition in Be-lomestny and Shoenmakers (2006). In the latter artile one requires (in ajump-di�usion ontext) En(�i(t)�j(t)) = Z t0 >i jds: (10)In view of (8) and as a next simpli�ation, we set ri � r; to yield from (10),Z t0 >i jds = Z t0 �>i �jds; (11)whih is obviously satis�ed by taking � � ; and then, in partiular, we haved = m: However, in order to obtain losed-form expressions for harateristifuntions later on, we would like �(t) to be pieewise onstant in time. For abetter tratability we even assume �(t) to be time independent. In either ase6



this means that (11) has to be relaxed. As a �rst relaxation of (11) we requireonly Z Tk0 >i jdt = Z Tk0 �>i �jdt; k � min(i; j); (12)whih an be satis�ed by taking �(t) suitably pieewise onstant. Unfortunately,for time independent �, (12) an still not be mathed in general. As a pragmatisolution for this ase, we therefore relax (12) further to�>i �j = 1min(i; j) min(i;j)Xk=1 1Tk Z Tk0 >i jdt; (13)or as an alternative, �>i �j = 1Tmin(i;j) Z Tmin(i;j)0 >i jdt: (14)It an be shown that in both ases the matrix (�>i �j) is positive de�nite and sode�nes a ovariane struture.Of ourse there are further variations possible. Note that even when m <n�1; exat �tting of (13) or (14), respetively, may require d = n�1: Dependingon the readers preferenes however, one may hoose any d; d < n� 1, and then�t (13) or (14) after dimension redution via prinipal omponent analysis ofthe respetive symmetri right-hand-sides.4 Dynamis under various measures4.1 Dynamis under forward measuresSo far the Libor dynamis have been onsidered under the terminal measure.In order to prie aplets later on, however, we will need to represent the aboveproess under various forward measures. In what follows we denote the timeindependent solution for � of either (13), (14), or any other sensible hoie ofthe reader for the ovariane onstraint, by  2 R(n�1)�d : Thus, spelling out(5) with ri � r yieldsdLiLi = � n�1Xj=i+1 ÆjLj1 + ÆjLj "(1� r2)>i j + r2 dXk=1 ikjkvk# dt+p1� r2>i dW (n) + r dXk=1pvkikdfW (n)k (15)with orresponding volatility proessesdvk = �k(1� vk)dt+ �kpvk ��kdfW (n)k +q1� �2kdW (n)k � ; (16)7



under the measure Pn: By rearranging terms we may write,dLiLi =p1� r2>i 0�dW (n) �p1� r2 n�1Xj=i+1 ÆjLj1 + ÆjLj jdt1A+ r dXk=1 ikpvk0�dfW (n)k � r n�1Xj=i+1 ÆjLj1 + ÆjLj jkpvkdt1A=:p1� r2>i dW (i+1) + r dXk=1 ikpvkdfW (i+1)k : (17)Sine Li is a martingale under Pi+1, we have that both W (i+1) and fW (i+1)in (17) are standard Brownian motions under Pi+1. In terms of these newBrownian motions the volatility dynamis beomesdvk = �k(1� vk)dt+ r�k�k n�1Xj=i+1 ÆjLj1 + ÆjLj jkvkdt+ �k�kpvkdfW (i+1)k +q1� �2k�kpvkdW (n;i+1)k : (18)As shown in the Appendix, the proess W (n;i+1) in (18) is standard Brownianmotion under both measures Pi+1 and Pn:By freezing the Libors at their initial values in (18), we obtain an approxi-mative CIR dynamisdvk � �(i+1)k ��(i+1)k � vk� dt+ �kpvk ��kdfW (i+1)k +q1� �2kdW (i+1)k � (19)with reversion speed parameter�(i+1)k := �k � r�k�k n�1Xj=i+1 ÆjLj(0)1 + ÆjLj(0)jk; (20)and mean reversion level �(i+1)k := �k�(i+1)k : (21)The approximative dynamis (19) for the volatility proess will be used foralibration in Setion 5.4.2 Dynamis under swap measuresAn interest rate swap is a ontrat to exhange a series of oating interestpayments in return for a series of �xed rate payments. Consider a series of8



payment dates between Tp+1 and Tq ; q > p. The �xed leg of the swap pays ÆjKat eah time Tj+1; j = p; : : : ; q�1 where Æj = Tj+1�Tj . In return, the oatingleg pays ÆjLj(Tj) at time Tj+1, where Lj(Tj) is the rate �xed at time Tj forpayment at Tj+1. Thus, the time t value of the interest rate swap isq�1Xj=p ÆjBj+1(t)(Lj(t)�K):The swap rate Sp;q(t) is the value of the �xed rate K, suh that the presentvalue of the ontrat is zero, hene after some rearrangingSp;q(t) = Pq�1j=p ÆjBj+1(t)Lj(t)Pq�1j=p ÆjBj+1(t) = Bp(t)�Bq(t)Pq�1j=p ÆjBj+1(t) : (22)So Sp;q is a martingale under the probability measure Pp;q , indued by theannuity numeraire Bp;q =Pq�1j=p ÆjBj+1(t). Therefore we may writedSp;q(t) = �p;q(t)Sp;q(t)dW(p;q)(t); (23)where dW(p;q)(t) is standard Brownian motion under Pp;q . From (22) we see thatthe swap rate an be expressed as a weighted sum of the onstituent forwardsrates, Sp;q(t) = q�1Xj=pwj(t)Lj(t)with wj(t) = ÆjBj+1(t)Bp;q :An appliation of Ito's Lemma yieldsdSp;q(t) = q�1Xj=p �Sp;q(t)�Lj(t) dLj(t) + q�1Xj=p q�1Xi=p �2Sp;q�Lj(t)�Li(t)dLj(t)dLi(t)= q�1Xj=p �Sp;q(t)�Lj(t) Lj(t)�>j hdW(n) + (: : :)dti : (24)Equating (23) and (24), givesdSp;q(t) = Sp;q(t)24q�1Xj=p �j(t)�>j 35 dW(p;q)(t)with W(p;q) = (W (p;q);fW (p;q)) and�j(t) := �Sp;q(t)�Lj(t) Lj(t)Sp;q(t) :9



The hange of measure from W(n) to W(p;q) an be found in Shoenmakers(2005). In partiular,dW (p;q) = dW (n) �p1� r2 q�1Xi=p wi n�1Xj=i+1 ÆjLj1 + ÆjLj jdtand dfW (p;q) = dfW (n)k � r q�1Xi=p wi n�1Xj=i+1 ÆjLj1 + ÆjLj jkpvkdt:In terms of these new Brownian motions the volatility proesses read,dvk = �k(1� vk)dt+ r�k�k q�1Xi=p wi(t) n�1Xj=i+1 ÆjLj1 + ÆjLj jkvkdt+ �k�kpvkdfW (p;q)k +q1� �2k�kpvkdW (p;q;n)k : (25)As shown in the Appendix, the proess W (p;q;n) in (25) is standard Brownianmotion under both measures Pp;q and Pn: Assuming now that �Sp;q(t)�Lj(t) and Lj(t)Sp;q(t)are approximately onstant in time, we freeze the weights at their initial timet = 0. Then the swap rate dynami is approximately given bydSp;q(t) � Sp;q(t)24q�1Xj=p �j(0)�>j 35 dW(p;q)(t): (26)Similarly, freezing the Libors in the drift term of (25) leads to an approximatedvolatility proess vk given bydvk � �(p;q)k ��(p;q)k � vk� dt+ �kpvk ��kdfW (p;q)k +q1� �2kdW (p;q;n)k � (27)with reversion speed parameter�(p;q)k := �k � r�k�k q�1Xi=p wi(0) n�1Xj=i+1 ÆjLj(0)1 + ÆjLj(0)jk ; (28)and mean reversion level �(p;q)k := �k�(p;q)k : (29)5 Calibration to Caplet priesA aplet for the period [Tj ; Tj+1℄ with strike K is an option that pays (Lj(Tj)�K)+Æj at time Tj+1, where 1 � j < n: It is well-known that under the forwardmeasure Pj+1 the j-th aplet prie at time zero is given byCj(K) = ÆjBj+1(0)Ej+1(Lj(Tj)�K)+:10



Thus, under Pj+1 the j-th aplet prie is determined by the dynamis of Lj only.The FFT-method of Carr and Madan (1999) an be straightforwardly adaptedto the aplet priing problem as done in Belomestny and Shoenmakers (2006).We here reap the main results.In terms of the log-moneyness variablev := ln KLj(0) (30)the j-th aplet prie an be expressed asCj(v) := Cj(evLj(0)) = ÆjBj+1(0)Lj(0)Ej+1 �eXj (Tj) � ev�+ ;where Xj(t) = lnLj(t)� lnLj(0): One then de�nes the auxiliary funtionOj(v) := Æ�1j B�1j+1(0)L�1j (0)Cj(v)� (1� ev)+ (31)and an show the following proposition.Proposition 1 For the Fourier transform of the funtion Oj de�ned above and'j+1(�; t) denoting the harateristi funtion of the proess Xj(t) under Pj+1we have F fOjg (z) = Z 1�1Oj(v)eivzdv = 1� 'j+1(z � i;Tj)z(z � i) : (32)The proof an be found in Belomestny/Rei� (2006). Next, ombining (30),(31), and (32) yieldsCj(K) = ÆBj+1(0) (Lj(0)�K)+ (33)+ ÆBj+1(0)Lj(0)2� Z 1�1 1� 'j+1(z � i;Tj)z(z � i) e�iz ln KLj (0) dz:We now outline a alibration proedure for the Libor struture (2), under thefollowing additional assumptions.(i) The input market Libor volatility struture  2 R(n�1)�m is assumed tobe of full rank, that is m = n� 1: (Stritly speaking it would be enoughto require the right-hand-sides of (13) or (14) to be of full rank.)(ii) The terminal log-Libor inrement d lnLn�1 is inuened by a single sto-hasti volatility shok dUn�1, the one but last, hene d lnLn�2; by onlydUn�1 and dUn�2, and so forth. Put di�erently, we assume � 2 R(n�1)�dto be a squared upper triangular matrix of rank n� 1; hene d = n� 1:(iii) The ri are taken to be onstant, that is ri � r; and the matrix � isdetermined as the time independent upper triangular solution  of theovariane ondition (13) or (14), depending on the readers preferene.11



(iv) Reall that vk(0) � �k � 1; 1 � k < n:For the Libor dynamis strutured in the above way we thus haved lnLi(t) = �12 "(1� r2) jij2 + r2 n�1Xk=i 2ikvk# dt+p1� r2>i dW (i+1)+ r n�1Xk=i ikpvkdfW (i+1)k ; 1 � i < n; (34)where for i = n� 1 the dynamis of vn�1 is given by (16), and for i < n� 1 thedynamis of vk ; i � k < n; is approximately given by (19).We will alibrate the struture to pries of aplets aording to the followingroadmap.1. First step i = n � 1. Calibrate r and the parameter set (�n�1 ; �n�1 =1 ; �n�1 ; �n�1 ) to the Tn�1 olumn of the ap-strike matrix via (33) usingthe expliitly known harateristi funtion 'n of ln[Ln�1(Tn�1)=Ln�1(0)℄(see Appendix (8.0.1)).2. For i = n� 2 down to 1 arry out the next iteration step:3. The k-th step i = n�k:Transform the yet known parameter set (�j ; �j ; �j)i < j < n ; via (20) and (21) into the orresponding set(�(i+1)j ; �(i+1)j ; �(i+1)j ; �(i+1)j ); i < j < n: By the upper triangular stru-ture of the square matrix  we obviously have �(i+1)i = �i; hene by(21) �(i+1)i = 1: Then alibrate the at this stage unknown parameter set(�i; �i; �i ) to the Ti olumn of the ap-strike matrix via (33) using theexpliitly known harateristi funtion 'i+1 of ln[Li(Ti)=Li(0)℄ under theapproximation (17)-(19) (see Appendix (8.0.1)).The above alibration algorithm inludes at eah step, as usual, the minimiza-tion of some objetive funtion. As suh funtion we take the weighted sumof squares of the orresponding di�erenes between observed market pries andpries indued by the model. The weights are taken to be proportional to Blak-Sholes vegas. As an initial values for the loal optimization routine at timestep i+ 1 the values of estimated parameters at time step i are used.6 Calibration to swaption priesA European swaption over a period [Tp; Tq℄ gives the right to enter at Tp intoan interest rate swap with strike rate K. The swaption value at time t � Tp is12



given by Swpnp;q(t) = Bp;q(t)EFtp;q(Sp;q(Tp)�K)+:Sine the approximative model (26)-(27) for Sp;q has an aÆne struture withonstant oeÆients one an write down the harateristi funtion of Sp;q ana-lytially under Pp;q and follow the lines of the previous setion to alibrate themodel.Remark 2 Due to the ovariane restritions (13)-(14), one an expet thatthe model pries of ATM swaptions are not far from market pries beause ourmodel employs a ovariane struture of LMM alibrated to the market pries ofATM swaptions.7 Calibration to real dataIn this setion we alibrate the model (17)-(19) to market data available on14.08.2007. The aplet-strike volatility matrix is partially shown in Table 1.The orresponding implied volatility surfae is shown in Figure 1.
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T/K 2 2.25 2.5 3 3.5 40 24.80 22.60 21.00 18.50 14.90 10.600.5 24.80 22.60 21.00 18.50 14.90 10.601.0 22.71 20.81 19.45 17.25 14.90 12.471.5 20.62 19.02 17.89 16.01 14.90 14.342 21.31 19.59 18.51 16.67 15.40 14.632.5 21.99 20.17 19.13 17.34 15.91 14.923.0 21.72 20.27 19.21 17.40 15.99 14.983.5 21.45 20.37 19.29 17.46 16.08 15.054.0 20.85 20.26 19.17 17.44 16.01 15.064.5 20.23 20.15 19.04 17.43 15.95 15.065.0 20.46 19.92 18.87 17.15 15.71 14.785.5 20.69 19.69 18.69 16.87 15.48 14.496.0 20.92 19.46 18.51 16.59 15.25 14.226.5 21.16 19.22 18.33 16.31 15.01 13.937.0 20.81 19.09 18.15 16.21 14.92 13.887.5 20.46 18.95 17.97 16.11 14.82 13.828.0 20.11 18.82 17.78 16.01 14.72 13.768.5 19.75 18.68 17.60 15.91 14.62 13.709.0 19.40 18.54 17.41 15.81 14.52 13.64Table 1: Caplet volatilities �KT (in %) for di�erent strikes and di�erent tenordates (in years).Pronouned smiles are learly observable. Due to the struture of the givendata we are going to alibrate the jump di�usion model based on semi-annualtenors, i.e. Æj � 0:5; with n = 41; and where the initial alibration date14.08.2007 is identi�ed with T0 = 0.In a pre-alibration a standard market model is alibrated to ATM aps andATM swaptions using Shoenmakers (2005). However, we emphasize that themethod by whih this input market model is obtained is not essential nor adisussion point for this paper. For the pre-alibration we have used a volatilitystruture of the formi(t) = ig(Ti � t)ei; 0 � t � Ti; 1 � i < n;where g is a simple parametri funtion and ei are unit vetors. The pre-
14



alibration routine returns ei 2 Rn�1 suh that (ei;k) is upper triangular ande>i ej = �ij = exp��jj � ijm� 1 (� ln �1�� i2 + j2 + ij �mi�mj � 3i� 3j + 3m+ 2(m� 2)(m� 3) �� ; (35)i; j = 1; : : : ;m := n� 1; 0 � � � � ln �1;with n = 41; �1 = 0:23; � = 1:42: The funtion g is given byg(s) = g1 + (1� g1 + as)e�bs:with a = 0:32; b = 0:07; and g1 = 0:58. The loading fators i an be readilyomputed from(�ATMTi )2Ti = 2i Z Ti0 g2(s) ds; i = 1; : : : ; n� 1;using the initial Libor urve, whih is obtained by a standard stripping proedurefrom the yield urve at 14.08.2007. Table 2 shows the alibrated values of i.Finally, the alibration proedure presented in Setion 5 delivers the following1 2 3 4 5 6 7 8 9 100.096 0.090 0.101 0.111 0.106 0.101 0.099 0.097 0.092 0.08711 12 13 14 15 16 17 18 19 200.084 0.081 0.078 0.076 0.073 0.071 0.068 0.066 0.064 0.06221 22 23 24 25 26 27 28 29 300.060 0.059 0.058 0.057 0.056 0.055 0.054 0.0534 0.0526 0.051831 32 33 34 35 36 37 38 39 400.051 0.050 0.050 0.049 0.049 0.048 0.049 0.048 0.047 0.047Table 2: The values of loadings fators i alibrated to ATM aplets volatilities.parameter values: r = 0:18 and �; �; � varying aross several hosen maturitiesas shown in Table 3. The quality of the alibration an be seen in Figure 2, whereTenor 20 19 18 17� -0.7832 -0.7832 -0.7832 -0.7832� 7.4920 7.4920 6.2427 5.0198� 2.3376 2.3376 3.9385 4.5590Table 3: Parameters estimates for hosen tenors.15
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Figure 2: Caplet volas from the alibrated model (solid lines) and market apletsvolas �KT (dashed lines) for di�erent aplet periods.alibrated volatility urves are shown for several aplet periods (orrespondingto Table 7) together with the market aplet volas. The overall relative root-mean-square �t we have reahed shows to be 0.5%-5%, when the aplet maturityranges from 0.5 to 20.8 Appendix8.0.1 The Conditional Charateristi FuntionWe need to determine the onditional harateristi funtion of lnLj(T ) givenLj(0) for all j = 1; :::; n� 1: under the relevant measure Pj+1 when the HestonCIR-proess has for eah omponent k = 1; :::; n� 1 the general formdvk = �(j+1)k (�(j+1)k � vk)dt+ �k�kpvkdfW (j+1)k + �kq(1� �2k)pvkdW (j+1)k ;(36)16



In this ase and a forward Libor dynami given by (34) , with general v 2 Rn�1 ,the solution is of the form'j+1(z ;T; l; v) = Ej+1 heiz lnLj(T )���Lj(0) = l; vk(0) = vk; k = 1; :::; n� 1i= 'j+1;0 (z ;T ) exp(iz ln l) n�1Yk=j 'j+1;k (z;T ) (37)where'j+1;0(z ;T ) = exp��12(1� r2)�2j (T ) �z2 + iz�� ; �2j (T ) = Z T0 jj j2 dtand eah 'j+1;k (z ;T ) = 'j+1;k (z ;T; l; vk) satis�es the paraboli equation�'j+1;k�T = �(j+1)k (�(j+1)k � vk)�'j+1;k�vk � 12r22jkvk �'j+1;k�l + 12�2kvk �2'j+1;k�v2k+ 12r22jkvk �2'j+1;k�l2 + �k�krjkvk �2'j+1;k�vk�lwith the terminal ondition 'j+1;k(z ; 0; l; vk) = 1;as an be easily veri�ed by the Feynman-Ka formula.Sine j are onstant, the above equation an be solved expliitly. The ansatz'j+1;k(z;T; l; vk) = exp (Aj;k(z;T ) + vkBj;k(z;T ))will yieldAj;k(z;T ) = �(j+1)k �(j+1)k�2k �(aj;k + dj;k)T � 2 ln �1� gj;kedj;kT1� gj;k ��Bj;k(z;T ) = (aj;k + dj;k)(1� edj;kT )�2k(1� gj;kedj;kT ) ;where aj;k = �(j+1)k � ir�k�kjkzdj;k =qa2j;k + r22jk�2k(z2 + iz)gj;k = aj;k + dj;kaj;k � dj;k :Note that the �rst lower index j + 1 at the harateristi funtion refers tothe measure, whereas the �rst index j at the introdued oeÆients refers to17



relevant forward Libor. The seond index refers to the omponent.It is again the hoie of  that enables the produt in (37) to be startet at j.This ruial feature will show to be bene�ial in the alibration part. Whenj = n�1, for example, only the last ln-Libor will ontribute a non-trivial fatorto the harateristi funtion. For all others we have'n;k � 1 ; k = 1; :::; n� 2 :8.0.2 CIRConsider a CIR model of the formdv(t) = �(� � v(t))dt + �pv(t)dW (t); �; �; � > 0:Given v(u), v(t) with t > u is distributed with density��2d(�x; �)where �2d(x; �) is the density of a nonentral hi-square random variable with ddegrees of freedom and nonentrality parameter � and� = 4��2(1� e��(t�u))� = 4�e��(t�u)�2(1� e��(t�u))v(u)d = 4���2 :The onditional mean of v(t) is given byE(v(t)jv(u)) = ��1(� + d) = (v(u)� �)e��(t�u) + �and the onditional seond moment isE(v2(t)jv(u)) = (2(d+ 2�) + (� + d)2)�2= �1 + 2d� [E(v(t)jv(u))℄2 � 2de�2�(t�u)v2(u):8.0.3 Measure InvarianeWhy is dW (n;i+1)k invariant under the various measures?See Jamshidian for the ompensator, whih is given by�i+1W (n)k = hW (n)k ; lnMi:18



with M = �n�1j=i+1(1 + ÆLj):That is, we havehW (n)k ; lnMi = dW (n)k d lnM = dW (n)k d0� n�1Xj=i+1 ln (1 + ÆLj)1A= n�1Xj=i+1 dW (n)k d ln(1 + ÆLj)= n�1Xj=i+1 ÆLj1 + ÆLj dW (n)k d lnLjA loser look at (15) reveils that all terms are negligible, sine of higher orderthan dt, or zero due to independene of W and W or fW , respetively. We thushave hW (n)k ; lnMi = 0or in other words, as indiated by dW (n;i+1)k :dW (n)k = dW (i+1)k :Analoguosly we obtain by exhanging W k with fWk thathfW (n)k ; lnMi = dfW (n)k d lnM= n�1Xj=i+1 ÆLj1 + ÆLj dfW (n)k d lnLj= n�1Xj=i+1 rÆLj1 + ÆLj �jkqvkt dt
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