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Abstract

In this paper we introduce efficient Monte Carlo estimators for the val-
uation of high-dimensional derivatives and their sensitivities (”Greeks”).
These estimators are based on an analytical, usually approximative rep-
resentation of the underlying density. We study approximative densities
obtained by the WKB method. The results are applied in the context of
a Libor market model.
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1 Introduction

Valuation methods for high-dimensional derivative products are typically based
on Monte Carlo simulation of the underlying process. The dynamics of the
underlyings are usually given via a (jump-)diffusion SDE. In case of a diffusion
SDE, the underlying process may be simulated using an Euler scheme or a
(weak) second order scheme e.g. see ? ] or ? ]. For simulation of jump-
diffusions see e.g. ? ], and ? ] for simulation of (Libor) interest rate models
with jumps.

The evaluation of option sensitivities, ’Greeks’ in financial terms, comes
down to the the computation of expressions of the form ∂

∂λE(f(Xλ)) (and pos-
sibly higher order derivatives), where f is a pay-off function, X is the state
of an underlying process depending on some parameter λ. For example, the
first and second order derivatives with respect the initial state are called Deltas
and Gammas, respectively. In the literature the evaluation of Greeks has been
treated by several methods (a nice overview about classical and recent literature
is provided in ? ]). Classical finite difference approaches have been studied by
? ], ? ], ? ], ? ], ? ], and ? ]. These approaches are quite general and easy to
implement as they do not require particular knowledge of the distribution of the
underlying. However, they require full blown simulation of the corresponding
system of stochastic differential equations and, in order to be efficient, some
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degree of regularity with respect to the pay-off function. In case the transition
kernel of X is known or known in a good approximation, the latter drawback
can be avoided by differentiating this kernel with respect to the sensitivity pa-
rameter λ, see ? ] and ? ]. The typical difficulty that the distribution of
the underlying is only known for very special cases was overcome by ? ], who
used the Malliavin integration-by-parts formula in order to express Greeks in
the form E(f(Xλ)π), where the random variable π is called a Greek weight. In
a more recent alternative approach ? ] construct Greek estimators which are
based on variance minimizing choices of Greek weights. As a matter of fact,
the Malliavin method does not lead to this optimal weight in general. In order
to avoid straightforward SDE simulation in the context of the Libor market
interest rate model, and so reducing simulation costs, ? ] considered lognormal
approximations for the transition density, whereas ? ], and ? ] propose specific
drift approximations.

In an ideal situation, the density of the underlying process Xλ at a fixed
point in time is known explictly and an efficient method to sample from it
is available. Usually, however, neither of this is true. Even if the transition
density is known, we will show that calculation of sensitivities, based on kernel
differentiation for instance (as in [? ]), may cause problems (high variance) in
case the kernel under consideration is ‘highly peaked ’, for example due to small
maturities, low volatilities, or high dimensionality of the underlying system. In
this paper we therefore choose for a rather general approach with the following
objectives.

• Developing efficient variance bounded probabilistic representations for price
sensitivities, based on an analytical approximation of the underlying den-
sity and a possibly rougher approximative standard density (e.g. a log-
normal density) which is basically used as an importance sampler.

• Construction of a ”good” analytical approximation for the density of the
underlying process by using (convergent) WKB1 methods;

We underline that, in principle, the way of constructing an analytical approx-
imation of the transition density is not essential for the developed Greek esti-
mators. In this article we exploit the use of WKB approximations as a generic
convergent method. In special cases, however, construction of high accuracy
transition kernels may be possible by other means (see [? ] for example).

The structure of the paper is as follows. In Section 2 we set up the model class
for which we exemplify our methods and specify the financial products (includ-
ing Bermudan callables) for which prices and sensitivities are to be determined.
In Section 3 we introduce probabilistic representations for integral functionals of
kernel type and their derivatives. As a particular result we prove that the cor-
responding estimator for the derivatives has non-exploding variance for sharply
peaked kernels in contrast to some existing weighted Monte Carlo schemes. This
estimator thus allows for efficient Monte Carlo estimation of option sensitivi-
ties, in particular with respect to underlyings (Deltas), even in situations where
the densities are sharply peaked (for instance when volatilities are small). The
general probabilistic representations introduced in Section 3 are applied to the

1The historical origin of the name is the work of Wentzel, Kramers, Brioullin in the
context of semiclassical solutions of the Schrödinger equation. The meaning of WKB has
broadened since; nowadays, it refers to analytic expansions of exponential form.
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computation of Deltas for Bermudan callable products in Section 4. Section
5 deals with the WKB-theory of densities of diffusion equations (densities of
processes which have continuous paths). A remark about extensions to analytic
expansions of densities of Feller processes is included. These extensions will be
considered in detail in ? ]. In Section 5.1 we summarize some results concern-
ing pointwise valid WKB-representations of densities obtained in ? ]. Since
in practice only finitely many terms of a WKB expansion can be computed, it
will be necessary to use a truncated form of the WKB-representation for actual
computations. In Section 5.2. we analyze the effect of this truncation error on
approximations of solutions of Cauchy problems and their derivatives.The case
of non-autonomous diffusion models is discussed in Section 5.3. The results of
Sections 2-5 are applied in Section 6 to the Libor market model. In Section 6.1.
we compute explicitly the first three coefficients of the WKB representation of
the Libor model density. In Section 6.2 we compute prices and Deltas in a case
study of European swaptions.

2 Basic setup

Let X = (X1, ..., Xn) be a Markovian process of financial quantities in Rn
+ (R+

:= {x : x > 0}) under a given pricing measure P, connected with a given dis-
counting numeraire B, B > 0, on some filtered probability space. For example,
X may represent a system of asset prices or (Libor) interest rates. A popular
framework for the system (X,B) is, for instance, the class of jump-diffusions
(e.g. ? ]). For simplicity however, we mainly consider in the present article
ordinary diffusions, but, note that the main results generally extend to jump
processes as well (see Remark ?? for example).

With respect to an n-dimensional standard Wiener process W = (W 1, ...,
Wn)> on the probability space (Ω,F , (Ft)t∈[t0,T ], P ), where as usual (Ft) is the
P -augmentation of the filtration generated by W, we assume that X is governed
by the stochastic differential equation (SDE),

dXi

Xi
= µ(t,X)dt+

n∑
j=1

σij(t,X)dW j , 1 ≤ i, j ≤ n. (1)

It is assumed that µ(t, x) and the matrix σ(t, x) =
(
σij(t, x)

)
, t ∈ [t0, T ], x ∈ Rn

+

are such that for all x0 ∈ Rn
+, there exists a unique solution t → Xt ∈ Rn

+ of
(??) for t0 ≤ t ≤ T satisfying Xt0 = x0 =: Xt0,x0

t0 . It is further assumed that
the Markov process X has a transition density

p(t, x, s, y), t0 ≤ s ≤ t ≤ T, x, y ∈ Rn
+, (2)

which is differentiable with respect to x, y, s, and t, up to any order. In order
to guarantee the existence and uniqueness of (??), and the existence of the
transition density (??) as stated, it is sufficient to require that the functions
µ(·, ·) and σ(·, ·) are bounded and have bounded derivatives up to any order,
and that the volatility matrix σ(t, x) is regular with

0 < λ1 ≤
∣∣(σσ>) (t, x)

∣∣ ≤ λ2 (3)

for all (t, x), t ∈ [t0, T ], x ∈ Rn
+, and some 0 < λ1 < λ2 (see for example ? ]).

3



Let us take (w.l.o.g.) B0 = 1 and consider a contingent claim with pay-
off function of the form f (Xτ )Bτ at some (F·)-stopping time τ. By general
arguments (e.g. ? ]), the price of this claim at time t0 is given by

u(t0, x0) = E f(Xt0,x0
τ ).

For deterministic τ, say τ ≡ T, we have a European claim, and for t0 ≤ t ≤ T
its discounted value process can be represented by

ut := u(t,Xt) := EFtf(XT ) =
∫
p(t,Xt, T, y)f(y)dy,

where
u(t, x) =

∫
p(t, x, T, y)f(y)dy (4)

is the unique solution of the Cauchy problem

∂u

∂t
+

1
2

n∑
i,j=1

xixj
(
σσ>

)ij
(t, x)

∂2u

∂xi∂xj
+

n∑
i=1

xiµ(t, x)
∂u

∂xi
= 0, (5)

u(T, x) = f(x).

The density kernel p(·, ·, T, y) is the unique (weak) solution of (??) with p(T, x, T, y)
= δ(x− y), where δ is the Dirac-delta function in Schwarz distribution sense.

Of particular importance are Bermudan callable contracts. A Bermudan
contract starting at t0, is specified by a set of exercise dates {t1, t2, ..., tI},
where t0 < t1 < ... < tI < T , and corresponding (discounted) pay-off functions
fi(x), 1 ≤ i ≤ I. According to the contract, the holder has the right to call
(once) a cash-flow fi(X

t0,x0
ti

)Bt0,x0,1
ti

(with Bt0,x0,1
0 = 1) at an exercise date ti of

his choice. It is well known (e.g. ? ]) that the discounted price of this contract
at time t, t0 ≤ t ≤ T, assuming that no exercise took place before t, is given by

u(t, x) := sup
τ∈Ti,I

Efτ (Xt,x
τ ) = Efτt,x

∗
(Xt,x

τt,x
∗

), ti−1 < t ≤ ti, (6)

where x = Xt0,x0
t , Ti,I the set of stopping times τ taking values in {ti, ti+1, ..., tI},

and τ t,x
∗ is an optimal stopping time. In particular the process u(t,Xt) is a su-

permartingale and is called the Snell envelope of the (discounted) cash-flow
process fi(Xti).

3 Probabilistic representations and their esti-
mators

In this section we consider for a given smooth function u : Rn
+ → R+ and a

smooth kernel function p : Rn
+×Rn

+ → R+, probabilistic representations for the
integral

I(x) :=
∫
p(x, y)u(y)dy, and its gradient

∂I

∂x
(x) =

∫
∂

∂x
p(x, y)u(y)dy, with

∂

∂x
:=
(

∂

∂x1
, . . . ,

∂

∂xn

)
. (7)
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Here and in the following sufficient (uniform) integrability conditions are as-
sumed to be fulfilled, for instance, in order to guarantee that (??) is valid.

Remark 1. In (??), kernel p (which may or may not be a density in the
second argument) and function u have to be distinguished from the respective
definitions in Section ??, although they may be related. For fixed t, T, 0 ≤ t ≤
T, one could take (see (??-??)), p(x, y) := p(t, x, T, y) and u(x) := u(t, x) for
example.

Let ζ be an Rn
+-valued random variable on some probability space with

density φ, φ > 0. Then, obviously,

I(x) = E p(x, ζ)
u(ζ)
φ(ζ)

(8)

is a probabilistic representation for (??) which may be estimated by the unbiased
Monte Carlo estimator

Î(x) :=
1
M

M∑
m=1

p(x,m ζ)
u(mζ)
φ(mζ)

, (9)

where for m = 1, ...,M, mζ are i.i.d. samples from a distribution with density
φ. By taking gradients in (??) we readily obtain the probabilistic representation

∂I

∂x
(x) = E

∂

∂x
p(x, ζ)

u(ζ)
φ(ζ)

, (10)

with corresponding estimator,

∂̂I

∂x
(x) :=

1
M

M∑
m=1

∂

∂x
p(x,m ζ)

u(mζ)
φ(mζ)

. (11)

While as a rule (??) is an effective estimator for I(x) for a proper choice of
φ, unfortunately the gradient estimator (??) has a serious drawback: If the
kernel p(x, ·) is sharply peaked (nearly proportional to a ’delta-function’), its
variance may be extremely high. This fact is demonstrated by the following
stylistic example of a multi-asset model, which is nevertheless realistic in orders
of magnitude.

Example 2. Consider for fixed x0 ∈ Rn
+, parameters s > 0, and σ > 0, the

n-dimensional lognormal density

p(s, σ;x0, y) :=
1

(2πσ2s)n/2

n∏
i=1

exp
[
− 1

2σ2s ln2 yi

xi
0

]
yi

. (12)

In (??) p(s, σ;x0, ·) is the density of the random variable

(x1
0e

σ
√

sξ1
, ..., xn

0 e
σ
√

sξn

),

where ξi , i = 1, ..., d, are i.i.d. standard normal random variables. Thus, for
small s and σ, p(s, σ;x0, ·) is peaked (’delta-shaped’) around x0. Let us now take
φ(·) := p(s, σ;x0, ·) in (??) and (??), respectively, and u ≡ ||x0|| (a constant of
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order x0 in magnitude). Clearly, estimator (??) equals ||x0|| almost surely and
so has zero variance. However, estimator (??) is not deterministic and we have

∂̂I

∂xj
(x0) :=

1
M

M∑
m=1

||x0||
p(s, σ;x0,m ζ)

∂

∂xj
p(s, σ;x0,m ζ)

=
||x0||
M

M∑
m=1

∂

∂xj
ln p(s, σ;x0,m ζ)

=
||x0||
M

M∑
m=1

ln mζj

xj
0

σ2sxj
0

=
||x0||
M

M∑
m=1

mξ
1

σ
√
sxj

0

.

Hence, E
[

∂̂I
∂xj (x0)

]
= 0 as should be, but,

Var

[
∂̂I

∂xj
(x0)

]
=
||x0/x

j
0||2

M

1
σ2s

(13)

which explodes when σ2s goes to zero!

Remark 3. In ? ] estimators (??) and (??) are used for computing prices
and sensitivities of European Libor options, respectively. In their numerical ex-
amples they used 50% (rather high) volatility in order to amplify Monte Carlo
errors. While, indeed, a larger volatility generally gives rise to a large Monte
Carlo error of (??), Example ?? shows that the opposite is true for estimator
(??). For example, 50% volatility in combination with 0.5 yr. maturity corre-
sponds to a (just moderate) variance factor 1/

(
σ2s
)

= 8.0 in (??), while a more
usual Libor volatility, e.g. 14%, and 0.5 y maturity would give a factor 102.0(!).

In the present paper we propose sensitivity estimators which are efficient on
a broad time and volatility scale. As a result, the next theorem provides a tool
for constructing sensitivity (gradient) estimators with non-exploding variance.

Theorem 4. Let λ be a reference density on Rn with λ(z) 6= 0 for all z (for
example, the standard normal density). Let ξ be an Rn-valued random variable
on some probability space, with density λ and g : Rn

+ × Rn → Rn
+ be a smooth

enough map which has at least continuous derivatives with |∂g(x, z)/∂z| 6= 0,
such that for each x ∈ Rn

+ the random variable ζx := g(x, ξ) has a density φ(x, ·)
on Rn

+. Then, for (??) we have the probabilistic representation

∂I

∂x
(x) = E

∂

∂x

p(x, ζx)u(ζx)
φ(x, ζx)

= E
∂

∂x

p(x, g(x, ξ))u(g(x, ξ))
φ(x, g(x, ξ))

, (14)

with corresponding Monte Carlo estimator

∂̂I

∂x
(x) =

1
M

M∑
m=1

∂

∂x

p(x, g(x,m ξ))u(g(x,m ξ))
φ(x, g(x,m ξ))

. (15)

Let ‖·‖α := α
√
E |·|α where |·| denotes either a vector norm or a compatible

matrix norm. Then it holds

E

∣∣∣∣ ∂∂x p(x, g(x, ξ))u(g(x, ξ))φ(x, g(x, ξ))

∣∣∣∣2 ≤ 2M2
2M

2
3M

2
4 + 4M2

1M
2
4M

2
5 + 4M2

1M
2
3M

2
4M

2
6 ,

(16)
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hence the second moments of the Monte Carlo samplers for the components of
∂I/∂x are bounded by the right-hand-side of (??), if for fixed x ∈ Rn

+, there are
constants α1, ..., α6 > 1 and M1, ...,M6 > 0 with

1
α4

+
1
α1

+
1
α5

= 1,
1
α4

+
1
α2

+
1
α3

= 1,
1
α4

+
1
α1

+
1
α6

+
1
α3

= 1,

such that,

‖u(g(x, ξ))‖2α1
≤M1,

∥∥∥∥∂u∂y (g(x, ξ))
∥∥∥∥

2α2

≤M2,∥∥∥∥∂g∂x (x, ξ)
∥∥∥∥

2α3

≤M3,

∥∥∥∥ p(x, g(x, ξ))φ(x, g(x, ξ))

∥∥∥∥
2α4

≤M4, (17)

∥∥∥∥(1
p

∂p

∂x
− 1
φ

∂φ

∂x

)
(x, g(x, ξ))

∥∥∥∥
2α5

≤M5,

∥∥∥∥(1
p

∂p

∂y
− 1
φ

∂φ

∂y

)
(x, g(x, ξ))

∥∥∥∥
2α6

≤M6.

Proof. For any bounded measurable ψ : Rn
+ → R, we have∫

ψ(g(x, z))λ(z)dz =
∫
ψ(g(x, z))φ(x, g(x, z))

∣∣∣∣∂g(x, z)∂z

∣∣∣∣ dz.
Therefore, the densities φ and g are connected via the relationship

φ(x, g(x, z))
∣∣∣∣∂g(x, z)∂z

∣∣∣∣ = λ(z). (18)

By (??), the right-hand-side of (??) equals

∂

∂x
E
p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))
=

∂

∂x

∫
p(x, g(x, z))u(g(x, z))

φ(x, g(x, z))
λ(z)dz

=
∂

∂x

∫
p(x, g(x, z))u(g(x, z))

∣∣∣∣∂g(x, z)∂z

∣∣∣∣ dz
=

∂

∂x

∫
p(x, y)u(y)dy =

∂I

∂x
(x).

To prove the moment estimation (??), we observe that

E

∣∣∣∣ ∂∂x p(x, ζx)u(ζx)
φ(x, ζx)

∣∣∣∣2 = E

∣∣∣∣ ∂∂x p(x, g(x, ξ))u(g(x, ξ))φ(x, g(x, ξ))

∣∣∣∣2
= E

∣∣∣∣u(g(x, ξ)) ∂∂x p(x, g(x, ξ))φ(x, g(x, ξ))
+
p(x, g(x, ξ))
φ(x, g(x, ξ))

∂u

∂y
(g(x, ξ))

∂g

∂x
(x, ξ)

∣∣∣∣2
≤ 2E

p2(x, g(x, ξ))
φ2(x, g(x, ξ))

∣∣∣∣∂u∂y (g(x, ξ))
∣∣∣∣2 ∣∣∣∣∂g∂x (x, ξ)

∣∣∣∣2
+ 2E u2(g(x, ξ))

∣∣∣∣ ∂∂x p(x, g(x, ξ))φ(x, g(x, ξ))

∣∣∣∣2
=: 2(I) + 2(II).

Then by Hölders inequality, (I) ≤

α2

√
E

∣∣∣∣∂u∂y (g(x, ξ))
∣∣∣∣2α2

α3

√
E

∣∣∣∣∂g∂x (x, ξ)
∣∣∣∣2α3

α4

√
E
p2α4(x, g(x, ξ))
φ2α4(x, g(x, ξ))

≤M2
2M

2
3M

2
4 .
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For the second term we have (II) =

E u2(g(x, ξ))
p2(x, g(x, ξ))
φ2(x, g(x, ξ))

∣∣∣∣∣ ∂p
∂x (x, g(x, ξ))
p(x, g(x, ξ))

−
∂φ
∂x (x, g(x, ξ))
φ(x, g(x, ξ))

+

(
∂p
∂y (x, g(x, ξ))

p(x, g(x, ξ))
−

∂φ
∂y (x, g(x, ξ))

φ(x, g(x, ξ))

)
∂g

∂x
(x, ξ)

∣∣∣∣∣
2

≤ 2E u2(g(x, ξ))
p2(x, g(x, ξ))
φ2(x, g(x, ξ))

∣∣∣∣∣ ∂p
∂x (x, g(x, ξ))
p(x, g(x, ξ))

−
∂φ
∂x (x, g(x, ξ))
φ(x, g(x, ξ))

∣∣∣∣∣
2

+ 2E u2(g(x, ξ))
p2(x, g(x, ξ))
φ2(x, g(x, ξ))

∣∣∣∣∣
∂p
∂y (x, g(x, ξ))

p(x, g(x, ξ))
−

∂φ
∂y (x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣∣
2 ∣∣∣∣∂g∂x (x, ξ)

∣∣∣∣2
≤ 2M2

1M
2
4M

2
5 + 2M2

1M
2
3M

2
4M

2
6 ,

again by Hölders inequality.

Remark 5. If in (??) the random variables u(g(x, ξ)), ∂u
∂y (g(x, ξ)), and so on,

have moments of high enough order, Theorem ?? guarantees that the variance of
estimator (??) is controlled via the moment estimates (??). The most delicate
bound in (??) is M5 in fact. Indeed, if one takes g(x, ξ) ≡ g(x0, ξ) estimator
(??) collapses to (??), and in Example ?? where φ(x, y) ≡ p(x0, y) in fact, we
see that M5 cannot taken to be small when σ2s is small, i.e. when p is highly
peaked around x. In contrast, if for fixed x, φ(x,·) is approximately proportional
to p(x, ·) and ∂ lnφ(x, ·)/∂x ≈ ∂ ln p(x, ·)/∂x (both with respect to the weight
function φ(x, ·)), a small M5 may exist. Note that for φ(·, ·) exactly proportional
to p(·, ·), we may take M5 = 0.

Remark 6. It can be shown that Theorem ?? can be extended to probabilistic
representations and corresponding estimators for higher order derivatives,

∂I

∂xβ
(x) = E

∂

∂xβ

p(x, ζx)u(ζx)
φ(x, ζx)

= E
∂

∂xβ

p(x, g(x, ξ))u(g(x, ξ))
φ(x, g(x, ξ))

,

with corresponding Monte Carlo estimator

∂̂I

∂xβ
(x) =

1
M

M∑
m=1

∂

∂xβ

p(x, g(x,m ξ))u(g(x,m ξ))
φ(x, g(x,m ξ))

, (19)

where β := (β1, . . . , βn), βi ∈ {0, 1, 2, . . .} is a multi-index with (formally) ∂xβ =
∂xβ1

1 ∂xβ2
2 · · · ∂xβn

n . Loosely speaking, the variance of the higher order derivative
estimator (??) can be bounded from above by an expression like (??) involving
(i) sufficiently high moments of the derivatives,

y → ∂u

∂yγ
, and z → ∂g(x, z)

∂zγ

for fixed x, γ ≤ β (component wise), with respect to weight functions y → φ(x, y)
and z → λ(z), respectively, and, (ii) for fixed x, Lq(Rn

+, φ(x, y)dy)-norms of

y → ∂

∂xγ

(
φ(x, y)
p(x, y)

)
, and y → ∂

∂yγ

(
φ(x, y)
p(x, y)

)
, γ ≤ β,

for q large enough.
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Remark 7. In the next section we consider financial applications where I(x)
is the price of a derivative contract considered in dependence of the argument x
which may stand for the underlying process or some parameter (vector) which
affects the dynamics of the underlying process (e.g. volatilities). Moreover,
we there give a recipe how to construct a lognormal density approximation φ,
corresponding to a particular normal reference density and an exponential type
transformation (in Theorem ??, λ and g respectively).

Remark 8. Theorem 4 can be can be generalized to the case where both p and
φ live on a common submanifold rather than on the whole state space. Via such
a generalization it would be possible to extend our results to factor reduced
situations in the spirit of ? ] and ? ]. However, this is considered beyond the
scope of the present article and therefore we restrict ourselves to the full-factor
case.

4 Sensitivities for Bermudan options

Theorem ?? may be applied in general for computing sensitivities (”Greeks”)
of derivative products. For estimator (??) the danger of exploding variance
is typically the largest when derivatives of prices with respect to underlyings
(Deltas, Gammas) are considered. We therefore consider in this section only
(first order) derivatives with respect to the underlying process, hence Deltas.

Let τ : Ω → R+ be a given stopping time with respect to the filtration (F·).
As usual we may think of Ω as being the space of functions ω : [0,∞) → Rn,
which are continuous from the right and have limits from the left, and define
τ s,x(ω) := s+τ(Xs,x

s+(·)(ω)). We now consider the Bermudan contract introduced

in Section ??. For fixed t, t+, t0 ≤ t ≤ t+ ≤ t1, x ∈ Rn
+, we have τ t,x

∗ = τ
t+,Xt,x

t+
∗

since τ t,x
∗ ≥ t1, and we thus may write

u(t, x) := Ef(Xt,x

τt,x
∗

) = EEFt+ f(X
t+,Xt,x

t+

τ
t+,X

t,x

t+
∗

)

=
∫
p(t, x, t+, y)dyEf(Xt+,y

τt+,z
∗

)

=
∫
p(t, x, t+, y)u(t+, y)dy,

by the Chapman-Kolmogorov equation.
For each t, t+ as above, let φ(t, x, t+, y), g(t, x, t+, y), and reference density

λ(t, t+, z) be as in Theorem ??. We then have the probabilistic representation

u(t, x) = E
p(t, x, t+, g(t, x, t+, ξ))
φ(t, x, t+, g(t, x, t+, ξ))

f(Xt+,g(t,x,t+,ξ)

τ
t+,g(t,x,t+,ξ)
∗

), (20)

with Monte Carlo estimator

û(t, x) :=
1
M

M∑
m=1

p(t, x, t+, g(t, x, t+,m ξ))
φ(t, x, t+, g(t, x, t+,m ξ))

f(Xt+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

), (21)

and for the gradients (Deltas) we have the probabilistic representation

∆i :=
∂u

∂xi
(t, x) = E

∂

∂xi

(
p(t, x, t+, g(t, x, t+, ξ))
φ(t, x, t+, g(t, x, t+, ξ))

f(Xt+,g(t,x,t+,ξ)

τ
t+,g(t,x,t+,ξ)
∗

)
)

(22)
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with Monte Carlo estimator

∆̂i :=
1
M

M∑
m=1

∂

∂xi

(
p(t, x, t+, g(t, x, t+,m ξ))
φ(t, x, t+, g(t, x, t+,m ξ))

f(Xt+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)
)
, (23)

where mξ, m = 1, ...,M, are i.i.d. samples from the reference density λ. Indeed,
by pre-conditioning on Ft+ and then taking expectations we see that (??) and
(??) are unbiased Monte Carlo estimators for the price (??) and ’deltas’ (??),
respectively. Moreover, if φ is close to p in the sense of Theorem ??, it is not
difficult to see that also gradient estimator (??) has non-exploding variance
when t+ ↓ t.

Estimators (??) and (??) are useful if one has an analytic approximation
p̂(t, x, t+, y) of the density p(t, x, t+, y) and known densities φ(x, ·) for x ∈ Rn

+.
The approximation p̂ may be obtained by some specific method, for example by
a WKB expansion as presented in Section ??, or some lognormal approximation
as proposed in ? ] for the Libor market model. Of course the density φ has
to be chosen with some care. If it is possible to sample directly from p̂ (e.g.
in case of a log-normal approximation) we may take φ = p̂. If not, (e.g. in the
case of a WKB expansion) one may take for φ a (not necessarily very accurate)
lognormal approximation of the density p.

A canonical lognormal approximation for p(t, x, t+, z) is obtained by freezing
X in the coefficients of (??) at the initial time. We thus obtain

X
lgnt,x;i
t+ := xi exp

−1
2

n∑
j=1

∫ t+

t

(σij)2(s, x)ds+
∫ t+

t

r(s, x)ds

+
n∑

j=1

∫ t+

t

σij(s, x)dW j
s

 =: xi exp(ξi). (24)

Here, (ξi)n
i=1 is a Gaussian random vector with

Eξi = −1
2

n∑
j=1

∫ t+

t

(σij)2(s, x)ds+
∫ t+

t

r(s, x)ds =: µi;t,t+,x, 1 ≤ i ≤ n,

and

Cov(ξi, ξj) =
n∑

l=1

∫ t+

t

σil(s, x)σjl(s, x) ds =: σij;t,t+,x, 1 ≤ i, j ≤ n.

Clearly, the density φ is then given by

φ(t, x, t+, y) :=
ψµt,t+,x,σt,t+,x(ln y1

x1 , ln y2

x2 , ..., ln yn

xn )

y1y2 · · · yn
, (25)

yi > 0, 1 ≤ i ≤ n, with ψµt,t+,x,σt,t+,x being the density of the n-dimensional nor-

mal distributionNn(µt,t+,x, σt,t+,x) with µt,t+,x := (µi;t,t+,x)1≤i≤n and σt,t+,x :=
(σij;t,t+,x)1≤i,j≤n.
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For practical applications it is most useful to discretize estimator (??) to

∆̂h
i :=

1
M

M∑
m=1

1
2h

(
p(t, x+ hi, t

+, g(t, x+ hi, t
+,m ξ))

φ(t, x+ hi, t+, g(t, x+ hi, t+,m ξ))
f(Xt+,g(t,x+hi,t

+, mξ)

τ
t+,g(t,x+hi,t+, mξ)
∗

)

− p(t, x− hi, t
+, g(t, x− hi, t

+,m ξ))
φ(t, x− hi, t+, g(t, x− hi, t+,m ξ))

f(Xt+,g(t,x−hi,t
+, mξ)

τ
t+,g(t,x−hi,t+, mξ)
∗

)
)
, (26)

where hi := h(δi1, . . . , δin) (δij being the Kronecker symbol), for small enough
h > 0. Without further details we note that according to Milstein and Tretyakov
(2004) in a related context, it is efficient to take h ≈ x/

√
M.

As an alternative, it is also possible to expand the derivatives in (??) path-
wise. Since the set of exercise dates is discrete, for almost sure all ω the function
y → τ t+,y

∗ (ω) is constant in the region {y :| y − y0 |< ε0} for fixed y0 and ε0
small enough (y0 and ε0 may depend on ω). This can be seen from the fact that
the random variable Xt+,y

τt+,y
∗

(ω), which has a density in Rn, lays almost sure in

the interior of the exercise region, and, the fact that, almost surely, for a fixed
exercise date ti, the map y → Xt+,y

ti
is continuous (e.g. see Protter (1990)).

Thus, by differentiating (??) path-wise we obtain

∆̂i :=
1
M

M∑
m=1

f(Xt+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)
∂

∂xi

(
p(t, x, t+, g(t, x, t+,m ξ))
φ(t, x, t+, g(t, x, t+,m ξ))

)
(27)

+
1
M

M∑
m=1

p(t, x, t+, g(t, x, t+,m ξ))
φ(t, x, t+, g(t, x, t+,m ξ))

∂f

∂z
(Xt+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)·

· ∂yX
t+,y

τ
t+,g(t,x,t+, mξ)
∗

(g(t, x, t+, mξ))
∂g(t, x, t+, mξ)

∂xi
,

where
∂

∂xi

p(t, x, t+, y)
φ(t, x, t+, y)

,
∂g(t, x, t+, mξ)

∂xi
,

∂f

∂z

can in principle be expressed analytically, and the vector process

∂yX
t+,y
s (·) :=

∂Xt+,y
s

∂y
(·), s ≥ t+,

can in principle be simulated via a variational system of SDEs (e.g. see ? ], ?
], ? ]).

In this paper we will prefer the discretized version (??) of (??) for our appli-
cations. The algorithm is as follows. We first choose an h > 0, and sample mξ
for m = 1, . . . ,M from the reference (usually normal) density. Next we simulate
for each m a pair of trajectories mX

±, which start in mg
± := g(t, x±h, t+, mξ)

at t+, and end at the optimal stopping times mτ
±
∗ := τ t+,mg±

∗ . Of course the
optimal exercise dates mτ

±
∗ are generally unknown in practice, but we assume

that we have good approximations mτ
± at hand, which are constructed via some

well known procedure. For example, in a pre-computation we may construct an
exercise boundary via a regression method (e.g. ? ]), or as an alternative, we
may use the policy iteration method of ? ], see also ? ]. As discussed above, for
a particular ω we have mτ

+
∗ = mτ

−
∗ provided that h is small enough. For this

11



reason we take in our simulations simply mτ
− =m τ+, where τ is some approx-

imation of the optimal exercise policy. This pragmatic assumption is justified if
the probability of the event mτ

− 6=m τ+ is small enough, i.e. h is small enough.
For each m we compute also the values mp

± := p(t, x ± h, t+, mg
±) and mφ

±

:= φ(t, x± h, t+, mg
±), and finally compute the estimate

∆̂h
i :=

1
M

M∑
m=1

1
2h

(
mp

+

mφ+
f(mX

+)− mp
−

mφ−
f(mX

−)
)
. (28)

Remark 9. In the previous sections vector and matrix components are denoted
by superscripts, so that time parameters of processes can be denoted by sub-
scripts. In the next sections we depart from this convention and use subscripts
for vector and matrix components.

5 WKB approximations for transition densities

5.1 Recap of WKB theory

We summarize some results concerning WKB-expansions of parabolic equations
(cf. ? ] for details). Let us consider the parabolic diffusion operator

∂u
∂t + Lu ≡ ∂u

∂t + 1
2

∑
i,j aij

∂2u
∂xi∂xj

+
∑

i bi
∂u
∂xi

. (29)

For simplicity of notation and without loss of generality it is assumed that the
diffusion coefficients aij and the first order coefficients bi in (??) depend on the
spatial variable x only. In the following let δt := T − t, and let the functions

(x, y) → d(x, y) ≥ 0, (x, y) → ck(x, y), k ≥ 0,

be defined on Rn × Rn, with d2 and ck, k ≥ 0, being smooth. Then a set of
(simplified) conditions sufficient for pointwise valid WKB-representations of the
form

p(t, x, T, y) =
1

√
2πδt

n exp

(
−d

2(x, y)
2δt

+
∞∑

k=0

ck(x, y)δtk
)
, (30)

for the solution (t, x) → p(t, x, T, y) of the final value problem

∂p

∂t
+ Lp = 0, with final value (31)

p(T, x, T, y) = δ(x− y), y ∈ Rn fixed,

is given by

(A) The operator L is uniformly elliptic in Rn, i.e. as in (??) the matrix norm
of (aij(x)) is bounded below and above by 0 < λ < Λ <∞ uniformly in x,

(B) the smooth functions x → aij(x) and x → bi(x) and all their derivatives
are bounded.

For more subtle (and partially weaker conditions) we refer to ? ]. If we add the
uniform boundedness condition

12



(C) there exists a constant c such that for each multiindex α and for all 1 ≤
i, j, k ≤ n, ∣∣∣∂αajk

∂xα
(x)
∣∣∣, ∣∣∣∂αbi

∂xα
(x)
∣∣∣ ≤ c exp

(
c|x|2

)
, (32)

then the Taylor expansions of the functions d and ck around y ∈ Rn are equal
to d and ck, k ≥ 0 globally. I.e. we have the power series representations

d2(x, y) =
∑
α

dα(y)δxα (33)

ck(x, y) =
∑
α

ck,α(y)δxα, k ≥ 0, (34)

where δx := x− y. Note that (C) is implied by the stronger condition that all
derivatives in (??) have a uniform bound. Summing up we have the following
theorem:

Theorem 10. If the hypotheses (A),(B) are satisfied, then the fundamental
solution p has the representation

p(δt, x, y) =
1

√
2πδt

n exp

−d2(x, y)
2δt

+
∑
k≥0

ck(x, y)δtk

 , (35)

where d and ck are smooth functions, which are unique global solutions of the
first order differential equations (??),(??), and (??) below. Especially,

(δt, x, y) → δt ln p(δt, x, y) = −n
2
δt ln(2πδt)− d2

2
+
∑
k≥0

ck(x, y)δtk+1

is a smooth function which converges to −d2

2 as δt↘ 0, where d is the Rieman-
nian distance induced by the line element ds2 =

∑
ij a

−1
ij dxidxj, where with a

slight abuse of notation (a−1
ij ) denotes the matrix inverse of (aij). If the hypothe-

ses (A),(B) and (C) are satisfied, then in addition the functions d, ck, k ≥ 0
equal their Taylor expansion around y globally, i.e. we have (??)-(??).

The recursion formulas for d and ck, k ≥ 0 are obtained by plugging the
ansatz (??) into the parabolic equation (??), and ordering terms with respect
to the monoms δti = (T − t)i for i ≥ −2. By collecting terms of order δt−2 we
obtain

d2 =
1
4

∑
ij

d2
xi
aijd

2
xj
, (36)

where d2
xk

denotes the derivative of the function d2 with respect to the variable
xk, with the boundary condition d(x, y) = 0 for x = y. Collecting terms of order
δt−1 yields

−n
2

+
1
2
Ld2 +

1
2

∑
i

∑
j

(aij(x) + aji(x))
d2

xj

2

 ∂c0
∂xi

(x, y) = 0, (37)

where the boundary condition

c0(y, y) = −1
2

ln
√

det (aij(y)) (38)
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determines c0 uniquely for each y ∈ Rn. Finally, for k + 1 ≥ 1 we obtain

(k + 1)ck+1(x, y) + 1
2

∑
ij aij(x)

(
d2

xi

2
∂ck+1
∂xj

+
d2

xj

2
∂ck+1
∂xi

)
= 1

2

∑
ij aij(x)

∑k
l=0

∂cl

∂xi

∂ck−l

∂xj
+ 1

2

∑
ij aij(x) ∂2ck

∂xi∂xj
+
∑

i bi(x)
∂ck

∂xi
,

(39)

with boundary conditions

ck+1(x, y) = Rk(y, y) if x = y, (40)

Rk being the right side of (??). For some classical models in finance a global
transformation of the diffusion operator to the Laplace operator is possible (at
the price of more complicated first order terms however). We observe this in the
case of a Libor market model (Section ??). The requirement that a transfor-
mation y(x) of an operator with second order coefficients aij(x) = (σσ>)ij(x)
leads to a Laplacian with respect to second order terms in y is equivalent to∑

ml

(σσ>)ml(x)
∂yk

∂xl

∂yj

∂xm
= δjk (41)

where δjk denotes the Kronecker delta. If σ is invertible it follows directly that
the transformation y(x) satisfies the first order matrix equation

(
∂yk

∂xl
) = (σ−1

kl (x)). (42)

The latter equation determines the transformation (up to constants, of course)
but cannot be integrated in general, and if it can not explicitly in general.
However, a necessary and sufficient condition for integrability of (??) in terms
of σ can be given, where we restrict ourselves to the case of invertible σ.

Proposition 11. There is a global coordinate transformation for the operator
(??) such that the second order part of the transformed operator equals the
Laplacian, iff aij = (σσ>)ij for a (square) matrix function σ which satisfies

n∑
l=1

∂σik(x)
∂xl

σlj(x) =
n∑

l=1

∂σij(x)
∂xl

σlk(x), x ∈ Rn. (43)

The latter fact is also observed and proved in ? ]. If the condition of
Proposition ?? is satisfied, then coordinate transformation leads to second order
coefficients of the form aij ≡ δij , so that the solution of (??) becomes

d2(x, y) =
∑

i

(xi − yi)2.

If conditions (A), (B), (C), and (??) hold, then in the transformed coordinates,
explicit formulas for the coefficient functions ck, k ≥ 0 can be computed via the
formulas

c0(x, y) =
∑

i

(yi − xi)
∫ 1

0

bi(y + s(x− y))ds, (44)
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and

ck+1(x, y) =
∫ 1

0

Rk(y + s(x− y), y)skds, (45)

with Rk being the right-hand-side of (??) where aij = δij . Similar formulas are
obtained in ? ]. In ? ] it is shown in addition how the coefficients ck can
be computed explicitly in terms of power series approximations of the diffusion
coefficients aij and bi. However, in high dimensional models such as the Libor
market model direct computation of the coefficients ck seems more feasible as
it turns out that the computation up to the coefficient c1 is sufficient for our
purposes. We conclude this Section with a final remark concerning possible
generalizations to Feller processes.

Remark 12. Pointwise converging analytic expansion can be obtained for a
large class of densities pF of Feller processes. We refer to remark 11 in [? ].

5.2 Error estimates

We now study the approximation error of a truncated WKB expansion (and its
derivatives), which is essential for the convergence of the Monte Carlo schemes.
In this respect we will show how the derivatives (up to second order) of the
product value function with respect to the underlyings computed by means of a
truncated WKB-expansion converge in supremum norm and Hölder norms. Let
us consider a WKB-approximation of the fundamental solution p of the form

pl(t, x, T, y) =
1

√
2πδt

n exp

(
−d

2(x, y)
2δt

+
l∑

k=0

ck(x, y)δtk
)
, (46)

i.e. we assume that the coefficients d2 and ck, 0 ≤ k ≤ l have been computed
up to order l (recall that δt = T − t for the sake of brevity). Let us denote the
domain of the Cauchy problem by D = (0, T )×Rn. For integers n ≥ 0 and real
numbers δ ∈ (0, 1) let Cm+δ/2,n+δ(D) be the space of m (n) times differentiable
functions such that the mth (nth) derivative with respect to time (space) is
Hölder continuous with exponent δ

2 (δ). Furthermore, |.|m+δ/2,n+δ denote the
natural norms associated with these function spaces. It is well-known that in
case of our assumptions (A) and (B) the fundamental solution p satisfies the a
priori estimate

|p(t, x, T, y)| ≤ C(T − t)−n/2 exp
(
−λ0|x− y|2

2(T − t)

)
, (47)

for some generic constant C and some λ0 which is less or equal than the lower
bound λ in assumption (A) above. We call a WKB-approximation pl of the
fundamental solution p admissible, if it satisfies an a priori estimate of the form
(??). The WKB-approximation p0 is always admissible while the proof of the-
orem 9 (cf. [? ]) that pl is admissible if l ≥ l0 where l0 is some natural number
depending on the coefficient functions and can be computed by comparison of
the WKB-expansion and the Levy-expansion. For lower l admissibility has to
be ensured for each model. In the Libor market model admissibility for l = 1 is
ensured. The following consequence of Safanov’s theorem (cf. ? ]).
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Theorem 13. Assume that (A), (B), and (C) are satisfied and let h ∈ C2+δ (Rn)
and f ∈ Cδ/2,δ(D). If

c ≤ −λ for some λ > 0, (48)

then the Cauchy problem
∂w
∂t + 1

2

∑
ij aij(x) ∂2w

∂xi∂xj
+
∑

i bi(x)
∂w
∂xi

+ c(x)w = f(t, x) in D

w(T, x) = h(x) for x ∈ Rn

(49)

has a unique solution w, and there exists a constant c depending only on δ, n
λ,Λ and K = max{|a|δ, |b|δ, |c|δ} such that

|w|1+δ/2,2+δ ≤ c
[
|f |δ/2,δ + |h|2+δ

]
. (50)

In order to analyze the truncation error of the Cauchy problem with data h
we consider the function

u∆(t, x) = u(t, x)− ul(t, x),

where
u(t, x) =

∫
Rn

h(y)p(t, x, T, y)dy,

and
ul(t, x) =

∫
Rn

h(y)pl(t, x, T, y)dy.

In order ul in (??) to be a good approximation (and well-defined) we say that
ul is admissible if it satisfies the a priori estimate (??) above, and we say that
ul is admissible if pl is admissible. It is then possible to derive different error
estimates in strong norms depending on which Greeks we want to control on
which level of regularity.

Theorem 14. Assume that conditions (A), (B), and (C) hold and that h ∈
C2+δ(Rn) and assume that ul is strongly admissible. Then

|u(t, x, y)− ul(t, x, y)|1+δ/2,2+δ ∈ O(tl−
δ
2 ).

Proof. Let w(t, x) = e−rtu∆(t, x) with r constant and wl(t, x) = e−rtul(t, x).
Since

∂u∆

∂t + Lu∆ = −∂ul

∂t − Lul =: ful
(t, x), we have

∂w
∂t + Lw + rw = ∂wl

∂t + Lwl + rwl =

ert
(
−∂ul

∂t − Lul

)
=: ertful

(t, x).

Admissibility of ul and an argument similar to that of Krylov ensures that the
right side of the latter equation can be measured in the norm |.|δ/2,δ. Hence we
can apply the estimate (??) to the function

w(t, x) = e−rtu∆(t, x)

for a constant r > 0 and we get (after dividing by ert

|u∆|1+δ/2,2+δ ≤ c|ful
|δ/2,δ. (51)

16



In order to compute the term on the right side of (??) we can plug (??) into the
left-hand side of (??) the parabolic equation satisfied by the exact fundamental
solution p. However in order to see how the higher order terms behave exactly
we plug in

p(t, x, y) =
1

√
2πt

n exp

(
−d

2(x, y)
2t

+
l∑

k=0

ck(x, y)tk +Rl+1(t, x, y)

)
, (52)

where

Rl+1(t, x, y) =
∞∑

k=l+1

ck(x, y)tk ∈ O(tl+1). (53)

We get

∂p
∂t + 1

2

∑
ij aij

∂2pl

∂xi∂xj
+
∑

i bi
∂p
∂xi

=

= tl

(
(l + 1)cl+1 + ∂

∂tRl+1 + 1
2

∑
ij aij

(
− d2

xi

2

(
∂

∂xj

Rl+1
t

)
−

d2
xj

2

(
∂

∂xi

Rl+1
t

)

+(cl,xi
+Rl+1,xi

)(cl,xj
+Rl+1,xj

)
)

+ L(cl +Rl)

)
p ∈ O(tl)p

Applying a priori estimates for p we get the result.

Remark 15. A more intricate analysis shows that for practical purposes it
is possible to remove the admissibility condition above, if we approximate the
Cauchy problem by a Dirichlet problem with a large but spatially bounded
domain (a natural step from the numerical point of view). However, since
this involves an additional analysis of an integral equation corresponding to
the boundary condition we go not into the details here. Generalizations to
estimates which include Taylor-expansions of the WKB-coefficients will also
be considered elsewhere. The assumption h ∈ C2+δ(Rn) can be weakened to
Hölder continuous pay-offs if we abstain from contolling the Θ Greek (sensitivity
with respect to time) up to maturity. The case where ck are computed up to
k = 1 is the first case where the truncation error for first and second derivatives
converges to zero (in supremum norm with order O(δt) and in Hölder- extension
of supremum norm with order O(δt)1−

δ
2 ). This implies that our Monte Carlo

computation scheme for the Greeks converges.

5.3 Extension to diffusions with time-dependent coeffi-
cients

The results of Section 5.1 and 5.2. extend to time-dependent diffusions without
great difficulties. We write down the formulas for c0 and ck+1. The justification
can be found in [? ]. We have

c0(t, x, y) =
∑

i

(yi − xi)
∫ 1

0

bi(t, y + s(x− y))ds, and (54)
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ck+1(t, x, y) =
∫ 1

0

Rk(t, y + s(x− y), y)skds, (55)

where

Rk(t, x, y) ≡ ∂ck
∂t

+
1
2

∑
i

k∑
l=0

∂cl
∂xi

∂ck−l

∂xi
+

1
2

∑
i

∂2ck
∂x2

i

+
∑

i

µi(t, x)
∂ck
∂xi

. (56)

6 Applications to the Libor market model

We consider a Libor market model with respect to a tenor structure 0 < T1 . . . <
Tn+1 in the terminal measure Pn+1 (induced by the terminal zero coupon bond
Bn+1(t)). The dynamics of the forward Libors Li(t), defined in the interval
[0, Ti] for 1 ≤ i ≤ n, are governed by the following system of SDE’s (e.g., see ?
]),

dLi = −
n∑

j=i+1

δjLiLj γ
>
i γj

1 + δjLj
dt+ Li γ

>
i dW

(n+1) =: µi(t, L) + Li γ
>
i dW

(n+1),

(57)
where δi = Ti+1−Ti are day count fractions and t→ γi(t) = (γi,1(t), . . . , γi,d(t)),
0 ≤ t ≤ Ti, are bounded and smooth enough deterministic volatility vector
functions. We denote the matrix with rows γ>i by Γ and assume that Γ is
invertible. In (??), (W (n+1)(t) | 0 ≤ t ≤ Tn) is a standard d-dimensional
Wiener process under the measure Pn+1 with d, 1 ≤ d ≤ n, being the number
of driving factors. In what follows we consider the full-factor Libor model with
d = n in the time interval [0, T1).

6.1 WKB approximations for the Libor kernel

Let us transform the dynamics of (??) to Ki := lnLi, 1 ≤ i ≤ n,

dKi =
1
Li
dLi −

1
2L2

i

d〈Li〉 =
(
−γ

>
i γi

2
+ µi(t, eL1 , . . . , eLn)

)
dt+ γ>i dW

(n+1).

(58)
Note that the coefficients of the generator corresponding to process K are
bounded and satisfy the WKB assumptions (A) (B) in Section 5.1. Hence,
we may apply a WKB approximation to the transition density of the process
(??).

By the transformation Y := Γ−1K we obtain the process

dYi = µY
i (t, Y )dt+ dW

(n+1)
i , 1 ≤ i ≤ n, where

µY
i (t, Y ) = (MY )i + Vi +

n∑
j=1

Γ−1
ij µj(t, e(ΓY )1 , . . . , e(ΓY )n), and (59)

Mij =
n∑

l=1

dΓ−1
il

dt
Γlj , Vi = −

n∑
j=1

Γ−1
ij

|γj |2

2
,

for which the generator has a Laplacian diffusion term, which leads to technically
more convenient expressions in the respective WKB expansion. However, in the
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time dependent case we recommend using WKB density approximation of K
rather then Y, as due to the (unbounded) linear term MY in (??) we might
need higher order expansions for getting satisfactory results.

The situation of time independent γ (hence bounded µY ) is exemplified in
case study Section ??, where the transition density pY is approximated and
subsequently transformed to an approximated transition density pL of the Li-
bor process. Below we spell out the ingredients for computing the corresponding
WKB coefficients c0 and c1 according to (??) and (??) to be exploited in Sec-
tion ??. Using the notations

Fl(s, x, y) :=
1

(Γ(x− y))l
ln

1 + δle
(Γx)l

1 + δle(Γy)l
, 1 ≤ l ≤ n,

and a := (γ>i γj)n
i,j=1, we may write,

c0(s, x, y) =
n∑

i=1

Vi(yi − xi) +
n∑

i=1

n∑
j=1

Γ−1
ij (yi − xi)

n∑
l=j+1

ajlFl(s, x, y), (60)

∂c0
∂xp

(s, x, y) = −Vp +
n∑

j=1

Γ−1
pj

n∑
l=j+1

ajlFl(s, x, y)−

n∑
i=1

n∑
j=1

Γ−1
ij (yi − xi)

n∑
l=j+1

ajl
∂Fl(s, x, y)

∂xp
,

∂2c0
∂x2

p

(s, x, y) = +2
n∑

j=1

Γ−1
pj

n∑
l=j+1

ajl
∂Fl(s, x, y)

∂xp
−

n∑
i=1

n∑
j=1

Γ−1
ij (yi − xi)

n∑
l=j+1

ajl
∂2Fl(s, x, y)

∂x2
p

,

where
∂Fl(s, x, y)

∂xp
=

Γlp(s)
(Γ(x− y))l

(
δle

(Γx)l

1 + δle(Γx)l
− Fl(s, x, y),

)
and

∂2Fl(s, x, y)
∂x2

p

=
2Γ2

lp

(Γ(x− y))2l

(
Fl(s, x, y)−

δle
(Γx)l

1 + δle(Γx)l

)
+

Γ2
lp

(Γ(x− y))l

δle
(Γx)l

(1 + δle(Γx)l)2
.

By L’Hospital’s Rule we get,

lim
x→y

Fl(s, x, y) =
δle

(Γy)l

1 + δle(Γy)l
,

lim
x→y

∂Fl(s, x, y)
∂xp

=
Γlpδle

(Γy)l

2(1 + δle(Γy)l)2
,

lim
x→y

∂2Fl(s, x, y)
∂x2

p

=
Γ2

lpδle
(Γy)l(1− δle

(Γy)l)
3(1 + δle(Γy)l)3

.
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Figure 1: WKB approximations of the Libor transition density (cross-section)
pL(0, L(0), t, αL(0)) for different t (thin line for pL

0 , bold line for pL
1 ) and log-

normal approximation pL
lgn (dashed line).

We finally obtain pL(s, u, t, v) by density transformation formula,

pL(s, u, t, v) = pY (s, S−1
s (u), t, S−1

t (v))
∣∣∣∣∂S−1

t (v)
∂v

∣∣∣∣
with

S−1
t (v) := Γ−1(t)(ln v1, . . . , ln vn)>.

For simplicity in the case study below we assume that the matrix Γ is upper
triangular and does not depend on t. We then have,

pL(s, u, t, v) =
1√

2π(t− s)
n

n∏
i=1

Γ−1
ii

vi
exp

−
(
Γ−1(ln v1

u1
, . . . , ln vn

un
)>
)2

2(t− s)

+
∞∑

k=0

ck(s, S−1(u), S−1(v))(t− s)k

)
.

6.2 Case study

We now illustrate the estimators in Section ?? and Section ?? by computing
European and Bermudan swaptions and Deltas in a Libor market model. A
(payer) swaption contract with maturity Ti and strike θ with principal $1 gives
the right to contract at Ti for paying a fixed coupon θ and receiving floating
Libor at the settlement dates Ti+1,. . . ,Tn. The discounted payoff of the contract
is thus

Si(L
0,L(0)
Ti

) =
1

Bn+1(Ti)

n∑
j=i

Bj+1(Ti)
(
δjL

0,L(0); j
Ti

− θ
)+

. (61)

Here we use the notation

L
0,L(0); j
Ti

:= Lj(Ti), 1 ≤ j ≤ n.

in line with Section ?? and Section ??.
For our experiments we take in Libor model (??), δi ≡ 0.5, flat 3.5% ini-

tial Libor curve, constant volatility loadings, γi(t) ≡ 0.2ei, where ei are n-
dimensional unit vectors decomposing an input correlation matrix ρ,

ρij = exp
[ |j − i|
n− 1

ln ρ∞
]
, 1 ≤ i, j ≤ n, (62)

with ρ∞ = 0.3 (for more general correlation structures we refer to ? ]).
The Libor transition kernel pL(s, x, t, y) shows to have a pronounced ”delta-

shaped” form. See Figure 1 for cross-sections α → pL(0, L(0), t, αL(0)) of its
WKB approximations pL

0 and pL
1 , with c0 only, and with c0 and c1, respectively.

Because of this ”delta-shape” it is very important for efficiency of the estimators
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in Section 4 to find a suitable proxy density φ. We take for φ the transition
kernel of a lognormal approximation Llgn, obtained from the Libor process (??)
by freezing the coefficients at the initial time s,

L
lgns,x; i
t (ξ) = xi exp(ξi), (63)

where ξ is a n-dimensional Gaussian vector with

Eξi = (t− s)

 |γi|2

2
−

n∑
j=i+1

|γi||γj |ρijδjxj

1 + δjxj

 =: µlgn
i (s, t, x),

Cov(ξi, ξj) = Γij , 1 ≤ i, j ≤ n. (64)

The transition density of Llgn is then given by

pL
lgn(s, u, t, v) =

1√
2π(t− s)

n

n∏
i=1

Γ−1
ii

vi
×

exp

−
∣∣∣Γ−1((ln v1

u1
. . . ln vn

un
)− µlgn(s, t, x))T

∣∣∣2
2(t− s)

 ,

with | · | denoting the Euclidean norm.

Example 1: European swaption

We test estimators (??) and (??) by pricing European swaptions and Deltas for
different maturities T1. We consider an at-the-money swaption over the period
[T1, T19]. The payoff function is given by

u(·) = Bn+1(0)S1(·),

where S1 is defined in (??) with n = 19 and θ = 3.5%. We set x = L(0) and

φ(x, ·) = pL
lgn(0, x, T1, ·).

So, in order to sample in (??) from density φ, we simulate via (??)-(??) the
lognormal samples

mζ = L
lgn0,L(0)
T1

(mξ), m = 1, . . . ,M.

As a (more accurately approximated) Libor transition kernel, we use WKB
approximation pL

0 and pL
1 ,

p(x, ·) ≈ pL
0 (0, x, T1, ·) and p(x, ·) ≈ pL

1 (0, x, T1, ·),

and denote the corresponding estimators by Î0 and Î1, respectively. For com-
puting Deltas, we take a finite difference analogue of (??),

∂̂I

∂xi

(h)

(x) :=
1
M

M∑
m=1

1
2h

(
p(x+ hi, g(x+ hi, mξ))u(g(x+ hi, mξ))

φ(x+ hi, g(x+ hi, mξ))
−

p(x− hi, g(x− hi, mξ))u(g(x− hi, mξ))
φ(x− hi, g(x− hi, mξ))

)
, 1 ≤ i ≤ n, (65)
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where
g(x,m ξ) = L

lgn0,x
T1

(mξ)

and hi = h(δi1, . . . , δin).
The estimates due to (??) and (??) are compared with corresponding esti-

mates due to ”exact” Libor trajectories simulated by a log-Euler scheme with
small time steps. For this we simulate M Libor trajectories using ∆t = δi/5,
and take

Îex =
1
M

M∑
m=1

u(mL
0,x
T1

), (66)

∂̂Iex
∂xi

(h)

=
1
M

M∑
m=1

u(mL
0,x+hi

T1
)− u(mL

0,x−hi

T1
)

2h
, 1 ≤ i ≤ n,

where the subscript ex refers to ”exact” Libor trajectories. Analogue to (??),

we compute Îlgn and ∂bIlgn
∂xi

due to the lognormal approximation Llgn.
In Table 1 and Table 2, we give values of European swaptions and Deltas at

time zero, computed via estimators Îex, Îlgn, Î0, Î1 and ∂̂Iex
∂xn

(h)

, ∂̂Ilgn
∂xn

(h)

, ∂̂I0
∂xn

(h)

,

∂̂I1
∂xn

(h)

, respectively, for different maturities T1. For the computation we take
h = 3.5× 10−5, M = 5× 105 in order to keep standard deviations within 0.5%
relative to the values. As we see, the WKB approximation with only two coeffi-
cients, c0 and c̃1, provides a very close estimate of the European swaptions and
Deltas, also for large maturities. The distance between Îex and Î1 and ∂̂Iex

∂xn
and

∂̂I1
∂xn

is smaller than 0.5% relative to the value.This is in contrast to canonical

lognormal estimators Îlgn and ∂bIlgn
∂xi

, which gives an acceptable approximation
only for T1 ≤ 2.

Table 1. (values in basis points)
T1 Îex (SD) Îlgn (SD) Î0 (SD) Î1 (SD)
1.0 178.9(0.4) 179.0(0.4) 181.6(0.4) 178.9(0.4)
2.0 245.3(0.6) 246.5(0.6) 251.4(0.6) 244.3(0.6)
5.0 351.3(1.0) 359.8(1.0) 376.4(1.1) 352.7(1.0)
10.0 429.6(1.5) 451.4(1.6) 495.6(1.7) 431.8(1.4)

Table 2. (values in basis points)

T1
∂̂Iex
∂xn

(h)

(SD) ∂̂Ilgn
∂xn

(h)

(SD) ∂̂I0
∂xn

(h)

(SD) ∂̂I1
∂xn

(h)

(SD)

1.0 1768.3(2.8) 1774.2(2.8) 1794.9(2.9) 1770.7(2.8)
2.0 1726.4(2.9) 1732.1(2.9) 1729.0(2.9) 1729.0(2.9)
5.0 1599.6(3.2) 1615.9(3.3) 1722.5(3.5) 1597.0(3.2)
10.0 1417.1(3.8) 1474.0(4.2) 1668.0(4.7) 1422.7(3.9)

Example 2: Bermudan swaption

For our next example we take a Bermudan at-the-money swaption with 10
annual exercise possibilities starting from T1. The set of exercise dates of the
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contract is thus {T1, T3, T5, . . . , T19} =: T . We compute the values and Deltas
for different T1 using estimators (??) and (??), respectively, with

t = 0, t+ = T1, x = L(0).

As payoff function f in the estimators we here have

fTτ
(Lt+,x

Tτ
) = Bn+1(0)Sτ (Lt+,x

Tτ
),

where Sτ is given by (??) with n = 19 and θ = 3.5%, and τ is a Bermudan
stopping time. Similar to the case of European swaptions, we take in (??) and
(??) the lognormally approximated Libor transition density,

φ(t, x, t+, ·) = pL
lgn(t, x, t

+, ·).

Then,
g(t, x, t+,m ξ) = L

lgnt,x
t+ (mξ),

where L
lgnt,x
t+ (mξ) is the m-th realization of the lognormal random variable (??)-

(??).
For the Bermudan swaption, a very good approximation of the optimal stop-

ping policy is constructed by Andersen’s method (strategy II, see ? ]),

τ t+,x
A := inf

{
i : Ti ≥ t+, Ti ∈ T , Bn+1(Ti)Si(L

t+,x
Ti

) ≥ Hi+

max
j≥i,Tj∈ T

Ei
[
Bn+1(Tj)Sj(L

t+,x
Tj

)
]}

. (67)

The conditional expectations in (??), which are (discounted) swaption values
in fact, can be computed accurately in closed-form (see, e.g., ? ]). Further in
(??), H is a constant vector computed by backward optimization over a set of
pre-simulated trajectories, as proposed by ? ]. In Table 3, column 2, we display
the Bermudan prices ûlow

ex due to stopping strategy τA. Upper estimations ûup
ex

are constructed from ûlow
ex by the dual approach, developed in ? ] and ? ], see

Table 3, column 3. As we see, the distance between lower and upper Bermudan
estimates does not exceed 0.5% (relative to the values).

We next compute the estimates (??) and (??) via the stopping strategy τA.
As in the previous example, we approximate the Libor transition density by
WKB approximations pL

0 and pL
1 , respectively, and φ by the lognormal approxi-

mation pL
lgn. We denote the estimates by û0, û1, ûlgn and ∂̂u0

∂xn

(h)

, ∂̂u1
∂xn

(h)

, ∂̂ulgn
∂xn

(h)

,
respectively. The results are compared with ”exact” Bermudan values, given by
the interval [ûlow

ex , û
up
ex ], and with finite-difference approximations of Deltas,

∂̂uex

∂xi

(h)

=
1
M

M∑
m=1

fT
τ
0,x
A

(mL
0,x+hi

T
τ
0,x
A

)− fT
τ
0,x
A

(mL
0,x−hi

T
τ
0,x
A

)

2h
, 1 ≤ i ≤ n,

with hi = h(δi1, . . . , δin), simulated with ”exact” Libor trajectories. Here the
”exact” trajectories are simulated with a log-Euler scheme using ∆t = δi/10.

As we see in Table 3 and Table 4, the WKB approximation with only two
coefficients c0 and c1 involved, gives very close estimates of Bermudan swaption
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prices and Deltas, even for large values of T1. We observe that the distance be-
tween the values simulated via ”exact” Libor trajectories and the corresponding
values due to the WKB approximation is smaller than 0.5% relative to the value.
For these computations, h = 3.5× 10−5, M = 5× 105 in order to keep standard
deviations within 0.5% relative to the values.

Table 3. (values in basis points)
T1 ûlow

ex (SD) ûup
ex (SD) ûlgn (SD) û0 (SD) û1 (SD)

1.0 351.2(0.7) 352.5(1.0) 350.9(0.7) 354.7(0.7) 351.2(0.7)
2.0 388.4(0.8) 389.8(1.0) 388.2(0.8) 396.6(0.8) 387.3(0.8)
5.0 461.5(1.1) 463.4(1.3) 466.3(1.1) 492.9(1.1) 460.8(1.1)
10.0 523.7(1.6) 524.8(1.7) 543.6(1.7) 601.2(1.7) 523.6(1.5)

Table 4. (values in basis points)

T1
∂̂uex
∂xn

(h)

(SD) ∂̂ulgn
∂xn

(h)

(SD) ∂̂u0
∂xn

(h)

(SD) ∂̂u1
∂xn

(h)

(SD)

1.0 2709.2(3.5) 2720.9(3.5) 2747.2(3.5) 2709.2(3.5)
2.0 2631.1(3.5) 2630.5(3.5) 2700.7(3.6) 2628.6(3.5)
5.0 2392.9(3.7) 2407.7(3.8) 2561.9(4.0) 2398.0(3.8)
10.0 2101.5(4.4) 2152.5(4.7) 2443.4(5.3) 2111.5(4.4)

Remark 16. The values in Tables 1–4 are computed using a second order Taylor
approximation of c1(x, y) around x, where c1(x, x), the derivatives ∂c1

∂yi
(x, x) and

∂2c1
∂yi∂yj

(x, x), are computed (using finite differences) prior to the Monte Carlo
simulation.

Computational time

By using the new estimators we avoid step-by-step Euler simulation of the Libor
process in the time interval [0, T1]. Generally, the cost of Euler stepping up to T1

is proportional to T1/∆t, whereas the cost of the ”direct estimators” (??) and
(??) is independent of T1. In particular, in the present Libor case, Euler stepping
up to T1 requires a cost proportional to n2 T1

∆t times the cost of computing the
(possibly virtual) pay-off at T1. In comparison, the cost of simulating estimators
(??) and (??) is proportional to n2 times the cost of the pay-off at T1.

In Figure 2 we compare for different T1 the CPU time (per sample) needed
for computing the values in Tables 2,4 using WKB based estimators (??) and
(??) with the CPU time required for computing the estimates via straightfor-
ward Euler stepping of ”exact” Libor trajectories up to T1. We conclude that,
particularly for larger T1, the efficiency gain is quite high in the European case,
and still considerable in the Bermudan case.

Remark 17. ? ] and ? ] propose simulation schemes which improve upon
Euler SDE simulation and allow for taking larger time steps for obtaining the
same accuracy. Assuming that such a scheme requires a time step of order, say
O(
√

∆t), instead of O(∆t) for the same accuracy, it is clear that, for example
in the European case, the gain of our method with respect to this one is still
order of O(T/

√
∆t).
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Figure 2: CPU time (seconds) for simulating European (left) and Bermudan
(right) Deltas for different T1 by log-Euler Libor simulation (solid line) and by
WKB density approximation (with c0 and c1) (dash line).
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