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Abstract

We consider the problem of utility maximization for small traders on incom-
plete financial markets. As opposed to most of the papers dealing with this
subject, the investors’ trading strategies we allow underly constraints described
by closed, but not necessarily convex, sets. The final wealths obtained by trading
under these constraints are identified as stochastic processes which usually are
supermartingales, and even martingales for particular strategies. These strate-
gies are seen to be optimal, and the corresponding value functions determined
simply by the initial values of the supermartingales. We separately treat the
cases of exponential, power and logarithmic utility.
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Introduction

In this paper we consider a small trader on an incomplete financial market who can
trade in a finite time interval [0, T ] by investing in risky stocks and a riskless bond.
He aims at maximizing the utility he draws from his final wealth measured by some
utility function. The trading strategies he may choose to attain his wealth underly
some restriction formalized by a constraint. For example, he may be forced not to have
a negative number of shares or that his investment in risky stocks is not allowed to
exceed a certain threshold. We will be interested not only in describing the trader’s
optimal utility, but also the strategies which he may follow to reach this goal. As
opposed to most of the papers dealing so far with the maximization of expected utility
under constraints we essentially relax the hypotheses to be fulfilled by them. They are
formulated as usual by the requirement that the strategies take their values in some
set, which is supposed to simply be closed instead of convex. We consider three types
of utility functions. In the second section we carry out the calculation of the value
function and an optimal strategy for exponential utility. In this case, the investor
is allowed to have an additional liability, and maximizes the utility of its sum with
terminal wealth. In section 3 we consider power utility, and in the final section the
simplest one: logarithmic utility.

The method that we apply in order to obtain value function and optimal strategy is
simple. We propose to construct a stochastic process Rρ depending on the investor’s
trading strategy ρ, and such that its terminal value equals the utility of the trader’s
terminal wealth. As mentioned above, to model the constraint, trading strategies are
supposed to take their values in a closed set. In our market, the absence of completeness
is not explicitly described by a set of martingale measures equivalent to the historical
probability. Instead, we assume more directly that for every trading strategy ρ, Rρ is a
supermartingale. Moreover, we assume that there exists at least one particular trading
strategy ρ∗ such that Rρ∗ is a martingale. Hereby, the initial value is supposed not to
depend on the strategy. Evidently, the strategy ρ∗ related to the martingale has to be
the optimal one. Then the value function of the optimization problem is just given by
the initial value of Rρ∗ .

Since we work on a Wiener filtration, the powerful tool of backward stochastic
differential equations (BSDE) is available. It allows the construction of the stochastic
control process ρ∗, and thus the description of the value function in terms of the solution
of a BSDE.

In a related paper, El Karoui and Rouge [ER] compute the value function and the
optimal strategy for exponential utility by means of BSDE, assuming more restrictively
that the strategies be confined to a convex cone. Sekine [Sek] relies on a duality
result obtained by Cvitanic and Karatzas [CK], also describing constraints through
convex cones. He studies the maximization problem for the exponential and power
utility functions, and uses an attainability condition which solves the primal and dual
problems, finally writing this condition as a BSDE. In contrast to these papers, we
do not use duality, and directly characterize the solution of the primal problem. This
allows us to pass from convex to closed constraints.

Utility maximization is one of the most frequent problems in financial mathematics
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and has been considered by numerous authors. Here are some of the milestones viewed
from our perspective of maximization under constraints using the tools of BSDEs. For
a complete market, utility maximization has been considered in [KLS]. Cvitanic and
Karatzas [CK] prove existence and uniqueness of the solution for the utility maximiza-
tion problem in a Brownian filtration constraining strategies to convex sets. There are
numerous papers considering general semimartingales as stock price processes. Delbaen
et al. [DGR] give a duality result between the optimal strategy for the maximization
of the exponential utility and the martingale measure minimizing the relative entropy
with respect to the real world measure P . This duality can be used to characterize the
utility indifference price for an option. Also relying upon duality theory, Kramkov and
Schachermayer [KS] and Cvitanic et al. [CSW] give a fairly complete solution of the
utility optimization problem on incomplete markets for a class of general utility func-
tions not containing the exponential one. See also the review paper by Schachermayer
[Sch] for a more complete account and further references.

The powerful tool of BSDE has been introduced to stochastic control theory by
Bismut [B]. Its mathematical treatment in terms of stochastic analysis was initiated
by Pardoux and Peng [PP], and its particular significance for the field of utility maxi-
mization in financial stochastics clarified in El Karoui, Peng and Quenez [EPQ].

1 Preliminaries and the market model

A probability space (Ω,F , P ) carrying an m–dimensional Brownian motion (Wt)t∈[0,T ]

is given. The filtration F is the completion of the filtration generated by W .
Let us briefly explain some special notation that will be used in the paper. For q ≥ 1,

Lq denotes the set of FT –measurable random variables F such that E[F q] < ∞, for k ∈
N, Hk(Rd) the set of all Rd–valued stochastic processes ϑ which are predictable with

respect to F and satisfy E[
∫ T

0
‖ϑt‖kdt] < ∞. H∞(Rd) is the set of all F–predictable

Rd–valued processes that are λ ⊗ P–a.e. bounded on [0, T ] × Ω. Note here that we
write λ for the Lebesgue measure on [0, T ] or R.

Let M denote a continuous semimartingale. The stochastic exponential E(M) is
given by

E(M)t = exp

(
Mt − 1

2
〈M〉t

)
, t ∈ [0, T ],

where the quadratic variation is denoted by 〈M〉. Let C denote a closed subset of Rm

and a ∈ Rm. If | · | stands for the Euclidean norm in Rm, the distance between a and
C is defined as

distC(a) = min
b∈C

|a− b|.

The set ΠC(a) consists of those elements of C at which the minimum is obtained:

ΠC(a) = {b ∈ C : |a− b| = distC(a) }.

This set is not empty and evidently may contain more than one point.
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The financial market consists of one bond with interest rate zero and d ≤ m stocks.
In case d < m we face an incomplete market. The price process of stock i evolves
according to the equation

dSi
t

Si
t

= bi
tdt + σi

tdWt, i = 1, . . . , d, (1)

where bi (resp. σi) is anR– valued (resp. R1×m–valued) predictable uniformly bounded
stochastic process. The lines of the d × m–matrix σ are given by the vector σi

t, i =
1, . . . , d. The volatility matrix σ = (σi)i=1,...,d has full rank and we assume that σσtr

is uniformly elliptic, i.e. KId ≥ σσtr ≥ εId, P–a.s. for constants K > ε > 0. The
predictable Rm–valued process

θt = σtr
t (σtσ

tr
t )−1bt, t ∈ [0, T ],

is then also uniformly bounded.
There exists a nonempty set P of probability measures equivalent to P such that S

is a Q–martingale for all Q ∈ P. A probability measure Q0 ∈ P is determined by an
exponential density with respect to a market price of risk process θ in the form

dQ0

dP
= E(−

∫ ·

0

θdW )T .

Let us now fix a market price of risk θ and the corresponding probability measure
Q0. A d–dimensional F–predictable process π = (πt)0≤t≤T is called trading strategy if∫

π dS
S

is well defined, e.g.
∫ T

0
‖πtσt‖2dt < ∞ P–a.s. and Q0–a.s. For 1 ≤ i ≤ d, the

process πi
t describes the amount of money invested in stock i at time t. The number

of shares is
πi

t

Si
t
. The wealth process Xπ of a trading strategy π with initial capital x

satisfies the equation

Xπ
t = x +

d∑
i=1

∫ t

0

πi,u

Si,u

dSi,u = x +

∫ t

0

πuσu(dWu + θudu), t ∈ [0, T ].

In this notation π has to be taken as a vector in R1×d. Trading strategies are self–
financing. The investor uses his initial capital and during the trading interval [0, T ]
there is no extra money flow out of or into his portfolio. Gains or losses are only
obtained by trading with the stock.

The conditions on the trading strategies of the following definition guarantee that
there is no arbitrage. In addition, we allow constraints on the trading strategies.
Formally, they are supposed to take their values in a closed set, i.e. πt(ω) ∈ C̃, with
C̃ ⊆ R1×d. We emphasize that C̃ is not assumed to be convex. For technical reasons
we impose some further integrability assumptions.

Definition 1 (Admissible Strategies with constraints) Let C̃ be a closed set in
R1×d. The set of admissible trading strategies Ã consists of all d–dimensional pre-
dictable processes π = (πt)0≤t≤T which satisfy πt ∈ C̃ λ ⊗ P–a.s.,

∫ ·
0
πsσsdWs is a

P–BMO–martingale, and E(U(Xπ
T )) > −∞.
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The boundedness of θ and Theorem 3.6 in [Kaz] imply that the wealth process Xπ is
a BMO–martingale under the equivalent probability measure Q0. Therefore the set Ã
is free of arbitrage, i.e. in this set there is no trading strategy π with initial capital
Xπ

0 = 0, terminal wealth Xπ
T ≥ 0 P–a.s. and P [Xπ

T > 0] > 0.
For t ∈ [0, T ], ω ∈ Ω define the set Ct(ω) ⊆ Rm by

Ct(ω) = C̃σt(ω). (2)

The entries of the matrix–valued process σ are uniformly bounded. Therefore we get

min{ |a| : a ∈ Ct(ω) } ≤ k1 for λ⊗ P − a.e. (t, ω) (3)

with a constant k1 ≥ 0.

Remark 2 Writing
pt = πtσt, t ∈ [0, T ],

the set of admissible trading strategies Ã is equivalent to a set A of R1×m–valued
predictable stochastic processes p with p ∈ A iff pt(ω) ∈ Ct(ω) P–a.s. and

∫ ·
0
psdWs

is a P–BMO–martingale. Such a process p ∈ A will also be named strategy, and X(p)

denotes its wealth process.

Suppose our investor has a liability F at time T . This random variable F is assumed
to be FT –measurable and bounded, but not necessarily positive. He tries to find a
trading strategy that is optimal in a certain sense in presence of this liability F .

2 Exponential Utility

In this section, we specify this sense by stipulating that the investor wants to maximize
his expected utility with respect to the exponential utility from his total wealth Xp

T−F .
Let us recall that for α > 0 the exponential utility function is defined as

U(x) = − exp(−αx), x ∈ R.

So the investor wants to solve the maximization problem

V (x) := sup
π∈Ã

E

[
− exp

(
−α

(
x +

∫ T

0

πt
dSt

St

− F

))]
,

where x is the initial wealth. V is called value function. Losses, i.e. realizations with
Xπ − F < 0, are punished very strongly. Large gains or realizations with Xπ − F > 0
are weakly valued. The maximization problem is evidently equivalent to

V (x) = sup
p∈A

E

[
− exp

(
−α

(
x +

∫ T

0

pt(dWt + θtdt)− F

))]
. (4)

In order to find the value function and an optimal strategy we construct a family of
stochastic processes R(p) with the following properties:
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• R
(p)
T = − exp(−α(Xp

T − F )) for all p ∈ A,

• R
(p)
0 = R0 is constant for all p ∈ A,

• R(p) is a supermartingale for all p ∈ A and there exists a p∗ ∈ A such that R(p∗)

is a martingale.

The process R(p) and its initial value R0 depend of course on the initial capital x.
Given processes possessing these properties we can compare the expected utilities of
the strategies p ∈ A and p∗ ∈ A by

E[− exp(−α(Xp
T − F ))] ≤ R0(x) = E[− exp(−α(Xp∗

T − F ))] = V (x), (5)

whence p∗ is the desired optimal strategy. To construct this family, we set

R
(p)
t := − exp(−α(X

(p)
t − Yt)), t ∈ [0, T ], p ∈ A,

where (Y, Z) is a solution of the BSDE

Yt = F −
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds, t ∈ [0, T ].

In these terms we are bound to choose a function f for which R(p) is a supermartingale
for all p ∈ A and there exists a p∗ ∈ A such that R(p∗) is a martingale. This function
f also depends on the constraint set (Ct) where (pt) takes its values (see (2)). We get

V (x) = R
(p,x)
0 = − exp(−α(x− Y0)), for all p ∈ A.

In order to calculate f , we write R as the product of a (local) martingale M (p) and a
(not strictly) decreasing process Ã(p) that is constant for some p∗ ∈ A. For t ∈ [0, T ]
define

M
(p)
t = exp(−α(x− Y0) exp

(
−

∫ t

0

α(ps − Zs)dWs − 1

2

∫ t

0

α2(ps − Zs)
2ds

)

Comparing R(p) and M (p)Ã(p) yields

Ã
(p)
t = − exp(

∫ t

0

v(s, ps, Zs)ds), t ∈ [0, T ],

with

v(t, p, z) = −αpθt + αf(t, z) +
1

2
α2|p− z|2.

In order to obtain a decreasing process Ã(p) evidently f has to satisfy

v(t, pt, Zt) ≥ 0 for all p ∈ A

and
v(t, p∗t , Zt) = 0
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for some particular p∗ ∈ A. For t ∈ [0, T ] we have

1

α
v(t, pt, Zt) =

α

2
|pt|2 − αpt(Zt +

1

α
θt) +

α

2
|Zt|2 + f(t, Zt)

=
α

2
|pt − (Zt +

1

α
θt)|2 − α

2
|Zt +

1

α
θt|2 +

α

2
Z2

t + f(t, Zt)

=
α

2
|pt − (Zt +

1

α
θt)|2 − Ztθt − 1

2α
|θt|2 + f(t, Zt).

Now set

f(t, z) = −α

2
dist2

(
z +

1

α
θt, Ct(ω)

)
+ zθt +

1

2α
|θt|2.

The function f is well defined because it only depends on the distance between a point
and a closed set.

For this choice we get v(t, p, z) ≥ 0 and for

p∗t ∈ ΠCt(ω)

(
Zt +

1

α
θt

)
, t ∈ [0, T ],

we obtain v(·, p∗, Z) = 0.

Theorem 3 The value function of the optimization problem (4) is given by

V (x) = − exp(−α(x− Y0)),

where Y0 is defined by a solution (Y, Z) of the BSDE

Yt = F −
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds, t ∈ [0, T ], (6)

with

f(·, z) = −α

2
dist2

(
z +

1

α
θ, C

)
+ zθ +

1

2α
|θ|2.

There exists an optimal trading strategy p∗ ∈ A with

p∗t ∈ ΠCt(ω)(Zt +
1

α
θt), t ∈ [0, T ], P − a.s. (7)

Proof In order to get the existence of solutions of the BSDE (6) we apply Theorem
2.3 of [Kob]. According to Lemma 6 below, for fixed z ∈ Rm, (f(t, z))t∈[0,T ] defines a
predictable process. A sufficient condition for the existence of a solution is condition
(H1) in [Kob]: there are constants c0, c1 such that

|f(t, z)| ≤ c0 + c1|z|2 for all z ∈ Rn P − a.s. (8)

By means of (3) we get for z ∈ Rm, t ∈ [0, T ]

dist2

(
z +

1

α
θt, Ct

)
≤ 2|z|2 + 2(

1

α
|θt|+ k1)

2.
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So (8) follows from the boundedness of θ. Theorem 2.3 in [Kob] states that the BSDE
(6) possesses at least one solution (Y, Z) ∈ H∞(R)×H2(Rm).

To prove uniqueness, suppose that solutions (Y 1, Z1), (Y 2, Z2) of the BSDE are
given. Then we have

Y 1 − Y 2 = −
∫ T

·
(Z1 − Z2)dW −

∫ T

·
(f(s, Z1

s )− f(s, Z2
s ))ds.

Now note that for s ∈ [0, T ], z1, z2 ∈ Rm we may write

f(s, z1)− f(s, z2) = −α

2
[dist2(z1 +

1

α
θs, Cs)− dist2(z2 +

1

α
θs, Cs) + (z1 − z2)θs.

Using the Lipschitz property of the distance function from a closed set we obtain the
estimate

|f(s, z1)− f(s, z2)| ≤ c1|z1 − z2|+ c2(|z1|+ |z2|)(|z1 − z2|)
≤ c3(1 + |z1|+ |z2|)|z1 − z2|.

Let us set

β(t) =

{
f(t,Z1

t )−f(t,Z2
t )

Z1
t−Z2

t
, if Z1

t − Z2
t 6= 0,

0, if Z1
t − Z2

t = 0.

Then we obtain from the preceding estimate

|β(t)| ≤ c(1 + |Z1
t |+ |Z2

t |), t ∈ [0, T ].

Moreover, from the boundedness of F , the P−BMO property of
∫ ·

0
Zi(s)dWs, i = 1, 2,

follows. This in turn entails that
∫ ·
0
β(s)dWs is a P−BMO martingale. But this allows

us to give an alternative description of the difference of solutions in

Y 1 − Y 2 = −
∫ T

·
(Z1

s − Z2
s )dWs −

∫ T

·
β(s) (Z1

s − Z2
s )ds

= −
∫ T

·
(Z1

s − Z2
s )[dWs + β(s)ds].

This process is a martingale under the equivalent probability measure Q which has
density

E(−
∫ T

0

β(t)dWt)

with respect to P (see Lemma 7). Since Y 1
T = F = Y 2

T we therefore conclude Y 1 = Y 2

and Z1 = Z2, and uniqueness is established.
To find the value function of our optimization problem, we proceed with a solution

(Y, Z) ∈ H∞(R)×H2(Rn) of (6). Let p∗ denote the predictable process constructed in
Lemma 6 for a = Z + 1

α
θ. By Lemma 7 below,

∫ ·
0
p∗sdWs is a P–BMO–martingale and

therefore p∗ ∈ A. Furthermore, Ã
(p∗)
t = −1 for λ⊗P almost all (t, ω) and with Lemma
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7 and Theorem 2.3 in [Kaz], E(−α
∫

(p∗s −Zs)dWs) is a martingale with expectation 1.
Hence R(p∗,x) is a martingale and

R
(p∗)
0 = E

[
− exp

(
−α

(
x +

∫ T

0

p∗s(dWs + θsds)− F

))]

= − exp(−α(x− Y0)).

For p ∈ A, E(−α
∫

(ps − Zs)dWs) is a martingale and Ã(p) is decreasing. Therefore

R
(p)
0 = − exp(−α(x− Y0))

≥ E

[
− exp

(
−α

(
x +

∫ T

0

ps(dWs + θsds)− F

))]
.

The supremum in (4) is uniquely defined, hence the unique solution of (6) has the same
initial value Y0.

2

We can show that the strategy p∗ chosen above is optimal in a wider sense. In fact,
an investor who has chosen at time 0 the strategy p∗ will stick to this decision if he
starts solving the optimization problem at some later time between 0 and T . For this
purpose, let us formulate the optimization problem more generally for a stopping time
τ ≤ T and an Fτ–measurable random variable which describes the capital at time τ ,
i.e. Xτ = Xp

τ for some p ∈ A. So we consider the maximization problem

V (τ, Xτ ) = ess supp∈AE

[
− exp

(
−α

(
Xτ +

∫ T

τ

ps(dWs + θsds)− F

))]
. (9)

Proposition 4 (Dynamic Principle) The value function x 7→ − exp(−α(x − y))
satisfies the dynamic programming principle, i.e.

V (τ, Xτ ) = − exp(−α(Xτ − Yτ ))

for all stopping times τ ≤ T where Yτ belongs to a solution of the BSDE (6). An
optimal strategy that attains the essential supremum in (9) is given by p∗, the optimal
strategy constructed in Theorem 3.

Proof For t ∈ [0, T ], set

Rt = − exp(−α(Xt − Yt))E
(
−

∫ T

t

α(ps − Zs)dWs

)
exp(

∫ T

t

v(s, ps, Zs)ds)

and apply the optional stopping theorem to the stochastic exponential. The claim
follows as in Theorem 3.

2

Remark 5 If the constraint C on the strategies is a convex cone, the value function
V and the optimal strategy p∗ both constructed in Theorem 3 are equivalent to those
determined in [Sek] and [ER].
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Sekine considers the utility function x 7→ − 1
α

exp(−αx). He obtains the value function

V (x) = − 1

α
exp(−αx + Ȳ0)

starting with the BSDE

Ȳt = αF −
∫ T

t

z̄sdWs −
∫ T

t

f̄(s, θs, z̄s)ds, t ∈ [0, T ],

where

f̄(t, θt, z̄) = θtΠCt(z̄ + θt)− 1

2
|z̄ − ΠCt(z̄ + θt)|2.

We evidently have to show that Ȳt = αYt for t ∈ [0, T ] or equivalently αf(t, θt,
z
α
) =

f̄(t, θt, z). Note that for a convex set C, the projection ΠC(a) is unique. If C is a
convex cone and β > 0, then βΠC(a) = ΠC(βa). The equality for the functions f and
f̄ therefore follows. El Karoui and Rouge [ER] have obtained the same BSDE and
value function before Sekine.

In the following Lemma we return to a technical point in the proof of Theorem 3.
We show that it is possible to define a predictable process which satisfies (7). Instead
of referring to a classical section theorem, see Dellacherie and Meyer [DM], we prefer
to give a direct and constructive proof.

Lemma 6 (measurable selection) Let (at)t∈[0,T ], (σt)t∈[0,T ] be R1×m– resp. Rd×m–

valued predictable stochastic processes, C̃ ⊂ Rd a closed set and Ct = C̃σt, t ∈ [0, T ].

(a) The process
d = (dist(at, C̃σt))t∈[0,T ]

is predictable.

(b) There exists a predictable process a∗ with

a∗t ∈ ΠCt(at) for all t ∈ [0, T ].

Proof In order to prove (a), observe that d is the composition of continuous mappings
with predictable processes. For k ∈ N let Hk denote the space of compact subsets
of Rk equipped with the Hausdorff metric and B(Hk) the Borel sigma algebra with
respect to this metric. The mapping dist : Rm ×Hm → R is jointly continuous hence
B(Rm) ⊗ B(Hm)–B(R) measurable. Now consider j : Rd×m × Hd → Hm that maps
a compact subset C̃ in Rd by applying an d ×m–matrix σ̃ to a compact subset K̃ of
Rm. More formally, j maps C̃ to the following set:

K̃ = {b ∈ Rm | ∃c̃ ∈ C̃ : b = c̃σ̃}.

The mapping j is also jointly continuous and therefore B(Rm×d) ⊗ B(Hd)–B(Hm)-
measurable. Hence (a) follows for compact C̃.

If more generally C̃ is closed but not bounded, take C̃n = C̃ ∩ Bn where Bn is
the closed ball with radius n centered at the origin. According to what has already
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been shown, for n ∈ N, dist(at, C̃nσt) defines a predictable process and dist(at, C̃nσt)
converges to dist(at, C̃σt), for n →∞. This proves the first claim.

In order to prove the second claim, we first concentrate on the case of compact
C̃. We have to show that for z ∈ Rm and a compact set K̃ ⊂ Rm there exists a
B(Rm) ⊗ B(Hm) – B(Rm)– measurable mapping ξ(z, K̃) with ξ(z, K̃) ∈ ΠK̃(z). This
is achieved by the definition of a sequence of mappings ξn(z, K̃) with a subsequence
of randomly chosen index that converges to an element of ΠK̃(z). The choice of the
converging subsequence will depend in a measurable way on z and K̃.

For n ∈ N, let Gn = (xn
i )i∈N be a dyadic grid with minx∈Gn dist(z̄, x) ≤ 1

n
for all

z̄ ∈ Rm. Let the elements of the grid Gn be numbered by Gn = {gn
i : i ∈ N}. Let K̃n

be the elements of the grid with distance at most 1
n

from Gn. Since we can describe

the sets K̃n as the intersections of the discrete set Gn with the closed set of all points
in Rm having distance at most 1

n
from K̃, and this closed set depends continuously on

K̃, K̃n is measurable in K̃. For any z ∈ Rm, let Πn(z, K̃) be the set of all points in
K̃n with minimal distance from z. Since K̃n is measurable in K̃, Πn(z, K̃) is obviously
measurable in (z, K̃). To define ξn(z, K̃), we have to choose one point in Πn(z, K̃). Let
it be the one with minimal index in the enumeration of Gn. This choice preserves the
measurability in (z, K̃). Hence we obtain that ξn(z, K̃) is B(Rm) ⊗ B(Hm) – B(Rm)–
measurable.

We next have to choose the subsequence with random indices. This is done as in
Lemma 1.55 in [FS]. Let us argue with respect to an arbitrary probability measure Q
on the Borel sets of Rm × Hm. First note that η = lim infn→∞ |ξn| < ∞. Let τ1 = 1,
and for n > 1

τn = inf{m > τn−1 : |ξn − η| ≤ 1

n
}.

Then it is plain that τn is B(Rm)⊗ B(Hm) – B(Rm)– measurable. Now take

ξ = lim inf
n→∞

ξτn ,

which obviously inherits the measurability properties of the subsequence with random
indices. But ξ is a selection. Indeed, for every n ∈ N, dist(ξτn(z, K̃), ΠK̃(z)) ≤ 1

τn
.

Thus by construction, ξ(z, K̃) ∈ ΠK̃(z) for all (z, K̃) ∈ Rm ×Hm.
We may then choose

a∗ = ξ(a, Cσ)

to satisfy the requirements of the second part of the assertion in the compact case.
Finally, if C is only closed, we may proceed as in the proof for (a).

2

Lemma 7 Let Z be the second component of a solution of the BSDE (6), and let p∗

be given by Lemma 6 for a = Z + 1
α
θ. Then the processes

∫ ·

0

ZsdWs,

∫ ·

0

p∗sdWs

are P–BMO martingales.

11



Proof Due to Corollary 2.2 of Kobylanski, the process Y corresponding to Z in the
solution of the BSDE (6) is uniformly bounded P–a.s. Let k denote the upper bound.
Applying Itô’s formula to the non positive process Y − k, we obtain for stopping times
τ ≤ T

E

[∫ T

τ

Z2
s ds

∣∣∣∣Fτ

]
= E[(H − k)2|Fτ ]− |Yτ − k|2

−2E

[∫ T

τ

(Ys − k)f(s, Zs)ds

∣∣∣∣Fτ

]

The definition of f yields for all (t, z) ∈ [0, T ]×Rm

f(t, z) ≤ zθt +
1

2α
|θt|2.

Therefore there exist positive constants c1, c2 and c̃1 such that

E

[∫ T

τ

|Zs|2ds

∣∣∣∣Fτ

]
≤ c1 + c2E

[∫ T

τ

|Zs + 1|ds

∣∣∣∣Fτ

]

≤ c̃1 +
1

2
E

[∫ T

τ

|Zs|2ds

∣∣∣∣Fτ

]
.

Hence,
∫ ·
0
ZsdWs is a BMO–martingale.

We next deal with the stochastic integral process of p∗. The triangle inequality
implies

|p∗| ≤ |Z +
1

α
θ|+ |p∗ − (Z +

1

α
θ)|.

The definition of p∗ together with (3) yields for some constants k1, k2

|p∗t | ≤ 2|Zt|+ 2

α
|θt|+ k1 ≤ 2|Zt|+ k2, t ∈ [0, T ],

and thus for every stopping time τ ≤ T

E

[∫ T

τ

|p∗t |2dt

∣∣∣∣Fτ

]
≤ E

[∫ T

τ

8|Zt|2dt + 2Tk2
2

∣∣∣∣Fτ

]
.

This implies the P−BMO property of
∫ ·

0
p∗sdWs.

2

3 Power utility

In this section we calculate the value function and characterize the optimal strategy
for the utility maximization problem with respect to

Uγ(x) =
1

γ
xγ, x ≥ 0, γ ∈ (0, 1).

12



This time, our investor maximizes the expected utility of his wealth at time T without
an additional liability. The trading strategies are constraint to take values in a closed
set C̄2 ⊆ Rd. In this section, we shall use a somewhat different notion of trading
strategy: ρ̃ = (ρ̃i)i=1,...,d denotes the part of the wealth invested in stock i. The

number of shares of stock i is given by
ρ̃i

tXt

Si
t

. A d–dimensional F–predictable process

ρ̃ = (ρ̃t)0≤t≤T is called trading strategy (part of wealth) if the following wealth process
is well defined:

X
(ρ̃)
t = x +

∫ t

0

d∑
i=1

X
(ρ̃)
s ρ̃i,s

Si,s

dSi,s = x +

∫ t

0

X(ρ̃)
s ρ̃sσs(dWs + θsds), (10)

and the initial capital x is positive. The wealth process X(ρ̃) can be written as:

X
(ρ̃)
t = xE

(∫
ρ̃sσs(dWs + θsds)

)

t

, t ∈ [0, T ].

As before, it is more convenient to introduce

ρt = ρ̃tσt, t ∈ [0, T ].

Accordingly, ρ is constraint to take its values in

Ct(ω) = C̃σt(ω) t ∈ [0, T ], ω ∈ Ω.

The sets Ct satisfy (3). In order to formulate the optimization problem we first define
the set of admissible trading strategies.

Definition 8 The set of admissible trading strategy Ã consists of all d–dimensional
predictable processes ρ = (ρt)0≤t≤T that satisfy ρt ∈ Ct(ω) P–a.s and

∫ ·
0
ρsdWs is a

BMO–martingale.

The investor faces the maximization problem

V̄ (x) = sup
ρ̃∈Ã

E
[
U

(
X

(ρ̃)
T

)]
. (11)

In order to find the value function and an optimal strategy we apply the same method
as for the exponential utility function. We therefore have to construct a stochastic
process R̃(ρ) with terminal value

R̃
(ρ)
T = U

(
x +

∫ T

0

Xsρs
dSs

Ss

)
,

and an initial value R̃
(ρ)
0 = R̃x

0 that does not depend on ρ, R̃(ρ) is a supermartingale
for all ρ ∈ Ã and a martingale for a ρ∗ ∈ Ã. Then ρ∗ is the optimal strategy and the
value function given by V̄ (x) = R̃x

0 . Applying the utility function to the wealth process
yields

(Xρ,x
t )γ = xγ exp

(∫ t

0

γρsdWs +

∫ t

0

γρsθsds− 1

2

∫ t

0

γ|ρs|2ds

)
, t ∈ [0, T ].

13



This equation suggests the following choice:

R̃
(ρ)
t = xγ exp

(∫ t

0

γρsdWs +

∫ t

0

γρsθsds− 1

2

∫ t

0

γ|ρs|2ds + Yt

)
, (12)

where (Y, Z) is a solution of the BSDE

Yt = 0−
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds, t ∈ [0, T ].

In order to get the supermartingale property of R̃(ρ) we have to construct f(t, z) such
that for t ∈ [0, T ]

γρtθt − 1

2
γ|ρt|2 + f(t, Zt) ≤ −1

2
|γρt + Zt|2 for all ρ ∈ Ã. (13)

R̃(ρ∗) will even be a martingale if equality holds for ρ∗ ∈ Ã. This is equivalent to

f(t, Zt) ≤ 1

2
γ(1− γ)

∣∣∣∣ρt − 1

1− γ
(Zt + θt)

∣∣∣∣
2

− 1

2

γ|Zt + θt|2
1− γ

− 1

2
|Zt|2.

Hence the appropriate choice for f is

f(t, z) =
γ(1− γ)

2
dist2

(
1

1− γ
(z + θt), Ct

)
− γ|z + θt|2

2(1− γ)
− 1

2
|z|2,

and a candidate for the optimal strategy must satisfy

ρ∗t ∈ ΠCt(ω)

(
1

1− γ
(Zt + θt)

)
, t ∈ [0, T ].

In the following Theorem both value function and optimal strategy are described.

Theorem 9 The value function of the optimization problem is given by

V (x) = xγ exp(Y0) for x > 0,

where Y0 is defined by a solution (Y, Z) of the BSDE

Yt = 0−
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds, t ∈ [0, T ], (14)

with

f(t, z) =
γ(1− γ)

2
dist2

(
1

1− γ
(z + θt), Ct

)
− γ|z + θt|2

2(1− γ)
− 1

2
|z|2.

There exists an optimal trading strategy ρ∗ ∈ Ã with the property

ρ∗t ∈ ΠCt(ω)

(
1

1− γ
(Zt + θt)

)
. (15)

14



Proof According to Lemma 6, (f(t, z))t∈[0,T ] is a predictable stochastic process which
also depends on σ. Due to (3) and the boundedness of θ, Condition (H1) for Theorem
2.3 in [Kob] is fulfilled. We obtain the existence of a solution (Y, Z) ∈ H∞(R) ×
H2(Rm) for the BSDE (14). Uniqueness follows from the comparison arguments in the
uniqueness part of the proof of Theorem 3.

Let ρ∗ denote the predictable process constructed with Lemma 6 for a = 1
1−γ

(Z +θ).

Lemma 12 below shows that ρ∗ ∈ Ã. By Theorem 2.3 in [Kaz], the process R̃(ρ∗) is a
martingale with terminal value

R̃
(ρ∗)
T = xγ exp

(∫ T

0

γρ∗sdWs +

∫ T

0

γρ∗sθsds− 1

2

∫ T

0

γ|ρ∗s|2ds

)
.

This is the power utility from terminal wealth of the trading strategy ρ∗. Therefore
the expected utility of ρ∗ is equal to R̃

(ρ∗,x)
0 = xγ exp(Y0).

To show that this provides the value function let ρ ∈ Ã. (13) yields

R̃
(ρ)
t = xγ exp(Y0)E

(∫
(γρs + Zs)dWs

)

t

exp

(∫ t

0

vsds

)
, t ∈ [0, T ],

for a process v with vs ≤ 0 λ ⊗ P a.s. The process in the stochastic exponential is a
BMO–martingale, whence the stochastic exponential is a martingale. Therefore R(ρ,x)

is a supermartingale. The terminal value R
(ρ,x)
T is the utility of the terminal wealth of

the trading strategy ρ. Consequently

E[U(X
(ρ,x)
T )] ≤ R

(x)
0 = xγ exp(Y0) for all ρ ∈ A.

The supremum in the maximization problem (11) is a unique real number. Therefore
the initial value Y0 for every solution of the BSDE (14) must be the same.

2

Again we can show that an investor starting to act at some stopping time in the trading
interval [0, T ] will perceive the strategy ρ∗ just constructed as optimal. Let τ ≤ T
denote a stopping time and Xτ an Fτ–measurable random variable which describes the
capital at time τ , i.e. Xτ = Xρ

τ for a ρ ∈ Ã and an initial capital x > 0. Consider the
maximization problem

V̄ (τ,Xτ ) = ess supp∈Aτ
E

[
U

(
Xτ +

∫ T

τ

Xsρs(dWs + θsds)

)]
. (16)

Proposition 10 (Dynamic Principle) The value function xγ exp(y) satisfies the dy-
namic programming principle, i.e.

V̄ (τ,Xτ ) = (Xτ )
γ exp(Yτ )

for all stopping times τ ≤ T , where Yτ is given by a solution of the BSDE (14). An
optimal strategy which attains the essential supremum in (16) is given by ρ∗ constructed
in Theorem 9.
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Proof See Proposition 4.

Remark 11 Suppose that the constraint set C is a convex cone. Then the optimal
strategy ρ∗ constructed in Theorem 9 is the same as in [Sek].

Sekine uses the utility function x 7→ 1
γ
xγ and obtains the value function

Ṽ (x) =
1

γ
xγ exp((1− γ)Ỹ0),

where Ỹ0 is defined by the solution of the BSDE

Ỹt = 0−
∫ T

t

Z̃sdWs −
∫ T

t

g(s, Z̃s)ds, t ∈ [0, T ].

Here

g(t, z̃) =
|θt|2
2

− 1

2

∣∣∣∣θt − ΠCt

(
z̃ +

θt

1− γ

)∣∣∣∣
2

− 1− γ

2

∣∣∣∣z̃ − ΠCt

(
z̃ +

θt

1− γ

)∣∣∣∣
2

.

As for the exponential utility function we have to show (1 − γ)Ỹ = Y or equivalently
(1− γ)g(t, z

1−γ
) = f(t, z). In fact, we have

(1− γ)g

(
t,

z

1− γ

)
= (1− γ)

[
|θt|2
2

− 1

2

∣∣∣∣θt − ΠCt

(
z + θt

1− γ

)∣∣∣∣
2
]

−(1− γ)2

2

∣∣∣∣
z

1− γ
− ΠCt

(
z + θt

1− γ

)∣∣∣∣
2

= θtΠCt(z + θt)− 1

2(1− γ)
|ΠCt(z + θt)|2

−1

2
|z|2 + zΠCt(z + θt)− 1

2
|ΠCt(z + θt)|2

= (z + θt)ΠCt(z + θt)− 2− γ

2(1− γ)
|ΠCt(z + θt)|2 − 1

2
|z|2

= − γ

2(1− γ)
|ΠCt(z + θt)|2 − 1

2
|z|2.

To obtain the last equality, we use

(z + θt)ΠCt(z + θt) = |ΠCt(z + θt)|2

(see (17) below).
For the function f we obtain

f(t, z) =
γ(1− γ)

2

∣∣∣∣
1

1− γ
(z + θt)− ΠCt

(
1

1− γ
(z + θt)

)∣∣∣∣
2

−γ

2

(z + θt)
2

(1− γ)
− 1

2
|z|2

= − γ

1− γ
(z + θt)ΠCt(z + θt) +

γ

2(1− γ)
|ΠCt(z + θt)|2 − 1

2
|z|2

= − γ

2(1− γ)
|ΠCt(z + θt)|2 − 1

2
|z|2.
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For t ∈ [0, T ], z ∈ Rm we therefore have

(1− γ)g(t,
z

1− γ
) = f(t, z).

It remains to prove that for a convex cone C and a ∈ Rm the following equality holds:

ΠC(a)(a− ΠC(a)) = 0. (17)

Let 1 6= λ ≥ 0. For a convex cone C we have ΠC(λa) = λΠC(a) and

|a− ΠC(a)|2 ≤ |a− λΠC(a)|2,

a2 − 2aΠC(a) + |ΠC(a)|2 ≤ a2 − 2λaΠC(a) + λ2|ΠC(a)|2.
Thus

2a(λ− 1)ΠC(a)− (λ + 1)(λ− 1)|ΠC(a)|2 ≤ 0,

and
(λ− 1)ΠC(a) [2a− (λ + 1)ΠC(a)] ≤ 0.

For λ > 1 we obtain
ΠC(a)(2a− (λ + 1)ΠC(a)) ≤ 0,

hence for λ → 1+

ΠC(a)(a− ΠC(a)) ≤ 0.

For λ < 1 we get
ΠC(a)(2a− (λ + 1)ΠC(a) ≥ 0,

and λ → 1− yields
ΠC(a)(a− ΠC(a)) ≥ 0.

2

Lemma 12 Let Z be the second component of a solution of the BSDE (14), and let ρ∗

be given by (15). Then the processes

∫ ·

0

ZsdWs,

∫ ·

0

ρ∗sdWs

are P–BMO martingales.

Proof We can use the same line of reasoning as in the proof of Lemma 7. The argument
given there has to be slightly modified, however. We may take a lower bound k for Y ,
and apply Itô’s formula to |Y − k|2, to conclude in the same manner as before.

2
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4 Log Utility

To complete the spectrum of important utility functions, in this section we shall con-
sider logarithmic utility. As in the preceding section, the agent has no liability at time
T . Trading strategies and wealth process have the same meaning as in section 3 (see
Definition 8 and (10)). The trading strategies ρ̃ are constraint to take values in a closed
set C̃2 ⊂ Rd. For ρt = ρ̃tσt the constraints are described by Ct = C̃2σt, t ∈ [0, T ].

For the logarithmic utility function

U(x) = log(x), x > 0,

we obtain a particularly simple BSDE that leads to the value function and the optimal
strategy. The optimization problem is given by

V (x) = sup
ρ∈Ã

E[log(X
(ρ)
T )] (18)

= log(x) + sup
ρ∈Ã

E

[∫ T

0

ρsdWs +

∫ T

0

(ρsθs − 1

2
|ρs|2)ds

]
, (19)

where the initial capital x is positive again. As in section 2 we want to determine a
process R(ρ) with R

(ρ)
T = log(X

(ρ)
T ), and an initial value that does not depend on ρ.

Furthermore, R(ρ) is a supermartingale for all ρ ∈ Ã, and there exists a ρ∗ ∈ Ã such
that R(ρ∗) is a martingale. The strategy ρ∗ is the optimal strategy and Rρ∗

0 is the value
function of the optimization problem (18).

We can choose for t ∈ [0, T ]

R
(ρ)
t = log x + Y0 +

∫ t

0

(ρs + Zs)dWs +

∫ t

0

(
−1

2
|ρs − θs|2 +

1

2
θ2

s + f(s)

)
ds,

where

f(t) =
1

2
dist2(θt, Ct)− 1

2
|θt|2, t ∈ [0, T ],

and (Yt, Zt) is the solution of the following BSDE:

Yt = 0−
∫ T

t

ZsdWs −
∫ T

t

f(s)ds, t ∈ [0, T ].

The initial value Y0 satisfies

Y0 = −E

[∫ T

0

f(s)ds

]
.

Hence

V (x) = Rρ∗
0 (x) = log(x) + E

[
−

∫ T

0

f(s)ds

]
.

An optimal trading strategy can be constructed by means of Lemma 6. It guarantees
the existence of an admissible trading strategy ρ∗ which satisfies ρ∗t ∈ ΠCt(θt). In
particular ρ∗ only depends on θ and σ, and the set C̃ describing the constraints on the
trading strategies.
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