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Boundary optimal flow control with state constraints
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The numerical solution of the Dirichlet boundary optimal control problem of the Navier-Stokes equations in presence of
pointwise state constraints is investigated. A Moreau-Yosida regularization of the problem is proposed to obtain regular
multipliers. Optimality conditions are derived and the convergence of the regularized solutions towards the original one is
proved. A numerical experiment is presented.
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1 Problem statement

Consider a bounded regular domain Ω ⊂ R2. Further, let Γ1 be an open subset of the boundary Γ. Our aim is to find a solution
of the following optimal control problem:





min J(y, u) := 1
2‖y − zd‖2L2(Ω) + α

2 ‖u‖2H1
0(Γ1)

subject to
−ν∆y + (y · ∇)y +∇p = f in Ω
div y = 0 in Ω
y|Γ = g + Bu on Γ
a ≤ y ≤ b a.e. in Ω,

(P)

where α > 0, ν > 0 denotes the viscosity coefficient and zd is the desired state. The operator B is the extension by zero
operator. The functions f ∈ L2(Ω) and g ∈ H1(Γ), with

∫
Γ

g · ~n dΓ = 0, are given. Moreover, the lower and upper
bounds a, b ∈ C(Ω) satisfy a(x) < b(x) for all x ∈ Ω. The inequalities in the last line of (P) have to be understood
componentwise. We denote by (·, ·)X the inner product in the Hilbert space X and by ‖·‖X the associated norm. The bold
notation stands for the product of spaces. We introduce the solenoidal space V = {v ∈ H1

0(Ω) : div v = 0}, the closed
subspace H := {v ∈ H1(Ω) : div v = 0} and the trilinear form c : H×H×H → R defined by

c(u,w, v) = ((u · ∇)w, v)L2(Ω). (1)

We consider the control space U := {v ∈ H1
0(Γ1) :

∫
Γ1

v · ~n dΓ = 0}.

2 Moreau-Yosida regularization

We consider a Moreau-Yosida regularization technique for solving (P). The basic idea of the regularization is to consider
alternatively to the state constrained problem, the following penalized control problem:





min J(y, u) := 1
2‖y − zd‖2L2(Ω) + α

2 ‖u‖2H1
0(Γ1)

+ γ
2 ‖max(0, y − b)‖2L2(Ω) + γ

2 ‖min(0, y − a)‖2L2(Ω)

subject to
−ν∆y + (y · ∇)y +∇p = f in Ω
div y = 0 in Ω
y|Γ = g + Bu on Γ.

(Pγ)

This regularization approach has been utilized for state constrained control problems in [4]. Hereafter, the same penalization
was applied to different constrained control problems (see [1, 3]). Alternatively, a Lavrentiev regularization technique may
also be used for solving the control problem (see [5, 6]).

Since the state constraints are replaced by a penalized cost functional, the analysis of the control problem follows the lines
of [1]. In this manner existence of an optimal solution and Lagrange multipliers can be justified. The following optimality
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Fig. 1 Example 1: optimal control

system follows from the first order necessary conditions: there exist multipliers λ ∈ H2(Ω) ∩ V , q ∈ H1(Ω) ∩ L2
0(Ω) and

σ ∈ R such that
−ν∆yγ + (yγ · ∇)yγ +∇pγ = f

div yγ = 0

yγ |Γ = g + Buγ ,

(2)

−ν∆λ− (yγ · ∇)λ + (∇yγ)T λ +∇q = zd − yγ − µ

div λ = 0

λ|Γ = 0,

(3)

−α∆Γuγ = B?

(
−ν

∂λ

∂~n
+ q~n

)
+ σ~n in H1

0(Γ1), (4)

µ = max(0, γ(yγ − b)) + min(0, γ(yγ − a)), (5)

where ∆Γ stands for the Laplace-Beltrami operator, hold in variational form.
In the following theorem a main result with respect to the regularization is stated.

Theorem 2.1 Let ν > M(yγ) := sup
v∈V

|c(v,yγ ,v)|
‖v‖2V

hold for all γ > 0. If there exists a feasible solution for (P), then the

regularized solutions (yγ , pγ , uγ) converge strongly in H3/2(Ω)×H1/2(Ω)×H1
0(Γ1) to an optimal solution of (P).

3 Numerical test

For the numerical experiment we utilize a forward facing step channel. The fuid flows from left to right with infow boundary
condition of parabolic type and outflow ”do nothing” condition. The domain is discretized with an homogeneous staggered
grid. Also a first order upwind scheme is used for the approximation of the convective term.

We impose a state constraint on the backward fluid flow in sector ΩS depicted in Figure..... In this manner a substantial
reduction of the recirculation after the step is obtained. Specifically, the state constraint is given by y1 ≥ 0. The resulting
controlled state is depicted in Figure... The remaining parameters take the values α = 0.005, Re = 800, γ = 107

The regularized problems are solved by means of a semi-smooth Newton method as developed in [2]. The algorithm is
based on a reformulation of the complementarity problem as an operator equation involving the max and min functions. A
main feature of this type of algorithms is its local superlinear convergent behavior. In our case, the SSN algorithm stops after
6 iterations with 320 grid points The resulting linear systems in each semi-smooth Newton iteration are solved exactly using
MATLAB’s sparse solver.
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[5] C. Meyer, A. Rösch and F. Tröltzsch: Optimal control of PDEs with regularized pointwise state constraints. Computational Optimiza-

tion and Applications, volume 33, 209-228, 2006.
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