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Abstract. Sensitivity analysis (with respect to the regularization parameter) of the solution of a class of regu-
larized state constrained optimal control problems is performed. The theoretical results are then used to establish
an extrapolation-based numerical scheme for solving the regularized problem for vanishing regularization parameter.
In this context, the extrapolation technique provides excellent initializations along the sequence of reducing regular-
ization parameters. Finally, the favorable numerical behavior of the new method is demonstrated and a comparison
to classical continuation methods is provided.
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1. Introduction. The numerical treatment of optimal control problems for partial differential
equations (PDEs) with pointwise state inequality constraints is challenging due to the measure-
valuedness of the Lagrange multiplier associated with the state constraints; see [1] for an analytical
assessment. A typical instance of such a problem is given by

(P )





minimize J(u, y) := 1
2‖y − yd‖2L2(Ω) + α

2 ‖u‖2L2(Ω)

over (u, y) ∈ L2(Ω)×H1
0 (Ω) ∩H2(Ω)

subject to Ay = u in Ω, y = 0 on Γ,

ya ≤ y ≤ yb a.e. in Ω,

where Ω ⊂ RN is a bounded and sufficiently regular domain, A is a second order elliptic partial
differential operator, and yd, α, ya, yb are given data which will be specified shortly.

In order to have a numerical technique at hand for solving (P ) with stable iteration numbers
as the mesh size of discretization is reduced, one can use an approach based on mixed control-state
constraints as investigated in [10]. In fact, in order to overcome the measure-valuedness of the
Lagrange multiplier associated with the pointwise inequality constraints in (P ) one adds εu to y
in the set of pointwise inequality constraints and then uses the result in [10] which yields an L2-
property of the Lagrange multiplier associated with the modified set of constraints. The regular
multiplier therefore represents a smooth approximation of the measure-valued quantity. Using this
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technique, (P ) becomes

(Pε)





minimize J(u, y) := 1
2‖y − yd‖2L2(Ω) + α

2 ‖u‖2L2(Ω)

over (u, y) ∈ L2(Ω)×H1
0 (Ω)

subject to Ay = u in Ω, y = 0 on Γ,

ya ≤ εu + y ≤ yb a.e. in Ω,

Let (ȳε, ūε) denote the solution of (Pε). For solving (Pε) efficiently, in [3, 7] a semismooth Newton
method (SSN) was proposed on a function space as well as on a discrete level. Besides the locally
superlinear convergence, the mesh-independence of SSN for ε > 0 was established.

In view of (P ) one is interested in studying the behavior of the solution algorithm as ε → 0.
For the numerics in the case of vanishing regularization parameter, however, in [3, 7] it turned out
to be crucial to suitably tune ε as it tends to zero and, even more importantly, to initialize the
algorithm for solving (Pε) appropriately along the sequence. Ignoring these issues typically makes
the numerical algorithm suffer from ill-conditioning which is usually reflected by large iteration
numbers and reduced numerical solution accuracy.

In this note we focus on this latter point and propose an numerical approach based on an
extrapolation technique in order to overcome the aforementioned problems. For this, we first need
to study the quality of the dependence of (ȳε, ūε) on ε. For instance, under a strict complementarity
assumption we prove differentiability of the solution to (Pε) with respect to ε. Let (ẏε, u̇ε) denote
the corresponding derivative. We then establish a system of sensitivity equations which characterize
(ẏε, u̇ε) uniquely. Subsequently, the theoretical findings are employed in our numerical approach.

The remainder of the paper is organized as follows: In the rest of this section we detail the
problem under investigation and settle the notation (subsection 1.1), and we recall some results
on (Pε) (subsection 1.2). The subsequent section 2 is devoted to Lipschitz and differentiability
properties of the solution to (Pε) with respect to ε > 0. Then, in section 3 we define our semismooth
Newton-type solver based on extrapolation in ε. We end this paper by a report on the numerical
behavior including a comparison to a technique without extrapolation in section 4. It turns out
that our new method compares favorably to classical continuation methods without extrapolation.

1.1. General assumptions and notation. In connection with our model problem (P ),
throughout this paper we assume that Ω is an open bounded domain in RN , N ∈ {2, 3}, with
sufficiently smooth boundary Γ. The upper and lower bounds ya, yb ∈ C(Ω) on the state variable
y satisfy ya(x) < yb(x) for all x ∈ Ω and guarantee that the feasible set of (P ) is non-empty.
Moreover, the desired state yd ∈ L2(Ω) and α > 0 are assumed to be fixed. By u we denote the
control variable. The second-order elliptic partial differential operator A is defined by

Ay(x) = −
N∑

i,j=1

Di(aij(x)Djy(x)),

where the coefficient functions aij ∈ C0,1(Ω̄) satisfy the ellipticity condition

N∑

i,j=1

aij(x)ξiξj ≥ θ‖ξ‖2RN ∀ (ξ, x) ∈ RN × Ω

for some constant θ > 0. Furthermore, A? stands for the associated adjoint operator. By G we
denote the solution operator G : L2(Ω) → H1

0 (Ω) ∩ H2(Ω) that assigns to every u ∈ L2(Ω) the
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solution y = y(u) ∈ H1
0 (Ω) ∩H2(Ω) of the state equation

Ay = u in Ω, y = 0 on Γ.

We set S = ı0G, where ı0 denotes the compact embedding operator from H1(Ω) to L2(Ω).
Using the above notation and assumptions, the regularized problem (Pε) can be expressed as

follows:

(Pε)

{
minimize f(u) := 1

2‖Su− yd‖2L2(Ω) + α
2 ‖u‖2L2(Ω) over u ∈ L2(Ω)

subject to ya ≤ (S + εI)u ≤ yb a.e. in Ω,

where I denotes the identity operator in L2(Ω). In [9] the name Lavrentiev regularized problem
was coined for (Pε).

1.2. Standard results. For every ε > 0 standard arguments guarantee the existence of a
unique solution of (Pε). Throughout the paper we denote this solution by ūε with associated state
ȳε. As in [9], first order optimality of (ȳε, ūε) can be characterized as follows:

Theorem 1.1 (First-order optimal conditions for (Pε)). The pair (ȳε, ūε) is optimal for (Pε) if
and only if there exist an adjoint state pε ∈ H1

0 (Ω)∩H2(Ω) and Lagrange multipliers µa
ε , µb

ε ∈ L2(Ω)
such that

Aȳε = ūε in Ω, ȳε = 0 on Γ,(1.1)

A?pε = ȳε − yd + µb
ε − µa

ε in Ω, pε = 0 on Γ,(1.2)

pε + αūε − ε(µa
ε − µb

ε) = 0,(1.3)
εūε + ȳε ≥ ya, µa

ε ≥ 0, (µa
ε , εūε + ȳε − ya)L2(Ω) = 0,(1.4)

εūε + ȳε ≤ yb, µb
ε ≥ 0, (µb

ε, εūε + ȳε − yb)L2(Ω) = 0.(1.5)

Using the maximum operator, the complementarity system (1.4)–(1.5) can be equivalently
expressed as

µa
ε = max(0, µa

ε − µb
ε + γ(ya − εūε − ȳε)),(1.6)

µb
ε = max(0, µb

ε − µa
ε + γ(εūε + ȳε − yb)),(1.7)

with an arbitrarily fixed γ > 0, cf. [4, 11]. For the choice γ := α/ε2 in (1.6)–(1.7) and using (1.3),
a short computation yields

µa
ε = max(0,

1
ε
pε +

α

ε2
(ya − ȳε)),(1.8)

µb
ε = max(0,−1

ε
pε +

α

ε2
(ȳε − yb)).(1.9)

This latter system will be useful in our subsequent analysis.
Finally, we mention that in [8, Theorem 3.3] the strong convergence in L2(Ω) of ūε to ū, the

optimal control of (P ), is proved. Further, in [3] the Hölder continuity (with exponent 1
2 ) of ūε

with respect to ε > 0 is established.
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2. Regularity of solutions to (Pε). As pointed out in the introduction, one of our main goals
is to establish Lipschitz continuity and differentiability of the mapping ε 7→ ȳε. For this purpose
the transformation of (Pε) into an associated minimization problem with pure control constraints
will be useful.

We start our investigation by considering the operator (εI +S). It is well known that the linear
operator S = ı0G : L2(Ω) → L2(Ω) is positive-definite. For this reason, the equation

(εI + S)z = 0

admits only the trivial solution z = 0. Thus, by the Fredholm alternative, the compactness property
of S ensures the existence of the inverse operator (εI+S)−1. Setting (εI+S)−1v = u, or equivalently
u = 1

ε (v − ı0y(u)) in (Pε), we transform (Pε) into the following optimal control problem with
(pointwise) box constraints imposed on the new control variable v:

(P v
ε )

{
minimize fε(v) := 1

2‖Sεv − yd‖2L2(Ω) + α
2ε2 ‖v − Sεv‖2L2(Ω) over v ∈ L2(Ω)

subject to ya ≤ v ≤ yb a.e. in Ω.

Here we use Sε = ı0Gε, where the operator Gε assigns to each v ∈ L2(Ω) the solution yε(v) = yε ∈
H1

0 (Ω) ∩H2(Ω) of the following elliptic equation:

(Eε) Ayε +
1
ε
yε =

1
ε
v in Ω, yε = 0 on Γ.

In what follows, we denote the unique solution of (P v
ε ) by v̄ε with associated optimal state ȳε.

Obviously, (P v
ε ) and (Pε) are equivalent, i.e., v̄ε solves (P v

ε ) if and only if ūε = (εI + S)−1v̄ε is the
optimal solution of (Pε). We use the auxiliary problem (P v

ε ) in the following analysis.
The first derivative of fε at v in an arbitrary direction s ∈ L2(Ω) is given by

f ′ε(v)s = (Sεv − yd +
α

ε2
(Sεv − v), Sεs)L2(Ω) +

α

ε2
(v − Sεv, s)L2(Ω).

By standard arguments, this can be equivalently expressed as

(2.1) f ′ε(v) = qε(v)− α

ε2
yε(v) +

α

ε2
v,

where the adjoint state qε = qε(v) ∈ H1
0 (Ω) ∩ H2(Ω) is defined as the solution of the following

adjoint equation:

(2.2) A?qε +
1
ε
qε =

1
ε
(yε(v)− yd +

α

ε2
(yε(v)− v)) in Ω, qε = 0 on Γ.

2.1. Lipschitz continuity. Next we establish a Lipschitz property of yε and various other
quantities. Since one might by interested in (Pε) independently of (P ), we reduce the regularity
requirements on, e.g., Ω, as we do not assume to have H2(Ω)-regularity of the states and adjoints
pertinent to (Pε).

For this purpose, let D = (εl, εu) ⊂ R++ with 0 < εl < εu.
Lemma 2.1. There exists a positive real number cs(εl) such that

‖yε1(v)− yε2(v)‖H1
0 (Ω) ≤ cs(εl)‖v‖L2(Ω)|ε1 − ε2|
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for all v ∈ L2(Ω) and εi ∈ D, i = 1, 2.
Proof. We note that standard elliptic regularity estimates yield a constant c > 0 independent

of ε and v such that

(2.3) ‖yε(v)‖H1
0 (Ω) ≤ c‖1

ε
v‖L2(Ω)

for all v ∈ L2(Ω) and ε ∈ D. Now, let εi ∈ D, i = 1, 2, and v ∈ L2(Ω). By definition, for i = 1, 2
the states yεi

(v) = yεi
satisfy

Ayεi +
1
εi

yεi =
1
εi

v in Ω, yεi = 0 on Γ.

From this we infer

A(yε1 − yε2) +
1
ε1

(yε1 − yε2) = (
1
ε1
− 1

ε2
)(v − yε2) in Ω, yε1 − yε2 = 0 on Γ,

and hence due to (2.3)

‖yε1(v)− yε2(v)‖H1
0 (Ω) ≤

∣∣ 1
ε1
− 1

ε2

∣∣ c ‖v − yε2(v)‖L2(Ω)

≤ |ε1 − ε2| c

εl
2
(‖v‖L2(Ω) + ‖yε2(v)‖L2(Ω))

≤ |ε1 − ε2| c

ε2l

(
1 +

c

εl

)‖v‖L2(Ω).

Setting cs(εl) := c
ε2l

(
1 + c

εl

)
yields the assertion.

We proceed by proving the Lipschitz continuity of the adjoint states qε.
Lemma 2.2. There exists a positive real number cq(D) such that

‖qε1(v)− qε2(v)‖H1
0 (Ω) ≤ cq(D)(‖v‖L2(Ω) + 1)|ε1 − ε2|,

for all v ∈ L2(Ω) and ε1, ε2 ∈ D.
Proof. An argument analogous to the one in the proof of Lemma 2.1 implies that there exists

a constant c(D) > 0 independent of ε and v such that

(2.4) ‖qε(v)‖H1
0 (Ω) ≤ c(D)(‖v‖L2(Ω) + 1)

for all ε ∈ D and v ∈ L2(Ω). Let ε1, ε2 ∈ D. By definition qε1(v) = qε1 and qε2(v) = qε2 solve, for
i = 1, 2,

A?qεi +
1
εi

qεi =
1
εi

(yεi(v)− yd +
α

ε2i
(yεi(v)− v)) in Ω, qεi = 0 on Γ.

Hence, the difference qε1 − qε2 satisfies

A?(qε1 − qε2) +
1
ε1

(qε1 − qε2) = r in Ω, qε1 − qε2 = 0 on Γ,
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where

r =
1
ε1

(yε1(v)− yε2(v)) + (
1
ε1
− 1

ε2
)(yε2(v)− yd) +

α

ε31
(yε1(v)− yε2(v))

+ (
α

ε31
− α

ε32
)(yε2(v)− v) + (

1
ε2
− 1

ε1
)qε2 .

Since |ε32 − ε31| = |(ε22 + ε21 + ε2ε1)(ε2 − ε1)| ≤ 3ε2u|ε2 − ε1|, Lemma 2.1 and (2.4) yield a constant
cq(D) > 0 independent of ε1, ε2 such that

‖qε1(v)− qε2(v)‖H1
0 (Ω) ≤ ‖r‖L2(Ω) ≤ cq(D)|ε1 − ε2|(‖v‖L2(Ω) + 1),

which ends the proof.
For arguing the Lipschitz continuity of the controls, we require uniform positive definiteness of f ′′ε ,
which we establish next.

Lemma 2.3. There exists a positive real number δ(D) such that for all ε ∈ D, we have

(2.5) f ′′ε (v)s2 ≥ δ(D)‖s‖2L2(Ω) ∀v, s ∈ L2(Ω).

Proof. Let v ∈ L2(Ω) and ε ∈ D be arbitrarily fixed. Then, it holds by definition that
fε(v) = f((S + εI)−1v). Hence, for an arbitrary direction s ∈ L2(Ω), the chain rule implies

f ′′ε (v)s2 = f ′′((S + εI)−1v)((S + εI)−1s)2

= (S(S + εI)−1s, S(S + εI)−1s)L2(Ω) + α((S + εI)−1s, (S + εI)−1s)L2(Ω)

≥ α((S + εI)−1s, (S + εI)−1s)L2(Ω)

= α‖(S + εI)−1s‖2L2(Ω)

≥ α

‖S + εI‖2L2,L2

‖s‖2L2(Ω)

≥ α

(‖S‖L2,L2 + εu)2
‖s‖2L2(Ω).

Defining δ(D) := α/(‖S‖L2,L2 + εu)2, the lemma is verified.
Theorem 2.1. The mapping v : D → L2(Ω), ε 7→ v̄ε, is Lipschitz-continuous.
Proof. Suppose that ε1, ε2 ∈ D. By definition v(ε1) = v̄ε1 and v(ε2) = v̄ε2 solve (P v

ε1) and (P v
ε2),

respectively. Hence, first order optimality yields

f ′ε1(v̄ε1)(v − v̄ε1) ≥ 0 ∀v ∈ Vad,

f ′ε2(v̄ε2)(v − v̄ε2) ≥ 0 ∀v ∈ Vad,

where Vad = {v ∈ L2(Ω) | ya ≤ v ≤ yb}. Since v̄ε1 and v̄ε2 are feasible, i.e., v̄ε1 , v̄ε2 ∈ Vad, the
inequalities above imply

(2.6) (f ′ε1(v̄ε1)− f ′ε2(v̄ε2))(v̄ε2 − v̄ε1) ≥ 0,

which is equivalent to

(2.7) (f ′ε1(v̄ε1)− f ′ε1(v̄ε2) + f ′ε1(v̄ε2)− f ′ε2(v̄ε2))(v̄ε2 − v̄ε1) ≥ 0.
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Since f ′ε1 is Fréchet-differentiable, there exists ṽ ∈ L2(Ω) such that

(f ′ε1(v̄ε1)− f ′ε1(v̄ε2))(v̄ε2 − v̄ε1) = −f ′′ε1(ṽ)(v̄ε2 − v̄ε1)
2.

Then (2.7) yields

(2.8) (f ′ε1(v̄ε2)− f ′ε2(v̄ε2))(v̄ε2 − v̄ε1) ≥ f ′′ε1(ṽ)(v̄ε2 − v̄ε1)
2

and further
(‖qε1(v̄ε2)− qε2(v̄ε2)‖L2(Ω) + α

ε21
‖yε1(v̄ε2)− yε2(v̄ε2)‖L2(Ω)+

α
ε21ε22

|ε1 − ε2| · |ε1 + ε2|(‖yε2(v̄ε2)‖L2(Ω) + ‖v̄ε2‖L2(Ω))
)‖v̄ε2 − v̄ε1‖L2(Ω) ≥ f ′′ε1(ṽ)(v̄ε2 − v̄ε1)

2,

where we used (2.1). Due to Lemma 2.1, Lemma 2.2 and Lemma 2.3, there exists a constant
c(D) > 0 independent of ε1, ε2 such that

(2.9) c(D)|ε2 − ε1|(‖v̄ε2‖L2(Ω) + 1) ≥ ‖v̄ε2 − v̄ε1‖L2(Ω).

Notice that the operator v(·) is uniformly bounded in L∞(Ω), as v̄ε ∈ Vad for all ε ∈ R++. This
together with (2.9) proves the assertion.

We have the following immediate corollaries establishing the Lipschitz continuity of ȳε and ūε.
Corollary 2.1. The mapping ε 7→ ȳε is Lipschitz-continuous from D to H1

0 (Ω).
Proof. Theorem 2.1 and Lemma 2.1 guarantee the existence of a constant c(D) > 0 independent

of ε1, ε2 ∈ D such that

‖ȳε1 − ȳε2‖H1
0 (Ω) ≤ ‖yε1(v̄ε1)− yε2(v̄ε1)‖H1

0 (Ω) + ‖yε2(v̄ε1 − v̄ε2)‖H1
0 (Ω) ≤ c(D)|ε1 − ε2|,

for all ε1, ε2 ∈ D.
Corollary 2.2. The mapping ε 7→ ūε is Lipschitz-continuous from D to L2(Ω).
Proof. The assertion is immediate since, by construction, ūε = 1

ε (v̄ε − ȳε) for all ε > 0.
Clearly, the corollaries 2.1 and 2.2 further imply the following result.
Corollary 2.3. The mapping ε 7→ pε is Lipschitz-continuous from D to H1

0 (Ω).
Proof. Utilizing (1.3) in (1.2) and exploiting the Lipschitz continuity of ūε and ȳε, respectively,

yields the assertion.

2.2. Parameter sensitivity. We define the functions ga, gb : D → L2(Ω) by

ga(ε) =
1
ε
pε − α

ε2
ȳε +

α

ε2
ya,(2.10)

gb(ε) = −1
ε
pε +

α

ε2
ȳε − α

ε2
yb,(2.11)

Suppose that ε ∈ D is arbitrarily fixed. Then the Lipschitz-continuity of the mapping ε 7→ (ūε, ȳε, pε)
from D to L2(Ω)×H1

0 (Ω)×H1
0 (Ω) ensures the existence of a weak accumulation point (u̇ε, ẏε, ṗε) ∈

L2(Ω)×H1
0 (Ω)×H1

0 (Ω) of

(2.12) (
ūεn − ūε

εn − ε
,
ȳεn − ȳε

εn − ε
,
pεn − pε

εn − ε
)
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as εn → ε ∈ D for n →∞. Further,

1
εn − ε

(ga(εn)− ga(ε)) =
1

εn − ε
(

1
εn

pεn
− α

ε2n
ȳεn

+
α

ε2n
ya − 1

ε
pε +

α

ε2
ȳε − α

ε2
ya)

=
1

εn − ε
(
1
ε
(pεn − pε)− (

1
ε
− 1

εn
)pεn + (

α

ε2
− α

ε2n
)ȳεn

− α

ε2
(ȳεn

− ȳε)− (
α

ε2
− α

ε2n
)ya)

=
1
ε

pεn − pε

εn − ε
− 1

εεn
pεn

+
α(εn + ε)

ε2ε2n
ȳεn

− α

ε2
ȳεn

− ȳε

εn − ε
− α(εn + ε)

ε2ε2n
ya

has a weak accumulation

ġa(ε) =
1
ε
ṗε − 1

ε2
pε +

2α

ε3
ȳε − α

ε2
ẏε − 2α

ε3
ya

in H1
0 (Ω) as εn → ε for n →∞. Analogously, there exists a weak accumulation point of 1

εn−ε (gb(εn)−
gb(ε)), which is given by

ġb(ε) = −1
ε
ṗε +

1
ε2

pε − 2α

ε3
ȳε +

α

ε2
ẏε +

2α

ε3
yb.

By the compact embedding H1
0 (Ω) ⊂ L2(Ω) the accumulation points ġa(ε) and ġb(ε) are strong in

L2(Ω).
Without any further assumption, in general there is a need to distinguish between upper and

lower accumulation points depending on whether εn ↓ ε or εn ↑ ε, respectively. See [6] for a similar
observation in a related context. However, under some type of strict complementarity condition
this distinction is not required as all limits over εn-sequences yield a unique accumulation point.
This motivates the following assumption.

Assumption 2.1. We assume that the solution of (Pε) satisfies the strict complementarity
condition

(SC)
meas{x ∈ Ω |ga(ε)(x) = pε(x)− α

ε ȳε(x) + α
ε ya(x) = 0 a.e.} = 0,

meas{x ∈ Ω | gb(ε)(x) = −pε(x) + α
ε ȳε(x)− α

ε yb(x) = 0 a.e.} = 0.

Notice that by (1.8)–(1.9) the Lagrange multipliers for (Pε) are given by

µa
ε = max(0,

1
ε
pε +

α

ε2
(ya − ȳε)) = g+

a (ε),

µb
ε = max(0,−1

ε
pε +

α

ε2
(ȳε − yb)) = g+

b (ε),

where g+
a = max(0, ga) and analogously for g+

b . Hence, using (1.3), the condition (SC) requires
that

meas{x ∈ Ω : µa
ε (x) + γ(ya − εūε − ȳε)(x) = 0} = 0,

or equivalently, that the set where the max-operation is non-differentiable is of measure zero; anal-
ogously for the set involving µb

ε and yb.
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Next we study the behavior of

g+
a (εn)− g+

a (ε)
εn − ε

and
g+

b (εn)− g+
b (ε)

εn − ε

as εn → ε for n →∞. For this purpose we introduce

Sa,ε := {x ∈ Ω : ga(ε)(x) > 0}
and analogously Sb,ε. By Sc

a,ε and Sc
b,ε we denote the complement of Sa,ε and Sb,ε in Ω, respectively.

Note that due to Assumption 2.1, we have

meas Sa,ε = meas{x ∈ Ω : ga(ε)(x) ≥ 0}
and analogously for Sb,ε. Hence, for v ∈ L2(Ω) we infer

∫

Ω

(
g+

a (εn)− g+
a (ε)

εn − ε

)
v dx =

1
εn − ε

∫

Sc
a,ε

(g+
a (εn)− g+

a (ε))v dx

+
1

εn − ε

∫

Sa,ε

(g+
a (εn)− ga(εn))v dx +

1
εn − ε

∫

Sa,ε

(ga(εn)− ga(ε))v dx

For n →∞, Lebesgue’s bounded convergence theorem and Assumption 2.1 yield

1
εn − ε

∫

Sc
a,ε

(g+
a (εn)− g+

a (ε))v dx → 0,

1
εn − ε

∫

Sa,ε

(g+
a (εn)− ga(εn))v dx → 0,

1
εn − ε

∫

Sa,ε

(ga(εn)− ga(ε))v dx →
∫

Ω

ġa(ε)χSa,εv dx,

where χSa,ε is the characteristic function of Sa,ε. The analogous result holds true for g+
b . These

properties of g+
a , g+

b are important for the proof of the following theorem.
Theorem 2.2. Suppose that the solution of (Pε) satisfies Assumption 2.1. Then the mappings

y : D → L2(Ω), ε 7→ ȳε, and p : D → L2(Ω), ε 7→ pε, are strongly differentiable at ε ∈ D.
Proof. Let (δu, δy, δp) be the difference of two weak accumulation points of

(
ūεn − ūε

εn − ε
,
ȳεn − ȳε

εn − ε
,
pεn − pε

εn − ε
),

as εn → ε. By δµa and δµb we denote the difference of the associated weak accumulation points of
g+

a (εn)−g+
a (ε)

εn−ε and g+
b (εn)−g+

b (ε)

εn−ε . Due to first order optimality, (δu, δy, δp, δµa, δµb) is characterized
by

Aδy = δu in Ω, δy = 0 on Γ,(2.13)

A?δp = δy + δµb − δµa in Ω, δp = 0 on Γ,(2.14)

δp + αδu + ε(δµb − δµa) = 0,(2.15)

δµa = (
1
ε
δp− α

ε2
δy)χSa,ε ,(2.16)

δµb = (−1
ε
δp +

α

ε2
δy)χSb,ε

.(2.17)
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Inserting equations (2.15)–(2.17) in (2.13) and (2.14) and then rearranging terms, we obtain

Aδy +
1
ε
(χSa,ε

+ χSb,ε
)δy =

1
α

(−I + χSa,ε
+ χSb,ε

)δp in Ω, δy = 0 on Γ,

A?δp +
1
ε
(χSa,ε + χSb,ε

)δp = (I +
α

ε2
χSa,ε +

α

ε2
χSb,ε

)δy in Ω, δp = 0 on Γ.

The latter system implies

0 ≥ (
1
α

(−I + χSa,ε
+ χSb,ε

)δp, δp)L2 = (Aδy +
1
ε
(χSa,ε

+ χSb,ε
)δy, δp)L2

= (δy,A?δp +
1
ε
(χSa,ε + χSb,ε

)δp)L2

= (δy, (I +
α

ε2
χSa,ε

+
α

ε2
χSb,ε

)δy)L2

≥ ‖δy‖2L2(Ω) ≥ 0.

From this we infer δy = δp = 0, and hence by (2.15)–(2.16) δu = δµa = δµb = 0. Thus, as
εn → ε, ( ȳεn−ȳε

εn−ε ,
pεn−pε

εn−ε ) has a unique weak accumulation point in H1
0 (Ω) × H1

0 (Ω), and, by the
compact-embedding of H1

0 (Ω) in L2(Ω), the assertion is shown.
Remark 2.1. Based on the optimality conditions, the derivatives y′(ε) and p′(ε) satisfy the

following system:

Ay′(ε) = u̇ε in Ω, y′(ε) = 0 on Γ,(2.18)
A?p′(ε) = y′(ε) + µ̇b,ε − µ̇a,ε in Ω, p′(ε) = 0 on Γ,(2.19)
p′(ε) + αu̇ε + ε(µ̇b,ε − µ̇a,ε) = 0,(2.20)

µ̇a,ε =
(1
ε
p′(ε)− 1

ε2
pε +

2α

ε3
ȳε − α

ε2
y′(ε)− 2α

ε3
ya

)
χSa,ε ,(2.21)

µ̇b,ε =
(− 1

ε
p′(ε) +

1
ε2

pε − 2α

ε3
ȳε +

α

ε2
y′(ε) +

2α

ε3
yb

)
χSb,ε

.(2.22)

3. Extrapolation-based algorithm. Next we introduce a semismooth Newton (SSN) algo-
rithm which utilizes the theoretical results of the previous section within an extrapolation frame-
work. Conceptually, we exploit the differentiability property of the solution of (Pε) in order to
predict a solution of (Pε2) given an approximate solution of (Pε1) with ε1 > ε2. Hence, the ex-
trapolation serves the purpose of efficient initializations of the SSN-method for solving (Pε) along
a sequence of vanishing regularization parameters.

In section 1.2 we provide an equivalent characterization of first order optimality by using a
reformulation based on the max-function; compare (1.6)–(1.7). This reformulation is the starting
point for the development of a rapidly convergent algorithm of SSN-type. For this purpose we need
a generalized derivative for ”linearizing” the max-operations in (1.6)–(1.7). Then we introduce the
algorithm which, due to our choice of the generalized derivative, has the flavor of an active set
strategy utilizing both the primal and the dual variables for identifying the active sets

Āa
ε := {x ∈ Ω : εūε(x) + ȳε(x) = ya(x)},(3.1)

Āb
ε := {x ∈ Ω : εūε(x) + ȳε(x) = yb(x)}(3.2)
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at the optimal solution of (Pε). Subsequently we rely on the following generalized derivative.
Definition 3.1. Let X, Y be Banach spaces and U be an open set in X. A mapping F : U → Y

is said to be semismooth (or Newton differentiable) in U if there exists a (possibly set-valued)
mapping ∂F : U ⇒ L (X,Y ) such that

(3.3) sup
V ∈∂F (x+s)

‖F (x + s)− F (x)− V s‖Y = o(‖s‖X) as ‖s‖X → 0

is satisfied for all x ∈ U . We call ∂F the Newton differential, and its elements V are referred to
as Newton maps.

As shown in [4], a class of Newton maps for the maximum operator M(z) = max(0, z) is given
by

(3.4) ∂Mξ(z)(x) =





1 if z(x) > 0,
0 if z(x) < 0,
ξ if z(x) = 0,

with arbitrarily fixed ξ ∈ R, provided that M is defined as a mapping from Lq2(Ω) to Lq1(Ω) with
1 ≤ q1 < q2; otherwise, i.e., for q1 = q2 the mapping M is not Newton differentiable.

As pointed out earlier, the complementarity system can be equivalently expressed as

(3.5)
µa

ε = max(0, 1
ε pε + α

ε2 (ya − ȳε)),
µb

ε = max(0,− 1
ε pε + α

ε2 (ȳε − yb)),

where pε solves the adjoint equation (1.2). Further note that the equalities in (3.5) have to hold in
L2(Ω), respectively, and pε, ȳε ∈ H1

0 (Ω) ⊂ Lq(Ω) with q > 2 depending on the spatial dimension
due to Sobolev embedding results. Hence, the max-operations are understood as mappings from
Lq(Ω) to L2(Ω) with 2 < q which guarantees Newton-differentiability. Choosing ξ = 0 for the
Newton maps of the maximum operators in (3.5), we obtain the following algorithm for solving
(Pε); compare also [7].

Algorithm 3.1. (Semismooth Newton method)
(i) Initialization: Choose initial data p0, y0 ∈ L2(Ω) and set l = 0.
(ii) Determine the active and inactive sets:

Al
a = {x ∈ Ω :

1
ε
pl(x) +

α

ε2
(ya(x)− yl(x)) > 0 a.e. in Ω},

Al
b = {x ∈ Ω : −1

ε
pl(x) +

α

ε2
(yl(x)− yb(x)) > 0 a.e. in Ω},

Il = Ω\(Al
a ∪ Al

b).

(iii) Find the solution (yl+1, pl+1, ul+1, µl+1
a , µl+1

b ) of

Ayl+1 = ul+1 in Ω
yl+1 = 0 on Γ,

A?pl+1 = yl+1 − yd − µl+1
a + µl+1

b in Ω
pl+1 = 0 on Γ,

αul+1 + pl+1 + ε(µl+1
b − µl+1

a ) = 0

µl+1
a = 1

ε pl+1 + α
ε2 (ya − yl+1) on Al

a, µl+1
a = 0 on Il ∪ Al

b

µl+1
b = − 1

ε pl+1 + α
ε2 (yl+1 − yb) on Al

b, µl+1
b = 0 on Il ∪ Al

a.
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(iv) Stop, or set l = l + 1 and go to (ii).
Typically, we terminate the algorithm by using the stopping rule: An

a = An−1
a and An

b = An−1
b .

For a local convergence analysis of SSN-methods of this type we refer to [4].
Fast convergence of the above algorithm hinges on the quality of the initial point. For this

purpose, based on Theorem 2.2 we employ an extrapolation strategy with respect to ε. We outline
our approach next. Let (εn) be a sequence of regularization parameters given by

(3.6) εn+1 = (1− κn)εn with 0 < κn < 1.

By Theorem 2.2, the Taylor expansion of y at εn+1 implies

(3.7) y(εn+1) ≈ y(εn) + y′(εn)(εn+1 − εn).

The derivative y′(εn) may be computed by solving the sensitivity equations (2.18)–(2.22). In order
to save CPU-time we propose to use backward differences in ε to approximate y′(εn):

(3.8) y′(εn) ≈ y(εn)− y(εn−1)
εn − εn−1

.

Utilizing (3.8) in (3.7), we obtain

(3.9) y(εn+1) ≈ y(εn) +
εn+1 − εn

εn − εn−1
(y(εn)− y(εn−1)).

Using (3.6), the optimal state y(εn+1) = yn+1 of (Pεn+1) is approximated by

(3.10) yn+1 ≈ y0
n+1 := yn +

κn

κn−1
(1− κn−1)(yn − yn−1).

Similarly, the adjoint state p(εn+1) = pn+1 at εn+1 is approximated by

(3.11) pn+1 ≈ p0
n+1 := pn +

κn

κn−1
(1− κn−1)(pn − pn−1).

In this way, we extrapolate the solutions of (Pεn) and (Pεn−1) in order to get the initial guess
(y0

n+1, p
0
n+1) for Algorithm 3.1 to solve the subsequent problem (Pεn+1). For ε0 we use y0 = p0 = 0.

4. Numerical experiments. Our goal in this section is to demonstrate the numerical reli-
ability of our sensitivity-based extrapolation approach. As mentioned before and based on earlier
experience [8, 9, 11], due to the high sensitivity of (Pε) with respect to ε and the corresponding
challenge in its numerical solution for vanishing regularization parameter the initialization along
the ε-sequence becomes an issue. It turns out that our initialization-by-extrapolation procedure
achieves a significant speed up of Algorithm 3.1 compared to classical continuation strategies; com-
pare, e.g., tables 4.2 and 4.3 below.

In our numerical tests we use Ω = (0, 1)×(0, 1) and A = −∆. The discretization of the problem
is based on continuous piecewise linear finite elements on a uniform mesh, and the discrete versions
of the active sets Aa and Ab are given by

{i :
1
ε
(ph)i +

α

ε2
((ya,h)i − (yh)i) > 0},

{i : −1
ε
(ph)i − α

ε2
((yb,h)i − (yh)i) > 0}
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where the vectors ph, yh, ya,h, yb,h ∈ RNh are the values of the corresponding mesh functions at the
nodal points of the discretization. Here, h denotes the mesh size of discretization.

The numerical computations were carried out on a PC with a 250-GHz AMD processor and a
16-gigabyte memory.

4.1. Example 1. We choose:

yd = 2 cos(2πx1x2), yb = 0, ya = −1, α = 10−2;

see Figure 4.1 for the numerical solution of (Pε) with ε = 10−6 and h = 1/256.
First, in Table 4.1 we report on the results obtained by Algorithm 3.1 with simple initializa-

tion y0 = p0 = 0, i.e., without the extrapolation strategy, in the case of vanishing regularization
parameter. In addition to varying ε, we provide the iteration numbers for various mesh sizes h.
We clearly detect an unstable behavior of the algorithm with respect to ε. Observing each column
of Table 4.1, the number of iterations increases considerably as ε decreases. We also observe that
small mesh sizes catalyze this adverse effect for small ε. On the other hand, for large ε (ε > 10−4

in our case) we even observe a mesh-independent behavior of the algorithm. This property was
verified theoretically, also for a nonlinear case, in [7]. We point out that the results of [7] also hold
true for small ε, but in order to observe the mesh independence effect sufficiently small mesh sizes
would be necessary.

Based on our numerical observations, the following reasons are responsible for the unstable
behavior of the algorithm: First, the system of linear equations involved in each iteration of the
algorithm is severly ill-conditioned for small ε. This effect becomes especially apparent on fine
meshes. Secondly, the measure structure of the Lagrange multiplier associated with the upper
bound complicates the numerical computation considerably. Figure 4.2 demonstrates that the
structure of the multiplier becomes more and more singular as ε → 0.

Table 4.1
Number of iterations required by Algorithm 3.1 for several choices of the regularization parameter ε and mesh

sizes h.

# It. for various h
ε 1/32 1/64 1/128 1/256

10−1 4 4 4 4
10−2 7 6 7 7
10−3 14 14 15 15
10−4 26 40 42 45
10−5 32 59 109 156
10−6 32 62 133 239

The numerical experiments in [12] indicate that a (classical) continuation strategy may accel-
erate the convergence speed of the algorithm. Utilizing this concept, for our test problem we detect
a remarkable speed-up. The basic idea of the continuation method is merely to use the solution of
the regularization problem with a slightly larger regularization parameter as the initial data for the
subsequent regularized problem (with a smaller parameter). Table 4.2 provides the results for this
approach. Compared to the results in Table 4.1, the algorithm converges much faster. However, for
the given mesh sizes we still experience the mesh-dependent behavior for fixed parameter ε ≤ 10−4

as well as the unstable behavior with respect to decreasing ε for a fixed mesh size.
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Fig. 4.1. Computed optimal control uh (left plot) and corresponding state yh (right plot) for ε = 10−6 and
h = 1/256 .

Table 4.2
Results of the algorithm under a continuation strategy .

# It. for various h
ε 1/32 1/64 1/128 1/256

10−2 7 6 7 7
10−3 8 9 10 10
10−4 11 15 20 20
10−5 6 11 19 25
10−6 6 8 12 21

Now, we apply our sensitivity-based extrapolation method when solving the test problem
numerically. We choose κn constant by setting (1 − κn) = 10−1 in (3.6). Thus, we obtain
εn = 10−1εn−1. Initially we choose ε0 = 10−2. We solve first (Pε1) utilizing the solution of
(Pε0) as initial data. Subsequently, for all n ≥ 2, (Pεn) is initialized by the extrapolation strategy,
i.e., we utilize (3.10)–(3.11) for generating the initial data when solving (Pεn+1). In Table 4.3 we
report on the numerical performance under this regime. Compared to the continuation strategy, we
find that the initialization technique based on our extrapolation approach yields higher efficiency
and stability with respect to the regularization parameter as well as the mesh size of discretiza-
tion. Furthermore, observing Table 4.3, a rather mesh independent convergence of the algorithm is
detected.

Instead of using the extrapolation strategy based on backward differences, one can also approx-
imate the initial data by

y(εn+1) ≈ y0(εn+1) := y(εn) + y′(εn)(εn+1 − εn),
p(εn+1) ≈ p0(εn+1) := p(εn) + p′(εn)(εn+1 − εn),

where the derivatives y′(εn) and p′(εn) are computed by solving the sensitivity equations (2.18)–
(2.22); see Remark 2.1. In Table 4.4, we provide the corresponding numerical results with the
choice εn+1 = εnκ and κ = 0.5. The performance of this technique is satisfying as well. As before
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Fig. 4.2. Computed Lagrange multipliers associated with the upper bound: Upper left: ε = 10−2, upper right:
ε = 10−3, lower left: ε = 10−4 and lower right: ε = 10−6.

Table 4.3
Results of the algorithm under the sensitivity-based extrapolation strategy and its stability.

# It. for various h
ε 1/32 1/64 1/128 1/256

10−2 7 6 7 7
10−3 8 9 10 10
10−4 4 6 6 6
10−5 3 5 5 6
10−6 6 5 6 7

we observe a stabile behavior with respect to the regularization parameter as well as the mesh size
h. Comparing the results with those obtained by the extrapolation strategy based on backward
differences we conclude that the numerical performances of both methods are comparable.
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Table 4.4

# It. for various h
ε 1/16 1/32 1/64 1/128 1/256

10−2 5 7 6 7 7
10−2κ 2 3 3 4 4
10−2κ2 2 2 3 4 4
10−2κ3 2 2 3 3 3
10−2κ4 2 3 3 3 3
10−2κ5 2 2 3 2 3
10−2κ6 3 2 2 2 3
10−2κ7 3 3 3 3 3
10−2κ8 4 3 4 4 3
10−2κ9 4 6 4 3 3
10−2κ10 4 6 4 4 3

4.2. Example 2. Next we consider an example with an analytically known solution. For the
optimal control, optimal state, the bounds and the cost parameter α, we set

yopt(x1, x2) = sin(πx1) sin(πx2),
uopt(x1, x2) = −∆yopt(x1, x2) = 2π2yopt(x1, x2),

yb(x1, x2) = max(0.8x2 + 0.2, yopt(x1, x2)),
ya(x1, x2) = −3,

α = 10−3.

The adjoint state at the optimal control is given by:

popt(x1, x2) = −αuopt(x1, x2).

Furthermore, a few computations show that the multiplier for the upper bound

µb
opt(x1, x2) :=

{
10(0.8x2 + 0.2) if yopt(x1, x2) ≥ 0.8x2 + 0.2,
0 if yopt(x1, x2) ≤ 0.8x2 + 0.2.

satisfies the complementarity slackness conditions for (P ). For the Lagrange multiplier associated
with the lower bound, we set µa

opt = 0. Finally, from the adjoint state equation we obtain the
desired state

yd = ∆popt + yopt + µb
opt.

All these quantities are depicted in Figure 4.3.
For comparison, for fixed mesh size h = 1/128 in Table 4.5 we collect the numerical results

obtained by our algorithm without a special initialization strategy. Additionally, we report on the
L2-error between the computed numerical solution and the analytical one. Upon studying Table 4.5
we note that the error stabilizes at a some level as ε tends to 0. This clearly shows that, depending
on the mesh size of discretization h, there is an ε(h) such that the error stabilizes for ε < ε(h). In
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Fig. 4.3. Example 2. Optimal control uopt (upper left), Optimal state yopt (upper right), upper bound yb (lower
left) and Lagrange multiplier associated with the upper bound µb

opt (lower right).

order to further reduce the error a reduction of h is necessary. A further reduction of ε (for fixed
h), on the other hand, only increases the ill-conditioning due to small regularization parameter but
it does not reduce the overall error. The ill-conditioning is reflected by the increasing number of
iterations until successful termination of the algorithm; see the second column from left.

Table 4.5
Numerical performance of Algorithm 3.1 with respect to decreasing regularization parameter.

ε #it. ‖uε
h − uopt‖L2(Ω) ‖yε

h − yopt‖L2(Ω) ‖pε
h − popt‖L2(Ω) ‖µb,ε

h − µb
opt‖L2(Ω)

10−4.0 25 8.77393e-02 8.85558e-04 2.68096e-04 2.36374e-01
10−5.0 42 4.95932e-03 9.43736e-05 2.91984e-05 1.09244e-01
10−6.0 69 1.48140e-03 1.05259e-05 4.20660e-06 2.27157e-02
10−7.0 70 1.60176e-03 3.96104e-06 1.84645e-06 7.46035e-03
10−8.0 73 1.61771e-03 3.78954e-06 1.64142e-06 8.01558e-03
10−9.0 71 1.61034e-03 3.78286e-06 1.62170e-06 8.11886e-03

Finally we study the effect of employing our new sensitivity-based initialization by extrapola-
tion. The corresponding results are collected in Table 4.6. In the third column we find the relative



18

CPU-time, i.e., the ratio of the CPU-time needed when using our extrapolation scheme vs. the
CPU-time corresponding to the run reported on in Table 4.5. As before we observe a significant

Table 4.6
Speed up of Algorithm 3.1 under the extrapolation-initialization-strategy.

ε #It. CPU-ratio ‖yε
h − yext,ε

h ‖L2(Ω) ‖pε
h − pext,ε

h ‖L2(Ω)

10−7 57 0.88 4.7052e-07 1.9186e-07
10−8 5 0.09 6.9104e-09 3.8095e-09
10−9 5 0.09 7.3953e-11 4.4084e-11

speed-up when using our initialization strategy especially in cases of small regularization parame-
ters. The strong improvement for ε ≤ 1.0e-8 may be related to the high quality of the initial points.
This can be seen from the forth and fifth column of Table 4.6, where we show the L2-distance of the
optimal discrete state and adjoint state of the regularized problem to the corresponding initial data
yext,ε

h and pext,ε
h when solving (Pε). In Figure 4.4 we provide the graphs of the numerical solution

for ε = 1.0e-9, which is close to the analytic solution; compare Figure 4.3.

Fig. 4.4. Computed numerical solution for ε = 10−9 and h = 1/128: Optimal control (upper left), Optimal
state (upper right), adjoint state(lower left) and Lagrange multiplier associated with the upper bound (lower right)
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5. Conclusion. Studying the sensitivity of the solution of the (Lavrentiev) regularized state
constrained optimal control problem with respect to the regularization parameter is beneficial as it
allows to employ highly efficient initialization schemes along a sequence of vanishing regularization
parameters, i.e., in the case of convergence to the original problem. In our numerical test runs it
turns out that this strategy successfully copes with the increasing ill-conditioning of the problems
as ε → 0 and as h is refined. Further, a combination with a nested iteration concept allows to
even further increase the efficiency of the algorithm such that we observe a rather mesh indepen-
dent behavior of our method when solving the state constrained optimal control problem. The
sensitivity analysis, however, is also of interest in its own right as it allows to study the quality of
the dependence of the regularized solution on the regularization parameter. Within path-following
frameworks (see [5] for problems with low multiplier regularity, or [2] for a general account in the
context of smooth Newton-based approaches), where the path {(ūε, ȳε) : ε > 0} is induced by ε, it
is at the basis of studying further properties such as, e.g., the length of the path and other relevant
quantities.
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