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Abstract

In this note we prove that the Schur complement of a nonnegative idempo-
tent matrix, i.e. a nonnegative projector, is again a nonnegative idempotent
matrix for certain generalized inverses.
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1 Introduction

Our study was motivated by the analysis of positive differential-algebraic equations
(DAEs) or descriptor systems such as

Ei = Az + Bu, z(ty) = xo,
y = Cu;

or as a discrete time system

FExp1 = Az + Buy, xg given,
yr = Cay;

where E, A are real n x n matrices and B € R™*™. In the continuous-time case,
the state x, input v and output y are real-valued vector functions. In the discrete-
time case x, u and y are real-valued vector sequences. Positive systems are systems
whose state and output variables take only nonnegative values at all times ¢ for
nonnegative input and nonnegative initial state, [3], [5], [7]. In the descriptor case,
the choice of the right projector onto the deflating subspace that corresponds to the
finite eigenvalues of the matrix pair (F, A) is crucial for the analysis [8]. It turned
out that nonnegative projectors play an important role in the context of positive
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systems [12]. Note that in the linear algebra literature, projectors are also referred to
as idempotent matrices. Finally, Schur complements constitute a fundamental tool
in applications [14], in particular such as algebraic multigrid methods [13] or model
reduction [6]. However, one has to ensure that properties such as nonnegativity are
preserved.

Let (n) := {1,...,n} and assume that o« C (n),a’ := (n)\a, 5 C (n) be three
nonempty sets. For A € R"*" denote by A[a, 3] the submatrix of A composed of
the rows an columns indexed by the set « and [ respectively. Assume that Ao, o]
is invertible. Then the o Schur complement of A is given by

A(a) := Alac, af] — Ala®, o] Ala, o] "t Ala, o). (1)
If Ala, o] is not invertible we define
Aginy (@) 1= Ala®, ] — Ala®, a] Ala, o)8™ Ala, o], (2)

for some semi inverse Ala, a]#™ [1]. The o Moore-Penrose Schur complement of A

is defined as
Ai(a) := Alaf, o] — Ala®, a]Ala, o]l Ala, ],

where Ala, a]f is a Moore-Penrose inverse, [2], [9], [10]. Assume that A is a nonneg-
ative projector. We show here that we can always define a semi inverse Afa, a]8™
such that Aginy () is a nonnegative projector. If Afo, a] does not have zeros on its
main diagonal then Afa, a]8™ = Ala, o]f. In the case that Ala,a] has a zero on
its main diagonal, A;(a)) may fail to be nonnegative and therefore a suitable semi
inverse has to be defined in a different way.

We now briefly survey the contents of the paper. In Section 2 we review some
well-known facts about nonnegative matrices and nonnegative projectors. In Sec-
tion 3 we first prove that if Ao, ] does not have a zero on its man diagonal, then
the Schur complement of a nonnegative projector constructed via the Moore-Penrose
inverse is again a nonnegative projector. Then we give an example which shows that
the above result is false in general if A[a, a] has a zero on its main diagonal. Finally,
we show that if A is a nonnegative projector then Agi,y () is always a nonnegative
projector for a suitably defined semi inverse.

2 Preliminaries

2.1 Nonnegative Matrices

Let Ry = [0,00). For € R denote by > 0 a vector whose all coordinates
are positive. Let A € R}*"™. Denote by p(A) the spectral radius of A. Denote by
II, C R}Y*™ the set of permutation matrices of order n.

Assume that p(A) > 0. Then there exists a permutation matrix @ € II,, C
{0,1}™*" such that B = QAQ" is in Frobenius normal upper triangular form [4],

Bi1 Bz ... By
0 Boy ... By _ .
B = . - , Bij € RT™ i j=1,...,k, (3)
0 0 ... By

where p(B11) > ... > p(Bgk). We assume the following.



1. If p(Bgk) > 0 then Byy,..., By are irreducible.
2. If p(Bgk) = 0, then p(B(—1)(k—1)) > 0 and By, . .., B(x_1)—1) are irreducible.

In what follows it will be convenient to adopt the following notation. Let a =
{aq,...,q}, B={P1,-..,Bm} C (n) be two nonempty sets. We do not assume that
the sequences a1, ...,q; and B4, ..., By, are arranged in decreasing order and define
Ala, f] = [aaiﬁj]é’;nzl € R*™, Qo if a = {a1,...,a,} = (n) then Ala, o] = QAQT
for some @ € II,,.

Recall a special case of Rothblum’s theorem [11].

Theorem 2.1 Let B € RY™, p(B) > 0 be in the Frobenius normal form (3) satis-
fying the conditions 1-2. Assume that p(B11) = ... = p(By) > p(B41)(141)), where
1 <1 <k and we define p(Bgg1)(k41)) = 0. Then p(B) is geometrically simple
eigenvalue, i.e. B has | linearly independent eigenvectors corresponding to p(A), if
and only if Bj; =0 for 1 <i<j<I.

2.2 Nonnegative Projectors

A matrix P € R™ " is called projector if P> = P. Note that in the linear algebra
literature, a matrix that is a projector is called idempotent.

Theorem 2.2 Let B € R}", p(B) > 0 be a projector in the Frobenius normal
form (3) satisfying the conditions 1-2. Then, for the block structure in (3), we have

. T m; T .

e — Wty iy V1 gy U Wg — 1, 0= Lyt
(1) By = wjvy , 0 <wugv; € R vjuy =1, i =1 l
(ii)Bij:O,1§i<j§l,

(4)

and for the index I one of the following conditions holds:
1. 1=k
2. l =k—1. Then, Bir = Oy xm, and By, = uiw;[,wi e R fori=1,...,k—1.

Proof. We consider the two cases in the Frobenius normal upper triangular
form (3).
1. Suppose that p(Bj;) > 0 for i = 1,...,k. For a projector, this is equivalent to
p(Bi;) = 1for i =1,... k. Furthermore, each Bj; is irreducible, which implies that
each B;; has exactly one eigenvalue equal to 1 and all other eigenvalues are zero.
Moreover, since any idempotent matrix is diagonable we deduce that rank B;; = 1.
Hence, B;; = uiviT € ]RTZ'XW. Since Bj; is irreducible we can assume that u;, v; > 0.
As p(B;;) = 1 we deduce v}u; = trace(B;;) = rank(B;) = 1. By Theorem 2.1, we
obtain condition (ii) of (4).
2. Assume now that p(Bgr) = 0. Since B,%k = By we deduce that By, = 0.
By the proof of case 1 of the Frobenius normal upper triangular form, we obtain
condition (4) for | = k — 1. Furthermore, the equality B = B? implies that By, =
BiiBi, for i < k. So By = ujw] , where w; = BiTkvi eRY*. O



3 Schur complements of nonnegative idempotents
Recall that for A € R™" a matrix A8 € R™ " is called a semi inverse [1] if
AAginvA — A, AginvAAginv — Aginv' (5)

Denote by A the Moore-Penrose inverse of A that is uniquely defined by the
following properties, see e.g. [2]:

AATA=A
ATAAT = At
(ATA)T = ATA (6)
(AANT = AAT

The following lemma is well known, see e.g. [2].

Lemma 3.1 Let A = 2y7,0 # 2,y € R". Then any A®™ = 2T, z,w € R™ such
that (yT2)(wTz) = 1. In particular AT = me:ﬂ.

3.1 Nonnegativity of Moore-Penrose inverse Schur complement

We first prove a special case in Theorem 3.2, where we assume that A[a, a] does
not have zero diagonal entries. We show that in this case the Schur complement
constructed via the Moore-Penrose inverse is again a nonnegative projector. Note
that this includes the case when A[a, o] is invertible. However, this result is false
for the general case of the Moore-Penrose Schur complement. A counterexample is
given in the next Section 3.2, in Example 3.9. .

Theorem 3.2 Let A € RY™, A # 0 be idempotent. Then for any nonempty o ;
(n), such that Ala, o does not have zero diagonal elements, Ai(«) is a nonnegative
idempotent matrix.

Proof. Tt is enough to prove the theorem for the corresponding matrix B that
is in the Frobenius normal upper triangular form given by Theorem 2.2. Assume
that « is chosen. Without loss of generality we can assume that By, = 0 and B;; =
B[@i, 3], i =1,...,k, where f1,..., [0 is a disjoint partition of (n). Furthermore,
there are three following possibilities :

(i) fcafori=kandi=1,...,¢g < k—1, where ¢ > 0,i.e. if g >1and i <gq
then the whole nonzero block Bj; is chosen for Bla‘, a“l;

1) o = ;N and o; (= p; N« ore=q+1...,9+p<k—1, where

ii B 0 and of :== g, Nac # O for i 1 < k-1, wh
p>0,ie if p>1and ¢ <i< g+ pthen the block B;; is split between « and
a’;

(iii) i Cafori=q+p+1,....q+p+1=k—1, where l > 0, i.e. if [ > 1 and
g+ p<i<qg+p+1 then the whole block Bj; is chosen for B|a, a;

Note that 0 C af since we require that Bla, a] does not have zero diagonal

entries. For the blocks in (ii) define a; = w;[af], b; = vi[af], i.e. the parts of the



positive vectors u;, v; that correspond to the row indices in of and z; = u;[oy], v; =
vi[ey], i.e. the remaining parts of the vectors u;, v;, respectively. View

aC = (nglﬁl) (Uq+q+1a ) U /Bk'u o= (Uq+q+1a]) U ( = p+q+1ﬂl)
For the block matrix
Bla*, o] || Bla®, o]

¢= Bla, af) H Bla,a] |’

C = QBQT for corresponding Q € II,,, (7)

by using Theorem 2.2 we obtain the following picture

r ulvif ulwf T

T

UqWy
T

albclp a1wgyq alyi’“

UqV

T T T
apby 4pWqtp 4prYp

0 0 0 0 0

T
xlbf T1Wg 1 xlyf

T T T
zpby, TpWoyy TpYp

T
Ug+p+1Waypi1 Ug+p+1Vg4py1

T T
L Ugtp+HWaypyg Yqtp+1Vqtpti A

It is easy to see that the [ blocks of category (iii) will be zeroed out in Bla, a|f by the
zero blocks in Bla‘, a] and Bla, af]. Hence, without loss of generality, we assume
that [ = 0. Furthermore, the ¢ irreducible blocks in category (i) remain unchanged
in B;(a), also due to the corresponding zero blocks in Bla, a¢] and B[a®, a]. Hence,
we can also assume ¢ = 0. Thus a = (Ulea,-) U Bk, where «; ; B; is a nonempty

set for ¢ = 1,...,p. Then, the matrix B[a, o] has block diagonal form
diag(B[a17 al]? ceey B[alh Oép]),
where Bloy, ;] = nyZT By Lemma 3.1, we have
T T
. Y177 YpTp
Bla, a]" = diag ey .
(@fz)(y{y) (@) (Y] vp)
Hence Bla¢, a]B[a, o' is in generalized block diagonal form as Blaf, al:
alwf apx;? )
B[ac’ Oé]B[Oé, Oé]T _ [ diag ( 2 ol ] ] (8)
0
Thus, we have
arbl ajw!
B[ac,a]B[a,a]TB[a,aC] = : ,
apbg apwg
0 |0

and therefore Bi(a) =0. [
The proof of Theorem 3.2 yields the following corollaries.



Corollary 3.3 Let the assumptions of Theorem 3.2 hold. Assume the conditions (i-
iii) in the proof of Theorem 3.2. Then Ai(a) is a nonnegative idempotent matric
which has eigenvalue 1 of multiplicity q.

Corollary 3.4 Let A € R™", A # 0 be idempotent. If o G (n) is chosen such that
Ala, o] is an invertible matriz, then Ala, o is diagonal.

Proof. Note that the number [ in the proof of Theorem 3.2 must be zero or
the corresponding blocks B;; must be positive 1 x 1 matrices. Furthermore, for the
split blocks, we must also have that :):Z-yiT € R™! since xiyiT is of rank 1. Therefore,
Ala, a] is diagonal. 0O

Corollary 3.5 Let A € R™", A # 0 be idempotent. If a G (n) is chosen such that
Ala, o] is a regular matriz, then the standard Schur complement (1) is nonnegative.

Corollary 3.6 Let A € R*", A # 0 be idempotent. Choose o ; (n), such that
Ala, ] does not have zero diagonal elements. Then, flT(a) defined by

Ai(a) == Ala®,a] + Ala*, a](I — Ala, ) Aler, 0] (9)
s a nonnegative idempotent matrix.

Proof. 1t is enough to prove the corollary for the corresponding matrix B that
is in the Frobenius normal upper triangular form given by Theorem 2.2. Using the
same argument as in the proof of Theorem 3.2, without loss of generality we can
assume that [ = ¢ = 0. We have that Ba, a] > 0 with p(Bla, a]) < 1, since we have
split positive irreducible blocks with spectral radius 1. Therefore, (I — Bla, a]) is a
regular M-matrix and (I — Bla, o))t = (I — Bla,a])™! > 0. By using this and the
projector properties of B, we obtain

Bi(a)By(a) = [ a‘|Bla%, ] + Bla%, (I - Bla, ) Bla, o] B[a*, o]
[ ¢,a‘Bla’, o)(I — Bla, a])'Bla, a]
+B[a af(I - B[ a])'Bla, a‘Bla®, o)(I = Bla, a])Bla, o] =
—B[oz af|Blaf, af] + Bla‘, o] (I — Bla, oz])TB[ af|Blaf, af]
Bla®,a](I = Bla,a])(I - Bla, a])' Bla, a]
Bla®,o](I = Bla,a))'(I - Bla,a])Bla, a](I - Bla, o])Bla, o] =
—B[oz af|Bla®, o] + Blac, o] (I — B, o)) Ba, [af, af]

a‘]B
+ Bla®, ] Bla, o] + Bla®, o|(I - Bla, o])' Bla, o] Bla, o] =
=Bla’, a®] + Bla*, a](I — Bla, a))'Bla, o] = Bi(a).

Hence Bj(a) is idempotent. Furthermore, since (I — Bla,a]) is an M-matrix, we
also conclude that Bi(a) > 0. [

3.2 An example

In this subsection we assume that A[a, «] has a zero on its main diagonal. We give
an example where A; () may fail to be nonnegative. To this end, we first start with
the following known result.



Lemma 3.7 Let A € R™ ™ be a singular matriz of the following form

All A12

A= { } , A1p € RPXP A1, € RP*P) - for some 1 < p < n.
Otn—p)xp  O(n—p)x(n-p)

Then (ANT has the same block form as A.

Proof. Let r = rank A. So r < p. Then the reduced singular value decomposition
of A is of the form UTETV;T, where U,.,V, € R™*", UfUT = VTVTT = I, and X, is a
diagonal matrix, whose diagonal entries are the positive singular values of A.

Clearly, AAT — [ A Af) +A12A% 8
responding to positive eigenvalues are of the form (x?,07)", 2z € RP. Thus U! =
(UL 0y (n—p)] where Up1 € RPX". Recall that AT = V.S 'UT. The above form of
U, establishes the lemma. 0O

} Hence all eigenvectors of AA*, cor-

Lemma 3.8 Let B satisfy condition 2 of Theorem 2.2. Denote D := BT and assume
that D = [Dij]ﬁjzl has the same block partition as B. Then

1. Dy = (uTui)(levierTwi)UiUZT fori=1,...k—1.
2. Dy = (uTui)(vTIUi—&-wTwi)’wiU? fori=1,...,k—1.

3. All other D;j are zero matrices.

Proof. Use the proof of the previous lemma to find the positive singular values
and the corresponding left singular vectors z;,¢ = 1,...,k — 1 of B. Note that

rank B = k—1. Then the right singular vectors of B are ﬁBTxi fori=1,...,k—

1. Now use the formula Bt = Vk_lE,;llU,;il to deduce the lemma. 0O

Example 3.9 Consider a nonnegative projector in block form as in (7)

upvl 0 wuys? |ugt? 0
0 agbl assl | artd  asyl
C= 0 0 0 0 0|,

0 0 0 0 0

0 xobl zosl | zytd  xoyl
where the vectors w; in (7) are partitioned as w; = [si ti]T
we have that

, t=1,2. By Lemma 3.8,

0 tzxg
Bla,a]l = (x5 22)(t5 ta+ys y2)
9 Y23
(z3' )t t2+y2 y2)
and
t?tgulbg tthQulsg
tTto+ylys  tLtatylye
c 1 1 2 2
Bla®,a]Bla, o] Bla, o] = |g* gqb1 azsl
0 0 0

Hence BT(Oé)lg < 0 and the Moore-Penrose inverse Schur complement is not non-
negative if t1ty > 0.



3.3 Nonnegativity of semi inverse Schur complement

In this section we extend the results of Section 3.1 to special semi inverse Schur
complements without any assumption on the diagonal of Ao, a]. We show that if
Ala, o] has a zero on its main diagonal, then we can always define a semi inverse
for Ala, a] that is not the Moore-Penrose inverse such that the corresponding Schur
complement is nonnegative. If Ala,a] does not have a zero on the diagonal, then
we simply define the semi inverse to be the Moore-Penrose inverse. Theorem 3.11
states the general result.
We start with the following simple observation.

Proposition 3.10 Let the assumptions of Lemma 3.7 hold. Suppose that
A11(A11) g = Ao

(All)T Opx (n—p)

On—p)xp  O(n—p)x(n—p)
principle submatriz of a projector B, satisfying condition 2 of Theorem 2.2, with at

least one zero diagonal element has a semi inverse of this form.

Then AS™ = s a semi tnverse of A. In particular any

Proof. The proposition follows by checking the conditions in (5). O

Note that condition AH(AH)TAH = Aj1s holds in general for projectors A of the
form as in Lemma 3.8.

The following Theorem states the most general result of this paper.

Theorem 3.11 Let A € R with A% = A. Assume that o & (n) is nonempty.
Then, there exists a semi inverse AB™ [, o of Aley, a] such that Aginy () as defined
in (2) is a nonnegative projector. The rank of Aginy() is equal to the multiplicity
of the eigenvalue 1 in Ala, af]. In particular, if 1 is not an eigenvalue of Alac, af)
then Aginy(a) = 0.

Proof. In view of Theorem 3.2 it is enough to consider the following case. A is
in the Frobenius normal upper triangular form given by Theorem 2.2. Furthermore
Byr =0 and By; = B[S, 3], i =1,...,k, where (1,..., 0 is a disjoint partition of
(n) satisfying the three following possibilities:

(i) s caffori=1,...,q < k—1 where ¢ >0, ie. if ¢ > 1 and i < ¢ then the
whole nonzero block B;; is chosen for Bla, af;

(ii) fina#@and iNa“#Pfori=qg+1...,q+p <k—1, where p >0, i.e. if
p>1and ¢ <t < g+ p then the block B;; is split between o and a;

(ii) iy Cafori=qg+p+1,....,q+p+1=k—1, where l > 0, i.e. if ] > 1 and
g+ p < i <q+p+1 then the whole block B;; is chosen for Bla, af;

Furthermore, a N By # (. Define A[a,a]®™ as in Proposition 3.10. Then
Aginy () is a nonnegative idempotent matrix of rank ¢, which is the multiplicity of
the eigenvalue 1 in Ao, a]. The proof follows the lines of the proof of Theorem 3.2
by using Proposition 3.10. (Note that the rank one matrix aib;fp defined in the proof
of Theorem 3.2 has spectral radius strictly less than 1.) O



4

Conclusions

We have shown that for a nonnegative projector, i.e. idempotent matrix, we have
that the Schur complement constructed via a special semi inverse is again a nonneg-
ative projector. In particular the nonnegativity also holds for the standard Schur
complement if the corresponding part of the matrix is invertible.
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