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Abstract. A class of optimal control problems for a semilinear parabolic partial differential equation
with control and mixed control-state constraints is considered. For this problem, a projection formula
is derived that is equivalent to the necessary optimality conditions. As main result, the superlinear
convergence of a semi-smooth Newton method is shown. Moreover we show the numerical treatment and
several numerical experiments.
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1. Introduction. In this paper, we consider the optimal control problem to mini-
mize the function J given by

J(y, u) =
1

2
‖y(T ) − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Σ) (1.1)

subject to the initial boundary value problem

yt − ∆y = 0 in Q,
∂νy = u on Σ,
y(0) = y0 on Ω

(1.2)

and to the mixed control-state constraints

0 ≤ u(x, t) ≤ c(x, t) + γ(x, t)y(x, t) a.e. in Σ. (1.3)

In this setting Ω is a bounded domain of R
N , N = 2, 3, with boundary Γ and outward

unit normal ν. Moreover ν is a fixed positive number and we define Q = (0, T ) × Ω,
Σ = (0, T )×Γ. Precise assumptions on and definitions of the quantities introduced above
are formulated at the end of this section.

Our main issue is the discussion of the semi-smooth Newton method for this problem.
Convergence of a semi-smooth Newton method in a general setting was shown in a paper
of Ulbrich [17], see also Kummer [7, 8]. Mesh-independent convergence of this algorithm
was shown by Hintermüller and Ulbrich [6].

In the control constrained case, the semi-smooth Newton method is under certain as-
sumptions equivalent to the primal-dual active set strategy , see Hintermüller, Ito and
Kunisch [5]. Similarly, we will formulate an active set algorithm for this type of problems.

However, the problem under consideration contains two different types of inequalities: a
control constraint and a mixed control-state constraint. Therefore, it seems to be difficult
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to apply the general theory. We will overcome this problem by a reformulation of the
optimality condition. Such a reformulation was introduced in [13] by the authors to show
optimal regularity of the solution of a semilinear elliptic optimal control problem.

In our theory we will benefit from the specific structure of the constraints of problem
(1.1)-(1.3). Here, the existence of Lagrange multipliers in function spaces (instead of
measure spaces) is guaranteed. We refer to Arada, Raymond [1], Bergounioux, Tröltzsch
[3], and Tröltzsch [14] for the parabolic case, and to Rösch, Tröltzsch [11, 12] for the
elliptic case. A second essential advantage, which we will exploit, is that the active sets
to the different constraints are disjoint.

The paper is structured as follows: In Section 2 we establish the optimality system and a
suitable reformulation. The formulation of the semi-smooth setting and the presentation of
the complete algorithm is contained in Section 3. Section 4 is devoted to the convergence
theory. The paper ends with numerical experiments in Section 5.

Assumptions. The set Ω ⊂ R
N , N = 2, 3 is a bounded domain of the class C1,1.

The functions γ, c ∈ C(Σ̄) are nonnegative. Moreover, we require for the function c

inf
x∈Σ

c(x) = cm > 0.

The data of the optimization problem satisfy y0, yd ∈ C(Ω̄).

2. The optimality system. At first we discuss the properties of the state equa-
tion. Let us consider the following linear parabolic problem with some data f, g, y0

yt − ∆y = f in Q,
∂νy = g on Σ,
y(0) = y0 on Ω.

(2.1)

Existence and uniqueness of solutions in the space

W (0, T ) := {y ∈ L2(0, T ; H1(Ω)) : yt ∈ L2(0, T ; H1(Ω)′)}

are classical results, see e.g. Lions [9]. Let us denote the mapping from (f, g, y0) to
(y, y|Σ, y(T )) by Λ, i.e. Λ(f, g, y0) = (y, y|Σ, y(T )), where y is the corresponding solution
of (2.1). It is well known that the equation (2.1) admits for L2-data a unique solution in
W (0, T ). By trace theorems, it holds y|Σ ∈ L2(0, T ; L2(Γ)) = L2(Σ) and y(T ) ∈ L2(Ω).
Hence, the objective J is well defined.

In the sequel, we will need estimates of Λ as mapping between different Lp-spaces.

Theorem 2.1. For any (f, g, y0) ∈ L2(Q) × L2(Σ) × L2(Ω), there exists an unique

solution y ∈ W (0, T ) of (2.1) with

‖y‖W (0,T ) ≤ c(‖f‖L2(Q)) + ‖g‖L2(Σ) + ‖y0‖L2(Ω)). (2.2)

That is, the mapping Λ is linear and bounded, hence continuous, from L2(Q)×L2(Σ)×
L2(Ω) to L2(Q) × L2(Σ) × L2(Ω).

Moreover, there is a constant δ > 0, such that the mapping Λ is continuous from

Lr(Q) × Lr(Σ) × Lr(Ω) to Lr+δ(Q) × Lr+δ(Σ) × Lr+δ(Ω) for all r ≥ 2.

For r > N/2+1, s > N +1, it holds that Λ is continuous from Lr(Q)×Ls(Σ)×L∞(Ω)
to L∞(Q)×L∞(Σ)×L∞(Ω). It is moreover continuous from Lr(Q)×Ls(Σ)×C(Ω̄)
to C(Q̄) × C(Σ) × C(Ω̄).
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Proof. The L2-regularity result can be found in [9]. The smoothing property is proven in
[15]. The L∞-regularity result can be found for instance in [10].

With the help of Λ, we can express the solution y of (1.2) as (y, y|Σ, y(T )) = Λ(0, u, y0).
The previous theorem states regularity of y in Lp-spaces. Of course, one can find more
detailed regularity results for y for instance in W 1,p-spaces.

Now, we can prove also an existence result for the optimal control problem under consid-
eration.

Lemma 2.2. There exists a uniquely determined optimal control ū ∈ L2(Σ).

Proof. Since u = 0 is feasible, the set of admissible controls is nonempty. Moreover
this set is convex and closed. The objective is strictly convex and radially unbounded.
Consequently, we have the existence of a unique optimal solution ū ∈ L2(Σ).

In all what follows, we denote the optimal control by ū. Moreover, we use the notation
ȳ for the corresponding optimal state (as solution of (1.2)). By p̄ we will denote the
solution of the adjoint equation

−pt − ∆p = 0 in Q,
∂νp = −γµ2 on Σ,

p(T ) = y(T ) − yd on Ω
(2.3)

Existence and regularity of solutions of that equation can be derived from Theorem 2.1.
Here, we cannot apply directly the operator Λ, since (2.3) is backward in time. Let us
define the operator τ , which describes the time transform t 7→ T −t, for abstract functions
v ∈ L2(0, T ; X) by (τv)(t) := v(T − t). Using the solution operator Λ, we can write
(p, p|Σ, p(0)) = (τq, τq|Σ, q(T )) with (q, q|Σ, q(T )) = Λ(0, τ (−γµ2), y(T ) − yd). Let us
denote the solution operator of (2.3) by Λ∗, i.e. (p, p|Σ, p(0)) = Λ∗(0,−γµ2, y(T )− yd).
By Theorem 2.1, we get similar regularity results for Λ∗ as for Λ.

Now, let us state the necessary – and by convexity sufficient – first-order optimality
conditions. For the proof we refer to [2] and [3].

Theorem 2.3. There exists a uniquely determined adjoint state p̄ ∈ W (0, T ) and

Lagrange multipliers µ̄1, µ̄2 ∈ L2(Σ) such that the following necessary and sufficient

first-order optimality conditions are satisfied together with (1.2), (1.3), and (2.3):

νū + p̄ + µ̄2 − µ̄1 = 0, (2.4)

µ̄i ≥ 0 for i = 1, 2, (2.5)

(ū − γȳ − c)µ̄2 = 0, (2.6)

ūµ̄1 = 0. (2.7)

The formulation of the optimality system in Theorem 2.3 has to be modified for the
semi-smooth setting. One has to reformulate that system as a non-smooth equation. For
instance, one can write an equation for µ2 like

µ2 = max(0, µ2 − C(u − c − γy)) (2.8)

with some C > 0. However, due to the appearance of µ2 itself in the argument of the
max-function, this equation is not semi-smooth with respect to µ2 ∈ Lp(Σ). Fortunately,
one can find an equivalent reformulation in terms of semi-smooth equations. Similar to
[13, Section 4] one can show the following result
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Theorem 2.4. The formulas

µ̄2 = max(0,−(p̄ + ν(γȳ + c))), (2.9)

ū = max(0,−1

ν
(p̄ + µ̄2)) (2.10)

are equivalent to (1.3) and (2.4)–(2.7).

In the proof it is essential that the active sets {σ ∈ Σ : ū(σ) = 0} and {σ ∈ Σ : ū(σ) =
c(σ) + γ(σ)y(σ)} have no common points. This implies µ̄1µ̄2 = 0 a.e. on Σ. Then both
multipliers can be treated separately, and equation (2.8) can be transformed to (2.9).
Below, we will prove that this equation is indeed semi-smooth.

These projection formulas are the base to formulate a semi-smooth Newton method to
solve the original optimal control problem (1.1)–(1.3). As a by-product, they allow to
prove higher regulariy of optimal solutions.

Theorem 2.5. The solution of the optimal control problem satisfies ū, µ̄1, µ̄2 ∈
L∞(Σ). The regularity of ȳ, p̄ is determined by Theorem 2.1.

Proof. The proof uses a bootstrapping procedure. By Theorem 2.3, we know ū, µ̄2 ∈
L2(Σ). Then by Theorem 2.1 there is a δ > 0 such that ȳ|Σ, p̄|Σ ∈ L2+δ(Σ) holds.
Applying the projection formulas (2.9)–(2.10) we obtain ū, µ̄2 ∈ L2+δ(Σ) as well. Again
using Theorem 2.1 we find ȳ|Σ, p̄|Σ ∈ L2+2δ(Σ). After finitely many steps we arrive at
ū, µ̄2, ȳ|Σ, p̄|Σ ∈ L2+kδ(Σ) with 2 + kδ > N + 1. Finally, the L∞-part of Theorem 2.1
gives ȳ|Σ, p̄|Σ ∈ L∞(Σ), which implies by the projection representation of ū and µ̄2 the
regularity ū, µ̄2 ∈ L∞(Σ). And the claim µ̄1 ∈ L∞(Σ) follows from (2.4).

3. Semi-smooth Newton method. In order to apply Newtons method, we write
the optimality system as an semi-smooth equation F (y, p, u, µ2) = 0. Let us define the
space, where we will look for solutions y and p, by

Y := W (0, T ) ∩ C(Q̄), ‖v‖Y := ‖v‖W (0,T ) + ‖v‖C(Q̄).

Further let us fix two exponents r and s by

N + 1 < r < s < ∞.

In the sequel, we are looking for controls u ∈ Lr(Σ) and multipliers µ2 ∈ Ls(Σ). The
multiplier µ1 can be reconstructed afterwards by (2.4).

Defining the function F : Y × Y × Lr(Σ) × Ls(Σ) → Y × Y × Lr(Σ) × Ls(Σ) by

F (y, p, u, µ2) =









y − Λ(0, u, y0)
p − Λ∗(0,−γµ2, y(T ) − yd)
u − max(0,− 1

ν
(p|Σ + µ2))

µ2 − max(0,−(p|Σ + ν(γy|Σ + c)))









(3.1)

we can write the optimality system as the equation F (ȳ, p̄, ū, µ̄2) = 0. For the sake of
brevity we will omit henceforth the trace operator in the third and fourth component
of F . Due to the appearance of the max-function the function F cannot be Fréchet
differentiable in general. Hence, we resort to a weaker form of differentiability. Here, we
use the concept of semi-smoothness as developed in [17]. See also the work of Kummer
[7, 8].

Definition 3.1. Let G : X → Y be a mapping between to Banach spaces X and Y .
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Further, let be given a set-valued function ∂G : X  L(X, Y ). Then G is ∂G-semi-

smooth at x ∈ X, if G is continuous in a neighborhood of x and it holds

sup
M∈∂G(x+s)

‖f(x + s) − f(x) − Ms‖Y = o(‖s‖X) as ‖s‖X → 0.

Now let us define the set-valued mapping ∂F

∂F (ỹ, p̃, ũ, µ̃2)(y, p, u, µ2) =









y − Λ(0, u, 0)
p − Λ∗(0,−γµ2, y(T ))
u − D(− 1

ν
(p̃ + µ̃2))(− 1

ν
(p + µ2))

µ2 − D(−(p̃ + ν(γỹ + c)))(−(p + νγy))









(3.2)

with the set-valued function D : L2(Σ) L∞(Σ) given by

D(w) =











v ∈ L∞(Σ) : v(x, t) ∈











{0} if w(x, t) < 0

[0, 1] if w(x, t) = 0

{1} if w(x, t) > 0

a.e. on Σ











.

Let us use in the sequel for abbreviatione the space X, defined by

X := Y × Y × Lr(Σ) × Ls(Σ)

and equipped with the norm

‖x‖X = ‖(y, p, u, µ)‖X := ‖y‖Y + ‖p‖Y + ‖u‖Lr(Σ) + ‖µ‖Ls(Σ).

Corollary 3.2. The function F : X → X given by (3.1) is ∂F -semi-smooth.

Proof. The operators Λ and Λ∗ are linear with respect to each variable, hence we have
by Theorem 2.1 the semi-smoothness as in the statement of the corollary. It remains
to investigate the components F3 and F4, which contain the max-function. It is known
that the function max(0, z) is D(z)-semi-smooth from Lp → Lq for p > q, see e.g. [17].
The trace operator is linear and continuous from Y to L∞(Σ). Hence, the function
m1(p, µ2) := max(0,− 1

ν
(p + µ2)) is a semi-smooth mapping from Y ×Ls(Σ) to Lr(Σ).

Analogously, the function m2(y, p) := max(0,−(p + ν(γy + c))) is semi-smooth from
Y × Y → Ls(Σ).

Now, we can apply Newton’s method in its semi-smooth variant. For a detailed analysis,
we refer to [17]. Let xn = (yn, pn, un, µn) be an iterate in X = Y ×Y ×Lr(Σ)×Ls(Σ).
Then the next iterate xn+1 = (yn+1, pn+1, un+1, µn+1) will be determined as the solution
of

Mn(xn+1 − xn) = −F (xn). (3.3)

Here, the operator Mn have to be chosen from the subdifferential ∂F (xn). To prove
convergence of that method, one has to investigate the solvability of that equation. Fur-
thermore, a uniform bound on ‖M−1

n ‖L(X,X) is needed.

3.1. Analysis of the subproblems. Before we start with the investigation of the
Newton step (3.3), let us abbreviate the arguments of the subdifferential D in (3.2) by
gn := − 1

ν
(pn +µn) and hn := −(pn +ν(γyn + c)). At first, we have to chose an element



6 Rösch, Wachsmuth

M of ∂F . This means, we have to chose in the third and fourth component of (3.2)
elements du

n ∈ D(gn) and dµ
n ∈ D(hn), respectively. Now, it turns out that the solution

of equation (3.3) is equivalent to the solution of the following set of equations for given
(yn, pn, un, µn):

yn+1 − yn − Λ(0, un+1 − un, 0) = −yn + Λ(0, un, y0)

pn+1 − pn − Λ∗(−γ(µn+1 − µn), yn+1(T ) − yn(T )) = −pn + Λ∗(−γµn, yn(T ) − yd)

un+1 − un − du
n(gn+1 − gn) = −un + max(0, gn)

µn+1 − µn − dµ
n(hn+1 − hn) = −µn + max(0, hn).

(3.4)
Here, the functions du

n and dµ
n satisfy a.e. on Σ

du
n(x, t) ∈











{0} if − 1
ν
(pn(x, t) + µn(x, t)) < 0,

[0, 1] if − 1
ν
(pn(x, t) + µn(x, t)) = 0,

{1} if − 1
ν
(pn(x, t) + µn(x, t)) > 0,

(3.5)

and

dµ
n(x, t) ∈











{0} if − (pn(x, t) + ν(γ(x, t)yn(x, t) + c(x, t))) < 0,

[0, 1] if − (pn(x, t) + ν(γ(x, t)yn(x, t) + c(x, t))) = 0,

{1} if − (pn(x, t) + ν(γ(x, t)yn(x, t) + c(x, t))) > 0.

(3.6)

Since Λ and Λ∗ are linear in all arguments, the first and the second equation in (3.4) are
equivalent to

yn+1 = Λ(0, un+1, y0) and pn+1 = Λ∗(0,−γµn+1, yn+1(T ) − yd), (3.7)

which are the full state and adjoint equations. The third and fourth equation of (3.4)
have to be studied pointwise. We distinguish whether − 1

ν
(pn(x, t) + µn(x, t)) is greater,

equal, or less than zero. We obtain

un+1(x, t) =











0 if gn(x, t) = − 1
ν
(pn(x, t) + µn(x, t)) < 0

du
n(x, t)gn+1(x, t) if gn(x, t) = − 1

ν
(pn(x, t) + µn(x, t)) = 0

gn+1(x, t) if gn(x, t) = − 1
ν
(pn(x, t) + µn(x, t)) > 0

for the third equation, which can be written as

νun+1 + du
n(pn+1 + µn+1) = 0.

For the fourth equation, we get analogously

µn+1 + dµ
n(pn+1 + ν(γyn+1 + c)) = 0. (3.8)

This equation allows us to eliminate µn+1 from the adjoint equation in (3.7). Altogether
we then have to solve the following coupled system:

yt − ∆y = 0 in Q,
∂νy = u on Σ,
y(0) = y0 on Ω,

−pt − ∆p = 0 in Q,
∂νp = γdµ

n(p + ν(γy + c)) on Σ,
p(T ) = y(T ) − yd on Ω,

(3.9)

νu + du
n(1 − dµ

n)p − νdu
ndµ

n(γy + c) = 0 on Σ. (3.10)
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Now, we try to reduce the complexity of that system. On the sets, where gn and hn are
zero, we are free to choose the values of du

n and dµ
n from [0, 1], respectively. It turns out

that it is advantageous to take only values from {0, 1}. Let us define the following sets

Au = {(x, t) ∈ Σ : du
n(x, t) = 0}, Aµ = {(x, t) ∈ Σ : dµ

n(x, t) = 0}.

The first one, Au, will be the set of active control constraints. The set Aµ corresponds
to the active multiplier constraint µ = 0, and thus is connected in some sense to inactive
control-state constraints. In view of the definition of du

n and dµ
n in (3.5) and (3.6),

respectively, we have the following inclusions

Au ⊂
{

(x, t) ∈ Σ : −1

ν
(pn(x, t) + µn(x, t)) ≤ 0

}

(3.11)

and

(Σ \ Aµ) ⊂ {(x, t) ∈ Σ : −(pn(x, t) + ν(γ(x, t)yn(x, t) + c(x, t))) ≥ 0}. (3.12)

Equation (3.10) can be rewritten as

u = 0 on Au,

νu + p = 0 on (Σ \ Au) ∩Aµ,

u = γy + c on Σ \ (Au ∪ Aµ).

(3.13)

Let us have a look on the boundary conditions of (3.9) and substitute the control u by
the quantities obtained just now:

∂νy = 0, ∂νp = 0 on Au ∩ Aµ,

∂νy = 0, ∂νp − γp = γν(γy + c) on Au ∩ (Σ \ Aµ),

∂νy = u, ∂νp = 0 on (Σ \ Au) ∩ Aµ,

∂νy − γy = c, ∂νp − γp = γν(γy + c) on Σ \ (Au ∪Aµ).

(3.14)

With this reformulation we obtain a system for the unknown control u|(Σ\Au)∩Aµ , the
state y, and the adjoint state p. The unknowns have to fulfill the parabolic equations
with boundary conditions (3.14) and the second equation of (3.13). The remaining parts
of u and µ can be computed afterwards according to (3.8) and (3.13).

We will now answer the question of existence of solutions of that system. Here, it would
be nice to find an optimal control problem such that our system is in fact its first order
necessary optimality condition. Unfortunately, this is not the case in general. If we look
at the boundary conditions (3.14) we see that on Au ∩ (Σ \ Aµ) the coefficients in the
boundary condition are not the same for y and for p: ∂νy = .. vs. ∂νp − γp = ... Hence,
the equation for p is not the adjoint equation to the equation in y. To avoid this case, let
us assume

Au ∩ (Σ \ Aµ) = ∅. (3.15)

As mentioned above, the set Au corresponds to active control constraints, whereas Σ\Aµ

is associated with active mixed control-state constraints. Thus, in (3.15) we assume that
the these active sets do not have common points. We will see that this is a reasonable as-
sumption, since it is fulfilled for the solution of the original problem and in a neighborhood
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thereof. Under that assumption, it is easy to verify that the system (3.9)–(3.10) forms
the first-order necessary optimality condition of the following optimal control problem:

min
1

2
‖y(T ) − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2((Σ\Au)∩Aµ) +
ν

2
‖γy + c‖2

L2(Σ\(Au∪Aµ)) (3.16)

subject to

yt − ∆y = 0 in Q,

∂νy = 0 on Au ∩ Aµ,

∂νy = u on (Σ \ Au) ∩Aµ,

∂νy − γy = c, on Σ \ (Au ∪ Aµ).

y(0) = y0 on Ω.

(3.17)

This problem is a convex optimization problem. Hence, it admits a unique solution
(u|(Σ\Au)∩Aµ , y). Using relation (3.13) it is possible to extend the control to whole Σ. It
remains to show that the norm of the solution is bounded independently of the choice of
the sets Au and Aµ.

Theorem 3.3. The system (3.16)–(3.17) is solvable for all sets Au,Aµ ⊂ Σ with

Au ∩ (Σ \Aµ) = ∅. The set of solutions (u, y) for all the possible choices of Au,Aµ is

bounded, i.e. it holds

‖u‖Lr(Σ) + ‖y‖Y ≤ C

for all solutions of (3.16)–(3.17) with a constant C > 0 independently of Au,Aµ.

Proof. Let us abbreviate the domain of the control functions by U := (Σ \ Au) ∩Aµ.

At first, we have to mention that the parabolic equation (3.17) is uniquely solvable. The
coefficient in the boundary condition is negative but bounded from below by −‖γ‖L∞(Σ)

independently of Au,Aµ. Unlike to elliptic equations, this fact does not influence the
existence of solutions. Furthermore, we have similar smoothing and regularity properties
as in Theorem 2.1, see [10, Prop. 3.3]. Moreover, as argued in [10], the norms of the
associated solution operator depend only on the lower bound of the coefficient. We have
for instance for given u ∈ L2(U) the existence of a solution y of (3.17) that satisfies

‖y‖W (0,T ) + ‖y‖L2(Σ) + ‖y(T )‖L2(Ω) ≤ c1

(

‖u‖L2(U) + ‖c‖L∞(Σ) + ‖y0‖L2(Ω)

)

, (3.18)

and for u ∈ Lr(U), r > N + 1, this solution y is in L∞ and satisfies the estimate

‖y‖L∞(Σ) + ‖y(T )‖L∞(Ω) ≤ c2

(

‖u‖Lr(U) + ‖c‖L∞(Σ) + ‖y0‖Lr(Ω)

)

. (3.19)

In both inequalities, the constants c1, c2 depend on ‖γ‖L∞(Σ) but not on Au,Aµ. A
similar estimate holds also for the bootstrapping result as in Theorem 2.1. There is a
δ > 0 and a constant c3,q = c3,q(q) such that forall q ≥ 2 it holds

‖y‖Lq+δ(Σ) + ‖y(T )‖Lq+δ(Ω) ≤ c3,q

(

‖u‖Lq(U) + ‖c‖L∞(Σ) + ‖y0‖L∞(Ω)

)

. (3.20)

Since the proof uses only interpolation arguments as in [15], it follows that c3,q depends
on q, ‖γ‖L∞(Σ) but not on Au,Aµ.

By convexity, the problem under consideration admits a unique solution (u, y). It remains
to prove an uniform upper bound of the Lr-norm of u and of the L∞-norm of y, which
is independent of the choice of Au and Aµ.
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To this end, we test (3.13)2 by u. We use the well-known method of transposition, see
e.g. [16, Satz 3.18], and obtain

0 = ν‖u‖2
L2(U) + (p|U , u) = ν‖u‖2

L2(U) + (y(T ) − yd, y(T ))

= ν‖u‖2
L2(U) + ‖y(T )‖2

L2(Ω) − (y(T ), yd),

which directly leads to the estimate

‖u‖L2(U) ≤
1√
2ν

‖yd‖L2(Ω) =: M1.

Using the estimate (3.18) and the relation (3.13)3 we find

‖y‖W (0,T ) + ‖y‖L2(Σ) + ‖y(T )‖L2(Ω) ≤ c1

(

M1 + ‖c‖L∞(Σ) + ‖y0‖L∞(Ω)

)

,

‖u‖L2(Σ) ≤ M1 + ‖γ‖L∞(Σ)‖y‖L2(Σ) + ‖c‖L2(Σ).

Altogether, we have the existence of an upper bound M2 independently of the actual
choice of Au,Aµ,

‖u‖L2(Σ) + ‖y‖W (0,T ) + ‖y‖L2(Σ) + ‖y(T )‖L2(Ω) ≤ M2. (3.21)

Now, we will apply the same bootstrapping procedure as in Theorem 2.5. We will need
estimates for the adjoint state p, which is the solution of the following equation

−pt − ∆p = 0 in Q,

∂νp = 0 on Au ∩ Aµ,

∂νp = 0 on (Σ \ Au) ∩ Aµ,

∂νp − γp = γν(γy + c) on Σ \ (Au ∪Aµ),

p(T ) = y(T ) − yd on Ω.

(3.22)

It turns out, that the estimates (3.18)–(3.20) are also applicable to (3.22). The system is
uniquely solvable and satisfies the following estimates depending on the regularity of the
data: if y ∈ Ls(Σ) for s > N + 1 then it holds

‖p‖L∞(Σ) ≤ c2

(

ν‖γ‖2
L∞(Σ)‖y‖Ls(Σ) + ν‖γ‖L∞(Σ)‖c‖L∞(Σ) + ‖y(T ) − yd‖L∞(Ω)

)

,

(3.23)
and there is a constant δ > 0 such that for all q ≥ 2 it holds

‖p‖Lq+δ(Σ) ≤ c3,q

(

ν‖γ‖2
L∞(Σ)‖y‖Lq(Σ) + ν‖γ‖L∞(Σ)‖c‖L∞(Σ) + ‖y(T ) − yd‖Lq(Ω)

)

.

(3.24)
Now, the claim follows by a simple bootstrapping procedure using the smoothing prop-
erties of (3.19)–(3.20) and (3.23)–(3.24). Since all constants in these estimates and
the bound (3.21) are independent of the choice o Au and Aµ, the final bound of
‖u‖Lr(Σ) + ‖y‖Y is also independent of that sets.

Let us summarize the results obtained so far concerning the solvability of the system (3.9)–
(3.10) arising in a step of the semi-smooth Newton method.

Theorem 3.4. Under the assumption du
n(x, t), dµ

n(x, t) ∈ {0, 1} a.e. on Σ and the as-

sumption (3.15), the system (3.9)–(3.10) admits a unique solution (y, u, p, µ). More-

over, there is a constant C > 0 independent of du
n, dµ

n such that

‖y‖Y + ‖p‖Y + ‖u‖Lr(Σ) + ‖µ‖Ls(Σ) ≤ C.
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Proof. The bound for y, u, p was derived in the proof of the previous Theorem 3.3. The
claim for µ follows then by the representation (3.8).

3.2. Convergence result. We are now in the position to prove the convergence
of the semi-smooth variant of Newton’s method. In the previous section, we investigated
the properties of the equation that has to be solved in each step. Under the separation
assumption (3.15), we proved solvability and uniform boundedness of solutions of the
subproblem (3.16). It remains to ensure that the active sets associated to the iterates
fulfill this assumption.

Let us recall for convenience the definition of the sets Au
n and Aµ

n. Let (yn, pn, un, µn)
be some iterate, then it holds

Au
n ⊂

{

(x, t) ∈ Σ : −1

ν
(pn(x, t) + µn(x, t)) ≤ 0

}

=: Ãu
n

(Σ \ Aµ
n) ⊂

{

(x, t) ∈ Σ : −(pn(x, t) + ν(γ(x, t)yn(x, t) + c(x, t))) ≥ 0
}

=: Ĩµ
n

cf. (3.5) and (3.6). Now, let us prove that under certain assumptions the intersection
Ãu

n ∩ Ĩµ
n is empty, which implies condition (3.15) for Au

n and Aµ
n, i.e. Au

n ∩ (Σ \Aµ
n) = ∅.

Lemma 3.5. Let (yn, pn, un) ∈ Y ×Y ×Lr(Σ) be given with γ(x, t)yn(x, t)+c(x, t) > 0
a.e. on Σ. And let µn satisfy

µn + χΣ\Aµ
n−1

(pn + ν(γyn + c)) = 0 (3.25)

for a given set Aµ
n−1, cf. (3.8).

Then, the corresponding sets Ãu
n and Ĩµ

n fulfill Ãu
n ∩ Ĩµ

n = ∅.
Proof. If Ĩµ

n = ∅, holds nothing has to be proven. Otherwise, let us take (x, t) ∈ Ĩµ
n ,

which implies the inequality −(pn(x, t)+ ν(γ(x, t)yn(x, t)+ c(x, t))) ≥ 0 by construction
of Ĩµ

n .

If on one hand (x, t) belongs to Σ \ Aµ
n−1 then we have using (3.25)

−(pn(x, t) + µn(x, t)) = −pn(x, t) +
(

pn(x, t) + ν(γ(x, t)yn(x, t) + c(x, t))
)

= ν(γ(x, t)yn(x, t) + c(x, t))
)

> 0.

On the other hand, (x, t) 6∈ Σ \Aµ
n−1 implies µn(x, t) = 0, which gives together with the

definition of Ĩµ
n gives

−(pn(x, t) + µn(x, t)) = −pn(x, t) ≥ ν(γ(x, t)yn(x, t) + c(x, t))
)

> 0.

It follows (x, t) 6∈ Ãu
n, and the claim is proven.

Please note, that we did not use any information about the set Aµ
n−1. Moreover, the

proof remains true, if one substitutes (3.25) by µn = max(0,−(pn + ν(γny + c))).

Now, we are ready to prove the convergence of the method. A crucial point is that the
separation of the active sets can be maintained to apply the uniform bound in Theorem 3.4.
Let x̄ = (ȳ, p̄, ū, µ̄2) be the solution of the optimal control problem (1.1)–(1.3).

Theorem 3.6. Let us choose in each step du
n(x, t), dµ

n(x, t) ∈ {0, 1} a.e. on Σ. Then

there is a constant ρ > 0 such that for all x0 = (y0, p0, u0, µ0) with ‖x̄ − x0‖X < ρ
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and Au
0 ∩ (Σ \ Aµ

0 ) = ∅ the semi-smooth Newton’s method either terminates with the

solution xk = x̄ or converges q-superlinearly to x̄ in X = Y × Y × Lr(Σ) × Ls(Σ).

Proof. At first, there is a constant ρ0 > 0 such that for all u with ‖ū− u‖Lr(Σ) < ρ0 the
corresponding solution y of the state equation (2.1) fulfills γy + c > 0. This is a direct
consequence of Theorem 2.1 and the assumption on c.

If all iterates un of the method stay in that neighborhood of ū, γyn + c > 0 would hold
for all n. This would imply by the previous Lemma 3.5 that the sets Au

n,Aµ
n would fulfill

Au
n ∩ (Σ \ Aµ

n) = ∅ for all n.

However, the general convergence result of [17, Theorem 6.5] is not directly applicable,
since the uniform bound in Theorem 3.4 holds only in a neighborhood of the solution.
Fortunately, one can use the argumentation in the proof of [17, Theorem 6.5] to conclude
the existence of a constant ρ with 0 < ρ < ρ0, such that the iterates of the algorithm
stay in that neighborhood and converge q-superlinearly (or the solution is found in finitely
many steps).

4. Numerical results. Let us now present some numerical experiments. We show
results for an optimal control problem with known solution. We consider the following
problem, which is a slight modification of the problem analysed in the present article:

min
1

2
‖y(T ) − yT ‖2

L2(Ω) +
1

2
‖y|Σ − yΣ‖2

L2(Σo) +
ν

2
‖u − ud‖2

L2(Σc)

subject to the parabolic equation

yt − ∆y = 0 in Q,
∂νy = u on Σc,
∂νy = 0 on Σ \ Σc,
y(0) = y0 on Ω

and to the mixed control-state constraints

ua(x, t) ≤ u(x, t) ≤ c(x, t) + γ(x, t)y(x, t) a.e. in Σc.

Here, the domain Ω is the unit square (0, 1)2, the final time is T = 1, the control acts on

Σc = Σo = {(x1, x2, t) ∈ Σ : x1 = 1}.

Given are the following quantities in the cost functional

y0(x1, x2) = cos(πx1),

yT (x1, x2) = e−π2T cos(πx1) − cos(2πx1),

yG(x2, t) = −µ2 − e−π2t,

ud(x2, t) =
1

ν
(e−4π2(T−t) + χ[0.5,1](t) − χ[0,0.4](t)),

and for the control and mixed control-state constraints

ua(x2, t) = −χ[0.4,1](t),

c(x2, t) = (1 + χ[0,0.5](t))e
−π2t,

γ(x2, t) = 1.



12 Rösch, Wachsmuth

Then our test problem admits the the solution

y(x1, x2, t) = e−π2t cos(πx1),

p(x1, x2, t) = e−4π2(T−t) cos(2πx1),

u(x2, t) = 0,

µ2(x2, t) = χ[0.5,1](t).

The projection representation (2.9)–(2.10) transforms to

µ̄2 = max(0,−(p̄ + ν(γȳ + c − ud))),

ū = max(ua, ud − 1

ν
(p̄ + µ̄2)).

For the computations the problem was discretized by finite differences on an equidistant
grid with nx1

× nx2
= 200 × 200 grid points. The time axis was divided in nt = 2000

subintervals.

We started the method with a randomly chosen control u0 and multiplier µ2 ≡ 0. The
starting values for state and adjoint were then computed as the corresponding solutions
of (1.2) and (2.3), respectively. The regularization parameter for the control was set to
ν = 0.1.

In Table 4.1, we report about the convergence history. In the second and fourth columns,
the differences ‖un− ū‖L3(Σ) and ‖µn− µ̄‖L4(Σ) can be found. The convergence we tried

two measure with qu :=
‖un−ū‖L3(Σ)

‖un+1−ū‖L3(Σ)
and qµ :=

‖µn−µ̄‖L4(Σ)

‖µn+1−µ̄‖L4(Σ)
. The iterates show a

superlinearly convergence as proven in Theorem 3.6.

n ‖un − ū‖L3(Σ) qu ‖µn − µ̄‖L4(Σ) qµ

0 5.80 · 10−3 1.77 · 10−5

1 4.28 · 10−5 0.01 2.36 · 10−5 1.33

2 5.65 · 10−5 1.32 5.62 · 10−6 0.24

3 1.09 · 10−5 0.19 7.35 · 10−7 0.13

4 1.36 · 10−6 0.12 8.13 · 10−8 0.11

5 4.55 · 10−8 0.03 2.20 · 10−8 0.27
Table 4.1

Iteration history of the numerical example

5. Conclusions. In this section we will comment briefly on the specifics of the
considered problem and on possible extensions.

5.1. Other state equations. In the analysis of the subproblems arising in semi-
smooth Newton’s method we relied heavily on the fact that the solvability of the state
equation is not affected by changes in the coefficients. The situation changes in general
for other equations. To see this, let us briefly look at the linear elliptic case: Similar to
(3.17) we have to investigate the solvability of the following equation:

−∆y = 0 in Ω,

∂νy = 0 on Au ∩ Aµ,

∂νy = u on (Γ \ Au) ∩Aµ,

∂νy − γy = c, on Γ \ (Au ∪ Aµ).
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Because of the term −γy in the last line one has to avoid explicitly the eigenvalue case.

If the state equation is no longer a linear one, then the situation becomes much more
difficult. At first, the necessary optimality conditions are not longer also sufficient, since
the problem is not convex anymore in general. To compensate this, one has to assume
the satisfaction of a second-order sufficient optimality condition at the optimal point. The
theory of such a method would require a combination of the methods of this paper with
the proving technique of the convergence of the SQP method, see Griesse, Metla, and
Rösch [4]. However, one can view on such problems also from another side: The presented
results are used for solving the quadratic subproblems of the SQP-methods. Then, both
results can be directly applied.

5.2. Other constraints. The presented theory used specific properties of the in-
equality constraints: First, we were able to prove a reformulation of the optimality system
which fits to the theory of semi-smooth Newton methods. Consequently this technique
cannot be applied to pointwise state constraints. Moreover, the derivation of the corre-
sponding projection formulas for a finite number of mixed constraints and control con-
straints requires additional assumptions, see Rösch and Tröltzsch [12].

Second, we were able to show that the active sets for the control and the mixed constraint
are separated in the optimal point. Moreover these sets stay separated in a small Lr-
neighborhood of the optimal control, see Lemma 3.5. Consequently, the discussion of more
general constraints requires a careful analysis of the active sets. In particular, working with
only one Lr-space for the control cannot guarantee the desired results. We will investigate
this general situation in a forthcoming paper.
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[4] R. Griesse, N. Metla, and A. Rösch. Local quadratic convergence of SQP for elliptic optimal control
problems with mixed control-state constraints. submitted, 2007.

[5] M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth
Newton method. SIAM J. Optim., 13:865–888, 2003.

[6] M. Hintermüller and M. Ulbrich. A mesh-independence result for semismooth Newton methods.
Math. Program., 101(1, Ser. B):151–184, 2004.

[7] Bernd Kummer. Newton’s method for nondifferentiable functions. In Advances in mathematical
optimization, volume 45 of Math. Res., pages 114–125. Akademie-Verlag, Berlin, 1988.

[8] Bernd Kummer. Newton’s method based on generalized derivatives for nonsmooth functions: con-
vergence analysis. In Advances in optimization (Lambrecht, 1991), volume 382 of Lecture
Notes in Econom. and Math. Systems, pages 171–194. Springer, Berlin, 1992.
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