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We apply the general framework developed by John et al. in [15] to an-
alyze the convergence of multi-level methods for mixed finite element dis-
cretizations of the generalized Stokes problem using the Scott–Vogelius ele-
ment. Having in mind that semi-implicit operator splitting schemes for the
Navier–Stokes equations lead to this class of problems, we take symmetric
stabilization operators into account. The use of the class of Scott–Vogelius
elements seems to be promising since discretely divergence-free functions are
pointwise divergence-free. However, to satisfy the Ladyzhenskaya–Babuška–
Brezzi stability condition, we have to deal in the multi-grid analysis with
non-nested families of meshes which are derived from nested macro element
triangulations.

1 Introduction

The numerical solution of the instationary, incompressible, and isothermal Navier–Stokes
equations

ut −
1

Re
∆u + (u · ∇)u +∇p = f , ∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ], u
∣∣
t=0

= u0 in Ω,

on a space-time cylinder Ω×(0, T ] is a challenging task, in particular at higher Reynolds
numbers Re. Here, Ω ⊂ Rd, d ∈ {2, 3}, denotes a polyhedral domain. Different dis-
cretizations schemes have been proposed in the literature in order to proceed efficiently
in time and to reduce this nonlinear problem to a sequence of linearized subproblems.
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We only mention the semi-implicit operator splitting scheme introduced in [8] and fully
implicit time stepping schemes which have to solve in each time step a sequence of lin-
earized Navier–Stokes problems [12]. In the semi-implicit approach, we have to solve
efficiently two generalized Stokes problems in each time step. Although the fully im-
plicit approach leads to a sequence of nonsymmetric Oseen type problems for which the
multi-grid analysis is not established, we know from numerical experiments that these
methods behave well if the analysis holds for the symmetric part of the stabilized oper-
ator. Thus, in our analysis we take the use of symmetric stabilizations into account and
consider stabilized generalized Stokes problems.

In this paper, we investigate the convergence of multi-grid methods for the recently
proposed stabilized Scott–Vogelius element Pk/P

disc
k−1 with k ≥ d, see [11]. The lowest or-

der Scott–Vogelius element for d = 2 consists of continuous, piecewise quadratic velocities
and discontinuous, piecewise linear pressures. The analogous lowest order element in the
case d = 3 consists of continuous, piecewise cubic velocities and discontinuous, piecewise
quadratic pressures. For a long time, it has been well known that the two-dimensional
Scott–Vogelius element is LBB-stable on certain meshes which are derived from macro
element triangulations [1, 22]. Recently, an extension to the three-dimensional case has
been proven [29]. The most promising property of the Scott–Vogelius element is its
pointwise fulfillment of the incompressibility constraint. Indeed, since ∇ · (Pk)d ⊂ P disc

k−1

holds, the usual weak mass conservation is transformed into a strong mass conserva-
tion and the discrete velocities are not only discretely divergence-free but also pointwise
divergence-free. Moreover, the convergence of the discrete velocities does not depend on
the regularity of the pressure. How these properties can be preserved for the discrete
Oseen equations and how reaction and convection terms can be stabilized by symmetric
stabilization operators has been shown in [11]. In the present paper, we consider ab-
stract stabilization operators having certain properties which guarantee the convergence
of our multi-grid method. Note that the edge stabilization method by Burman and
Hansbo [10, 9], the two-level local projection method by Braack and Becker [3, 4], and
the one-level enriched local projection method proposed in [20, 13] fulfill all necessary
properties.

The analysis of the multi-grid algorithm is based on the theory developed in [15] ap-
plied to the linear algebraic systems arising from the proposed stabilized Scott–Vogelius
discretization for the Navier–Stokes equations. Since proofs of the LBB-stability in 3D
are only known for meshes, which are derived from macro element triangulations, we
will restrict our considerations to such meshes. Then, the corresponding multi-grid hi-
erarchy is non-nested. But be aware that in the 2D case, for polynomial velocity spaces
with k ≥ 4 and meshes without so-called singular points, the entire multi-grid scheme
below works also without macro element meshes, leading then to a nested grid hierarchy
[26, 28].

The outline of the paper is as follows. We introduce in Section 2 the discretization and
state the approximation properties needed for the multi-grid convergence. Section 3 is
devoted to the prolongation and restriction operators of the multi-grid algorithm and to
the approximation and smoothing property. Numerical examples are given in Section 4
which illustrate the theoretical results.
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Notation. Throughout the paper, C will denote a generic positive constant which
is independent of the mesh. Our generalized Stokes problem will be considered in the
domain Ω ⊂ Rd, d = 2, 3, which is assumed to be a polygonal or polyhedral domain
with boundary ∂Ω. For a measurable subset G of Ω, the usual Sobolev spaces Wm,p(G)
with norm ‖ · ‖m,p,G and semi-norm | · |m,p,G are used. In the case p = 2, we have
Hm(G) = Wm,2(G) and the index p will be omitted. The L2 inner product on G is
denoted by (·, ·)G. Note that the index G will be omitted for G = Ω. This notation
of norms, semi-norms, and inner products is also used for the vector-valued and tensor-
valued case.

2 Continuous and Discrete Problem

2.1 Generalized Stokes Problem and Weak Formulation

We consider the generalized Stokes equations for (u, p) in a domain Ω ⊂ Rd, d ∈ {2, 3},

−∆u + αu +∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,
(1)

where u and p denote the velocity and the pressure, respectively, α is a non-negative
constant, and f is a given source term.

Let V := H1
0 (Ω) and Q := L2

0(Ω) := {q ∈ L2(Ω) : (q, 1) = 0}. A weak formulation of
problem (1) reads

Find (u, p) ∈ V d ×Q such that

A[(u, p), (v, q)] = (f ,v) ∀(v, q) ∈ V d ×Q (2)

where

A[(u, p), (v, q)] := a(u,v) + b(p,v)− b(q,u),
a(u,v) := (∇u,∇v) + α(u,v),
b(p,v) := −(p,∇ · v).

We can formulate problem (2) also as an elliptic one for the velocity u in the space

H(Ω) := {v ∈ V d : ∇ · v = 0}

of divergence-free functions. Indeed, choosing divergence-free test functions v ∈ H(Ω)
leads to the problem

Find u ∈ H(Ω) such that

a(u,v) = (f ,v) ∀v ∈ H(Ω). (3)

Note that the pressure drops out completely from the equation but it can be recon-
structed due to the continuous inf-sup condition, see [14].
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Theorem 1 (H1). The generalized Stokes problem (2) is well-posed. For any given data
f ∈

(
L2(Ω)

)d there is a unique solution (u, p) ∈ V d ×Q such that

‖∇u‖0 +
√
α‖u‖0 + ‖p‖0 ≤ C‖f‖0.

Proof. The theorem is proven by applying the Cauchy-Schwarz inequality, the Poincaré
inequality, and the continuous LBB-condition.

We make in the following always a regularity assumption on problem (1).

Assumption 1. Whenever the right hand side f belongs to the space
(
L2(Ω)

)d, the
solution (u, p) satisfies u ∈

(
V ∩H2(Ω)

)d and p ∈ Q ∩H1(Ω). Moreover, the estimate

‖u‖2 + ‖p‖1 ≤ C‖f‖0

holds true.

This assumption holds if Ω is of class C2 or Ω is a plane convex polygon.

2.2 Stabilized Scott–Vogelius Discretization

We are given a family
{
T̃h

}
of simplicial triangulations of the domain Ω without hanging

nodes. The simplices T̃ ∈ T̃h are supposed to be open. Let heT denote the diameter of
the simplex T̃ ∈ T̃h and h := maxeT∈eTh

heT . Moreover, we assume that the mesh is shape
regular, i.e., there exists a constant C independent of h such that

heT
ρeT ≤ C ∀T̃ ∈ T̃h, ∀h > 0

where ρeT is the diameter of the largest ball which can be inscribed into T̃ .
The mesh T̃h is called macro triangulation. The triangulation Th which will be the base

of our discretization is derived from T̃h as follows. We connect for each macro simplex T̃ ∈
T̃h its barycenter with its vertices in order to construct a new triangulation. Hence, we
get three triangles from each macro triangle in two space dimensions and four tetrahedra
from each macro tetrahedron in three space dimensions. This new triangulation Th is
also shape regular in the above sense.

We consider the Scott–Vogelius element (V k
h , Q

k−1
h ) defined by

V k
h :=

{
v ∈ H1

0 (Ω) : v|T ∈ Pk(T ) ∀T ∈ Th

}
,

Qk−1
h :=

{
q ∈ L2

0(Ω) : q|T ∈ Pk−1(T ) ∀T ∈ Th

}
.

Hence, each velocity component is approximated by continuous, piecewise polynomials
of degree k while the pressure is approximated by discontinuous, piecewise polynomials
of degree k − 1. Since the triangulations Th are derived from a macro triangulation and
since we assume that k ≥ d, the pair (V k

h , Q
k−1
h ) is LBB-stable, see [22, 1, 29].

Using the Scott–Vogelius element, we propose the following method for discretizing (2)
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Find (uh, ph) ∈ (V k
h )d ×Qk−1

h such that

Ah[(uh, ph), (vh, qh)] = (f,vh) ∀(vh, qh) ∈
(
V k

h

)d ×Qk−1
h (4)

where
Ah[(uh, ph), (vh, qh)] := A[(uh, ph), (vh, qh)] + Sh(uh,vh).

Here, Sh(·, ·) is an abstract stabilization operator which might be needed in the case
of a dominant reaction term αu in the generalized Stokes problem or in the case of
non-neglectable convection in the non-symmetric part of the generalized Oseen problem.
The required properties of Sh will be discussed later on.

The Scott–Vogelius element has the important property

∇ · [V k
h ]d ⊂ Qk−1

h (5)

which enforces pointwise mass conservation for the discrete solution uh of (4). Indeed,
we derive from (4) that

(∇ · uh, qh) = 0 ∀qh ∈ Qk−1
h .

Now, it follows from uh ∈
(
H1

0 (Ω)
)d that the function ∇ · uh belongs to L2

0(Ω). Due
to (5) and since uh ∈ (V k

h )d, the function ∇ · uh belongs also to Qk−1
h . Thus, ∇ · uh

can be taken as a test function qh. This results in exact mass conservation in the L2-
sense. Moreover, since the discrete solution uh is piecewise polynomial, we conclude that
∇ · uh = 0 holds pointwise on the closure of each simplex of the triangulation. Hence,
the scalar function ∇ · uh is pointwise 0 on Ω.

The mixed problem (4) can be formulated equivalently as an elliptic one in the space
of discretely divergence-free functions. Since discretely divergence-free functions of the
considered discretization are divergence-free in the strong sense, the problem (4) is equiv-
alent to

Find uh ∈
(
V k

h

)d ∩H(Ω) such that

ah(uh,vh) = (f ,vh) ∀vh ∈
(
V k

h

)d ∩H(Ω) (6)

where
ah(uh,vh) := a(uh,vh) + Sh(uh,vh).

Note that instead of the usual Galerkin orthogonality, we only have

ah(u− uh,vh) = Sh(u,vh) ∀vh ∈
(
V k

h

)d ∩H(Ω) (7)

and the consistency error has to be estimated additionally.
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2.3 Finite Element Analysis

Let πh : Q→ Qk−1
h be the L2-projection into Qk−1

h such that

‖q − πh(q)‖0 ≤ Ch‖q‖1 ∀q ∈ Q ∩H1(Ω).

We further assume that there exists a projection operator πdiv
h : V d ∩H →

(
V k

h

)d ∩H
which maps divergence-free functions to divergence-free functions and which satisfies

‖v − πdiv
h (v)‖0 + h‖∇(v − πdiv

h (v))‖0 ≤ Ch2‖v‖2 (8)

for all v ∈
(
V ∩H2(Ω)

)d∩H(Ω). The existence of those interpolation operators is shown
in [23].

We now come back to the abstract stabilization operator Sh and postulate the following
properties

• (linearity) for all u,v,w ∈
(
(V ∩H2(Ω)) + V k

h

)d and λ, µ ∈ R:

Sh(λu + µv,w) = λSh(u,w) + µSh(v,w); (9)

• (symmetry) for all u,v ∈
(
(V ∩H2(Ω)) + V k

h

)d:
Sh(u,v) = Sh(v,u);

• (non-negativity) for all u ∈
(
(V ∩H2(Ω)) + V k

h

)d:
Sh(u,u) ≥ 0; (10)

• (weak consistency) for all u ∈
(
V ∩H2(Ω)

)d:
|Sh(u,u)|1/2 ≤ Ch3/2‖u‖2,

|Sh(πdiv
h u, πdiv

h u)|1/2 ≤ Ch3/2‖u‖2.
(11)

The properties (9) and (10) ensure that for all u,v ∈
(
(V ∩H2(Ω))+V k

h

)d the inequality∣∣Sh(u,v)
∣∣ ≤ Sh(u,u)1/2 Sh(v,v)1/2 (12)

holds. The edge stabilization by Burman and Hansbo [10] and the local projection
method by Becker and Braack [3] fulfill all properties of this abstract setting. We also
refer to [20, 13] for a more general framework of local projection stabilization. Further
information on necessary properties for the stabilization operator in the case of dominant
convection can be found in [11].

In order to derive the approximation property of our multi-grid scheme, we will give
an L2-estimate for the velocity of the considered stabilized Scott–Vogelius discretization.
First, we prove an estimate in the corresponding error norm of the problem, and then we
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apply an Aubin–Nitsche argument to get the desired L2-estimate for the velocity error.
An estimate of the energy norm for a more general case is given in [11] where also error
estimates for the pressure can be found.

The energy norm of the continuous elliptic problem (3) given in the space of divergence-
free functions is equivalent to the H1-norm ‖·‖1. The energy norm of the discrete elliptic
problem (6) is defined as

|||v|||h :=
(
|v|21 + α‖v‖2

0 + Sh(v,v)
)1/2

which is well defined for all v ∈
(
(V ∩ H2(Ω)) + V k

h

)d. Note that |||·|||h is a norm on(
(V ∩H2(Ω)) + V k

h

)d due to the assumptions on Sh.
To study the unique solvability of (6), we start with the coercivity of the bilinear form

ah.

Lemma 2 (Discrete coercivity). The stabilized bilinear form ah satisfies

ah(vh,vh) ≥ |||vh|||2h

for all vh ∈
(
V k

h

)d ∩H(Ω).

Proof. The coercivity follows directly from the definitions of the bilinear form and the
discrete energy norm.

We proceed with an approximation property in the discrete energy norm.

Lemma 3 (Approximation). Suppose v ∈
(
V ∩H2(Ω)

)d, then there holds

|||v − πdiv
h (v)|||h ≤ Ch‖v‖2.

Proof. The lemma is a direct consequence of (8) and the property (11) of the stabilizing
term Sh.

We are now able to state an a-priori energy estimate.

Lemma 4 (A-priori energy estimate). Let u and uh be the solutions of (3) and (6),
respectively. Under the additional smoothness assumption u ∈

(
H2(Ω)

)d, we have

|||u− uh|||h ≤ Ch‖u‖2.

Proof. We get for any vh ∈
(
V k

h

)d ∩H(Ω)

|||u− uh|||h ≤ |||u− vh|||h + |||uh − vh|||h

by the triangle inequality. To estimate the second term, we start with

|||uh − vh|||2h ≤ ah(uh − vh,uh − vh)
= ah(u− vh,uh − vh) + ah(uh − u,uh − vh)
= ah(u− vh,uh − vh)− Sh(u,uh − vh)
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where the representation of the consistency error from (7) was applied. Using (12) and
the definition of |||·|||h, we end up with

|||uh − vh|||h ≤ |||u− vh|||h + Sh(u,u)1/2.

After setting vh := πdiv
h (u), we apply Lemma 3 and (11) to yield the assertion of the

Lemma.

Additionally, we prove an a-priori L2-estimate using a duality argument. To this end,
we consider the following continuous adjoint problem for a given g ∈

(
L2(Ω)

)d
Find wg ∈ V d ∩H(Ω) such that

a(v,wg) = (g,v) ∀v ∈ V d ∩H(Ω). (13)

This problem is well-posed. Due to Assumption 1 on the regularity of the Stokes problem,
we conclude wg ∈ H2(Ω) and ‖wg‖2 ≤ C‖g‖0.

Theorem 5 (A-priori L2-estimate, H2). Let u and uh be the solutions of (3) and (6),
respectively. If in addition u ∈

(
H2(Ω)

)d, we have the a-priori L2-estimate

‖u− uh‖0 ≤ Ch2‖u‖2.

Proof. We start the proof by using v := u− uh as a test function in (13) to obtain

(g,u− uh) = a(u− uh,wg) = ah(u− uh,wg)− Sh(u− uh,wg)

where the definition of a and ah were used. Let for a moment vh ∈
(
V k

h

)d ∩H(Ω) be
arbitrary. Using (7) in the form Sh(u,vh)− ah(u− uh,vh) = 0, we get

(g,u− uh) = ah(u− uh,wg)− ah(u− uh,vh) + Sh(u,vh)− Sh(u− uh,wg)
= ah(u− uh,wg − vh) + Sh(u,vh)− Sh(u− uh,wg).

By setting g := u− uh, we obtain

‖u− uh‖2
0 = (g,u− uh)

≤ |||u− uh|||h|||wg − vh|||h + |Sh(u,u)|1/2|Sh(vh,vh)|1/2

+ |Sh(u− uh,u− uh)|1/2|Sh(wg,wg)|1/2

≤ |||u− uh|||h
(
|||wg − vh|||h + |Sh(wg,wg)|1/2

)
+ |Sh(u,u)|1/2|Sh(vh,vh)|1/2.

Choosing vh := πdiv
h (wg), we get by applying Lemmata 3 and 4 the stated estimate

where (11) and ‖wg‖2 ≤ C‖g‖0, which follows from Assumption 1, were used.

Remark 6. We can see from the proof above that the expected asymptotic convergence
order of the scheme does not deteriorate by adding the symmetric stabilization operator.
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3 Multi-Level Approach

In [15], five sufficient conditions (H1)–(H5) have been identified which allow to conclude
that some multi-level solvers for quite general discretizations of mixed problems converge
at optimal convergence rates. The considerations in [15] include non-nested discretiza-
tions and even discretizations with different finite element ansatz functions on different
levels. The Theorems 1 and 5 which were proved in the previous section are the the
conditions (H1) and (H2) for the special case of the proposed stabilized Scott–Vogelius
scheme. We will outline in the following section a multi-level approach for the proposed
stabilized Scott–Vogelius element and we will apply the general framework given in [15]
to this situation. For the sake of completeness, we will repeat some of the arguments
used in [15]. We also mention that hints to a multi-level convergence analysis for the
unstabilized Scott–Vogelius element are already given in [29].

3.1 Multi-Level Discretization

Let T̃0 denote the coarse macro triangulation. The finer macro triangulations T̃l, l ≥ 1,
are obtained by successive regular refinement. Since the Scott–Vogelius element is not
necessarily LBB-stable on such meshes, we construct triangulations Tl from the macro
triangulations T̃l as described in Sect. 2.2. Note that the mesh size of Tl is just the half
of the mesh size of Tl−1. Let Vl and Ql denote the spaces V k

h and Qk−1
h with respect to

the triangulation Tl. Note that both the sequence {V d
l }l≥0 of velocity spaces and the

sequence {Ql}l≥0 of pressure spaces are non-nested. This is caused by the non-nested
triangulations which are, however, derived from nested triangulations. Figure 3.1 shows

Figure 1: Two subsequent triangulations of the unit square with two and eight macro
elements which result in six and 24 elements, respectively.

two subsequent triangulation of the unit square into two and eight macro triangles which
are refined into 6 and 24 triangles, respectively. The non-nested character of the grid
hierarchy is clearly demonstrated.

3.2 Matrix Representation

Let {ϕl,i : i ∈ Il} and {ψl,j : j ∈ Jl} be bases of the spaces V d
l and Ql, respectively,

where Il, Jl denote the corresponding index sets. The solution (uh, ph) of (4) with V k
h
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and Qk−1
h based on the triangulation Th = Tl will be denoted by (ul, pl). The unique

representations
ul =

∑
i∈Il

ul,i ϕl,i, pl =
∑
j∈Jl

pl,j ψl,j

define the finite element isomorphisms Φl : Ul → V d
l , Ψl : Pl → Ql between the vector

spaces Ul = Rdim V d
l , Pl = Rdim Ql of coefficient vectors ul = (ul,i)i∈Il

, p
l

= (pl,j)j∈Jl

and the finite element spaces V d
l and Ql, respectively. Let al be the bilinear form ah

based on Th = Tl. We introduce the finite element matrices Al and Bl having the entries
al,ij = al(ϕl,j , ϕl,i) and bl,ij = b(ψl,i, ϕl,j). Now the discrete problem (4) is equivalent to(

Al BT
l

Bl 0

)(
ul

p
l

)
=
(
f

l
0

)
(14)

with fl,i = (f , ϕl,i). Note that Al is a symmetric matrix. We will use in the vector spaces
Ul and Pl the usual Euclidean norms scaled by suitable factors such that the following
norm equivalences

C−1‖vl‖Ul
≤ ‖vhl

‖0 ≤ C‖vl‖Ul
∀vhl

∈ V d
l ,

C−1‖q
l
‖Pl

≤ ‖qhl
‖0 ≤ C‖q

l
‖Pl

∀qhl
∈ Ql,

are satisfied with a mesh- and level-independent constant C.

3.3 Smoothing Property

For smoothing the error of an approximate solution of (14), we take the basic iteration(
αlDl BT

l

Bl 0

)(
uj+1

l − uj
l

pj+1
l − pj

l

)
=
(
f

l
0

)
−
(
Al BT

l

Bl 0

)(
uj

l

pj
l

)
, j ≥ 0. (15)

This can be considered as a special case of the symmetric incomplete Uzawa algorithm
proposed by Bank, Welfert, and Yserentant in [2]. The smoothing properties of (15)
have been studied in [6] for the special case Dl = Il, in [24] for the general case provided
that an additional projection step is performed, and in [30] for a more general setting.

The matrix Dl is a pre-conditioner of Al such that the linear system (15) is more easily
solvable than (14). Note that we have

Bl(uj+1 − uj
l ) = −Blu

j
l , j ≥ 0,

implying that after one smoothing step the iterate uj+1
l is divergence-free, i.e.Blu

j+1
l = 0.

Theorem 7 (H5). The matrix BlB
T
l in (14) is non-singular.

Proof. The invertibilty of BlB
T
l is a consequence of the fulfillment of the discrete LBB-

condition.
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Remark 8. It is easy to verify that(
ul − uj+1

l

p
l
− pj+1

l

)
=
(
αlDl BT

l

Bl 0

)−1(
(αlDl −Al)(ul − uj

l )
0

)
where (ul, pl

) is the solution of (14). This shows that the iteration is a so-called u-
dominant method since the new iterate (uj+1

l , pj+1
l ) depends on uj

l but not on pj
l .

Lemma 9. Now we assume that Dl is symmetric and that αl can be chosen such that

1
δ
λmax(Al) < αlλmin(Dl) ≤ αl‖Dl‖ ≤ γλmax(Al)

for some level- and mesh-independent constants δ ∈ [1, 2) and γ > 0. Moreover, let
the basis of V d

l be chosen such that λmax(Al) = O(h−2
l ). Then, the basic iteration (15)

satisfies the smoothing property

‖Al(ul − um
l ) +BT

l (p
l
− pm

l
)‖Ul

≤ C

m
h−2

l ‖ul − u0
l ‖Ul

.

Proof. See [6, 24, 30].

3.4 Prolongation and Restriction

Essential ingredients of a multi-level algorithm for mixed problems are appropriate pro-
longations

P u
l−1,l : Ul−1 → Ul, P p

l−1,l : Pl−1 → Pl

and restrictions

Ru
l,l−1 := (P u

l−1,l)
∗ : Ul → Ul−1, Rp

l,l−1 := (P p
l−1,l)

∗ : Pl → Pl−1.

Since we deal with a non-nested finite element discretization, we define prolongations by

P u
l−1,l := Φ−1

l ◦ iu ◦ Φl−1, P p
l−1,l := Ψ−1

l ◦ ip ◦Ψl−1

where iu : (Vl−1+Vl)d → V d
l and ip : Ql−1+Ql → Ql are suitable prolongation operators.

The convergence analysis in [15] is based on the u-dominance of the smoother, i.e., the
new iterate (uj+1

l , pj+1
l ) depends on uj

l but not on pj
l . Thus, we only have to investigate

in depth the velocity prolongation which is in our situation much simpler than in the
general framework. First, we restrict our considerations to a scalar prolongation for one
velocity component. Second, we can make important simplifications since the velocity
spaces Vl are continuous. Third, the local finite element space Vl|eT on any macro simplex
T̃ ∈ T̃l is derived from a single corresponding finite element space V̂ on a reference macro
simplex T̂ by

Vl|eT =
{
v̂ ◦ F−1eT : v̂ ∈ V̂

}
where FeT : T̂ → T̃ is an affine transformation with FeT (T̂ ) = T̃ and T̂ denotes the unit
reference simplex.
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We will construct a scalar velocity prolongation iu : Σl → Vl with Σl := Vl−1+Vl which
fulfills the necessary properties given in [15]. Note that for macro elements T̃ ∈ T̃l−1

the local finite element space Σl|eT = Vl−1|eT + Vl|eT can be derived from Σ̂ = V̂c + V̂f

where the finite element spaces V̂c and V̂f on the reference macro element T̂ correspond
to the refinement levels l = 0 and l = 1 of the reference simplex T̂ . Let n := dim V̂f . We
introduce n linear nodal functions N̂i, i = 1, . . . , n, such that

N̂i : Σ̂ → V̂f , v̂ 7→ v̂(xi), i = 1, . . . , n,

for the set {xi, i = 1, . . . , n} of Lagrange points with respect to V̂f . Let {ϕ̂1, . . . , ϕ̂n}
be the basis of V̂f which is dual with respect to {N̂1, . . . , N̂n}, i.e., N̂i(ϕ̂j) = δij , i, j =
1, . . . , n, where δij denotes the Kronecker delta. We define

ı̂u : Σ̂ → V̂f , v̂ 7→
n∑

i=1

N̂i(v̂) ϕ̂i.

Obviously, ı̂u is a continuous linear operator on Σ̂ since the nodal functionals N̂i are
linear and since dim Σ̂ <∞. Hence, the estimate

‖ı̂uv̂‖0, bT ≤ C‖v̂‖
0, bT ∀v̂ ∈ Σ̂ (16)

holds true. We define for each macro element T̃ ∈ T̃l−1 a local prolongation operator by

i
eT
u : Σl|eT → Vl|eT , v 7→

n∑
i=1

N̂i(v ◦ FeT ) (ϕ̂i ◦ F−1eT ).

Due to the chosen set of Lagrange points, the restriction of ieT
u v to ∂T̃ depends only on

the restriction of v to ∂T̃ . Hence, the local operators can be put together to a global
operator iu : Σl → Vl such that

iuv|eT = i
eT
u

(
v|eT ), T̃ ∈ T̃l−1.

Theorem 10 (H3). For the interpolation operator iu : Σl → Vl, there holds for all v ∈ Vl

iuv = v.

Proof. The statement of this theorem is a direct consequence of the definition of the
operator iu.

Theorem 11 (H4). For all vl ∈ Σl, it holds

‖iuv‖0 ≤ C‖v‖0.

12



Proof. Setting in the following v := v̂ ◦ F−1eT and x̂ := F−1eT (x), we compute

‖iuv‖2
0 =

∑
eT∈eTl−1

∫
eT
{
(ieT

u v)(x)
}2
dx =

∑
eT∈eTl−1

d! |T̃ |
∫

bT
{
(ieT

u v)(FeT (x̂))
}2
dx̂

=
∑

eT∈eTl−1

d! |T̃ |
∫

bT
{
(̂ıuv̂)(x̂)

}2
dx̂ =

∑
eT∈eTl−1

d! |T̃ | ‖ı̂uv̂‖2
0, bT .

We can apply the estimate (16) and conclude

‖iuv‖2
0 ≤ C2

∑
eT∈eTl−1

d! |T̃ | ‖v̂‖2
0, bT = C2

∑
eT∈eTl−1

‖v‖2
0, eT = C2‖v‖2

0.

Thus, the L2-stability of the prolongation is shown with a constant C independent of
the level.

Remark 12. It would have been possible to retract completely on the much more general
proof in [15] about the L2-stability of a general class of possible velocity prolongation
operators. There, two additional assumptions (H6) and (H7) are introduced which
imply (H3) and (H4). These assumptions are clearly true in our case but the proof
presented above is much more simpler.

3.5 Approximation Property

Let an approximation (ũl, p̃l) ∈ V d
l × Ql of the discrete solution (ul, pl) be given. We

can think of (ũl, p̃l) as the result after some smoothing steps and consequently assume
that

∇ · ũl = 0.

Then, the coarse-level correction is defined as the solution of the following problem

Find (u∗l−1, p
∗
l−1) ∈ V d

l−1 ×Ql−1 such that for all (vl−1, ql−1) ∈ V d
l−1 ×Ql−1

Al−1[(u∗l−1, p
∗
l−1), (vl−1, ql−1)] = (f , iuvl−1)−Al[(ũl, p̃l), (iuvl−1, 0)]. (17)

The coarse-level correction yields via the transfer operator iu from Section 3.4 the new
velocity approximation

unew
l := ũl + iuu∗l−1. (18)

The basic idea for proving the approximation property is to construct a auxiliary
continuous problem such that (u∗l−1, p

∗
l−1) and (ul−ũl, pl−p̃l) are finite element solutions

of the corresponding discrete solutions in the spaces V d
l−1×Ql−1 and V d

l ×Ql, respectively.
This idea has been used for scalar elliptic equations in [7] and has been applied to more
general situations in [5] and [18].

The auxiliary problem will be

Find (z, w) ∈ V d ×Q such that for all (v, q) ∈ V d ×Q

A[(z, w), (v, q)] = (Fl,v).

13



where Fl ∈ Σd
l is given via the Riesz representation of the residue by

(Fl, s) := (f , ius)−Al[(ũl, p̃l), (ius, 0)] ∀s ∈ Σd
l .

Due to (H3), we have for s ∈ V d
l that

(Fl, s) = (f , s)−Al[(ũl, p̃l), (s, 0)] = Al[(ul − ũl, pl − p̃l), (s, 0)]

which means that (ul− ũl, pl− p̃l) is a finite element approximation of (z, w) in the space
V d

l ×Ql. On the other hand, (Fl, s) becomes just the right hand side of (17) if s ∈ V d
l−1,

i.e., (u∗l−1, p
∗
l−1) is the finite element approximation of (z, w) in the space V d

l−1 × Ql−1.
Furthermore, we have for s ∈ Σd

l

(Fl, s) = ah(ul − ũl, ius) + b(ius, pl − p̃l) =
(
Al(ul − ũl) +BT

l (p
l
− p̃

l
), ius

)
Ul
.

Applying the Cauchy–Schwarz inequality and setting s = Fl, we get

‖Fl‖0 ≤ C‖Al(ul − ũl) +BT
l (p

l
− p̃

l
)‖Ul

(19)

where ‖ius‖Ul
≤ C‖ius‖0 ≤ C‖s‖0 was used which follows from the equivalence of norms

in V d
l and Ul together with (H4).

Lemma 13. The approximation property holds with

‖ul − unew
l ‖0 ≤ Ch2

l ‖Al(ul − ũl) +BT
l (p

l
− p̃

l
)‖Ul

.

Proof. We get from (H3) and (18) that ul−unew
l = iu(ul− ũl−u∗l−1). Applying (H4),

the triangle inequality, and Theorem 5, we get

‖ul−unew
l ‖0 ≤ C‖ul−ũl−u∗l−1‖0 ≤ C

(
‖ul−ũl−z‖0+‖z−u∗l−1‖0

)
≤ C(h2

l +h2
l−1) ‖z‖2.

Using Assumption 1, (19), and hl−1 = 2hl yields the statement of this lemma.

3.6 Multi-Level Convergence

We shortly describe the two-level algorithm using m smoothing steps on the level l,
l ≥ 1, and the coarse-level correction (18). Let (u0

l , p
0
l ) be an initial guess for the

solution (ul, pl) of (4). We apply m smoothing steps of the basic iteration (15) and
obtain (um

l , p
m
l ). Now the coarse-level correction (18) is performed using

(ũl, p̃l) = (um
l , p

m
l )

as an approximate solution of the discrete problem (4). Finally, the new velocity ap-
proximation is obtained by

unew
l := um

l + iuu∗l−1.

Combining the smoothing and the approximation property, we get the multi-level con-
vergence.

14



Theorem 14. Under the assumptions of Lemma 9 and Lemma 13, the two-level method
converges for sufficiently many smoothing steps with respect to the L2- and Ul-norm. In
particular, there are level- and mesh-independent constants C and C̃ such that

‖ul − unew
l ‖Ul

≤ C

m
‖ul − u0‖Ul

and

‖ul − unew
l ‖0 ≤

C̃

m
‖ul − u0

l ‖0.

Once proven the convergence of the two-level method, the convergence of the W-cycle
multi-level method follows in a standard way.

4 Numerical Results

This section presents some numerical results for the Scott–Vogelius element applied to
the unstabilized Stokes problem, i.e. the case with α = 0 and Sh ≡ 0. Numerical results
for different mixed finite element pairs applied to the stabilized generalized Stokes prob-
lems can be found in [21] where convergence of the stabilized scheme was demonstrated
only numerically.

All numerical computations used the software package MooNMD [17] and were per-
formed on a Linux PC (Pentium IV, 2.8 GHz).

Let Ω = (0, 1)2. The right-hand side f and the inhomogeneous boundary condition in
the Stokes problem are chosen such that

u(x, y) =
(

sin(x) sin(y)
cos(x) cos(y)

)
,

p(x, y) = 2 cos(x) sin(y)− 2 sin(1)
(
1− cos(1)

)
is the solution. This example was taken from [6].

We have used the lowest order two-dimensional Scott–Vogelius element pair P2/P
disc
1

on the family of non-nested meshes described in Sect. 2.2.
Table 1 shows the number of triangles and the number of degrees of freedom for the

discretizations on different refinement levels. The coarsest mesh (level 0) consists of
six triangles obtained from a macro decomposition of the unit square into two macro
triangles by the diagonal of slope +1, see Fig. 3.1, left. We see that the number of
triangles and the number of degrees of freedom increase by a factor of four from one
level to the next finer one. Furthermore, the number of degrees of freedom for both
velocity components together is approximately 4/3 times the number of pressure degrees
of freedom.

In our calculation with the Braess–Sarazin smoother [6, 24], we have chosen Dl to be
the incomplete LU-decomposition of the matrix Al and αl = 1.

Furthermore, we carried out calculations with Vanka-type smoothers, see [16, 27].
These smoothers can be seen as block Gauss-Seidel smoothers. We have chosen as
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Table 1: Number of triangles and number of degrees of freedom (dofs) on different re-
finement levels.

level 5 6 7 8

number of triangles 6,144 24,576 98,304 393,216
velocity dofs 24,834 98,818 394,242 1,574,914
pressure dofs 18,432 73,728 294,912 1,179,648
total dofs 43,266 172,546 689,154 2,754,562

blocks in our calculations all degrees of freedom which are connected to a single macro
element, i.e., each block contains 20 velocity and 9 pressure degrees of freedom.

Table 2 shows the averaged multigrid rates for a W -cycle with m pre-smoothing and
m post-smoothing steps. It can be seen that the averaged multigrid rates are indepen-

Table 2: Averaged multigrid rates for a W (m,m)-cycle.

Braess-Sarazin Vanka-type
m 7 levels 8 levels 8 levels 9 levels

1 0.8013 0.8056 0.3563 0.3550
2 0.6674 0.6756 0.1600 0.1606
3 0.5553 0.5657 0.0924 0.0911
4 0.4626 0.4749 0.0545 0.0580
5 0.3878 0.3978 0.0455 0.0459
6 0.3235 0.3347 0.0338 0.0345
7 0.2757 0.2861 0.0260 0.0264
8 0.2270 0.2396 0.0250 0.0257
9 0.1922 0.1932 0.0215 0.0221

10 0.1592 0.1702 0.0180 0.0218

dent of the number of levels within the multigrid hierarchy. Moreover, the rates for
the Vanka-type smoother are much better than those for the Braess–Sarazin smoother.
However, it should be noted that almost nothing is known about the smoothing prop-
erties of multiplicative Vanka-type smoothers which we have used in our calculations.
In [25], additive Vanka-type smoothers have been considered and transformed into inex-
act Uzawa methods under certain conditions. Unfortunately, these conditions cannot be
satisfied in general [19]. Nevertheless, in case of the nonconforming Crouzeix–Raviart
discretization of lowest order, a convergence rate of O(

√
m) for the additive Vanka-type

smoother has been proven [25]. Concerning the convergence of Vanka-type solvers for
the Stokes and Navier–Stokes problem (in case of small Reynolds numbers), we refer to
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[19].
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