Adjoint Broyden a la GMRES*

Andreas Griewank'', Sebastian Schlenkrich?, and Andrea Walther?

Unstitut fiir Mathematik, HU Berlin
2Institut fiir Wissenschaftliches Rechnen, TU Dresden

October 21, 2007

Abstract

It is shown here that a compact storage implementation of a quasi-Newton method
based on the adjoint Broyden update reduces in the affine case exactly to the well
established GMRES procedure. Generally, storage and linear algebra effort per step
are small multiples of n - k, where n is the number of variables and k£ the number of
steps taken in the current cycle. In the affine case the storage is exactly (n + k) - k
and in the nonlinear case the same bound can be achieved if adjoints, i.e. transposed
Jacobian-vector products are available. A transposed-free variant that relies exclusively
on Jacobian-vector products (or possibly their approximation by divided differences)
requires roughly twice the storage and turns out to be somewhat slower in our numerical
experiments reported at the end.

Keywords: nonlinear equations, quasi-Newton methods, adjoint based update,
compact storage, generalized minimal residual, Arnoldi process, automatic differentia-
tion

1 Introduction and Motivation

As shown in [SGW06, GSW06, SW06] the adjoint Broyden method described below has
some very nice properties, which lead to strong theoretical convergence properties and good
experimental results. A standard objection to low rank updating of approximate Jacobians
is that their storage and manipulation involves per step O(n?) locations and operations,
respectively, since sparsity and other structure seems immediately lost. In the case of un-
constrained optimization this drawback has been overcome by very successful limited mem-
ory variants [NW99] of the quasi-Newton method BFGS, which in the case of quadratic
objectives and thus affine gradients reduce to conjugate gradients, the method of choice
for positive definite linear systems. Since GMRES has a similar status with respect to the
iterative solution of nonsymmetric systems it is a natural idea to implement a nonlinear
solver that reduces automatically to GMRES on affine systems. As it turns out this is the
case for a suitable implementation of the adjoint Broyden method. The insight gained from
the affine scenario also helps us in dealing with singularities and other contingencies in the
general case.

The paper is organized as follows. In Section 2 we describe the adjoint Broyden scheme
and its main properties. In Section 3 we develop a compact storage implementation with
several variants depending on the derivative vectors that are available. These are all equiv-
alent in the affine case for which we show in Section 4 that the iterates are identical to the
ones produced by GMRES, provided a linearly exact line-search is employed. Nevertheless,

*Partially supported by the DFG Research Center MATHEON ” Mathematics for Key Technologies”, Berlin
tCorresp. author: e-mail: griewank@mathematik.hu-berlin.de, Fax: 4+49-30-2093-5859

our methods are geared towards the general, nonlinear scenario, where the basic schem is
guaranteed to converge [Sch07, Sec. 4.3.2], provided singularity of the actual Jacobian is

exluded. Finally, in Section 6 we report comparative numerical results, mostly on nonlinear
problems.

2 Description of the quasi-Newton method

We consider the iterative solution of a system of nonlinear equations

assuming that F' : R® — R" has a Lipschitz continuously differentiable Jacobian F'(z) €
R™ "™ in some neighborhood N/ C R" of interest. Given an initial estimate zo reasonably
close to some root z, € F~'(0) N A and an easily invertible approximation A_; to F'(z,)
we may apply our algorithms to the transformed problem

0 = F(i)= F(zo+ Al 7)

Therefore we will assume without loss of generality that the original problem has been
rewritten such that for some scaling factor 0 # 1 € R

Ay4=11 and zp=0

This assumption on A_; greatly simplifies the notation without effecting the mathematical
relations for any sensible algorithm.

Throughout the paper we use the convention that the subscript k labels all quantities
related to the iterate =y as well as all quantities concerning the step form z;_; to xj. Hence
the basic iteration is

T = Tp—1 +aps, with Ay 18, = —0,Fr_1 and ap € R >

where Fy, 1 = F(x,_1). After each iteration the Jacobian approximation Ay ; is updated
to a new version Ay in a way that distinguishes various quasi-Newton methods and is
our principal concern in this section. The scalar d; allows for (near) singularity of the
approximate Jacobian Ay_; and «y, represents the line-search multiplier, both of whom will
be discussd below. Whenever discrepancies are computed or symbolically represented, we
subtract the (more) exact quantity from the (more) approximate quantity. This is just a
notational convention concerning the selection of signs in forming differences.

The Rank-one Update

Our methods are based on the following update formula.

Definition 1 (Adjoint Broyden update)
For a given matriz Ax_1 € R"™" and a current point x € R™ set

Ap = Ap 1 —vpv) (Ap—1 — F},) with F| = F'(zy) (1)
where v, = o /||ok|| with o, € R™ chosen according to one of the three options:
'Residual’: o, = —F},

’Tangent’: o = (Ak,l — F,é)sk for some s € R™ \ {0}

Secant’: o, = Ay _15; — (Fy, — Fy_1)/ay for some a € R\ {0}

It can be easily seen that the formula represents the least change update with respect to the
Frobenius matrix norm in order to satisfy the adjoint tangent condition

Al or = F| oy
The residual choice has the nice property that after the update
AL Fy = F'Fy = Vf(z) for f(z) =||F(2)]*/2

so that the gradient of the squared residual norm is reproduced exactly. Throughout the
paper || - || denotes the Euclidean norm of vectors and the corresponding induced 2-norm of
matrices.

When oy, is selected according to the tangent or secant option, the primal tangent con-
dition Ay sy = Fj sy, is satisfied approximately in that

1(Ar = Fi)se/llsellll = O(llex — wr—1ll)

When a full quasi-Newton step sy = fA,;lle,l with o = 1 = §;, has been taken then
the residual and the secant options are identical. The secant option reduces to the tangent
option as ap — 0 or when F' is affine in the first place.

Throughout the paper we will allow the choice a; = 0, which amounts to a pure tangent
update step on the Jacobian without any change in the iterate zj itself. Several such
primally stationary iterations may be interpreted as part of an inexact Newton method,
which approximately solves the linearization of the given vector function at the current
primal point xy.

Heredity Properties

In the case of an affine function F'(z) = Az —b the tangent and secant options yield identically
or = (Ap-1 — A)sg = Dp_q1sg with Dy 1 =4, 1 — A€ R™"

Then it follows from (1) that the discrepancy matrices Dy, satisty the recurrence

DkflskSED,;rilefl
1 Dg—15k|?

Dk = Dk,1 — = (I—’l)k'l),—cr)Dk,1

Form this projective identity one sees immediately that the nullspaces of Dy and its trans-
posed D,;'— grow monotonically with each update and must encompass the whole space R”
after at most n updates that are well defined in that their denominator does not vanish.
In other words in the affine case the tangent and secant updates exhibit direct and adjoint
hereditary in that

Aps; = As; and AkTUj = ATU]‘ for 0<j<k

When the residual update is applied intermittently without oy € range(Dy_1) and thus
vg, & range(Dy_1) the direct heredity is maintained but adjoint heredity may be lost. Such
updates can be viewed as a reset and are expectedt to be particularly useful in the nonlinear
case.

Jacobian Initialization

It is well known for unconstrained optimization by some variant of BFGS that, starting from
an initial Hessian approximation of the form I: the performance may be strongly dependent
on the choice of the scalar + # 0. This is so in general, even though on quadratic problems
with exact line-searches the iterates are mathematically invariant with respect to ¢ # 0.
Hence we will also look here for a suitable initial scaling.

Another aspect of the initializationn is that in order to agree with GMRES on affine
problems, we have to begin with a residual update using oy = —F; before the very first
iteration. This implies in the affine case that for all subsequent residual gradients V f(zy) =
F,/ F| = F,| Aj., which ensure for the quasi Newton-steps

Sk+1 = *5kAllek that Vf(."ﬁk)TS]H_l = FkTF];Sk_H = *5k||Fk||2

For §;, > 0 we have therefore descent, a property that need not hold in the nonlinear situation
as we well discuss below. Starting form A_; = I. with any ¢ we obtain by the initial residual
update

Ag =T —vovy (It — F}) with det(Ag) = " v, Fjup

A reasonable idea for choosing ¢ seems to minimize the Frobenius norm of the resulting
update from A_; to Ag. This criterion leads to ¢ = v, Fjvg, a number that may be positive or
negative but unfortunately also zero. That exceptional situation arises exactly if det(Ag) = 0
with the nullvector being vy irrespective of the choice of ¢. In any case we have by Cauchy-
Schwartz inequality

|vg Fovo| < [[Fgwol|

where the right hand side does not vanish provided Fj is nonsingular as we will assume
throughout. Hence we conclude that

v = sign(vy Fyvo)||Fouol|

can be used as initial scaling. Should the first component be zero the sign can be selected
arbitrarily from {+1,—1}. We could be a little bit more sophisticated here and choose the
size |1| as the Frobenius norm of the first extended Hessenberg matrix Hy € R?*! generated
by GMRES, but that complicates matters somewhat in requiring some look-ahead, especially
in the nonlinear situation.

Ocurrence and Handling of Singularity

As we have seen above the contingency det(Ay) = 0 may arise theoretically already when
k = 0. In practice we are much more likely to encounter nearly singular Aj for which the
full quasi-Newton directions sg41 = —A,:le become excessively large and strongly effected
by round-off. Provided we update along a null-vector whenever F}_; is not in the range
of F'(x) we have even theoretically at most one null direction according to the following
lemma.

Lemma 2 (Rank Drop at most One)
If Ap_ispy = —O0pFr—1 for 0 € R with s, # 0 and Fj sy # 0, then the tangent option
or = (Ag—1 — A)sy, ensures for the update (1) that

=1 ifdy =0 and F}si ¢ range(Ar_1)

- =0 ifdy =0 and Fy sy € range(Ar_1)
rank(Ay) — rank(Ax—1) € {0,1} ifdr # 0 and F} sy & range(Ap_1)
()

€ {—1,0} ifdr #0 and Fis € range(Aj_1

Proof:
The tangent update always takes the explicit form

Ak == Ak,1 - (Ak,1 - F]é)SkS,;r (Ak,1 - FIQ)T(A[C,1 - FIQ)/H(Akfl - F,é)sk||2

If Fy sy, € range(Aj_1) the range of Aj is contained in that of A;_; so that the rank cannot
go up, which implies immediately the forth case as a rank-one update can only change the
rank by one up or down. If F{s; ¢ range(Aj_1) then multiplication of the above equation

from the right by a prospective nullvector v shows that the coefficient of F}s; and thus the
whole rank one term must vanish. Hence v must already be a nullvector of A;_; and thus
the rank cannot go down, which implies in particular the third case. When ¢, = 0 and thus
Ag_18x = 0 the update simplifies to Ay = Ag_1 + F}sgs) F'F,/||F}si]|* so that si is a
nullvector of A; 1 but not a null-vector of A;. Hence we have also proven the assertion
for the first case, as there can be no new null-vector as observed above. In the remaining
second case all nullvectors of Ay 1 that are orthogonal to (F,gsk)TF,; are also nullvectors of
Ay and there is exactly one additional nullvector, which we may construct as follows. Let
F}sp = Ap_1vj. Then there is one value v € R such that

.
Ag (v + vsk) :F,ésk(lfvfs,;rF,g F,gvk/HF,éskH?) =0

(I
The lemma has the following algorithmic consequences. If Ay has at least rank n — 1
and we select si as a nullvector, i.e. set d; = 0, whenever A;_; is singular, then the rank
of the approximations Ay cannever drop below n — 1. We will call this approach of setting
dr = 0 as soon as Ay is singular, the full rank strategy. Exactly which value d; # 0 we
choose when Aj_; is nonsingular does not make much difference in the affine case, but is
of course quite important in the nonlinear case, unless we perform an exact line-search such
that the scaling of s becomes irrelevant. We can only deviate from the full rank strategy
when the approximate Jacobian Ay_; is singular but Fj_; still happens to be in its range.
Then we might still choose §; # 0 and determine s; as some solution to the consistent linear
system Aj_1s; = —F},_1d;. This choice of s;, is even theoretically nonunique and practically
subject to severe numerical instability, especially in the nonlinear scenario.

3 Smooth formulation via Adjugate

In the affine situation we will see that the singularly consistent linear systems cannever
occur and that the resulting property rank(Ay) > n — 1 is related to the well-known fact
that the Hessenberg matrix Hy in the Arnoldi process never suffers a rank drop of more
than one, provided the system matrix itself is nonsingular. To define s;4; uniquely as a
smooth function of A and F} we may set d0xy1 = det(Ay) and use the adjugate adj (Ax)
defined as the continuous solution to the identity

Ay adj (Ak) = det(Ak)I = adj (Ak)Ak

The entries of adj (Ax) may be defined as the co-factors of Ay Then we may define the steps
consistently and nicely bounded via

Spr1 = —adj (A)Fe = Axsgyr = —det(Ay)Fy
If rank(Ax) = n — 1 there exist nonzero nullvectors uy and wy € R™ such that
adj (Ax) = wku; #0 with Apwe =0 and u;Ak =0
Then the above formula yields the step
Sky1 = —wkukTFk € kern(Ay,)

so that we have
5k+1:0 = Fi, =0 or O#UkJ_Fk;éO

where the second possibility can only occur when Ay, is singular. The first represents regular
termination because the system is solved, whereas the second possibility indicates premature
break down of the method if it is indeed defined in terms of the adjugate. It means that
the linear system Ajsgy1 = —F}, is singular but still consistent as Fj, happens to lie in the

range {uy}* of Aj. Hence nonzero solutions sz, ; would exist but not be unique and in the
presence of round-off possibly very large. Fortunately this contingency can not occur in the
affine scenario as we will see in Section 5. If it does in the nonlinear case we may define sg;
as some nonzero null-vector of A, which is essentially unique as long as rank(A4;) =n —1
irrespective of whether Fj is in its range or not. Alternatively we may reset Ay to Aq as
discussed above with Fy = F}, which certainly ensures that the subsequent step is well-
defined.

The use of the adjugate is more of an aesthetic device in view of the affine scenario
that is of particular interest in this paper. It does however alleviate the need to distinguish
the cases rank(Ay) = n and rank(Ax) = n — 1 in proofs and other developments. The
numerical computation of sg11 = — adj (Ax)Fyx can be performed simply and stably on the
basis of an LU- or QR factorization of A;. To have a better chance of obtaining a descent
direction one may multiply the step by sign(det(Ay)), which guarantees descent according to
(2) in the affine case. More realiable for the nonlinear case would be to evaluate always the
directional derivative V f(z) " sx41 and if necessary switch the sign of sy, before entering
the line-search.

Line-Search Requirements

The line-search from [Gri86] sketched below makes no assumption regarding the directional
derivative and thus may produce negative step-multipliers. Moreover, if s # 0 is selected as
arbitrary null-vector of Ay whenever det(Ay) # 0, then that line-search ensures convergence
from within level sets of f in which the actual Jacobian F’(x) has no singularities. That is
true even if Aq is initialized to the null matrix, which would leave a lot of indeterminacy for
the first n step selections.

The least-squares calculation at the heart of the GMRES procedure may be effected in
our quasi-Newton method through an appropriate line-search. Since for affine F'(z) = Az—b
the function .

fr(a) = fler1 +asp) = [|Fro1 + ads|?*/2

is quadratic, just three values of fr or two values and one directional derivative will be
enough to compute the exact minimizer ay € R. Alternatively, we may interpolate the
vector function itself by

Fr(a) = (1—a)Fy 1+ aF(z,_1 + sp)

on the basis of F},_; and F(zp_1+ si) alone. In the affine situation we have exactly fk(a) =
||Fx()]]?/2 so that the two approaches are equivalent and yield the optimal multiplier

ot — _Fk—llAsk _ sp AL Asy,
! [Asel> = [l Asel]?

The multiplier aj may be negative or even zero but it always renders the new residual
Fy = Fi—1 + aj Asy, exactly orthogonal to Asg. This orthogonality is crucial to proving the
equivalence with GMRES and we will call any line-search yielding such an «j, in the affine
case as linearly exact. Throughout we will refer to the step xy — zx_1 = agsy as

trivial : agsp =0, full: ap =1/0;, singular: det(4;_1) =0, exact: ap =aqj .

In the nonlinear situation we may have to perform several interpolations as described in
[Gri86] before an acceptable «y, is reached. As we will see in the final section our line-search
based on vector interpolation rarely requires more than one readjustment of oy from the
initial estimate oy = 1/0y. Of course in the affine case the initial guess does not matter at
all if at least one interpolation is performed so that aj is reached.

Algorithmic Specification
Putting the pieces together we get the following algorithm
Algorithm 3 (Adjoint Broyden)

Initialize: Set x9 = 0 and Ay = 1 — vovg (It — F}) with

vo = Fo/||Foll and v = sign(vg Fyvo)||Fyuvoll, set k=1
Iterate: Compute s, = Fadj (Ax_1)Fk_1 and

define o, by the tangent or secant option.

Terminate: If ||oy|| < & return xp = x,—1 + si /0 and stop

Update: Increment xy = xp_1 + apsg for some ap € R
set v, = oy /||lok||, update Ay = Ap_1 — vy, va(Ak,l - F))
and continue with Iterate for k =k + 1

The algorithm involves at each iteration one evaluation of Fj_;, one of v,;'—F,g a few trial
values for Fj during the line-search. In terms of linear algebra we have to compute the step
sk by solving a system in the approximated Jacobian Aj_jand then update an appropriate
representation of it to that of Ax. This means that both linear algebra subtasks require
O(n?) operations and the storage requirement is n? or 1.5 * n? floating point numbers for a
QR and LU version, respectively.

4 Compact Storage Implemention

In order to reduce storage and linear algebra at least for early iterations we consider the
additive expansion

k
Ay =11 — Zvj UJ-T(Aj,l - FJ'))
j=0
Abbreviating
Vi = [vo, v1,..., vx] € R and Wy = [F§ vo,....Fy vg] € R* (k+1)
we obtain the following representation of Ay and its inverse.

Lemma 4 (Factorized Representation)
With L;' € REDXE4D) the lower triangular part of V.| Vi, including its diagonal we have
k k

A =1 — Vi, Ly, (LVk — ‘/Vk)—r and det(Ak) = det(Hk) Pl

where
H, =W, Vi —tRy and Ry =V, V, — L, e RE+Dx(k+1)

with Ry being strictly upper triangular. Sherman-Morrison- Woodbury yields the inverse
_ _ T
Ak1 =I/t+ Vi H, 1(Vk — Wk/l,)
if det(Ag) # 0 and in any case the adjugate

adj (Ay) = det(A)T/e 4+ " 'V adj (H) (Ve — Wi /o)

Proof: For k = —1 the first assertion holds trivially with all matrices other than A | = I
vanishing completely. The induction from k — 1 to k works as follows

Ap = A1 — v v,:(Ak,l — F,é) = (vak v,—cr)Ak,l + vy, U,IF,Q
=11+ (vak v,;r)(Ak,l 7][,) kav,;r(ILfF,g)
=T+ (I — v U,I)Vk,l Ly (Wioq — LVk,l)T — va(IL - F-)

1
=11 — [kal, ’Uk] [—va I;/kfl] kal(Lkal — kal—)T — Uk ’UkT (LI — F,;)
_ _ Ly 0 (Lkal — kal)—r
= IL I:kalz U’C:I [7,011— kal kal 1] |: ’U];r (I[, - FI::)]

= L= Vi Ly (Vi — Wi) |

Hence we have proven the representation of A provided L, is shown to be the inverse of
the upper triangular part of V,J—V;c assuming this relation holds for L;_;. That last part of

the induction holds since
V]
1
so that the matrix in the middle represents indeed L.
Assuming first det(Hy) # 0 we obtain according to the Shermann-Morrison-Woodbury
formula the inverse

L' 0 Lj_ 0
v,‘j’;/,cl,l 1 } [— V:,llL,H 1 } - [é

Al =

~ | =

[14+ VilL = La(Vie = Wi /) Vi)™ L (Vi = Wi/0)]
1 .
= [T+ V(= T Ve W) T (V=)T

which can obviously be rewritten in the asserted form using the matrices Ry and Hj. The
adjugate is obtained by multiplying both sides with det(Ay) = det(Hy)" %1, O

Since Ly is not needed explicitly we can implement the adjoint Broyden method storing
the two n x (k + 1) matrices Vi, Wy and the matrix H;, € R*+Dx(E+1) in factorized or
inverted form. For small k£ this is certainly much less than the usual dense LU or QR
implementation of Ay. However, as k approaches n it is significantly more even if we do not
store VkTV,c which is only needed for the application of Ay itself.

Limited Memory Strategy

Since we have managed to eliminate the intermediate approximations A; from the represen-
tation of Ay and its inverse or adjugate, it is in fact quite easy to throw out or amalgamate
older directions v; and the corresponding adjoints vj—-'—ij from Vj, and Wy, respectively. Then
the corresponding rows and columns of VkTVk and most importantly Hj, disappear or are
merged as well, which amounts to rank-two correction that is easily incorporated into the
inverse or a factorization. Hence we have the capacity to always only use a window of m
comparatively recent pieces of direct and adjoint secant information, a strategy that is used
very successfully in limited memory BFGS. In a first test implementation we simply choose
a fixed maximum m and (over)write vy, for k& > m into the [(k —1) mod m] + 1-th columns
of V,,,. Obviously W,,, and H,, are treated accordingly.

As we will show below, we find in the affine case that Vj is orthogonal so that Ly = I,
Ry = 0 and Hy is actually upper Heisenberg, i.e., has only one nonvanishing subdiagonal.
In the limited memory variant the orthogonality of Vj is maintained but the Hessenberg
property of Hj is lost.

Step calculation variants

Using some temporary (k + 1) vector ¢ the actual computation of the next quasi-Newton
step Sgp1 = —6kA,:1Fk can be broken down into the subtasks

(i) Multiply t = (61/0)W,, F},
(ii) Multiply and decrement ¢ —= V, F}.dy,
(iii) Solve Hpt =1t

)

(iv) Multiply and decrement syy1 = (0 /t)Fy — Vi t

The most promising savings are possible in the first step since we have
T — [, T o [T — T
Wy Fy, = [Uj FJ’ Fk]j:o...k ~ [Uj Fy Fk]j:O...k =Vi (Fk Fk)
The approximation holds as equality exactly in the linear case, where F' is constant and
thus very nearly in the smooth case. The vector on the right hand side represents in fact
newer derivative information than then original one on the left. So we can get by without
storing W}, at all, which pretty much halves the total storage requirement as long as k < n.

However, there is another critical issue namely how we build up the matrix Hy. Its
compared to Hy_; new k-th column and row are given by

T T k T T k
[v; F} vy ~ V' Fyop € R and v F Vi =~ [v] F} € RFH .

]j:O...k J Uj]j:(]...k

For the column we may simply use the approximation based on the single, current directional
derivative Fjvy. For the row we have at least three different choices. Firstly, we can compute
the adjoint v,jF,é but do not store it for any longer. Secondly, we store all the directional
derivative F]’ v; for j = 0...k. Finally, we can relay on the near upper Hessenberg property
of Hy and only compute the last two entries va F,Ll vE_1 and va F,é vg. The third option
requires virtually no extra storage other than that of Vj, and Hj, in Hessenberg form. In that
way the whole calculation would reduce almost exactly to the GMRES procedure except for
the strictly upper triangular correction Ry, which is theoretically zero in the linear case.

For the solution of the nonlinear test problems in Section 6 we used the following three
variants of the adjoint Broyden method:

(0) original adjoint Broyden update method storing Vi, Wy, and the QR factorization of
Hj,. This requires evaluation of F(z;) and v, F'(z)) at each iterate.

(1) minimal storage implementation using only Vj, the QR factorization of Hj, and ap-
proximating W,/ v & V,T (F}v). Requires evaluation of F(zy), F'(xy)sy, and v F'(z1).

3

(2) forward mode based implementation using Vi, Z; = [F]!vj] the QR factorization

=0,k
of Hy, and approximating W,/ v ~ V. (Fjv), v, F} Vi ~ v/ Z). Requires F(z;) and
F’(mk)vk

Of course, it is also possible to implement method (2) based on finite differences approxi-
mations to the directional derivatives F'(x)v. However, preliminary numerical tests showed
that convergence of this variant is rather unreliable. For affine problems the Jacobian of F'is
constant and hence the variants (0) to (2) yield up to round-off identical numerical results.

5 Reduction to GMRES/FOM in affine Case

For the following result we assume that the adjoint Broyden method is applied with virtually
arbitrary step-multipliers . Naturally whenever «; = 0 we have to apply the tangent
update, which could however also be approximated by a divided difference. Now we obtain
the main theorem of this paper.

Theorem 5 Suppose the algorithm 3 is applied in exact arithmetic with stopping tolerance
e =0 to an affine system F(x) = Az — b with det(A) #0. Then:

(i) If v > O the iteration performs exactly the Arnoldi process irrespective of the choice
of a, € R. If 1 < 0 the v, and the corresponding entries in Hy, may differ in sign.
arrives at a first for which .

(ii) With k <n the first indez such that o, =0 we have z, =z | +5;,/6;, = A~ 'b. This
final step is well defined and must be taken as Fj,_| # 0 # s; and 6;, = det(A; ;) # 0.

(iii) For k < k all full steps xy, = xp_1 + s /) with &, = det(Ar_1) (would) lead to points
that coincide with the k-th iterate of the full orthogonalization method (FOM).

(iv) If (linearly) exact o} are used throughout the resulting iterates xy coincides with those

generated by GMRES.

Proof: In the affine case we may always use the tangent option for o; so that the only
impact of the step size choices ay on the principal quantities A; and v, appears to be via
the the residuals Fj, = Az — b. As we will see, there is in fact no such dependence, but
we can certainly state already now that for any particular sequence of values a;, there must
be a certain first k& for which o;, = 0. The adjoint heredity property discussed in Section 2

implies that for k> k> j > 0
a,;raj = s,;rD,—cllsj = s,;rO =0

so that VkTV,c = I and consequently L, = I, Ry = 0 in the representations of Ay and
adj (Ay). Assuming that F(0) = b # 0 and det(A) # 0 we find that 1 < k < n since no more
than n othogonal directions vy, can exist R”.

Now we establish the following relations by induction on k£ = 1,2, ... ,I;:

(v) vgp_1 € Ky, = span{b, Ab, ..., A¥~1b} = span{vg,vi,...,vp 1} CR?
(’Ui) F, 1€ Ky +AK;,_; = K},
(’Uii) sp € Ky, 3 xyp,

All three assertions hold clearly for k¥ = 1 where the Krylov subspace K is just the span of
F(0) = —b and vg = 0¢/||oo|| is selected by the residual option 0 = —F(0) = b . To progress
from k to k + 1 we note that

op = Dy_15p = Ap_151, — Asp, = —Fi_10, — Asp € Ky + AKp = K

which proves (v) since vy is colinear to oy and orthogonality proves that their span is the
whole of K. Similarly we have

Fy, =Fr 1 +arAsy € Ky + AKy, = K1

which proves (vi). From the representation of adj(Ax) in Lemma 3 we see that by (v) up
to and including vy,

Sg+1 = — adj (Ay)Fx € Ky + range(Vy) C Kig

which proves (vii) as the assertion for 11 = xy + asy is obvious. Since the v; are
orthogonal and span succesively the Krylov subspaces K}, they must be identical (up to
sign changes) to the bases generated by the Arnoldi process. As a consequence it is well
know that each Av; € K;;1 is a linear combination of the v; with j = 0...4 so that there
is an upper Hessenberg (k + 2) x (k + 1) matrix Hy such that

AVy = Vi H, and V' AV, = H,

10

Here Hy, is for any k < k exactly the (k+ 1) x (k + 1) matrix occurring in Lemma 2 and can
be obtained from Hj by simply leaving of the last row. It would be nice to be show that
the subdiagonal elements of Hj, are positive to have complete coincidence with Arnoldi but
that is not an essential property. In any case it follows form our Lemma X in agreement
with [Saa03] that det(A4) # 0 implies that the rectangular matrix Hy has always full column
rank (k + 1) and Hj has therefore at least the rank k. Hence the adjugates adj(Ax) and
adj (Hy) are always nontrivial. Moreover, since the elements in the subdiagonal of Hy are all
nonzero we know that the a left nullvector tkT of Hy must have a nontrivial first component
is it exists at all.

Now we can proof the remaining assertions in an explicit fashion. Firstly we obtain for
the step spy1 using the factorized representation of the adjugate from Lemma 4 and the
identity W}, = AV} with 5k+1 = det(Ak)

Ske1 = — [Spr /e + "MW adj (H) V(I — A/u)] By
= ="V, adj (Hy) V| Fy
where we have used that Fj, = VkaTFk so that the AF}, term cancels out.
Orht1 = (A — A)spp

= —Fk6k+1 + LnikilAVk ad.] (Hk) k
= = [6ppr I — AV, adj (Hy) K
= —[0ps1d — 1" P T AV adj (Ho) V] | Fy
= —pp Fo + " F VAV adj (Hyeo|Fol|

IF

Vi
Vi F
v

where eg is the first Cartesian basis vector. The last simplifications come about because Fj, —
Fy € AK} belong to the null space of the matrix in square brackets and vy = Fy/||Fp||. Hence
we see that indeed the o and thus the v; and Ay for k < k are completely indepedendent, of
the choice of aj which may produce an arbitrary residual in Fy + AV},. Moreover it follows
from Cramers rule that the last component in the vector adj (Hy)ey is exactly the product
of the k subdiagonal elements of the Hessenberg matrix Hj, which are well known to be
positive in the Arnoldi process. Hence this property is maintained by induction if + > 0.
Now let us consider the final situation o; = 0. By definition the previous o}, for k < k

and thus the Fj for k < k —1 and the corresponding subdiagonals of Hy cannot vanish.
Thus we must have
0=0;F_y — AVj_y adj (Hy_ Jeo|[Foll

Since the colums of AV} are linearly independent and adj(H;_,)eo||Fo|| cannot be zero
neither F | nor d; can vanish so that the last step s; is neither zero nor singular. That
implies that Fj, = F;, | + As;0; = —0;,6; = 0. Generally we have after each full step that
Fy. is a multiple of oy, which belongs to the orthogonal complement of K. That is exactly
the defining property of an FOM iterate so that we have now proven (ii) and (ii7).

Since ay is obtained by a line-search minimizing ||Fj,_1 + aAs.||3 we must have exactly
F,;'—A.slc = 0. We now proof by induction on k£ < k the defining property of GMRES namely
that F,cTAsj for all 0 < 7 < k. It does hold for £ =1 = j as we have just shown. Since for

k>1

—1

Fr=Fp 1+ apAsy = —apDp_1sp + (1 —ap)Fr—1 =0 + (1 — o) F—1

the orthogonality of FJ, to all As; for j < k follows from the induction hypothesis F," | As;
and the fact that o, LKy 3 Asj.
O
To illustrate the above result in an extreme situation let us consider the case where
A or more generally AAJ1 is equal to the right shift matrix so that for any vector u =
(1, pi2, - pn—1,) € Ry
A, pras i1 i) T = (s s o1,)

11

In other words A is zero except for 1’s in the subdiagonal and the (1,n) element. Since
AAT = T this cyclic permutation matrix is orthogonal and thus certainly normal, which
according to the usual linear algebra folklore suggests that GMRES should not do too
badly. In fact we find for the right hand side b = (1,0...0,0)" and 2o = 0 that by GMRES
alsozy =0 for k=1...n— 1 and only the very last, namely n-th step leads to the solution
zn, =z, = (0,0...0,1)T. Moreover the v are the Cartesian basis vectors e; and all matrices
Hy = VJAV;c have the null-vectors sgy; = egy1, which means in particular that FOM is
never defined.

6 Numerical results

The adjoint Broyden methods are applied to several nonlinear equation problems. The
subset of nonlinear equation problems with variable dimension of the Moré test set [MGH81]
is selected. The results for these test problems should give an overview of the performance
of the variants of the adjoint Broyden method. Additionally, three specific test problems are
selected to investigate the convergence properties of the adjoint Broyden methods in more
detail. For that purpose the problem dimensions and initial states are varied. The iteration
is globalized by a derivative-free line search in the range of F. This line search was proposed
in [Gri86] to prove global convergence of Broyden’s method and it is adapted to the adjoint
Broyden’s method in [Sch07, Sec. 4.3.2].

The compact storage variants of the adjoint Broyden method are implemented in the
code abrnlq2 given as Matlab and C routine. For the considered test problems and the
Matlab code derivatives are evaluated by applying AD by hand. The application of the C
code uses the AD tool ADOL-C. As proposed in Section 4, we consider three variants of the
algorithm. These variants are either applied to the original function or to the preconditioned
function choosing A_y = F'(x) or A_y = [F(20) " F'(x0)F(0)/F(x0) " F(x0)] 1.

The nonlinear equation problems with scalable dimension of the Moré test set are given
in Table 1.

Table 1: Nonlinear equation problems of Moré test set

Number | Name Reference
(21) Extended Rosenbrock function [Spe75]
(22) Extended Powell singular function [SpeT5]
(26) Trigonometric function [SpeT75]
(27) Brown almost-linear function [Bro69]
(28) Discrete boundary value function [MCT79]
(29) Discrete integral equation function [MC79]
(30) Broyden tridiagonal function [Bro65]
(31) Broyden banded function [Bro71]

The column Number represents the number of the problem in [MGHS81]. Additionally
the performance of the adjoint Broyden updates is examined in more detail for three specific
test, problems:

12

Test function 1: The discrete integral equation function (29) in the Moré test set given
by & = (2(i))i=1..n, F2) = (fi(2));—y. ,, and

h i
filz) = zp+5(1-t) D tilzgy +ti+1)°+
j=1

h n
i o (=t +t;+1)7
j=it1

Here h =1/(n + 1) and ¢; = ih. The function F is differentiable and its Jacobian is dense.
The default initial iterate is chosen by zg = (t;(t; — 1)),_; -

Test function 2: The extended Rosenbrock function (21) in the Moré test set given by
z = (23))i=1..n, F(z) = (fi(x)) =y, and

2 .
filz) = {10 (m(”l) m(i)) if ¢ odd

1=y if i even

The function is differentiable and its Jacobian is tridiagonal. The default initial iterate is
chosen by z¢g = (—1.2,1,-1.2,1,...).

Test function 3: A matrix X € R?*? is sought as the matrix cube root for a given real

diagonalizable matrix Z € R?? i.e.,

X =X-X-X = Z (2)

The eigenvalue decomposition of Z = TDT ! yields the diagonal matrix D = diag{\,...,\q}.
Denoting
D3 = diag{\)?,... AL/?},

one obtains for X = T'DY/3T~! the identity
X? =TDT™" = Z
Thus problem (2) has a solution and can be formulated as nonlinear equation problem by
F(X) = X Z = 0eR™

with dimension n = d?. In the implementation the matrix X is associated row-wise with
the state vector = = (x(;)), where

T([k—1]d+l) = Xy for kl=1,...,d.

Here we choose Z = tridiag(—1,2,—1). As default initial iterate the identity matrix Xy =
I € R™? is used. Note that the (i, j)-th entry of X impacts all elements in the i-th row as
well as the j-th column of X2. Consequently the same entry impacts all elements of X3,
which means that the Jacobian of this test function F(X) is dense and has thus d* nonzero
entries.

Convergence results for Moré test set functions To illustrate the performance of
the adjoint Broyden update methods, the number of iterations needed to reach convergence
with a reasonable tolerance are compared. Additionally, the run times required for the whole
iteration process are stated. For that purpose, the C version of the program is compiled
using gee 4.1 and executed on a PC with AMD Athlon(tm) 64 X2 Dual Core Processor
3800+ with 2 GHz and 512 KB cache size.

13

The results for the higher dimensional nonlinear equation problems of the Moré test set
with default initial iterates are displayed in Table 2. The compact storage representation of
the adjoint Broyden method is compared to the full storage representation based on updating
an LU factorization of A;. The update is evaluated by an algorithm of Bennett [Ben65].
The numbers in the first column refer to the number of the test problem in [MGHSI].
If not otherwise stated, these tests are performed for the dimension n = 1000 using the
initial iterates as proposed in the test set. The iteration is performed up to a tolerance of
tolp = 10~ in the residual ||F(z;)||» and at most 500 iterations.

Table 2: Results of Moré test set for default initial iterates

Tull adj. adjoint Broyden variant
Test problem Broy. (0) (1) (2) - — -
21) =) 183 190 Tull adj. adjoint Broyden variant
(b) 0.64 0.59 Test problem Broy. (0) (1) (2)
(c) 177; 0 184; 0 (28) (a) 4 4 1 P
1) @) 15 T3 50 — (P1) (b) 0.10 0.13 0.16 0.08
(P1) (b) 0.36 0.40 0.78 (<) 0; 0 0; 0 0; 0 0; 0
(c) 24; 24 24; 24 26; 26 (29) (a) 8 7 8 B
(22) (a) 24 24 (b) 5.39 5.13 8.75 5.27
: 0; 0 0; 0 0; 0 0; 0
(b) 0.05 0.05 (<) i i ; ;
(<) 9; 4 14; 7 (29) (a) 5 5 6 6
(22) (a) 28 28 28 (P1) (b) 3.25 3.98 6.86 4.18
(P1) (b) 0.68 0.79 1.10 (<) 0; 0 0; 0 0; 0 0; 0
- — ol b RS 126 | 005 | 005 | o014
(26) T (a) 14 13 14 116 (b) : : : :
(c) 2; 0 2; 0 ;0 1; 0
(b) 0.36 0.03 0.04 0.41
(c) 3.1 3. 0 2. 0 117: 7 (30) (a) 15 15 15 18
@o)T @ T T T - (P1) (b) 0.37 0.44 0.61 0.35
2 - (c) 0; 0 0; 0 0; 0 0; 0
P1 b 0.43 0.49 0.85
S ((c; 10 10 41 (31)3 (a) 55 a2 30 70
2 ! : : (b) 1.42 0.10 0.09 0.17
(27) (z) . 3 3 - Z Qfﬁ' (c) 18; 0 10; 0 3; 0 58; 0
((v; S T "0 0 o (31)3 (a) 19 19 18 36
2 - - - : - (P1) (b) 0.49 0.54 0.72 0.68
(27) (a) 237 237 276) 00 0.0 0 0 10
(P1) (b) 9.4e-3 0.17 0.27
(c) 464; 464 464; 464 547; 545

(P1) preconditioned problem with A_; = F'(xq), (a) iteration counts, (b) run times in
seconds, (c) additional linesearch trials; sign change in step multiplier, default problem
dimension n = 1000

! Tnitial iterate is chosen with zq = %.’fo with Zo as proposed in the test set. Otherwise
no convergence is achieved for dimension n = 1000.

2 dimension is n = 10, tolerance is tolp = 1072

3 tolerance is tolp = 10712

As one can see nothing is gained by the compact storage implementations when the initial
Jacobian F'(xg) is evaluated, factorized and then used as a preconditioner, which is mathe-
matically equivalent to starting the adjoint Broyden method with Ag = F'(zg). Then there
is essentially no saving with regards to the linear algebra effort. However on the test prob-
lems 21 and 22 our dense implementation of full adjoint Broyden does not work at all, where
as the first two compact storage versions work quite nicely. Judging by our experience so far
the trouble of evaluating adjoint vectors, i.e. row-vector Jacobian products seems to pay off
since the third version based exclusively on Jacobian-vector products performes significantly
worse on these smooth but nonlinear problems. All three versions generate identical iterates
on affine problems, of course. On test problem 3 with diagonal preconditioning the first two
compact storage versions generate virtually the same iterates as the full storage vesion but
the run-time is reduced by a factor of ten, which is not surprising since n = 1000. Similar
benefits are obtained for problems 30 and 31 when the preconditioner is a multiple of the
identity. Here preconditioning by the initial Jacobian reduces the number of iterations but
does prolong the runtime significantly. Hence we may conclude that the compact storage
implementation is indeed quite efficient, especially when the overall number of steps is only
a fraction of the problem dimension.

14

In addition the problems of the Moré test set are solved for initial iterates further away
from the solution. The approach of multiplying the initial iterate by a scalar factor to
test the performance of a method is suggested in [MGHS81]. Table 3 displays the required
iterations and run times. The choice of the dimension n and the tolerance tolp for these
test problems is the same as before.

Table 3: Results of Moré test set for distant initial iterates

ol ad) =djoint Broyden variant full adj. | adjoint Broyden variant
Test problem Broy. (0) (1) (2) Test problem Broy. (0) (1) (2)
(21), (P1) (a) 6 1 12 = (28), (P1) (a) 24 24 24 -

100z (b) 0.15 0.13 0.46 100z (b) 0.59 0.69 0.96
(<) 2; 2 2; 2 4; 4 (<) 1; 0 1; 0 2 0
=) o) 5 55 29) (@) 20 16 14 38
1002 (b) 0.05 0.09 1002q (b) 18.08 | 10.57 | 14.87 | 25.17
(<) 9,5 27; 12 (c) 1; 0 0; 0 0; 0 9; 0
(227, (P1)) 31 34 31 = (29). (P1) (a) 26 26 26
100zq (b) 0.81 0.92 1.30 100xg (b) 16.71 17.51 28.22
(<) 0,0 0; 0 0;0 (c) 0; 0 0; 0 0; 0
(26) (a) 34 24 130 (30)° (a) 67
—10zq (b) 0.08 0.08 0.49 100zq (b) 0.12
(<) 18; 10 5; 2 180; 89 (c) 8; 0
(26), (P1) (a) a7 a7 18 185 (30)%, (P1) (a) 56 57 57 -
—10zg (b) 1.21 1.34 1.94 3.88 1002q (b) 1.37 1.62 2.28
(c) 1,0 1,0 1,0 11, 7 (c) 20; 0 20; 0 17; 0
(27)% (a) 18 18 148 (31)° (a) 48
20xq (b) 5.9e-4 8.de-4 0.04 10zq (b) 0.16
(c) 7; 3 3; 1 164; 54 (c) 7; 0
27)%, (P1) (a) 58 58 93 - (31)%, (P1) (a) 35 35 35
202 (b) 2.1e-3 | 4.7e-3 0.01 10mg (b) 0.90 1.03 1.44
(c) 63; 44 | 40; 18 | 110; 92 (c) 8 0 8; 0 10; 0

(P1) preconditioned problem with A_; = F'(xq), (a) iteration counts, (b) run times in
seconds, (c) additional linesearch trials; sign change in step multiplier, default problem
dimension n = 1000

* dimension is n = 10, tolerance is tolp = 1012

% tolerance is tolp = 10712

From remoter initial points the difference between Version 1 and 2 of the compact storage
implementation becomes more marked. The latter requires only about half the storage but
seems to do a better job at discarding older information as described at the end of Section 4.
Hence it succeeds on problems 30 and 31 with diagonal preconditioning where the original
method fails. Obviously, some kind of restart must be developed, especially in view of
problem 27 where the iteration counts exceeds the dimension. In such cases one also needs
a transition from the compact to the full storage scheme, which is yet to be developed.

Performance on special test problems 1-3 For the specific test problem functions,
varying problem dimensions and initial iterates the Matlab version of the adjoint Broyden
variants are compared to the build-in Matlab function fsolve for the solution of nonlin-
ear equations. For the test functions 1 and 3 tolp = 10~ and for the test function 2
tolp = 107 '2. The maximal number of iterations allowed is again 4,4, = 500. Here the run
times for the preconditioned problems include the run time to evaluate and factorize the
initial Jacobian. Apparently Matlab uses some version of the Levenberg Marquardt method,
which leads to significantly smaller iterations counts compared to the diagonally precondi-
tioned adjoint Broyden method. However, the total runtimes are always significantly larger.
Presumably, because a lot of effort goes into the differencing for Jacobian approximations.

For remote initial points the preconditioning may not pay even in terms of the iteration
number and certainly with respect to the run-time. Obviously the very cheap diagonal
preconditiong approach is a good idea and sometimes makes the difference between success
and failure. So we have also fixed the the diagonal scaler ¢ at the initial point, whereas we
the compact storage representation allows easily to readjust it repeatedly at virtually no
extra cost.

15

Table 4: Results of test function 1

adjoint Broyden variant fsolve
Test problem (0) | (1) (2)
default initial iterate 100z, varying problem dimension n
n = 10 (a) 16 14 37
(b) 1.5e-2 1.2e-2 2.5e-2
n = 10 (P1) (a) 21 21 - 12
(b) 2.3e-2 2.2e-2 0.21
n = 10 (P2) (a) 22 21
(b) 2.2e-2 2.0e-2
n = 100 (a) 16 14 37
(b) 5.5e-2 5.4e-2 0.14
n = 100 (P1) (a) 26 26 13
(b) 0.14 0.15 3.38
n = 100 (P2) (a) 23 232
(b) 9.1e-2 0.10 -
n = 1000 (a) 16 14 38
(b) 1.48 1.72 3.41
n = 1000 (P1) (a) 26 26 - 15
(b) 34.89 36.53 515
n = 1000 (P2) (a) 22 22
(b) 1.83 2.78
default problem dimension n_= 100, varying scaling of initial iterate
10z (a) 8 8 12
(b) 3.3e-2 3.5e-2 4.3e-2
10z (P1) (a) 8 8 10 8
(b) 8.2e-2 8.6e-2 8.4e-2 1.9
10z P2) (a) 9 9 10
(b) 4.2e-2 4.3e-2 4.2e-2
500z (a) 49 18 o8
(b) 0.21 6.8e-2 0.51
500z (P1) (a) 75 75 19
(b) 0.40 0.46 4.6
500z (P2) (a) 32 32 -
(b) 0.12 0.14
1000z (a) 81 20 101
(b) 0.42 7.4e-2 0.54
1000z (P1) (a) 121 121 - 23
(b) 0.74 0.82 5.6
1000z (P2) (a) 36 36
(b) 0.15 0.17

(P1) preconditioned problem with A_; = F'(zg), (P2) preconditioned problem with
Ay = [F(zo) " F'(z0)F(z0)/F(z0) " F(z0)] I, (a) iteration counts, (b) run times

Table 5: Results of test function 2

adjoint Broyden variant fsolve
Test problem (0) |
default initial iterate z(y, varying problem dimension n, folp = le — 12
n = 10 (a) 188 206
(b) 0.38 0.50
n =10 P1) (=) 14 19 17
(b) 1.4e-2 1.4e-2 0.19
n = 10 P2) () 146 148
(b) 0.19 0.19
n = 100 (=) 182 189
(b) 0.34 0.36
n = 100 P1) () 14 10 23
(b) 2.6e-2 3.0e-2 0.40
n = 100 P2) (=) 144 145
(b) 0.22 0.21
n = 1000 () 183 189
(b) 2.0 1.7
n = 1000 P1) (=) 14 19 8
(b) 1.3 1.9 12.0
n = 1000 P2) () 144 145
(b) 1.5 1.1
default problem dimension n = 100, varying scaling of initial iterate
2z0 () 28 371
(b) 1.8e-2 3.3
2z P1) (=) 5 11 25
(b) 1.8e-2 2.2e-2 0.28
2z0 P2) () 181 174
(b) 0.41 0.34
T0zg (=) 497
(b) 9.0
T0zq P1) () P 10 10
(b) 1.7e-2 2.1e-2 0.16
T0zg P2) (=) 437 387
(b) 6.9 4.3
100z () = =
(b)
100z P1) (=) 2 11 13
(b) 1.7e-2 2.1e-2 0.14
100z P2) (=)
(b)

(P1) preconditioned problem with A_y = F'(xq), (P2) preconditioned problem with
A_y = [F(wo) " F'(w0)F(20)/F(20) T F(x0)] I, (a) iteration counts, (b) run times in
seconds, default problem dimension n = 100, default initial iterate 100z

16

Table 6: Results of test function 3

adjoint Broyden variant fsolve
Test problem | (0) | (1) | (2)
default initial iterate 2(y, varying problem dimension n
n = 100 (a) 23 32
(b) 3.1e-2 5.6e-2
n = 100 (P1) (a) 18 19 - 7
(b) 8.2e-2 9.3e-2 0.24
n = 100 (P2) (a) 18 19
(b) 3.1e-2 3.8e-2
n = 1024 (a) 432 48 -
(b) 0.94 1.7
n = 1024 (P1) (a) 39 40 9
(b) 15.0 15.9 52.4
n = 1024 (P2) (a) 39 40 -
(b) 0.91 1.36
n = 4900 (a) 74 79
(b) 16.2 27.1
n = 4900 (P1) (a) 65 67 - 10
(b) 704 724 2772
n = 4900 (P2) (a) 65 67
(b) 14.8 21.9
default problem dimension n = 100, varying scaling of initial iterate
10z (a) 65 27 145
(b) 9.0e-2 4.4e-2 0.33
10z (P1) (a) 35 34 - 15
(b) 0.11 0.13 0.52
10z P2) () 35 34
(b) 5.5e-2 6.7e-2
100z (a) 210 36 212
(b) 0.84 5.7e-2 0.80
100z (P1) (a) 49 49 - 24
(b) 0.14 0.17 0.82
100z (P2) (a) 49 50
(b) 7.3e-2 0.10
1000z (a) - 46 175
(b) 7.2e-2 0.57
1000z (P1) (a) 60 60 31
(b) 0.16 0.20 1.08
1000z (P2) (a) 60 60 -
(b) 9.1e-2 0.12

Comparison of limited memory appraches Finally, we report some preliminary re-
sults on the limited memory implementation sketched in Section 4, where the columns of
Vi, Wy and Hy, are periodically overwritten once k exceeds a certain limit m. We use a linear
test problem so that there is no mathematical difference between our various compact stor-
age versions and we may use the one that has almost exactly the same memory requirement
as GMRES, namely it stores the m x n matrix V' and the m x m matrix H.

Figure 1 compares Matlab’s GMRES solver with restart to the limited memory imple-
mentation of the adjoint Broyden’s method. For this test the 2D Poisson equation with
Dirichlet boudary conditons on a square domain and five-point discretization is solved. Al-
though this yields a symmetric linear problem which could be tackled by a GC method we
use it here to compare the general nonsymmetric solvers. The dimension of the test problem
is n = 100 and it is solved upto a tolerance of tolp = 10712

Without limiting the memory GMRES and adjoint Broyden are mathematically equiv-
alent, Krylov space methods and reach the required tolerance at the 15th iteration. By
restricting the number m we destroy the Krylov subspace property and the convergence
becomes significantly slower. As one can see from the plot in 1 GMRES(m) takes about
twice as many steps as our 'periodic’ adjoint Broyden version. That may be explainable
by the fact that on GMRES with restart every m steps utilizes on average information in
only m/2 directions about the problem function, whereas adjoint Broyden uses m of them
throughout. Strictly speaking this means also that as far as the linear algebra is concerned
the GMRES(m) iterations cost only about half as much, though there is probably a lot of
common overhead, especially if m is small. Our main concern is of course the number of
iterations since we assume that each function evaluation is quite expensive.

17

Figure 1: Comparison of limited memory adjoint Broyden and GMRES

250 T T T T T T

2 * Matlab's GMRES function with restart +
@]
g 200 - limited memory adjoint Broyden’smethod X< |
g
b= .
o)
g 150 N
B
g +
=
= X +
o 100 - N
e x *
=]
= + +
— 50F X + -
= X X + +
1S} XX
+ X X X +

1T T T XX K

0 | | | | | |

2 4 6 8 10 12 14 16

number of allowed inner iterations in GMRES and number of
stored updates (plus initial update) in adjoint Broyden’s method

7 Conclusion and Outlook

In this paper we have developed several compact storage implementations of the Adjoint
Broyden method and shown that on affine problems they all yield identical iterates to GM-
RES. For that result we assumed exact line-searches, which is quite natural and realistic in
the affine case. From a numerical linear algebra point of view our treatment is somewhat un-
satisfactory in that we have barely given any consideration to issues of round-off propagation.
In particular we have not worried about the fact that applying the compact representation
of the inverse of A or its adjugate to the current residual amounts to orthogonalisation
by unmodified Gram-Schmidt. From a more nonlinear point of view getting approximating
Jacobians right with a couple of digits is already a quite satisfactory achievement so that
numerical effects at level of the machine precision or even its root are of little concern. Nev-
ertheless it should be investigated whether one my design at an implementation for general
nonlinear problems that automatically reduces to the standard GMRES procedure on affine
problems.

For the nonlinear scenario of greater importance are issue related to the diagonal (re)scaling
of the initial Jacobian and the thorny issue if and how to reset the procedure when the stor-
age limits are reached or older information appears to become obsolete. For that purpose
one might monitor the subdiagonal entries in the projected Jacobian Hj, or the entries in
R. They must all vanish exactly in the affine case and should therefore be rather small near
the roots of smooth functions. Their relative size might also allow a smarter selection of the
directions to be discarded.

8 Aknowledgements

The first author performed his research for his paper at the IRISA Rennes, where he greatly
benefited from the hospitality and the GMRES expertise of Bernard Phlippe and his col-
leagues.

18

References

[Ben65]

[Bro65]

[Bro69)

[Bro71]

[Grig6]

[GSWO06]

[MC79]

MGHS1]

[INW99]
[Saa03]
[SchO7]

[SGWO06]

[SpeT5]

[SWO6]

J.M. Bennett. Triangular Factors of Modified Matrices. Numerische Mathematik,
7:217-221, 1965.

C. G. Broyden. A class of methods for solving nonlinear simultaneous equations.
Math. Comp., 19:577-593, 1965.

K. M. Brown. A quadratic convergent Newton-like method based upon Gaussian
elimination. J. Numer. Anal., 6:560-569, 1969.

C. G. Broyden. The convergence of an algorithm for solving sparse nonlinear
systems. Math. Comp., 25:285 294, 1971.

A. Griewank. The ”global” convergence of Broyden-like methods with a suitable
line search. J. Austral. Math. Soc. Ser. B, 28:75 92, 1986.

A. Griewank, S. Schlenkrich, and A. Walther. A quasi-Newton method with
optimal R-order without independence assumption. MATHEON Preprint 340,
2006. Submitted to Opt. Meth. and Soft.

J. J. Moré and M. Y. Cosnard. Numerical solution of nonlinear equations. TOMS,
5:64-85, 1979.

J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization
software. TOMS, 7:17-41, 1981.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, 1999.
Y Saad. Iterative Methods for Sparse Linear Systems. STAM, 2003.

S. Schlenkrich. Adjoint-based Quasi-Newton Methods for Nonlinear Equations.
Sierke Verlag, in press, 2007.

S. Schlenkrich, A. Griewank, and A. Walther. Local convergence analysis of TR1
updates for solving nonlinear euations. MATHEON Preprint 337, 2006.

E. Spedicato. Computational experience with quasi-Newton algorithms for mini-
mization problems of moderately large size. Rep. CISE-N-175, Segrate (Milano),
1975.

S. Schlenkrich and A. Walther. Global convergence of quasi-Newton methods
based on Adjoint Tangent Rank-1 updates. TU Dresden Preprint MATH-WR-
02-2006, 2006. Submitted to Applied Numerical Mathematics.

19

