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tIt is shown here that a 
ompa
t storage implementation of a quasi-Newton methodbased on the adjoint Broyden update redu
es in the aÆne 
ase exa
tly to the wellestablished GMRES pro
edure. Generally, storage and linear algebra e�ort per stepare small multiples of n � k, where n is the number of variables and k the number ofsteps taken in the 
urrent 
y
le. In the aÆne 
ase the storage is exa
tly (n + k) � kand in the nonlinear 
ase the same bound 
an be a
hieved if adjoints, i.e. transposedJa
obian-ve
tor produ
ts are available. A transposed-free variant that relies ex
lusivelyon Ja
obian-ve
tor produ
ts (or possibly their approximation by divided di�eren
es)requires roughly twi
e the storage and turns out to be somewhat slower in our numeri
alexperiments reported at the end.Keywords: nonlinear equations, quasi-Newton methods, adjoint based update,
ompa
t storage, generalized minimal residual, Arnoldi pro
ess, automati
 di�erentia-tion1 Introdu
tion and MotivationAs shown in [SGW06, GSW06, SW06℄ the adjoint Broyden method des
ribed below hassome very ni
e properties, whi
h lead to strong theoreti
al 
onvergen
e properties and goodexperimental results. A standard obje
tion to low rank updating of approximate Ja
obiansis that their storage and manipulation involves per step O(n2) lo
ations and operations,respe
tively, sin
e sparsity and other stru
ture seems immediately lost. In the 
ase of un-
onstrained optimization this drawba
k has been over
ome by very su

essful limited mem-ory variants [NW99℄ of the quasi-Newton method BFGS, whi
h in the 
ase of quadrati
obje
tives and thus aÆne gradients redu
e to 
onjugate gradients, the method of 
hoi
efor positive de�nite linear systems. Sin
e GMRES has a similar status with respe
t to theiterative solution of nonsymmetri
 systems it is a natural idea to implement a nonlinearsolver that redu
es automati
ally to GMRES on aÆne systems. As it turns out this is the
ase for a suitable implementation of the adjoint Broyden method. The insight gained fromthe aÆne s
enario also helps us in dealing with singularities and other 
ontingen
ies in thegeneral 
ase.The paper is organized as follows. In Se
tion 2 we des
ribe the adjoint Broyden s
hemeand its main properties. In Se
tion 3 we develop a 
ompa
t storage implementation withseveral variants depending on the derivative ve
tors that are available. These are all equiv-alent in the aÆne 
ase for whi
h we show in Se
tion 4 that the iterates are identi
al to theones produ
ed by GMRES, provided a linearly exa
t line-sear
h is employed. Nevertheless,�Partially supported by the DFG Resear
h Center Matheon "Mathemati
s for Key Te
hnologies", BerlinyCorresp. author: e-mail: griewank�mathematik.hu-berlin.de, Fax: +49-30-2093-58591



our methods are geared towards the general, nonlinear s
enario, where the basi
 s
hem isguaranteed to 
onverge [S
h07, Se
. 4.3.2℄, provided singularity of the a
tual Ja
obian isexluded. Finally, in Se
tion 6 we report 
omparative numeri
al results, mostly on nonlinearproblems.2 Des
ription of the quasi-Newton methodWe 
onsider the iterative solution of a system of nonlinear equationsF (x) = 0;assuming that F : Rn ! Rn has a Lips
hitz 
ontinuously di�erentiable Ja
obian F 0(x) 2Rn�n in some neighborhood N � Rn of interest. Given an initial estimate x0 reasonably
lose to some root x� 2 F�1(0) \ N and an easily invertible approximation A�1 to F 0(x�)we may apply our algorithms to the transformed problem0 = ~F (~x) � F (x0 +A�1�1 ~x)Therefore we will assume without loss of generality that the original problem has beenrewritten su
h that for some s
aling fa
tor 0 6= � 2 RA�1 = I� and x0 = 0This assumption on A�1 greatly simpli�es the notation without e�e
ting the mathemati
alrelations for any sensible algorithm.Throughout the paper we use the 
onvention that the subs
ript k labels all quantitiesrelated to the iterate xk as well as all quantities 
on
erning the step form xk�1 to xk. Hen
ethe basi
 iteration isxk = xk�1 + �ksk with As�1sk = �ÆkFk�1 and �k 2 R 3 Ækwhere Fk�1 � F (xk�1). After ea
h iteration the Ja
obian approximation Ak�1 is updatedto a new version Ak in a way that distinguishes various quasi-Newton methods and isour prin
ipal 
on
ern in this se
tion. The s
alar Æk allows for (near) singularity of theapproximate Ja
obian Ak�1 and �k represents the line-sear
h multiplier, both of whom willbe dis
ussd below. Whenever dis
repan
ies are 
omputed or symboli
ally represented, wesubtra
t the (more) exa
t quantity from the (more) approximate quantity. This is just anotational 
onvention 
on
erning the sele
tion of signs in forming di�eren
es.The Rank-one UpdateOur methods are based on the following update formula.De�nition 1 (Adjoint Broyden update)For a given matrix Ak�1 2 Rn�n and a 
urrent point xk 2 Rn setAk = Ak�1 � vkv>k �Ak�1 � F 0k� with F 0k � F 0(xk) (1)where vk = �k=k�kk with �k 2 Rn 
hosen a

ording to one of the three options:'Residual': �k = �Fk'Tangent': �k = �Ak�1 � F 0k�sk for some sk 2 Rn n f0g'Se
ant': �k = Ak�1sk � (Fk � Fk�1)=�k for some �k 2 R n f0g2



It 
an be easily seen that the formula represents the least 
hange update with respe
t to theFrobenius matrix norm in order to satisfy the adjoint tangent 
onditionA>k �k = F 0>k �kThe residual 
hoi
e has the ni
e property that after the updateA>k Fk = F 0>k Fk � rf(xk) for f(x) � kF (x)k2=2so that the gradient of the squared residual norm is reprodu
ed exa
tly. Throughout thepaper k � k denotes the Eu
lidean norm of ve
tors and the 
orresponding indu
ed 2-norm ofmatri
es.When �k is sele
ted a

ording to the tangent or se
ant option, the primal tangent 
on-dition Aksk = F 0ksk is satis�ed approximately in thatk(Ak � F 0k)sk=kskkk = O(kxk � xk�1k)When a full quasi-Newton step sk = �A�1k�1Fk�1 with �k = 1 = Æk has been taken thenthe residual and the se
ant options are identi
al. The se
ant option redu
es to the tangentoption as �k ! 0 or when F is aÆne in the �rst pla
e.Throughout the paper we will allow the 
hoi
e �k = 0, whi
h amounts to a pure tangentupdate step on the Ja
obian without any 
hange in the iterate xk itself. Several su
hprimally stationary iterations may be interpreted as part of an inexa
t Newton method,whi
h approximately solves the linearization of the given ve
tor fun
tion at the 
urrentprimal point xk.Heredity PropertiesIn the 
ase of an aÆne fun
tion F (x) � Ax�b the tangent and se
ant options yield identi
ally�k = (Ak�1 �A)sk = Dk�1sk with Dk�1 � Ak�1 �A 2 Rn�nThen it follows from (1) that the dis
repan
y matri
es Dk satisfy the re
urren
eDk = Dk�1 � Dk�1sks>k D>k�1Dk�1kDk�1skk2 = (I � vkv>k )Dk�1Form this proje
tive identity one sees immediately that the nullspa
es of Dk and its trans-posed D>k grow monotoni
ally with ea
h update and must en
ompass the whole spa
e Rnafter at most n updates that are well de�ned in that their denominator does not vanish.In other words in the aÆne 
ase the tangent and se
ant updates exhibit dire
t and adjointhereditary in that Aksj = Asj and A>k �j = A>�j for 0 � j � kWhen the residual update is applied intermittently without �k 2 range(Dk�1) and thusvk 62 range(Dk�1) the dire
t heredity is maintained but adjoint heredity may be lost. Su
hupdates 
an be viewed as a reset and are expe
tedt to be parti
ularly useful in the nonlinear
ase.Ja
obian InitializationIt is well known for un
onstrained optimization by some variant of BFGS that, starting froman initial Hessian approximation of the form I� the performan
e may be strongly dependenton the 
hoi
e of the s
alar � 6= 0. This is so in general, even though on quadrati
 problemswith exa
t line-sear
hes the iterates are mathemati
ally invariant with respe
t to � 6= 0.Hen
e we will also look here for a suitable initial s
aling.3



Another aspe
t of the initializationn is that in order to agree with GMRES on aÆneproblems, we have to begin with a residual update using �0 = �F0 before the very �rstiteration. This implies in the aÆne 
ase that for all subsequent residual gradients rf(xk) =F>k F 0k = F>k Ak, whi
h ensure for the quasi Newton-stepssk+1 = �ÆkA�1k Fk that rf(xk)>sk+1 = F>k F 0ksk+1 = �ÆkkFkk2For Æk > 0 we have therefore des
ent, a property that need not hold in the nonlinear situationas we well dis
uss below. Starting form A�1 = I� with any � we obtain by the initial residualupdate A0 = I�� v0v>0 (I�� F 00) with det(A0) = �n�1v>0 F 00v0A reasonable idea for 
hoosing � seems to minimize the Frobenius norm of the resultingupdate from A�1 to A0. This 
riterion leads to � = v>0 F 00v0, a number that may be positive ornegative but unfortunately also zero. That ex
eptional situation arises exa
tly if det(A0) = 0with the nullve
tor being v0 irrespe
tive of the 
hoi
e of �. In any 
ase we have by Cau
hy-S
hwartz inequality ��v>0 F 00v0�� � kF 00v0kwhere the right hand side does not vanish provided F 00 is nonsingular as we will assumethroughout. Hen
e we 
on
lude that� � sign(v>0 F 00v0)kF 00v0k
an be used as initial s
aling. Should the �rst 
omponent be zero the sign 
an be sele
tedarbitrarily from f+1;�1g. We 
ould be a little bit more sophisti
ated here and 
hoose thesize j�j as the Frobenius norm of the �rst extended Hessenberg matrix H0 2 R2�1 generatedby GMRES, but that 
ompli
ates matters somewhat in requiring some look-ahead, espe
iallyin the nonlinear situation.O
urren
e and Handling of SingularityAs we have seen above the 
ontingen
y det(Ak) = 0 may arise theoreti
ally already whenk = 0. In pra
ti
e we are mu
h more likely to en
ounter nearly singular Ak for whi
h thefull quasi-Newton dire
tions sk+1 = �A�1k Fk be
ome ex
essively large and strongly e�e
tedby round-o�. Provided we update along a null-ve
tor whenever Fk�1 is not in the rangeof F 0(x) we have even theoreti
ally at most one null dire
tion a

ording to the followinglemma.Lemma 2 (Rank Drop at most One)If Ak�1sk = �ÆkFk�1 for Æk 2 R with sk 6= 0 and F 0ksk 6= 0, then the tangent option�k = (Ak�1 �A)sk ensures for the update (1) thatrank(Ak)� rank(Ak�1) 8>><>>: = 1 if Æk = 0 and F 0ksk 62 range(Ak�1)= 0 if Æk = 0 and F 0ksk 2 range(Ak�1)2 f0; 1g if Æk 6= 0 and F 0ksk 62 range(Ak�1)2 f�1; 0g if Æk 6= 0 and F 0ksk 2 range(Ak�1)Proof:The tangent update always takes the expli
it formAk = Ak�1 � �Ak�1 � F 0k�sks>k �Ak�1 � F 0k�>�Ak�1 � F 0k�=k(Ak�1 � F 0k)skk2If F 0ksk 2 range(Ak�1) the range of Ak is 
ontained in that of Ak�1 so that the rank 
annotgo up, whi
h implies immediately the forth 
ase as a rank-one update 
an only 
hange therank by one up or down. If F 0ksk 62 range(Ak�1) then multipli
ation of the above equation4



from the right by a prospe
tive nullve
tor v shows that the 
oeÆ
ient of F 0ksk and thus thewhole rank one term must vanish. Hen
e v must already be a nullve
tor of Ak�1 and thusthe rank 
annot go down, whi
h implies in parti
ular the third 
ase. When Æk = 0 and thusAk�1sk = 0 the update simpli�es to Ak = Ak�1 + F 0ksks>k F 0k>F 0k=kF 0kskk2 so that sk is anullve
tor of Ak�1 but not a null-ve
tor of Ak. Hen
e we have also proven the assertionfor the �rst 
ase, as there 
an be no new null-ve
tor as observed above. In the remainingse
ond 
ase all nullve
tors of Ak�1 that are orthogonal to (F 0ksk)>F 0k are also nullve
tors ofAk and there is exa
tly one additional nullve
tor, whi
h we may 
onstru
t as follows. LetF 0ksk = Ak�1vk. Then there is one value 
 2 R su
h thatAk(vk + 
sk) = F 0ksk�1� 
 � s>k F 0k>F 0kvk=kF 0kskk2� = 0 �The lemma has the following algorithmi
 
onsequen
es. If A0 has at least rank n � 1and we sele
t sk as a nullve
tor, i.e. set Æk = 0, whenever Ak�1 is singular, then the rankof the approximations Ak 
annever drop below n� 1. We will 
all this approa
h of settingÆk = 0 as soon as Ak�1 is singular, the full rank strategy. Exa
tly whi
h value Æk 6= 0 we
hoose when Ak�1 is nonsingular does not make mu
h di�eren
e in the aÆne 
ase, but isof 
ourse quite important in the nonlinear 
ase, unless we perform an exa
t line-sear
h su
hthat the s
aling of sk be
omes irrelevant. We 
an only deviate from the full rank strategywhen the approximate Ja
obian Ak�1 is singular but Fk�1 still happens to be in its range.Then we might still 
hoose Æk 6= 0 and determine sk as some solution to the 
onsistent linearsystem Ak�1sk = �Fk�1Æk. This 
hoi
e of sk is even theoreti
ally nonunique and pra
ti
allysubje
t to severe numeri
al instability, espe
ially in the nonlinear s
enario.3 Smooth formulation via AdjugateIn the aÆne situation we will see that the singularly 
onsistent linear systems 
annevero

ur and that the resulting property rank(Ak) � n � 1 is related to the well-known fa
tthat the Hessenberg matrix Hk in the Arnoldi pro
ess never su�ers a rank drop of morethan one, provided the system matrix itself is nonsingular. To de�ne sk+1 uniquely as asmooth fun
tion of Ak and Fk we may set Æk+1 = det(Ak) and use the adjugate adj (Ak)de�ned as the 
ontinuous solution to the identityAk adj (Ak) = det(Ak)I = adj (Ak)AkThe entries of adj (Ak) may be de�ned as the 
o-fa
tors of Ak Then we may de�ne the steps
onsistently and ni
ely bounded viask+1 � � adj (Ak)Fk ) Aksk+1 = � det(Ak)FkIf rank(Ak) = n� 1 there exist nonzero nullve
tors uk and wk 2 Rn su
h thatadj (Ak) = wku>k 6= 0 with Akwk = 0 and u>k Ak = 0Then the above formula yields the stepsk+1 = �wku>kFk 2 kern(Ak)so that we have sk+1 = 0 , Fk = 0 or 0 6= uk?Fk 6= 0where the se
ond possibility 
an only o

ur when Ak is singular. The �rst represents regulartermination be
ause the system is solved, whereas the se
ond possibility indi
ates prematurebreak down of the method if it is indeed de�ned in terms of the adjugate. It means thatthe linear system Aksk+1 = �Fk is singular but still 
onsistent as Fk happens to lie in the5



range fukg? of Ak. Hen
e nonzero solutions sk+1 would exist but not be unique and in thepresen
e of round-o� possibly very large. Fortunately this 
ontingen
y 
an not o

ur in theaÆne s
enario as we will see in Se
tion 5. If it does in the nonlinear 
ase we may de�ne sk+1as some nonzero null-ve
tor of Ak, whi
h is essentially unique as long as rank(Ak) = n� 1irrespe
tive of whether Fk is in its range or not. Alternatively we may reset Ak to A0 asdis
ussed above with F0 = Fk, whi
h 
ertainly ensures that the subsequent step is well-de�ned.The use of the adjugate is more of an aestheti
 devi
e in view of the aÆne s
enariothat is of parti
ular interest in this paper. It does however alleviate the need to distinguishthe 
ases rank(Ak) = n and rank(Ak) = n � 1 in proofs and other developments. Thenumeri
al 
omputation of sk+1 = � adj (Ak)Fk 
an be performed simply and stably on thebasis of an LU- or QR fa
torization of Ak. To have a better 
han
e of obtaining a des
entdire
tion one may multiply the step by sign(det(Ak)), whi
h guarantees des
ent a

ording to(2) in the aÆne 
ase. More realiable for the nonlinear 
ase would be to evaluate always thedire
tional derivative rf(xk)>sk+1 and if ne
essary swit
h the sign of sk+1 before enteringthe line-sear
h.Line-Sear
h RequirementsThe line-sear
h from [Gri86℄ sket
hed below makes no assumption regarding the dire
tionalderivative and thus may produ
e negative step-multipliers. Moreover, if sk 6= 0 is sele
ted asarbitrary null-ve
tor of Ak whenever det(Ak) 6= 0, then that line-sear
h ensures 
onvergen
efrom within level sets of f in whi
h the a
tual Ja
obian F 0(x) has no singularities. That istrue even if A0 is initialized to the null matrix, whi
h would leave a lot of indetermina
y forthe �rst n step sele
tions.The least-squares 
al
ulation at the heart of the GMRES pro
edure may be e�e
ted inour quasi-Newton method through an appropriate line-sear
h. Sin
e for aÆne F (x) = Ax�bthe fun
tion ~fk(�) � f(xk�1 + �sk) = kFk�1 + �Askk2=2is quadrati
, just three values of ~fk or two values and one dire
tional derivative will beenough to 
ompute the exa
t minimizer �k 2 R. Alternatively, we may interpolate theve
tor fun
tion itself by ~Fk(�) � (1� �)Fk�1 + �F (xk�1 + sk)on the basis of Fk�1 and F (xk�1+sk) alone. In the aÆne situation we have exa
tly ~fk(�) =k ~Fk(�)k2=2 so that the two approa
hes are equivalent and yield the optimal multiplier��k = �F>k�1AskkAskk2 � s>k A>k�1AskkAskk2The multiplier ��k may be negative or even zero but it always renders the new residualFk = Fk�1 + �kAsk exa
tly orthogonal to Ask . This orthogonality is 
ru
ial to proving theequivalen
e with GMRES and we will 
all any line-sear
h yielding su
h an ��k in the aÆne
ase as linearly exa
t. Throughout we will refer to the step xk � xk�1 = �ksk astrivial : �ksk = 0 ; full : �k = 1=Æk ; singular : det(Ak�1) = 0 ; exa
t : �k = ��k :In the nonlinear situation we may have to perform several interpolations as des
ribed in[Gri86℄ before an a

eptable �k is rea
hed. As we will see in the �nal se
tion our line-sear
hbased on ve
tor interpolation rarely requires more than one readjustment of �k from theinitial estimate �k = 1=Æk. Of 
ourse in the aÆne 
ase the initial guess does not matter atall if at least one interpolation is performed so that ��k is rea
hed.6



Algorithmi
 Spe
i�
ationPutting the pie
es together we get the following algorithmAlgorithm 3 (Adjoint Broyden)Initialize: Set x0 = 0 and A0 = I�� v0 v>0 (I�� F 00) withv0 = F0=kF0k and � = sign(v>0 F 00v0)kF 00v0k, set k = 1Iterate: Compute sk = � adj (Ak�1)Fk�1 andde�ne �k by the tangent or se
ant option.Terminate: If k�kk � " return xk = xk�1 + sk=Æk and stopUpdate: In
rement xk = xk�1 + �ksk for some �k 2 Rset vk = �k=k�kk, update Ak = Ak�1 � vk v>k (Ak�1 � F 0k)and 
ontinue with Iterate for k = k + 1The algorithm involves at ea
h iteration one evaluation of Fk�1, one of v>k F 0k a few trialvalues for Fk during the line-sear
h. In terms of linear algebra we have to 
ompute the stepsk by solving a system in the approximated Ja
obian Ak�1and then update an appropriaterepresentation of it to that of Ak. This means that both linear algebra subtasks requireO(n2) operations and the storage requirement is n2 or 1:5 � n2 
oating point numbers for aQR and LU version, respe
tively.4 Compa
t Storage ImplementionIn order to redu
e storage and linear algebra at least for early iterations we 
onsider theadditive expansion Ak = I�� kXj=0 vj v>j �Aj�1 � F 0j� :AbbreviatingVk � �v0; v1; : : : ; vk� 2 Rn�(k+1) and Wk � �F 0>0 v0; : : : ; F 0>k vk� 2 Rn�(k+1)we obtain the following representation of Ak and its inverse.Lemma 4 (Fa
torized Representation)With L�1k 2 R(k+1)�(k+1) the lower triangular part of V >k Vk in
luding its diagonal we haveAk = I�� Vk Lk��Vk �Wk�> and det(Ak) = det(Hk) �n�k�1where Hk �W>k Vk � �Rk and Rk � V >k Vk � L�1k 2 R(k+1)�(k+1)with Rk being stri
tly upper triangular. Sherman-Morrison-Woodbury yields the inverseA�1k = I=�+ VkH�1k �Vk �Wk=��>if det(Ak) 6= 0 and in any 
ase the adjugateadj (Ak) = det(Ak)I=�+ �n�k�1Vk adj (Hk)(Vk �Wk=�)>
7



Proof: For k = �1 the �rst assertion holds trivially with all matri
es other than A�1 = I�vanishing 
ompletely. The indu
tion from k � 1 to k works as followsAk = Ak�1 � vk v>k �Ak�1 � F 0k� = �I � vk v>k �Ak�1 + vk v>k F 0k= I�+ �I � vk v>k ��Ak�1 � I��� vk v>k �I�� F 0k�= I�+ �I � vk v>k �Vk�1 Lk�1�Wk�1 � �Vk�1�> � vk v>k �I�� F 0k��= I�� �Vk�1; vk� h Ik�v>k Vk�1 iLk�1��Vk�1 �Wk�1��> � vk v>k ��I � F 0k�= I�� �Vk�1; vk� h Lk�1 0�v>k Vk�1 Lk�1 1 i h ��Vk�1 �Wk�1�>v>k �I�� F 0k� i= I�� Vk Lk��Vk �Wk�> :Hen
e we have proven the representation of Ak provided Lk is shown to be the inverse ofthe upper triangular part of V >k Vk assuming this relation holds for Lk�1. That last part ofthe indu
tion holds sin
eh L�1k�1 0v>k Vk�1 1 i h Lk�1 0�v>k Vk�1 Lk�1 1 i = h I 00 1 iso that the matrix in the middle represents indeed Lk.Assuming �rst det(Hk) 6= 0 we obtain a

ording to the Shermann-Morrison-Woodburyformula the inverseA�1k =1� h I + Vk�I � Lk�Vk �Wk=��> Vk��1 Lk�Vk �Wk=�)>i= 1� hI + Vk�L�1k �� �V >k Vk +W>k Vk��1��Vk �Wk�>iwhi
h 
an obviously be rewritten in the asserted form using the matri
es Rk and Hk. Theadjugate is obtained by multiplying both sides with det(Ak) = det(Hk)�n�k�1. �Sin
e Lk is not needed expli
itly we 
an implement the adjoint Broyden method storingthe two n � (k + 1) matri
es Vk ; Wk and the matrix Hk 2 R(k+1)�(k+1) in fa
torized orinverted form. For small k this is 
ertainly mu
h less than the usual dense LU or QRimplementation of Ak. However, as k approa
hes n it is signi�
antly more even if we do notstore V >k Vk whi
h is only needed for the appli
ation of Ak itself.Limited Memory StrategySin
e we have managed to eliminate the intermediate approximations Aj from the represen-tation of Ak and its inverse or adjugate, it is in fa
t quite easy to throw out or amalgamateolder dire
tions vj and the 
orresponding adjoints v>j F 0j from Vk andWk, respe
tively. Thenthe 
orresponding rows and 
olumns of V >k Vk and most importantly Hk disappear or aremerged as well, whi
h amounts to rank-two 
orre
tion that is easily in
orporated into theinverse or a fa
torization. Hen
e we have the 
apa
ity to always only use a window of m
omparatively re
ent pie
es of dire
t and adjoint se
ant information, a strategy that is usedvery su

essfully in limited memory BFGS. In a �rst test implementation we simply 
hoosea �xed maximum m and (over)write vk for k > m into the [(k� 1) mod m℄ + 1-th 
olumnsof Vm. Obviously Wm and Hm are treated a

ordingly.As we will show below, we �nd in the aÆne 
ase that Vk is orthogonal so that Lk = I ,Rk = 0 and Hk is a
tually upper Heisenberg, i.e., has only one nonvanishing subdiagonal.In the limited memory variant the orthogonality of Vk is maintained but the Hessenbergproperty of Hk is lost. 8



Step 
al
ulation variantsUsing some temporary (k + 1) ve
tor t the a
tual 
omputation of the next quasi-Newtonstep sk+1 = �ÆkA�1k Fk 
an be broken down into the subtasks(i) Multiply t � (Æk=�)W>k Fk(ii) Multiply and de
rement t �= V >k FkÆk(iii) Solve Hk t = t(iv) Multiply and de
rement sk+1 = (Æk=�)Fk � Vk tThe most promising savings are possible in the �rst step sin
e we haveW>k Fk � �v>j F 0j Fk�j=0:::k � �v>j F 0k Fk�j=0:::k � V >k �F 0k Fk�The approximation holds as equality exa
tly in the linear 
ase, where F 0 is 
onstant andthus very nearly in the smooth 
ase. The ve
tor on the right hand side represents in fa
tnewer derivative information than then original one on the left. So we 
an get by withoutstoring Wk at all, whi
h pretty mu
h halves the total storage requirement as long as k � n.However, there is another 
riti
al issue namely how we build up the matrix Hk. Its
ompared to Hk�1 new k-th 
olumn and row are given by�v>j F 0j vk�j=0:::k � V >k F 0k vk 2 Rk+1 and v>kF 0k Vk � �v>k F 0j vj�j=0:::k 2 Rk+1 :For the 
olumn we may simply use the approximation based on the single, 
urrent dire
tionalderivative F 0kvk. For the row we have at least three di�erent 
hoi
es. Firstly, we 
an 
omputethe adjoint v>kF 0k but do not store it for any longer. Se
ondly, we store all the dire
tionalderivative F 0j vj for j = 0 : : : k. Finally, we 
an relay on the near upper Hessenberg propertyof Hk and only 
ompute the last two entries v>k F 0k�1 vk�1 and v>k F 0k vk. The third optionrequires virtually no extra storage other than that of Vk and Hk in Hessenberg form. In thatway the whole 
al
ulation would redu
e almost exa
tly to the GMRES pro
edure ex
ept forthe stri
tly upper triangular 
orre
tion Rk, whi
h is theoreti
ally zero in the linear 
ase.For the solution of the nonlinear test problems in Se
tion 6 we used the following threevariants of the adjoint Broyden method:(0) original adjoint Broyden update method storing Vk, Wk, and the QR fa
torization ofHk. This requires evaluation of F (xk) and v>kF 0(xk) at ea
h iterate.(1) minimal storage implementation using only Vk, the QR fa
torization of Hk, and ap-proximatingW>k v � V >k (F 0kv). Requires evaluation of F (xk), F 0(xk)sk, and v>kF 0(xk).(2) forward mode based implementation using Vk, Zk = �F 0jvj�j=0:::k, the QR fa
torizationof Hk, and approximating W>k v � V >k (F 0kv), v>k F 0kVk � v>k Zk. Requires F (xk) andF 0(xk)vkOf 
ourse, it is also possible to implement method (2) based on �nite di�eren
es approxi-mations to the dire
tional derivatives F 0(x)v. However, preliminary numeri
al tests showedthat 
onvergen
e of this variant is rather unreliable. For aÆne problems the Ja
obian of F is
onstant and hen
e the variants (0) to (2) yield up to round-o� identi
al numeri
al results.5 Redu
tion to GMRES/FOM in aÆne CaseFor the following result we assume that the adjoint Broyden method is applied with virtuallyarbitrary step-multipliers �k. Naturally whenever �k = 0 we have to apply the tangentupdate, whi
h 
ould however also be approximated by a divided di�eren
e. Now we obtainthe main theorem of this paper. 9



Theorem 5 Suppose the algorithm 3 is applied in exa
t arithmeti
 with stopping toleran
e" = 0 to an aÆne system F (x) = Ax� b with det(A) 6= 0. Then:(i) If � > 0 the iteration performs exa
tly the Arnoldi pro
ess irrespe
tive of the 
hoi
eof �k 2 R. If � < 0 the vk and the 
orresponding entries in Hk may di�er in sign.arrives at a �rst for whi
h .(ii) With k̂ � n the �rst index su
h that �k̂ = 0 we have x� = xk̂�1 + sk̂=Æk̂ = A�1b. This�nal step is well de�ned and must be taken as Fk̂�1 6= 0 6= sk̂ and Æk̂ = det(Ak̂�1) 6= 0.(iii) For k < k̂ all full steps xk = xk�1 + sk=Æk with Æk = det(Ak�1) (would) lead to pointsthat 
oin
ide with the k-th iterate of the full orthogonalization method (FOM).(iv) If (linearly) exa
t ��k are used throughout the resulting iterates xk 
oin
ides with thosegenerated by GMRES.Proof: In the aÆne 
ase we may always use the tangent option for �k so that the onlyimpa
t of the step size 
hoi
es �k on the prin
ipal quantities Ak and vk appears to be viathe the residuals Fk = Axk � b. As we will see, there is in fa
t no su
h dependen
e, butwe 
an 
ertainly state already now that for any parti
ular sequen
e of values �k there mustbe a 
ertain �rst k̂ for whi
h �k̂ = 0. The adjoint heredity property dis
ussed in Se
tion 2implies that for k̂ > k > j � 0 �>k �j = s>k D>k�1sj = s>k 0 = 0so that V >k Vk = Ik and 
onsequently Lk = Ik; Rk = 0 in the representations of Ak andadj (Ak). Assuming that F (0) = b 6= 0 and det(A) 6= 0 we �nd that 1 � k̂ � n sin
e no morethan n othogonal dire
tions vk 
an exist Rn .Now we establish the following relations by indu
tion on k = 1; 2; : : : ; k̂(v) vk�1 2 Kk � spanfb; Ab; : : : ; Ak�1bg = spanfv0; v1; : : : ; vk�1g � Rn(vi) Fk�1 2 K1 +AKk�1 = Kk(vii) sk 2 Kk 3 xkAll three assertions hold 
learly for k = 1 where the Krylov subspa
e K1 is just the span ofF (0) = �b and v0 = �0=k�0k is sele
ted by the residual option � = �F (0) = b . To progressfrom k to k + 1 we note that�k = Dk�1sk = Ak�1sk �Ask = �Fk�1Æk �Ask 2 Kk +AKk = Kk+1whi
h proves (v) sin
e vk is 
olinear to �k and orthogonality proves that their span is thewhole of Kk. Similarly we haveFk = Fk�1 + �kAsk 2 Kk +AKk = Kk+1whi
h proves (vi). From the representation of adj (Ak) in Lemma 3 we see that by (v) upto and in
luding vk sk+1 = � adj (Ak)Fk 2 Kk+1 + range(Vk) � Kk+1whi
h proves (vii) as the assertion for xk+1 = xk + �ksk is obvious. Sin
e the vj areorthogonal and span su

esively the Krylov subspa
es Kk they must be identi
al ( up tosign 
hanges ) to the bases generated by the Arnoldi pro
ess. As a 
onsequen
e it is wellknow that ea
h Avi�1 2 Ki+1 is a linear 
ombination of the vj with j = 0 : : : i so that thereis an upper Hessenberg (k + 2)� (k + 1) matrix �Hk su
h thatAVk = Vk �Hk and V >k AVk = Hk10



Here Hk is for any k < k̂ exa
tly the (k+1)� (k+1) matrix o

urring in Lemma 2 and 
anbe obtained from �Hk by simply leaving of the last row. It would be ni
e to be show thatthe subdiagonal elements of Hk are positive to have 
omplete 
oin
iden
e with Arnoldi butthat is not an essential property. In any 
ase it follows form our Lemma X in agreementwith [Saa03℄ that det(A) 6= 0 implies that the re
tangular matrix �Hk has always full 
olumnrank (k + 1) and Hk has therefore at least the rank k. Hen
e the adjugates adj (Ak) andadj (Hk) are always nontrivial. Moreover, sin
e the elements in the subdiagonal of Hk are allnonzero we know that the a left nullve
tor t>k of Hk must have a nontrivial �rst 
omponentis it exists at all.Now we 
an proof the remaining assertions in an expli
it fashion. Firstly we obtain forthe step sk+1 using the fa
torized representation of the adjugate from Lemma 4 and theidentity Wk = AVk with Æk+1 = det(Ak)sk+1 = � �Æk+1I=�+ �n�k�1Vk adj (Hk)V>k(I�A=�)�Fk= ��n�k�1Vk adj (Hk)V>k Fkwhere we have used that Fk = VkV >k Fk so that the AFk term 
an
els out.�k+1 = (Ak �A)sk+1= �FkÆk+1 + �n�k�1AVk adj (Hk)V>k Fk= � �Æk+1I � �n�k�1AVk adj (Hk)V>k�Fk= � �Æk+1I � �n�k�1AVk adj (Hk)V>k �F0= �Æk+1F0 + �n�k�1AVk adj (Hk)e0kF0kwhere e0 is the �rst Cartesian basis ve
tor. The last simpli�
ations 
ome about be
ause Fk�F0 2 AKk belong to the null spa
e of the matrix in square bra
kets and v0 = F0=kF0k. Hen
ewe see that indeed the �k and thus the vk and Ak for k < k̂ are 
ompletely indepedendent ofthe 
hoi
e of �k whi
h may produ
e an arbitrary residual in F0 +AVk . Moreover it followsfrom Cramers rule that the last 
omponent in the ve
tor adj (Hk)ek is exa
tly the produ
tof the k subdiagonal elements of the Hessenberg matrix Hk, whi
h are well known to bepositive in the Arnoldi pro
ess. Hen
e this property is maintained by indu
tion if � > 0.Now let us 
onsider the �nal situation �k̂ = 0. By de�nition the previous �k for k < k̂and thus the Fk for k < k̂ � 1 and the 
orresponding subdiagonals of Hk 
annot vanish.Thus we must have 0 = Æk̂Fk̂�1 �AVk̂�1 adj (Hk̂�1)e0kF0kSin
e the 
olums of AVk are linearly independent and adj (Hk̂�1)e0kF0k 
annot be zeroneither Fk̂�1 nor Æk̂ 
an vanish so that the last step sk̂ is neither zero nor singular. Thatimplies that Fk̂ = Fk̂�1 + Ask̂Æk̂ = ��k̂Æk̂ = 0. Generally we have after ea
h full step thatFk is a multiple of �k, whi
h belongs to the orthogonal 
omplement of Kk. That is exa
tlythe de�ning property of an FOM iterate so that we have now proven (ii) and (iii).Sin
e �k is obtained by a line-sear
h minimizing kFk�1 + �Askk22 we must have exa
tlyF>k Ask = 0. We now proof by indu
tion on k < k̂ the de�ning property of GMRES namelythat F>k Asj for all 0 < j � k. It does hold for k = 1 = j as we have just shown. Sin
e fork > 1 Fk = Fk�1 + �kAsk = ��kDk�1sk + (1� �k)Fk�1 = �k + (1� �k)Fk�1the orthogonality of Fk to all Asj for j < k follows from the indu
tion hypothesis F>k�1Asjand the fa
t that �k?Kk 3 Asj . �To illustrate the above result in an extreme situation let us 
onsider the 
ase whereA or more generally AA�10 is equal to the right shift matrix so that for any ve
tor u =(�1; �2; : : : �n�1; �n)> 2 RnA(�1; �2; : : : �n�1; �n)> = (�2; �3; : : : �n�1; �1)>11



In other words A is zero ex
ept for 1's in the subdiagonal and the (1; n) element. Sin
eAA> = I this 
y
li
 permutation matrix is orthogonal and thus 
ertainly normal, whi
ha

ording to the usual linear algebra folklore suggests that GMRES should not do toobadly. In fa
t we �nd for the right hand side b = (1; 0 : : : 0; 0)> and x0 = 0 that by GMRESalso xk = 0 for k = 1 : : : n� 1 and only the very last, namely n-th step leads to the solutionxn = x� = (0; 0 : : : 0; 1)>. Moreover the vk are the Cartesian basis ve
tors ek and all matri
esHk = V >k AVk have the null-ve
tors sk+1 = ek+1, whi
h means in parti
ular that FOM isnever de�ned.6 Numeri
al resultsThe adjoint Broyden methods are applied to several nonlinear equation problems. Thesubset of nonlinear equation problems with variable dimension of the Mor�e test set [MGH81℄is sele
ted. The results for these test problems should give an overview of the performan
eof the variants of the adjoint Broyden method. Additionally, three spe
i�
 test problems aresele
ted to investigate the 
onvergen
e properties of the adjoint Broyden methods in moredetail. For that purpose the problem dimensions and initial states are varied. The iterationis globalized by a derivative-free line sear
h in the range of F . This line sear
h was proposedin [Gri86℄ to prove global 
onvergen
e of Broyden's method and it is adapted to the adjointBroyden's method in [S
h07, Se
. 4.3.2℄.The 
ompa
t storage variants of the adjoint Broyden method are implemented in the
ode abrnlq2 given as Matlab and C routine. For the 
onsidered test problems and theMatlab 
ode derivatives are evaluated by applying AD by hand. The appli
ation of the C
ode uses the AD tool ADOL-C. As proposed in Se
tion 4, we 
onsider three variants of thealgorithm. These variants are either applied to the original fun
tion or to the pre
onditionedfun
tion 
hoosing A�1 = F 0(x0) or A�1 = �F (x0)>F 0(x0)F (x0)=F (x0)>F (x0)� I .The nonlinear equation problems with s
alable dimension of the Mor�e test set are givenin Table 1. Table 1: Nonlinear equation problems of Mor�e test setNumber Name Referen
e(21) Extended Rosenbro
k fun
tion [Spe75℄(22) Extended Powell singular fun
tion [Spe75℄(26) Trigonometri
 fun
tion [Spe75℄(27) Brown almost-linear fun
tion [Bro69℄(28) Dis
rete boundary value fun
tion [MC79℄(29) Dis
rete integral equation fun
tion [MC79℄(30) Broyden tridiagonal fun
tion [Bro65℄(31) Broyden banded fun
tion [Bro71℄The 
olumn Number represents the number of the problem in [MGH81℄. Additionallythe performan
e of the adjoint Broyden updates is examined in more detail for three spe
i�
test problems:
12



Test fun
tion 1: The dis
rete integral equation fun
tion (29) in the Mor�e test set givenby x = (x(i))i=1:::n, F (x) = (fi(x))i=1:::n, andfi(x) = x(i)+h2 (1� ti) iXj=1 tj(x(j) + tj + 1)3+h2 ti nXj=i+1(1� tj)(x(j) + tj + 1)3:Here h = 1=(n+ 1) and ti = ih. The fun
tion F is di�erentiable and its Ja
obian is dense.The default initial iterate is 
hosen by x0 = (ti(ti � 1))i=1:::n.Test fun
tion 2: The extended Rosenbro
k fun
tion (21) in the Mor�e test set given byx = (x(i))i=1:::n, F (x) = (fi(x))i=1:::n, andfi(x) = ( 10�x(i+1) � x2(i)� if i odd1� x(i�1) if i even :The fun
tion is di�erentiable and its Ja
obian is tridiagonal. The default initial iterate is
hosen by x0 = (�1:2; 1;�1:2; 1; : : :).Test fun
tion 3: A matrix X 2 Rd�d is sought as the matrix 
ube root for a given realdiagonalizable matrix Z 2 Rd�d , i.e.,X3 = X �X �X = Z: (2)The eigenvalue de
omposition of Z = TDT�1 yields the diagonal matrixD = diagf�1; : : : ; �dg.Denoting D1=3 = diagf�1=31 ; : : : ; �1=3d g;one obtains for X = TD1=3T�1 the identityX3 = TDT�1 = Z:Thus problem (2) has a solution and 
an be formulated as nonlinear equation problem byF (X) = X3 � Z = 0 2 Rd�dwith dimension n = d2. In the implementation the matrix X is asso
iated row-wise withthe state ve
tor x = (x(i)), wherex([k�1℄d+l) = Xk;l for k; l = 1; : : : ; d:Here we 
hoose Z = tridiag(�1; 2;�1). As default initial iterate the identity matrix X0 =I 2 Rd�d is used. Note that the (i; j)-th entry of X impa
ts all elements in the i-th row aswell as the j-th 
olumn of X2. Consequently the same entry impa
ts all elements of X3,whi
h means that the Ja
obian of this test fun
tion F (X) is dense and has thus d4 nonzeroentries.Convergen
e results for Mor�e test set fun
tions To illustrate the performan
e ofthe adjoint Broyden update methods, the number of iterations needed to rea
h 
onvergen
ewith a reasonable toleran
e are 
ompared. Additionally, the run times required for the wholeiteration pro
ess are stated. For that purpose, the C version of the program is 
ompiledusing g

 4.1 and exe
uted on a PC with AMD Athlon(tm) 64 X2 Dual Core Pro
essor3800+ with 2 GHz and 512 KB 
a
he size. 13



The results for the higher dimensional nonlinear equation problems of the Mor�e test setwith default initial iterates are displayed in Table 2. The 
ompa
t storage representation ofthe adjoint Broyden method is 
ompared to the full storage representation based on updatingan LU fa
torization of Ak . The update is evaluated by an algorithm of Bennett [Ben65℄.The numbers in the �rst 
olumn refer to the number of the test problem in [MGH81℄.If not otherwise stated, these tests are performed for the dimension n = 1000 using theinitial iterates as proposed in the test set. The iteration is performed up to a toleran
e oftolF = 10�14 in the residual kF (xi)k2 and at most 500 iterations.Table 2: Results of Mor�e test set for default initial iteratesfull adj. adjoint Broyden variantTest problem Broy. (0) (1) (2)(21) (a) { 183 190 {(b) 0.64 0.59(
) 177; 0 184; 0(21) (a) 15 14 20 {(P1) (b) 0.36 0.40 0.78(
) 24; 24 24; 24 26; 26(22) (a) { 44 44 {(b) 0.05 0.05(
) 9; 4 14; 7(22) (a) 28 28 28 {(P1) (b) 0.68 0.79 1.10(
) 0; 0 0; 0 0; 0(26)1 (a) 14 13 14 116(b) 0.36 0.03 0.04 0.41(
) 3; 1 3; 0 2; 0 117; 7(26)1 (a) 17 17 21 {(P1) (b) 0.43 0.49 0.85(
) 1; 0 1; 0 4; 1(27)2 (a) 9 9 9 226(b) 3.1e-4 3.9e-4 4.1e-4 0.13(
) 1; 0 0; 0 0; 0 0; 0(27)2 (a) 237 237 276 {(P1) (b) 9.4e-3 0.17 0.27(
) 464; 464 464; 464 547; 545
full adj. adjoint Broyden variantTest problem Broy. (0) (1) (2)(28) (a) 4 4 4 4(P1) (b) 0.10 0.13 0.16 0.08(
) 0; 0 0; 0 0; 0 0; 0(29) (a) 8 7 8 8(b) 5.39 5.13 8.75 5.27(
) 0; 0 0; 0 0; 0 0; 0(29) (a) 5 5 6 6(P1) (b) 3.25 3.98 6.86 4.18(
) 0; 0 0; 0 0; 0 0; 0(30) (a) 51 51 53 89(b) 1.26 0.09 0.09 0.14(
) 2; 0 2; 0 1; 0 1; 0(30) (a) 15 15 15 18(P1) (b) 0.37 0.44 0.61 0.35(
) 0; 0 0; 0 0; 0 0; 0(31)3 (a) 55 42 30 70(b) 1.42 0.10 0.09 0.17(
) 18; 0 10; 0 3; 0 58; 0(31)3 (a) 19 19 18 36(P1) (b) 0.49 0.54 0.72 0.68(
) 0; 0 0; 0 0; 0 1; 0(P1) pre
onditioned problem with A�1 = F 0(x0), (a) iteration 
ounts, (b) run times inse
onds, (
) additional linesear
h trials; sign 
hange in step multiplier, default problemdimension n = 10001 Initial iterate is 
hosen with x0 = 12 x̂0 with x̂0 as proposed in the test set. Otherwiseno 
onvergen
e is a
hieved for dimension n = 1000.2 dimension is n = 10, toleran
e is tolF = 10�123 toleran
e is tolF = 10�12As one 
an see nothing is gained by the 
ompa
t storage implementations when the initialJa
obian F 0(x0) is evaluated, fa
torized and then used as a pre
onditioner, whi
h is mathe-mati
ally equivalent to starting the adjoint Broyden method with A0 = F 0(x0). Then thereis essentially no saving with regards to the linear algebra e�ort. However on the test prob-lems 21 and 22 our dense implementation of full adjoint Broyden does not work at all, whereas the �rst two 
ompa
t storage versions work quite ni
ely. Judging by our experien
e so farthe trouble of evaluating adjoint ve
tors, i.e. row-ve
tor Ja
obian produ
ts seems to pay o�sin
e the third version based ex
lusively on Ja
obian-ve
tor produ
ts performes signi�
antlyworse on these smooth but nonlinear problems. All three versions generate identi
al iterateson aÆne problems, of 
ourse. On test problem 3 with diagonal pre
onditioning the �rst two
ompa
t storage versions generate virtually the same iterates as the full storage vesion butthe run-time is redu
ed by a fa
tor of ten, whi
h is not surprising sin
e n = 1000. Similarbene�ts are obtained for problems 30 and 31 when the pre
onditioner is a multiple of theidentity. Here pre
onditioning by the initial Ja
obian redu
es the number of iterations butdoes prolong the runtime signi�
antly. Hen
e we may 
on
lude that the 
ompa
t storageimplementation is indeed quite eÆ
ient, espe
ially when the overall number of steps is onlya fra
tion of the problem dimension. 14



In addition the problems of the Mor�e test set are solved for initial iterates further awayfrom the solution. The approa
h of multiplying the initial iterate by a s
alar fa
tor totest the performan
e of a method is suggested in [MGH81℄. Table 3 displays the requirediterations and run times. The 
hoi
e of the dimension n and the toleran
e tolF for thesetest problems is the same as before.Table 3: Results of Mor�e test set for distant initial iteratesfull adj. adjoint Broyden variantTest problem Broy. (0) (1) (2)(21), (P1) (a) 6 4 12 {100x0 (b) 0.15 0.13 0.46(
) 2; 2 2; 2 4; 4(22) (a) { 45 65 {100x0 (b) 0.05 0.09(
) 9; 5 27; 12(22), (P1) (a) 34 34 34 {100x0 (b) 0.81 0.92 1.30(
) 0; 0 0; 0 0; 0(26) (a) { 34 24 130�10x0 (b) 0.08 0.08 0.49(
) 18; 10 5; 2 180; 89(26), (P1) (a) 47 47 48 185�10x0 (b) 1.21 1.34 1.94 3.88(
) 1; 0 1; 0 1; 0 11; 7(27)4 (a) 18 18 148 {20x0 (b) 5.9e-4 8.4e-4 0.04(
) 7; 3 3; 1 164; 54(27)4, (P1) (a) 58 58 93 {20x0 (b) 2.1e-3 4.7e-3 0.01(
) 63; 44 40; 18 110; 92
full adj. adjoint Broyden variantTest problem Broy. (0) (1) (2)(28), (P1) (a) 24 24 24 {100x0 (b) 0.59 0.69 0.96(
) 1; 0 1; 0 2; 0(29) (a) 20 16 14 38100x0 (b) 18.08 10.57 14.87 25.17(
) 1; 0 0; 0 0; 0 9; 0(29), (P1) (a) 26 26 26 {100x0 (b) 16.71 17.51 28.22(
) 0; 0 0; 0 0; 0(30)5 (a) { { 67 {100x0 (b) 0.12(
) 8; 0(30)5, (P1) (a) 56 57 57 {100x0 (b) 1.37 1.62 2.28(
) 20; 0 20; 0 17; 0(31)5 (a) { { 48 {10x0 (b) 0.16(
) 7; 0(31)5, (P1) (a) 35 35 35 {10x0 (b) 0.90 1.03 1.44(
) 8; 0 8; 0 10; 0(P1) pre
onditioned problem with A�1 = F 0(x0), (a) iteration 
ounts, (b) run times inse
onds, (
) additional linesear
h trials; sign 
hange in step multiplier, default problemdimension n = 10004 dimension is n = 10, toleran
e is tolF = 10�125 toleran
e is tolF = 10�12From remoter initial points the di�eren
e between Version 1 and 2 of the 
ompa
t storageimplementation be
omes more marked. The latter requires only about half the storage butseems to do a better job at dis
arding older information as des
ribed at the end of Se
tion 4.Hen
e it su

eeds on problems 30 and 31 with diagonal pre
onditioning where the originalmethod fails. Obviously, some kind of restart must be developed, espe
ially in view ofproblem 27 where the iteration 
ounts ex
eeds the dimension. In su
h 
ases one also needsa transition from the 
ompa
t to the full storage s
heme, whi
h is yet to be developed.Performan
e on spe
ial test problems 1-3 For the spe
i�
 test problem fun
tions,varying problem dimensions and initial iterates the Matlab version of the adjoint Broydenvariants are 
ompared to the build-in Matlab fun
tion fsolve for the solution of nonlin-ear equations. For the test fun
tions 1 and 3 tolF = 10�14 and for the test fun
tion 2tolF = 10�12. The maximal number of iterations allowed is again imax = 500. Here the runtimes for the pre
onditioned problems in
lude the run time to evaluate and fa
torize theinitial Ja
obian. Apparently Matlab uses some version of the Levenberg Marquardt method,whi
h leads to signi�
antly smaller iterations 
ounts 
ompared to the diagonally pre
ondi-tioned adjoint Broyden method. However, the total runtimes are always signi�
antly larger.Presumably, be
ause a lot of e�ort goes into the di�eren
ing for Ja
obian approximations.For remote initial points the pre
onditioning may not pay even in terms of the iterationnumber and 
ertainly with respe
t to the run-time. Obviously the very 
heap diagonalpre
onditiong approa
h is a good idea and sometimes makes the di�eren
e between su

essand failure. So we have also �xed the the diagonal s
aler � at the initial point, whereas wethe 
ompa
t storage representation allows easily to readjust it repeatedly at virtually noextra 
ost. 15



Table 4: Results of test fun
tion 1adjoint Broyden variant fsolveTest problem (0) (1) (2)default initial iterate 100x0, varying problem dimension nn = 10 (a) 16 14 37(b) 1.5e-2 1.2e-2 2.5e-2n = 10 (P1) (a) 21 21 { 12(b) 2.3e-2 2.2e-2 0.21n = 10 (P2) (a) 22 21 {(b) 2.2e-2 2.0e-2n = 100 (a) 16 14 37(b) 5.5e-2 5.4e-2 0.14n = 100 (P1) (a) 26 26 { 13(b) 0.14 0.15 3.38n = 100 (P2) (a) 22 22(b) 9.1e-2 0.10 {n = 1000 (a) 16 14 38(b) 1.48 1.72 3.41n = 1000 (P1) (a) 26 26 { 15(b) 34.89 36.53 515n = 1000 (P2) (a) 22 22 {(b) 1.83 2.78default problem dimension n = 100, varying s
aling of initial iterate10x0 (a) 8 8 12(b) 3.3e-2 3.5e-2 4.3e-210x0 (P1) (a) 8 8 10 8(b) 8.2e-2 8.6e-2 8.4e-2 1.910x0 (P2) (a) 9 9 10(b) 4.2e-2 4.3e-2 4.2e-2500x0 (a) 49 18 98(b) 0.21 6.8e-2 0.51500x0 (P1) (a) 75 75 { 19(b) 0.40 0.46 4.6500x0 (P2) (a) 32 32 {(b) 0.12 0.141000x0 (a) 81 20 101(b) 0.42 7.4e-2 0.541000x0 (P1) (a) 121 121 { 23(b) 0.74 0.82 5.61000x0 (P2) (a) 36 36 {(b) 0.15 0.17(P1) pre
onditioned problem with A�1 = F 0(x0), (P2) pre
onditioned problem withA�1 = �F (x0)>F 0(x0)F (x0)=F (x0)>F (x0)� I , (a) iteration 
ounts, (b) run timesTable 5: Results of test fun
tion 2adjoint Broyden variant fsolveTest problem (0) (1)default initial iterate x0, varying problem dimension n, tolF = 1e � 12n = 10 (a) 188 206(b) 0.38 0.50n = 10 (P1) (a) 14 19 17(b) 1.4e-2 1.4e-2 0.19n = 10 (P2) (a) 146 148(b) 0.19 0.19n = 100 (a) 182 189(b) 0.34 0.36n = 100 (P1) (a) 14 19 23(b) 2.6e-2 3.0e-2 0.40n = 100 (P2) (a) 144 145(b) 0.22 0.21n = 1000 (a) 183 189(b) 2.0 1.7n = 1000 (P1) (a) 14 19 18(b) 1.3 1.9 12.0n = 1000 (P2) (a) 144 145(b) 1.5 1.1default problem dimension n = 100, varying s
aling of initial iterate2x0 (a) 28 371(b) 1.8e-2 3.32x0 (P1) (a) 5 11 25(b) 1.8e-2 2.2e-2 0.282x0 (P2) (a) 181 174(b) 0.41 0.3410x0 (a) { 497(b) 9.010x0 (P1) (a) 4 10 10(b) 1.7e-2 2.1e-2 0.1610x0 (P2) (a) 437 387(b) 6.9 4.3100x0 (a) { {(b)100x0 (P1) (a) 4 11 13(b) 1.7e-2 2.1e-2 0.14100x0 (P2) (a) { {(b)(P1) pre
onditioned problem with A�1 = F 0(x0), (P2) pre
onditioned problem withA�1 = �F (x0)>F 0(x0)F (x0)=F (x0)>F (x0)� I , (a) iteration 
ounts, (b) run times inse
onds, default problem dimension n = 100, default initial iterate 100x016



Table 6: Results of test fun
tion 3adjoint Broyden variant fsolveTest problem (0) (1) (2)default initial iterate x0, varying problem dimension nn = 100 (a) 23 32 {(b) 3.1e-2 5.6e-2n = 100 (P1) (a) 18 19 { 7(b) 8.2e-2 9.3e-2 0.24n = 100 (P2) (a) 18 19 {(b) 3.1e-2 3.8e-2n = 1024 (a) 42 48 {(b) 0.94 1.7n = 1024 (P1) (a) 39 40 { 9(b) 15.0 15.9 52.4n = 1024 (P2) (a) 39 40 {(b) 0.91 1.36n = 4900 (a) 74 79 {(b) 16.2 27.1n = 4900 (P1) (a) 65 67 { 10(b) 704 724 2772n = 4900 (P2) (a) 65 67 {(b) 14.8 21.9default problem dimension n = 100, varying s
aling of initial iterate10x0 (a) 65 27 145(b) 9.0e-2 4.4e-2 0.3310x0 (P1) (a) 35 34 { 15(b) 0.11 0.13 0.5210x0 (P2) (a) 35 34 {(b) 5.5e-2 6.7e-2100x0 (a) 210 36 212(b) 0.84 5.7e-2 0.80100x0 (P1) (a) 49 49 { 24(b) 0.14 0.17 0.82100x0 (P2) (a) 49 50 {(b) 7.3e-2 0.101000x0 (a) { 46 175(b) 7.2e-2 0.571000x0 (P1) (a) 60 60 31(b) 0.16 0.20 { 1.081000x0 (P2) (a) 60 60 {(b) 9.1e-2 0.12Comparison of limited memory appra
hes Finally, we report some preliminary re-sults on the limited memory implementation sket
hed in Se
tion 4, where the 
olumns ofVk;Wk and Hk are periodi
ally overwritten on
e k ex
eeds a 
ertain limit m. We use a lineartest problem so that there is no mathemati
al di�eren
e between our various 
ompa
t stor-age versions and we may use the one that has almost exa
tly the same memory requirementas GMRES, namely it stores the m� n matrix V and the m�m matrix H .Figure 1 
ompares Matlab's GMRES solver with restart to the limited memory imple-mentation of the adjoint Broyden's method. For this test the 2D Poisson equation withDiri
hlet boudary 
onditons on a square domain and �ve-point dis
retization is solved. Al-though this yields a symmetri
 linear problem whi
h 
ould be ta
kled by a GC method weuse it here to 
ompare the general nonsymmetri
 solvers. The dimension of the test problemis n = 100 and it is solved upto a toleran
e of tolF = 10�12.Without limiting the memory GMRES and adjoint Broyden are mathemati
ally equiv-alent Krylov spa
e methods and rea
h the required toleran
e at the 15th iteration. Byrestri
ting the number m we destroy the Krylov subspa
e property and the 
onvergen
ebe
omes signi�
antly slower. As one 
an see from the plot in 1 GMRES(m) takes abouttwi
e as many steps as our 'periodi
' adjoint Broyden version. That may be explainableby the fa
t that on GMRES with restart every m steps utilizes on average information inonly m=2 dire
tions about the problem fun
tion, whereas adjoint Broyden uses m of themthroughout. Stri
tly speaking this means also that as far as the linear algebra is 
on
ernedthe GMRES(m) iterations 
ost only about half as mu
h, though there is probably a lot of
ommon overhead, espe
ially if m is small. Our main 
on
ern is of 
ourse the number ofiterations sin
e we assume that ea
h fun
tion evaluation is quite expensive.
17



Figure 1: Comparison of limited memory adjoint Broyden and GMRES
limited memory adjoint Broyden’s method

Matlab’s GMRES function with restart
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lusion and OutlookIn this paper we have developed several 
ompa
t storage implementations of the AdjointBroyden method and shown that on aÆne problems they all yield identi
al iterates to GM-RES. For that result we assumed exa
t line-sear
hes, whi
h is quite natural and realisti
 inthe aÆne 
ase. From a numeri
al linear algebra point of view our treatment is somewhat un-satisfa
tory in that we have barely given any 
onsideration to issues of round-o� propagation.In parti
ular we have not worried about the fa
t that applying the 
ompa
t representationof the inverse of Ak or its adjugate to the 
urrent residual amounts to orthogonalisationby unmodi�ed Gram-S
hmidt. From a more nonlinear point of view getting approximatingJa
obians right with a 
ouple of digits is already a quite satisfa
tory a
hievement so thatnumeri
al e�e
ts at level of the ma
hine pre
ision or even its root are of little 
on
ern. Nev-ertheless it should be investigated whether one my design at an implementation for generalnonlinear problems that automati
ally redu
es to the standard GMRES pro
edure on aÆneproblems.For the nonlinear s
enario of greater importan
e are issue related to the diagonal (re)s
alingof the initial Ja
obian and the thorny issue if and how to reset the pro
edure when the stor-age limits are rea
hed or older information appears to be
ome obsolete. For that purposeone might monitor the subdiagonal entries in the proje
ted Ja
obian Hk or the entries inR. They must all vanish exa
tly in the aÆne 
ase and should therefore be rather small nearthe roots of smooth fun
tions. Their relative size might also allow a smarter sele
tion of thedire
tions to be dis
arded.8 AknowledgementsThe �rst author performed his resear
h for his paper at the IRISA Rennes, where he greatlybene�ted from the hospitality and the GMRES expertise of Bernard Phlippe and his 
ol-leagues. 18
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