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Abstract

The classical singular value decomposition for a matrix A ∈ Cm×n is a canonical form
for A that also displays the eigenvalues of the Hermitian matrices AA∗ and A∗A. In
this paper, we develop a corresponding decomposition for A that provides the Jordan
canonical forms for the complex symmetric matrices AAT and AT A. More generally, we
consider the matrix triple (A,G1, G2), where G1 ∈ Cm×m, G2 ∈ Cn×n are invertible and
either complex symmetric and complex skew-symmetric, and we provide a canonical form
under transformations of the form (A,G1, G2) 7→ (XT AY, XT G1X, Y T G2Y ), where X, Y
are nonsingular.

Keywords singular value decomposition, canonical form, complex bilinear forms, complex
symmetric matrix, complex skew-symmetric matrix, Hamiltonian matrix, Takagi factoriza-
tion.
AMS subject classification. 65F15, 65L80, 65L05, 15A21, 34A30, 93B40.

1 Introduction

In [3] Bunse-Gerstner and Gragg derived an algorithm for computing the Takagi factorization
A = UT ΣU , U unitary, for a complex symmetric matrix AT = A ∈ Cn×n. The Takagi
factorization is just a special case of the singular value decomposition and combines two
important aspects: computation of singular values (i.e., eigenvalues of A∗A and AA∗) and
exploitation of structure with respect to complex bilinear forms (here, the symmetry of A is
exploited by choosing U and UT as unitary factors for the singular value decomposition).

These two aspects can be combined in a completely different way. Instead of computing
the singular values of a general matrix A ∈ Cm×n and thus revealing the eigenvalues of AA∗

and A∗A, we may ask for a canonical form for A that reveals the eigenvalues of the complex
symmetric matrices AAT and AT A. In this paper, we compute such a form by solving a
more general problem: instead of restricting ourselves to the matrix A, we consider a triple
of matrices (A,G1, G2) with A ∈ Cm×n, G1 ∈ Cm×m and G2 ∈ Cn×n, where G1 and G2
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are nonsingular and either complex symmetric or complex skew-symmetric. Then we derive
canonical forms under transformations of the form

(A,G1, G2) 7→ (ACF, G1,CF, G2,CF) := (XT AY, XT G1X, Y T G2Y ), (1.1)

with nonsingular matrices X ∈ Cm×m and Y ∈ Cn×n. This canonical form will allow the
determination of the eigenstructure of the pair of structured matrices

H = G−1
2 AT G−1

1 A, Ĥ = G−1
1 AG−1

2 AT ,

because we find that

Y −1HY = (Y −1G−1
2 Y −T )(Y T AT X)(X−1G−1

1 X−T )(XT AY ) = G−1
2,CF

AT
CFG−1

1,CF
ACF, (1.2)

X−1ĤX = (X−1G−1
1 X−T )(XT AY )(Y −1G−1

2 Y −T )(Y T AT X) = G−1
1,CF

ACFG−1
2,CF

AT
CF. (1.3)

For the special case G1 = Im and G2 = In, we obtain H = AT A and Ĥ = AAT and thus,
an appropriate canonical form (1.1) will display the eigenvalues of AT A and AAT via the
identities (1.2) and (1.3). In the general case, if GT

1 = (−1)sG1 and GT
2 = (−1)tG2 with

s, t ∈ {0, 1}, then the matrices H and Ĥ satisfy

HT G2 = (−1)sAT G−1
1 A = (−1)sG2H, ĤT G1 = (−1)tAG−1

2 AT = (−1)tG1Ĥ, (1.4)

i.e., H and Ĥ are either selfadjoint or skew-adjoint with respect to the complex bilinear form
induced by G2 or G1, respectively. Indeed, setting

〈x, y〉G1 = yT G1x, 〈x, y〉G2 = yT G2x (1.5)

for x, y ∈ Cn, the identities (1.4) can be rewritten as

〈Hx, y〉G2 = (−1)s〈x,Hy〉G2 and 〈Ĥx, y〉G1 = (−1)t〈x, Ĥy〉G1 for all x, y ∈ Cn.

Indefinite inner products and related structured matrices have been intensively studied in
the last few decades with main focus on real bilinear or complex sesquilinear forms, see
[1, 4, 10, 14] and the references therein and, in particular, [5]. In recent years, there has also
been interest in matrices that are structured with respect to complex bilinear forms, because
such matrices do appear in applications such as the frequency analysis of high speed trains
[7, 11].

Besides revealing the eigenstructure of the matrices H and Ĥ, the canonical form (1.1)
also allows to determine the eigenstructure of the double-sized structured matrix pencil

λG −A = λ

[
G1 0
0 G2

]
−

[
0 A

AT 0

]
,

because we have that[
X 0
0 Y

]T (
λ

[
G1 0
0 G2

]
−

[
0 A

AT 0

]) [
X 0
0 Y

]
= λ

[
G1,CF 0

0 G2,CF

]
−

[
0 ACF

AT
CF 0

]
.
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The idea of generalizing the concept of the singular value decomposition to indefinite inner
products is not new and has been considered in [2] for the case of complex Hermitian forms.
The canonical forms presented here are the analogue in the case of complex bilinear forms.
This case is more involved, because one has to make a clear distinction between symmetric
and skew-symmetric bilinear forms, in contrast to the sesquilinear case where Hermitian
and skew-Hermitian forms are closely related. Indeed, an Hermitian matrix can be easily
transformed into a skew-Hermitian matrix by scalar multiplication with the imaginary unit
i, but this is not true for complex symmetric matrices. Therefore, we have to treat the three
cases separately that G1 and G2 are both symmetric, both skew-symmetric, or that one of
the matrices is symmetric and the another skew-symmetric.

The remainder of the paper is organized as follows. In Section 2 we recall the definition
of several structured matrices and review their canonical forms. In Section 3 we develop
structured factorizations that are needed for the proofs of the results in the following sections.
In the Sections 4–6 we present the canonical forms for matrix triples (A,G1, G2). In Section 4
we consider the case that both G1 and G2 are complex symmetric, in Section 5 we assume
that G1 is complex symmetric and G2 is complex skew-symmetric, and Section 6 is devoted
to the case that both G1 and G2 are complex skew-symmetric.

Throughout the paper we use the following notation. In and 0n denote the n×n identity
and n × n zero matrices, respectively. The m × n zero matrix is denoted by 0m×n and ej is
the jth column of the identity matrix In, or, equivalently, the jth standard basis vector of
Cn. Moreover, we denote

Rn :=

 0 1
. .

.

1 0

 , Σn :=

 (−1)0 0
. . .

0 (−1)n−1

 , Jn =
[

0 In

−In 0

]
.

The transpose and conjugate transpose of a matrix A are denoted by AT and A∗, respectively.
We use A1 ⊕ . . .⊕ Ak to denote a block diagonal matrix with diagonal blocks A1, . . . , Ak. If
A = [aij ] ∈ Cn×m and B ∈ C`×k, then A ⊗ B = [aijB] ∈ Cn`×mk denotes the Kronecker
product of A and B. We use Jn(λ) to denote the n × n upper triangular Jordan block
associated with the eigenvalue λ and we set Γn = ΣnRn, i.e., we have

Jn(λ) =


λ 1 0

λ
. . .
. . . 1

0 λ

 , Γn =

 0 (−1)0

. .
.

(−1)n−1 0

 .

2 Matrices structured with respect to complex bilinear forms

Our general theory will cover and generalize results for the following classes of matrices.

Definition 2.1 Let G ∈ Cn×n be invertible and let H,K ∈ Cn×n such that

(GH)T = GH and (GK)T = −GK.

1. If G is symmetric, then H is called G-symmetric and K is called G-skew-symmetric.

2. If G is skew-symmetric, then H is called G-Hamiltonian and K is called G-skew-
Hamiltonian.
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Thus, G-symmetric and G-skew-Hamiltonian matrices are selfadjoint in the inner product
induced by G while G-skew-symmetric and G-Hamiltonian matrices are skew-adjoint. Observe
that transformations of the form

(M, G) 7→ (P−1MP, P T GP ), P ∈ Cn×n invertible

preserve the structure of M with respect to G, i.e., if, for example, M = H is G-Hamiltonian,
then P−1HP is P T GP -Hamiltonian as well. Thus, instead of working with G directly, one
may first transform G to a simple form using Takagi’s factorization for complex symmetric
and complex skew-symmetric matrices, see [3, 8, 15]. This factorization is a special case of
the well-known singular value decomposition.

Theorem 2.2 (Takagi’s factorization) Let G ∈ Cn×n be complex symmetric. Then there
exists a unitary matrix U ∈ Cn×n such that

G = Udiag(σ1, . . . , σn)UT , where σ1, . . . , σn ≥ 0.

There is a variant for complex skew-symmetric matrices (see [8]). This result is a just a
special case of the Youla form [17] for general complex matrices.

Theorem 2.3 (Skew-symmetric analogue of Takagi’s factorization) Let K ∈ Cn×n

be complex skew-symmetric. Then there exists a unitary matrix U ∈ Cn×n such that

K = U

([
0 r1

−r1 0

]
⊕ · · · ⊕

[
0 rk

−rk 0

]
⊕ 0n−2k

)
UT ,

where r1, . . . , rn ∈ R \ {0}.

As immediate corollaries, we obtain the following well-known results.

Corollary 2.4 Let G ∈ Cn×n be complex symmetric and let rank G = r. Then there exists a
nonsingular matrix X ∈ Cn×n such that

XT GX =
[

Ir 0
0 0

]
.

Corollary 2.5 Let G ∈ Cm×m be complex skew-symmetric and let rank G = r. Then r is
even and there exists a nonsingular matrix X ∈ Cn×n such that

XT GX =
[

Jr/2 0
0 0

]
.

Next, we review canonical forms for the classes of matrices defined in Definition 2.1. These
canonical forms are closely related to the well-known canonical forms for pairs of matrices
that are complex symmetric or complex skew-symmetric, see [16] for an overview on this
topic. Proofs of the following results can be found, e.g., in [12].

Theorem 2.6 (Canonical form for G-symmetric matrices) Let G ∈ Cn×n be symmet-
ric and invertible and let H ∈ Cn×n be G-symmetric. Then there exists an invertible matrix
X ∈ Cn×n such that

X−1HX = Jξ1(λ1)⊕ . . .⊕ Jξm(λm), XT GX = Rξ1 ⊕ . . .⊕Rξm ,

where λ1, . . . , λm ∈ C are the (not necessarily pairwise distinct) eigenvalues of H.
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Theorem 2.7 (Canonical form for G-skew-symmetric matrices) Let G ∈ Cn×n be
symmetric and invertible and let K ∈ Cn×n be G-skew-symmetric. Then there exists an
invertible matrix X ∈ Cn×n such that

X−1KX = Kc ⊕Kz, XT GX = Gc ⊕Gz,

where
Kc = Kc,1 ⊕ · · · ⊕ Kc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Kz = Kz,1 ⊕ · · · ⊕ Kz,mo+me , Gz = Gz,1 ⊕ · · · ⊕Gz,mo+me ,

and where the diagonal blocks are given as follows:

1) blocks associated with pairs (λj ,−λj) of nonzero eigenvalues of K:

Kc,j =
[
Jξj

(λj) 0
0 −Jξj

(λj)

]
, Gc,j =

[
0 Rξj

Rξj
0

]
,

where λj ∈ C \ {0} and ξj ∈ N for j = 1, . . . ,mc when mc > 0;

2) blocks associated with the eigenvalue λ = 0 of K:

Kz,j = Jηj (0), Gz,j = Γηj ,

where ηj ∈ N is odd for j = 1, . . . ,mo when mo > 0, and

Kz,j =
[
Jηj (0) 0

0 −Jηj (0)

]
, Gz,j =

[
0 Rηj

Rηj 0

]
,

where ηj ∈ N is even for j = mo + 1, . . . ,mo + me when me > 0.

The matrix K has the non-zero eigenvalues λ1, . . . , λmc ,−λ1, . . . ,−λmc (not necessarily pair-
wise distinct), and the additional eigenvalue 0 if mo + me > 0.

Theorem 2.8 (Canonical form for G-Hamiltonian matrices) Let G ∈ C2n×2n be com-
plex skew-symmetric and invertible and let H ∈ C2n×2n be G-Hamiltonian. Then there exists
an invertible matrix X ∈ C2n×2n such that

X−1HX = Hc ⊕Hz, XT GX = Gc ⊕Gz,

where
Hc = Hc,1 ⊕ · · · ⊕ Hc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Hz = Hz,1 ⊕ · · · ⊕ Hz,mo+me , Gz = Gz,1 ⊕ · · · ⊕Gz,mo+me ,

and where the diagonal blocks are given as follows:

1) blocks associated with pairs (λj ,−λj) of nonzero eigenvalues of H:

Hc,j =
[
Jξj

(λj) 0
0 −Jξj

(λj)

]
, Gc,j =

[
0 Rξj

−Rξj
0

]
,

where λj ∈ C \ {0} with arg(λj) ∈ [0, π) and ξj ∈ N for j = 1, . . . ,mc when mc > 0;
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2) blocks associated with the eigenvalue λ = 0 of H:

Hz,j =
[
Jξj

(0) 0
0 −Jξj

(0)

]
, Gz,j =

[
0 Rξj

−Rξj
0

]
,

where ηj ∈ N is odd for j = 1, . . . ,mo when mo > 0, and

Hz,j = Jηj (0), Gz,j = Γηj

where ηj ∈ N is even for j = mo + 1, . . . ,mo + me when me > 0.

The matrix H has the non-zero eigenvalues λ1, . . . , λmc ,−λ1, . . . ,−λmc (not necessarily pair-
wise distinct), and the additional eigenvalue 0 if mo + me > 0.

Theorem 2.9 (Canonical form for G-skew-Hamiltonian matrices) Let G ∈ C2n×2n

be complex skew-symmetric and invertible and let K ∈ C2n×2n be G-skew-Hamiltonian. Then
there exists an invertible matrix X ∈ C2n×2n such that

X−1KX = K1 ⊕ · · · ⊕ Km, XT GX = G1 ⊕ · · · ⊕Gm,

where

Kj =
[
Jξj

(λj) 0
0 Jξj

(λj)

]
, Gj =

[
0 Rξj

−Rξj
0

]
.

The matrix K has the (not necessarily pairwise distinct) eigenvalues λ1, . . . , λm.

The following lemma on existence and uniqueness of structured square roots of structured
matrices will frequently be used.

Lemma 2.10 Let G ∈ Cn×n be invertible and let H ∈ Cn×n be invertible and such that
HTG = GH.

1. If G ∈ Cn×n is complex symmetric (i.e., H ∈ Cn×n is G-symmetric), then there exists
a square root S ∈ Cn×n of H that is a polynomial in H and that satisfies σ(S) ⊆ {z ∈
C : arg(z) ∈ [0, π)}. The square root is uniquely determined by these properties. In
particular, S is G-symmetric.

2. If G ∈ Cn×n if complex skew-symmetric (i.e., H ∈ Cn×n is G-skew-Hamiltonian, then
there exists a square root S ∈ Cn×n of H that is a polynomial in H and that satisfies
σ(S) ⊆ {z ∈ C : arg(z) ∈ [0, π)}. The square root is uniquely determined by these
properties. In particular, S is G-skew-Hamiltonian.

Proof. By the discussion in Chapter 6.4 in [9], we obtain for both cases that a square root
S of H with σ(S) ⊆ {z ∈ C : arg(z) ∈ [0, π)} exists, is unique, and can be expressed as a
polynomial in H. It is straightforward to check that a matrix that is a polynomial in H is
again G-symmetric or G-skew-Hamiltonian, respectively.
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3 Structured factorizations

In this section, we develop basic factorizations that will be needed for computing the canonical
forms in the Sections 4–6. We start with factorizations for matrices B ∈ Cm×n satisfying
BT B = I or BT B = 0.

Lemma 3.1 If B ∈ Cm×n satisfies BT B = In, then m ≥ n and there exists a nonsingular
matrix X ∈ Cm×m such that

XT B =
[

In

0

]
, XT X = Im.

Proof. By assumption B has full column rank. So there exists B̃ ∈ Cm×(m−n) such that
X̃ =

[
B B̃

]
∈ Cm×m is invertible. Then

X̃T X̃ =

[
In BT B̃

B̃T B B̃T B̃

]
,

and with

X1 =
[

In −BT B̃
0 Im−n

]
,

we have

(X̃X1)T (X̃X1) =
[

In 0
0 B̃T (I −BBT )B̃

]
.

Since X̃X1 is nonsingular, so is the complex symmetric matrix B̃T (I − BBT )B̃. By Corol-
lary 2.4, there exists a nonsingular matrix X2 such that

XT
2

(
B̃T (I −BBT )B̃

)
X2 = Im−n.

With

X = X̃X1

[
In 0
0 X2

]
we then obtain XT X = Im. Note that

X =
[

B B̃
] [

In −BT B̃
0 Im−n

] [
In 0
0 X2

]
=

[
B (I −BBT )B̃X2

]
,

and hence XT X = Im implies

XT B =
[

In

0

]
. �

Lemma 3.2 If B ∈ Cm×n satisfies rank B = n and BT B = 0, then m ≥ 2n and there exists
a unitary matrix X ∈ Cm×m such that

XT B =

 B0

0n

0

 , XT X =

 0 In 0
In 0 0
0 0 Im−2n

 ,

where B0 ∈ Cn×n is upper triangular invertible.
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Proof. We present a constructive proof which allows to determine the matrix X numerically.
We may assume that m ≥ 2, otherwise the result holds trivially. Let

Be1 = u1 + iv1, u1, v1 ∈ Rm.

Then (using e.g. a Householder transformation, see [6]) there exists an orthogonal matrix
Q1 ∈ Rm×m such that QT

1 u1 = α1e1 and 0 ≤ α1 ∈ R. Let ṽ1 be the vector formed by the
trailing m − 1 components of QT

1 v1. Then (using e.g. a QR-decomposition, see [6]) there
exists an orthogonal matrix Q2 ∈ R(m−1)×(m−1) such that QT

2 ṽ1 = β1 and 0 ≤ β1 ∈ R. With
U1 = Q1(1⊕Q2), then

UT
1 B =

 α1 + iv11 b1

iβ1 b2

0 B1

 ,

where B1 ∈ C(m−2)×(n−1), b1, b2 ∈ C1×(n−1), and v11 ∈ R. Since U1 is real orthogonal, we
have

(UT
1 B)T (UT

1 B) = BT B = 0,

and hence,

(α1 + iv11)2 − β2
1 = 0, (α1 + iv11)b1 + iβ1b2 = 0, BT

1 B1 + bT
1 b1 + bT

2 b2 = 0n−2. (3.1)

From the first identity in (3.1), it follows that v11 = 0 and α1 = β1. Since α1, β1 ≥ 0 we
have that α1 = β1 > 0, because otherwise we would have that rankB ≤ n − 1, which is a
contradiction. With this, the last two identities in (3.1) imply that b1 = −ib2, BT

1 B1 = 0,
and thus,

UT
1 B =

 α1 −ib2

iα1 b2

0 B1

 , B1 ∈ C(m−2)×(n−1).

One can easily verify that rank B1 = n− 1.
Applying the same procedure inductively to B1 we obtain the existence of a real orthogonal

matrix U2 such that

UT
2 B1 =

 α2 −ib3

iα2 b3

0 B2

 , B2 ∈ C(m−4)×(n−2).

Similarly, as above we can show that α2 > 0 and rankB2 = n− 2.
Continuing the procedure, we finally obtain a real orthogonal matrix U such that

UB =



α1 −ib12 . . . −ib1n

iα1 b12 . . . b1n

α2 . . . −ib2n

iα2 . . . b2n

. . .
...

αn

−iαn

0
...
0



.
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and from this we obtain that m ≥ 2n. Moreover, we see that every other row of UB is a
multiple by i of the preceding row. Thus, setting

Z1 =
√

2
2

[
1 −i
1 i

]
, Z = Z1 ⊕ . . .⊕ Z1︸ ︷︷ ︸

n

⊕Im−2n,

letting P be a permutation matrix for which premultiplication has the effect of re-arranging
the first 2n rows of a matrix in the order of 1, 3, . . . , 2n− 1, 2, 4, . . . , 2n, and introducing the
unitary matrix X = (PZU)T , we then have

XT B =
√

2



α1 −ib12 . . . −ib1n

α2 . . . −ib2n

. . .
...

αn

0
...
0


.

and we obtain furthermore that

ZZT =
[

0 1
1 0

]
⊕ . . .⊕

[
0 1
1 0

]
︸ ︷︷ ︸

n

⊕ Im−2n and XT X =

 0 In 0
In 0 0
0 0 Im−2n

 ,

using the fact that U is real orthogonal, i.e., UT U = I.

Proposition 3.3 Let B ∈ Cm×n and suppose that rank B = n, rank BT B = n0 ≤ n, and
that δ0 = n− n0 is the dimension of the null space of BT B. Then there exists a nonsingular
X ∈ Cm×m such that

XT B =
[

0
B0

]
m− n

n
, XT X = In1 ⊕

 0 0 Iδ0

0 In0 0
Iδ0 0 0

 ,

where B0 ∈ Cn×n is nonsingular and n1 = m− n− δ0.

Proof. Since BT B is complex symmetric, by the assumption and by Corollary 2.4, there
exists a nonsingular matrix Y ∈ Cn×n such that

Y T BT BY =
[

In0 0
0 0δ0

]
.

Let B̃ ∈ Cm×n0 be the matrix formed by the leading n0 columns of BY . By Lemma 3.1 there
exists X1 ∈ Cm×m such that

XT
1 B̃ =

[
In0

0

]
, XT

1 X1 = Im

9



and we obtain that

XT
1 BY =

[
In0 B12

0 B1

]
.

Since

(XT
1 BY )T (XT

1 BY ) = Y T BT BY =
[

In0 0
0 0δ0

]
,

we have that
B12 = 0, BT

1 B1 = 0δ0 .

By assumption, B has full column rank, so this also holds for B1 ∈ C(m−n0)×δ0 . By Lemma 3.2
there exists a nonsingular matrix X2 ∈ C(m−n0)×(m−n0) such that

XT
2 B1 =

 T
0δ0

0

 , XT
2 X2 =

 0 Iδ0 0
Iδ0 0 0
0 0 In1

 ,

where T ∈ Cδ0×δ0 is nonsingular and n1 = m−n0−2δ0 = m−n−δ0. With X3 = X1(In0⊕X2)
we then have

XT
3 BY =


In0 0
0 T
0 0δ0

0 0

 , XT
3 X3 = In0 ⊕

[
0 Iδ0

Iδ0 0

]
⊕ In1 .

Let P be the permutation that rearranges the block rows of XT
3 BY in the order 4, 3, 1, 2 and

let X = X3P
T . Then

XT BY =


0 0
0 0δ0

In0 0
0 T

 , XT X = In1 ⊕

 0 0 Iδ0

0 In0 0
Iδ0 0 0

 .

Post-multiplying Y −1 to the first of these two equations and setting

B0 =
[

In0 0
0 T

]
Y −1,

we have the asserted form.

In the previous results we have obtained factorizations for matrices B such that BT B is
the identity or zero. We get similar results if BT JmB = Jn or BT JmB = 0.

Lemma 3.4 If B ∈ C2m×2n satisfies BT JmB = Jn, then m ≥ n and there exists a nonsin-
gular matrix X ∈ C2m×2m such that

XT B1 =


In 0
0 0
0 In

0 0

 , XT JmX = Jm.

Proof. The proof is similar to that for Lemma 3.1 and is hence omitted.
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Lemma 3.5 Let b ∈ C2m. Then there is a unitary matrix X ∈ C2m×2m such that

XT b = αe1, XT JmX = Jm.

Proof. We again present a constructive proof that can be implemented into a numerical
algorithm. Let b = [bT

1 , bT
2 ]T with b1, b2 ∈ Cm and let H2 ∈ Cm×m be a unitary matrix ( e.g.

a Householder matrix) such that
HT

2 b2 = βe1.

With H−1
2 b1 = [b11, . . . , bm1]T one then can determine (e.g. via a QR factorization) a unitary

matrix

G =
1

b̃11

[
b̄11 −β
β̄ b11

]
, b̃11 =

√
|b11|2 + |β|2, such that GT

[
b11

β

]
=

[
b̃11

0

]
.

Note that GT J2G = J2. Next, determine a unitary matrix H1 ∈ Cm×m such that

HT
1 [̃b11, b21, . . . , bm1]T = αe1.

Finally, let

X =
[

H−T
2 0
0 H2

]
Ĝ

[
H1 0
0 H−T

1

]
,

where Ĝ ∈ C2m×2m is the unitary matrix obtained by replacing the (1, 1), (1,m+1), (m+1, 1),
and (m+1,m+1) elements of the identity matrix I2m with the corresponding elements of G,
respectively. It is easily verified that X is unitary and satisfies XT b = αe1 and XT JmX = Jm.

Lemma 3.6 If B ∈ C2m×n satisfies rank B = n and BT JmB = 0, then m ≥ n and there
exists a unitary matrix X ∈ C2m×2m such that

XT B =
[

B0

0

]
, XT JmX = Jm,

where B0 ∈ Cn×n is upper triangular invertible.

Proof. By Lemma 3.5, there exists a unitary matrix X1 such that

XT
1 B =


b11 bT

1

0 B22

0 bT
3

0 B24

 , XT
1 JmX1 = Jm,

where b1, b3 ∈ Cn−1. Since rankB = n, we have b11 6= 0 and from

(X1B)T Jm(X1B) = BT JmB = 0,

it follows that

b3 = 0,

[
B22

B24

]T

Jm−1

[
B22

B24

]
= 0.
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Applying the same procedure inductively to
[

B22

B24

]
, we obtain a unitary matrix X such that

XT B =
[

B0

0

]
n

2m− n
, XT JmX = Jm,

where B0 ∈ Cn×n is upper triangular and invertible.

Proposition 3.7 Let B ∈ C2m×n. Suppose that rank B = n, rank BT JmB = 2n0 ≤ n, i.e.,
δ0 = n − 2n0 is the dimension of the null space of BT JmB. Then there exists an invertible
matrix X ∈ C2m×2m such that

XT B =
[

0
B0

]
2m− n

n
, XT JmX = Jn1 ⊕

 0 0 Iδ0

0 Jn0 0
−Iδ0 0 0

 ,

where B0 ∈ Cn×n is nonsingular and n1 = m− n0 − δ0.

Proof. Since BT JmB is complex skew-symmetric, by the assumption and Corollary 2.5 there
exists a nonsingular matrix Y ∈ Cn×n such that

Y T BT JmBY =
[

Jn0 0
0 0δ0

]
.

Let B1 ∈ C2m×2n0 be the matrix formed by the leading 2n0 columns of BY . By Lemma 3.4
there exists a nonsingular X1 ∈ C2m×2m such that

XT
1 B1 =


In0 0
0 0
0 In0

0 0

 , XT
1 JmX1 = Jm.

We have

XT
1 BY =


In0 0 B13

0 0 B23

0 In0 B33

0 0 B43

 .

Since XT
1 JmX1 = Jm also implies X1JmXT

1 = Jm, then from

(XT
1 BY )T Jm(XT

1 BY ) = Y T BT JmBY =
[

Jn0 0
0 0δ0

]
,

we obtain that

B13 = 0, B33 = 0,

[
B23

B43

]T

Jm−n0

[
B23

B43

]
= 0δ0 .

Since B has full column rank, so does
[

B23

B43

]
. By Lemma 3.6, there exists an invertible

X2 ∈ C(2m−2n0)×(2m−2n0) such that

XT
2

[
B23

B43

]
=

[
B̃0

0

]
, XT

2 Jm−n0X2 = Jm−n0 ,
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where B̃0 ∈ Cδ0×δ0 is invertible. Let P1 be a permutation that interchanges the second and
third block rows of XT

1 BY and set X3 = X1P
T
1 (I2n0 ⊕X2). Then

XT
3 BY =


I2n0 0
0 B̃0

0 0
0 0
0 0


2n0

δ0

n1

δ0

n1

, XT
3 JmX3 = Jn0 ⊕ Jm−n0 ,

where n1 = m − n0 − δ0. (For convenience, we have split the zero block row of XT
3 BY into

three block rows.) Let P be a permutation that changes the block rows of XT
3 BY to the

order 3, 5, 4, 1, 2 by pre-multiplication, and let X = X3P
T (I2n1 ⊕ (−Iδ0)⊕ I2n0+δ0). Then

XT BY =


0 0
0 0

I2n0 0
0 B̃0


2n1

δ0

2n0

δ0

, XT JmX = Jn1 ⊕

 0 0 Iδ0

0 Jn0 0
−Iδ0 0 0

 .

Post-multiplying Y −1 to the first equation and setting B0 = (I2n0 ⊕ B̃0)Y −1, we have the
asserted form.

In this section we have presented preliminary factorizations that will form the basis in
determining the canonical forms in the following sections.

4 Canonical form for G1, G2 complex symmetric

In this section we derive the canonical form for the matrix triple (A,G1, G2) for the case
that G1, G2 are complex symmetric. We start with the special case that the matrix A under
consideration is square and nonsingular.

Theorem 4.1 Let A ∈ Cn×n be nonsingular and let G1, G2 ∈ Cn×n be complex symmetric
and nonsingular. Then there exist nonsingular matrices X, Y ∈ Cn×n such that

XT AY = Jξ1(µ1) ⊕ · · ·⊕ Jξm(µm),
XT G1X = Rξ1 ⊕ · · ·⊕ Rξm ,
Y T G2Y = Rξ1 ⊕ · · ·⊕ Rξm ,

(4.1)

where µj ∈ C \ {0}, arg µj ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m. Moreover, for the G2-
symmetric matrix H = G−1

2 AT G−1
1 A and for the G1-symmetric matrix Ĥ = G−1

1 AG−1
2 AT we

have that
Y −1HY = J 2

ξ1
(µ1) ⊕ · · ·⊕ J 2

ξm
(µm),

X−1ĤX = J 2
ξ1

(µ1)T⊕ · · ·⊕J 2
ξm

(µm)T .
(4.2)

Moreover, the form (4.1) is unique up to the simultaneous permutation of blocks in the right
hand side of (4.1).

Proof. By Lemma 2.10, H has a unique G2-symmetric square root S ∈ Cn×n satisfying
σ(S) ⊆ {µ ∈ C \ {0} : arg(µ) ∈ [0, π)}. Then by Theorem 2.6, there exists a nonsingular

13



matrix Ỹ ∈ Cn×n such that

SCF := Ỹ −1SỸ = Jξ1(µ1) ⊕ · · ·⊕ Jξm(µm),
G1,CF := Ỹ T G2Ỹ = Rξ1 ⊕ · · ·⊕ Rξm ,

HCF := Ỹ −1HỸ = J 2
ξ1

(µ1)⊕ · · ·⊕J 2
ξm

(µm),

where µj ∈ C \ {0}, arg µj ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m. (Here, the third line
immediately follows from H = S2). Using G−1

1 AH = ĤG−1
1 A and the fact that G−1

1 A is
nonsingular, we find that H and Ĥ are similar. Since the canonical form of G-symmetric
matrices in Theorem 2.6 is uniquely determined by the Jordan canonical form, we obtain
from Theorem 2.6 that the canonical forms of the pairs (H, G2) and (Ĥ, G1) coincide. In
particular, this implies the existence of a nonsingular matrix X̃ ∈ Cn×n such that

HCF = X̃−1ĤX̃ = J 2
ξ1

(µ1)⊕ · · ·⊕J 2
ξm

(µm),
G1,CF = X̃T G1X̃ = Rξ1 ⊕ · · ·⊕ Rξm .

Finally setting X = G−1
1 X̃−T and Y = A−1G1X̃SCF, we obtain

XT AY = X̃−1G−1
1 AA−1G1X̃SCF = SCF

XT G1X = X̃−1G−1
1 G1G

−1
1 X̃−T = (X̃T G1X̃)−1 = G−1

1,CF
= G1,CF

Y T G2Y = ST
CFX̃T G1A

−T G2A
−1G1X̃SCF

= ST
CFX̃T G1X̃X̃−1Ĥ−1X̃SCF

= ST
CFG1,CF(HCF)−1SCF = G1,CFSCF(HCF)−1SCF = G1,CF

as desired, where we used that SCF is G1,CF-symmetric and that S2
CF = HCF. It is now easy

to check that Y −1HY and X−1ĤX have the claimed forms. Concerning uniqueness, we note
that the form (4.1) is already uniquely determined by the Jordan structure of H and by the
restriction µj ∈ C \ {0}, arg µj ∈ [0, π).

The canonical form for the case that A is singular or rectangular is more involved, because
then the matrices H and Ĥ may be singular as well. The key idea in the proof of Theorem 4.1
was the construction of a G2-symmetric square root of H, but if H is singular, then such a
square root need not exists. (For example, the Rn-symmetric nilpotent matrix Jn(0) does
not have any square root let alone a Rn-symmetric one.) A second difficulty comes from the
fact that the Jordan structures of H and Ĥ may be different. For example, if

A =


0 0 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , G1 = R2 ⊕R2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , G2 = R1 ⊕R3 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


then we obtain that

H = G−1
2 AT G−1

1 A =


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Ĥ = G−1
1 AG−1

2 AT =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 .

Here H has a 1× 1 and a 3× 3 Jordan block associated with the eigenvalue zero, while Ĥ has
two 2× 2 Jordan blocks associated with zero. In general, we obtain the following result.

14



Theorem 4.2 Let A ∈ Cm×n and let G1 ∈ Cm×m, G2 ∈ Cn×n be complex symmetric and
nonsingular. Then there exist nonsingular matrices X ∈ Cm×m and Y ∈ Cn×n such that

XT AY = Ac ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4,

XT G1X = Gc ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4, (4.3)

Y T G2Y = G̃c ⊕ G̃z,1 ⊕ G̃z,2 ⊕ G̃z,3 ⊕ G̃z,4.

Moreover, for the G2-symmetric matrix H = G−1
2 AT G−1

1 A ∈ Cn×n and for the G1-symmetric
matrix Ĥ = G−1

1 AG−1
2 AT ∈ Cm×m we have that

Y −1HY = Hc ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4,

X−1ĤX = Ĥc ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of H and Ĥ:
Ac, Gc, G̃c have the forms as in (4.1) and Hc, Ĥc have the forms as in (4.2);

1) one block corresponding to n0 Jordan blocks of size 1× 1 of H and m0 Jordan blocks of
size 1× 1 of Ĥ associated with the eigenvalue zero:

Az,1 = 0m0×n0 , Gz,1 = Im0 , G̃z,1 = In0 , Hz,1 = 0n0 , Ĥz,1 = 0m0 ;

2) blocks corresponding to a pair of j × j Jordan blocks of H and Ĥ associated with the
eigenvalue zero:

Az,2 =
`1⊕

i=1
J2(0) ⊕

`2⊕
i=1

J4(0) ⊕ · · ·⊕
`ν⊕

i=1
J2ν(0) ,

Gz,2 =
`1⊕

i=1
R2 ⊕

`2⊕
i=1

R4 ⊕ · · ·⊕
`ν⊕

i=1
R2ν ,

G̃z,2 =
`1⊕

i=1
R2 ⊕

`2⊕
i=1

R4 ⊕ · · ·⊕
`ν⊕

i=1
R2ν ,

Hz,2 =
`1⊕

i=1
J 2

2 (0) ⊕
`2⊕

i=1
J 2

4 (0) ⊕ · · ·⊕
`ν⊕

i=1
J 2

2ν(0) ,

Ĥz,2 =
`1⊕

i=1
J 2

2 (0)T⊕
`2⊕

i=1
J 2

4 (0)T⊕ · · ·⊕
`ν⊕

i=1
J 2

2ν(0)T ,

where `1, . . . , `ν ∈ N∪ {0}; thus, Hz,2 and Ĥz,2 both have each 2`j Jordan blocks of size
j × j for j = 1, . . . , ν;

3) blocks corresponding to a j × j Jordan blocks of H and a (j + 1)× (j + 1) Jordan block
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of Ĥ associated with the eigenvalue zero:

Az,3 =
m1⊕
i=1

[
I1

0

]
2×1

⊕
m2⊕
i=1

[
I2

0

]
3×2

⊕ · · ·⊕
mν−1⊕
i=1

[
Iν−1

0

]
ν×(ν−1)

,

Gz,3 =
m1⊕
i=1

R2 ⊕
m2⊕
i=1

R3 ⊕ · · ·⊕
mν−1⊕
i=1

Rν ,

G̃z,3 =
m1⊕
i=1

R1 ⊕
m2⊕
i=1

R2 ⊕ · · ·⊕
mν−1⊕
i=1

Rν−1 ,

Hz,3 =
m1⊕
i=1

J1(0) ⊕
m2⊕
i=1

J2(0) ⊕ · · ·⊕
mν−1⊕
i=1

Jν−1(0) ,

Ĥz,3 =
m1⊕
i=1

J2(0)T ⊕
m2⊕
i=1

J3(0)T ⊕ · · ·⊕
mν−1⊕
i=1

Jν(0)T ,

where m1, . . . ,mν−1 ∈ N ∪ {0}; thus, Hz,3 has mj Jordan blocks of size j × j and Ĥz,3

has mj Jordan blocks of size (j + 1)× (j + 1) for j = 1, . . . , ν − 1;

4) blocks corresponding to a (j + 1)× (j + 1) Jordan blocks of H and a j × j Jordan block
of Ĥ associated with the eigenvalue zero:

Az,4 =
n1⊕
i=1

[
0 I1

]
1×2

⊕
n2⊕
i=1

[
0 I2

]
2×3

⊕ · · ·⊕
nν−1⊕
i=1

[
0 Iν−1

]
(ν−1)×ν

,

Gz,4 =
n1⊕
i=1

R1 ⊕
n2⊕
i=1

R2 ⊕ · · ·⊕
nν−1⊕
i=1

Rν−1 ,

G̃z,4 =
n1⊕
i=1

R2 ⊕
n2⊕
i=1

R3 ⊕ · · ·⊕
nν−1⊕
i=1

Rν ,

Hz,4 =
n1⊕
i=1

J2(0) ⊕
n2⊕
i=1

J3(0) ⊕ · · ·⊕
nν−1⊕
i=1

Jν(0) ,

Ĥz,4 =
n1⊕
i=1

J1(0)T ⊕
n2⊕
i=1

J2(0)T ⊕ · · ·⊕
nν−1⊕
i=1

Jν−1(0)T ,

where n1, . . . , nν−1 ∈ N ∪ {0}; thus, Hz,4 has nj Jordan blocks of size (j + 1)× (j + 1)
and Ĥz,4 has nj Jordan blocks of size j × j for j = 1, . . . , ν − 1;

The matrices H and Ĥ have 2`j +mj +nj−1 respectively 2`j +mj−1 +nj Jordan of size j× j
for j = 1, . . . , ν, where mν = nν = 0 and where ν is the maximum of the nilpotency index of
H and the nilpotency index of Ĥ.

Moreover, the form (4.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (4.3).

Proof. Clearly, there exist invertible matrices X̃ and Ỹ such that X̃T G1X̃ = Im and
Ỹ T G2Ỹ = In. Thus, replacing A by X̃T AỸ otherwise, we may assume that G1 = Im and
G2 = In. The proof then proceeds by repeatedly applying Proposition 3.3 to the factors of
the full rank decomposition A = B1C1, B1 ∈ Cm×r, C1 ∈ Cr×n, where r = rank A. In this
way, a staircase-like form is obtained in a stepwise reduction procedure. This form can then
further be reduced until the canonical form has been reached. This reduction procedure (al-
though straightforward) is very technical and tedious and is very similar to the corresponding
procedure for the case of complex sesquilinear forms. Therefore, we omit the proof here and
refer the reader to [13].
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Concerning uniqueness, in view of Theorem 4.1 it remains to show that the numbers
`j ,mj , nj are uniquely determined. Note that there exists a unique sequence of subspaces

Eig ν(H, 0) ⊆ Eig ν−1(H, 0) ⊆ · · · ⊆ Eig 1(H, 0) = kerH

where Eig j(H, 0) contains all eigenvectors of H associated with zero that can be extended to
a Jordan chain of length at least j. Define κν = dim

(
Eig ν(H, 0) ∩ ker A

)
and

κj = dim
(
Eig j(H, 0) ∩ ker A

)
− dim

(
Eig j+1(H, 0) ∩ ker A

)
, j = 1, . . . , ν − 1.

Then any eigenvector of H that is associated with a Jordan block of size j × j in the
canonical form and that is also in the kernel of A contributes to κj . Similarly, we define
κ̂ν = dim

(
Eig ν(Ĥ, 0) ∩ ker AT

)
and

κ̂j = dim
(
Eig j(Ĥ, 0) ∩ ker AT

)
− dim

(
Eig j+1(Ĥ, 0) ∩ ker AT

)
, j = 1, . . . , ν − 1.

Then elementary counting yields

κj = `j + nj−1 and κ̂j = `j + mj−1, j = 1, . . . , ν.

If pj respectively p̂j denote the number of Jordan blocks of size j × j in the canonical form
of H and Ĥ, respectively, we also have that

pj = 2`j + mj + nj−1 and p̂j = 2`j + mj−1 + nj , j = 1, . . . , ν.

Hence, we obtain

pj − κj − κ̂j = mj −mj−1, and p̂j − κj − κ̂j = nj − nj−1, j = 1, . . . , ν,

from which we can successively compute mj , nj , j = ν − 1, . . . , 0 using mν = nν = 0. We
furthermore obtain that

`j =
1
2
(pj −mj − nj−1)

for j = 1, . . . , ν. Thus, the numbers `j ,mj , nj are uniquely determined by the invariant
numbers pj , p̂j , κj , κ̂j , j = 1, . . . , ν.

5 Condensed forms for G1 complex symmetric, G2 complex
skew-symmetric

In this section we study the canonical forms for the case that G1 is complex symmetric and
G2 complex skew-symmetric. Again, we start with the canonical form for the case that A is
quadratic and nonsingular.

Theorem 5.1 Let A,G1, G2 ∈ C2n×2n be nonsingular and let G1 be complex symmetric and
G2 be complex skew-symmetric. Then there exists nonsingular matrices X, Y ∈ C2n×2n such
that

XT AY =
[
Jξ1(µ1) 0

0 Jξ1(µ1)

]
⊕ · · ·⊕

[
Jξm(µm) 0

0 Jξm(µm)

]
,

XT G1X =
[

0 Rξ1

Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

Rξm 0

]
,

Y T G2Y =
[

0 Rξ1

−Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

−Rξm 0

]
,

(5.1)
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where µj ∈ C \ {0}, arg µj ∈ [0, π/2), and ξj ∈ N for j = 1, . . . ,m. Moreover,
for the G2-Hamiltonian matrix H = G−1

2 AT G−1
1 A and for the G1-skew-symmetric matrix

Ĥ = G−1
1 AG−1

2 AT we have that

Y −1HY =
[
−J 2

ξ1
(µ1) 0

0 J 2
ξ1

(µ1)

]
⊕ · · ·⊕

[
−J 2

ξm
(µm) 0

0 J 2
ξm

(µm)

]
,

X−1ĤX =
[
J 2

ξ1
(µ1) 0
0 −J 2

ξ1
(µ1)

]T

⊕ · · ·⊕
[
J 2

ξm
(µm) 0
0 −J 2

ξm
(µm)

]T

.

(5.2)

Proof. By Theorem 2.8, there exists a nonsingular matrix Y ∈ Cn×n such that

Y−1HY =
[
Jξ1(λ1) 0

0 −Jξ1(λ1)

]
⊕ · · ·⊕

[
Jξm(λm) 0

0 −Jξm(λm)

]
,

YT G2Y =
[

0 Rξ1

−Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

−Rξm 0

]
,

where λj ∈ C \ {0}, arg(λj) ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m. Next construct the matrix
S̃ such that

Y−1S̃Y =
[
Jξ1(λ1) 0

0 Jξ1(λ1)

]
⊕ · · · ⊕

[
Jξm(λm) 0

0 Jξm(λm)

]
It is easily verified that S̃ is G2-skew-Hamiltonian, that it satisfies S̃2 = H2, and that we have
σ(S̃) ⊆ {z ∈ C \ {0} : arg(z) ∈ [0, π)}. Thus, by the uniqueness property of Lemma 2.10, we
obtain that S̃ is a polynomial in H2. Moreover, applying Lemma 2.10 once more, we obtain
that S̃ has a unique square root S ∈ Cn×n satisfying σ(S) ⊆ {z ∈ C \ {0} : arg(z) ∈ [0, π)}
and

Y−1SY =
[
Jξ1(λ1) 0

0 Jξ1(λ1)

] 1
2

⊕ · · · ⊕
[
Jξm(λm) 0

0 Jξm(λm)

] 1
2

.

In fact, we must have
σ(S) ⊆ {z ∈ C \ {0} : arg(z) ∈ [0, π/2)},

because otherwise S̃ would have eigenvalues λj with arg(λj) ∈ [π, 2π). Clearly, being a
polynomial in S̃ and thus in H2, it follows that S is also a polynomial in H. Let µ2

j = λj and
arg(µj) ∈ [0, π/2). We then obtain by Theorem 2.9 that there exists a nonsingular matrix
Ỹ ∈ Cn×n such that

SCF := Ỹ −1SỸ =
[
Jξ1(µ1) 0

0 Jξ1(µ1)

]
⊕ · · ·⊕

[
Jξm(µm) 0

0 Jξm(µm)

]
,

G
(2)
CF := Ỹ T G2Ỹ =

[
0 Rξ1

−Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

−Rξm 0

]
.

Moreover, using G−1
1 AH = ĤG−1

1 A and the fact that G−1
1 A is nonsingular, we find that H

and Ĥ are similar. Thus, by Theorem 2.7 there exists a nonsingular matrix X̃ ∈ Cn×n such
that

HCF = X̃−1ĤX̃ =
[
−J 2

ξ1
(µ1) 0

0 J 2
ξ1

(µ1)

]
⊕ · · ·⊕

[
−J 2

ξm
(µm) 0

0 J 2
ξm

(µm)

]
,

G
(1)
CF = X̃T G1X̃ =

[
0 Rξ1

Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

Rξm 0

]
.
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Indeed, since Ĥ is similar to H, it has the eigenvalues λj = µ2
j with partial multiplicities

ξj , j = 1, . . . ,m. Since the canonical form of G-skew-symmetric matrices in Theorem 2.7
is uniquely determined by the Jordan canonical form, we find that the pairs (Ĥ, G1) and
(HCF, G1,CF) must have the same canonical form. Observe that SCF is G

(1)
CF -symmetric, but

not a square root of HCF. Instead, it is easy to check that

SCF(HCF)−1SCF =
[
−Iξ1 0

0 Iξ1

]
⊕ · · · ⊕

[
−Iξm 0

0 Iξm

]
.

Using this identity and setting X = G−1
1 X̃−T and Y = A−1G1X̃SCF, we obtain

XT AY = X̃−1G−1
1 AA−1G1X̃SCF = SCF,

XT G1X = X̃−1G−1
1 G1G

−1
1 X̃−T = (X̃T G1X̃)−1 = (G(1)

CF )−1 = G
(1)
CF ,

Y T G2Y = ST
CFX̃T G1A

−T G2A
−1G1X̃SCF

= ST
CFX̃T G1X̃X̃−1Ĥ−1X̃SCF

= ST
CFG

(1)
CF (HCF)−1SCF = G

(1)
CFSCF(HCF)−1SCF = G

(2)
CF .

It is now straightforward to check that Y −1HY and X−1ĤX have the claimed forms. Con-
cerning uniqueness, we note that the form (5.1) is already uniquely determined by the Jordan
structure of H and by the restriction µj ∈ C \ {0}, arg µj ∈ [0, π/2).

Theorem 5.2 Let A ∈ Cm×2n, let G1 ∈ Cm×m be complex symmetric and nonsingular and
let G2 ∈ C2n×2n be complex skew-symmetric and nonsingular. Then there exists nonsingular
matrices X ∈ Cm×m and Y ∈ C2n×2n such that

XT AY = Ac ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4 ⊕Az,5 ⊕Az,6,

XT G1X = Gc ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4 ⊕Gz,5 ⊕Gz,6, (5.3)

Y T G2Y = G̃c ⊕ G̃z,1 ⊕ G̃z,2 ⊕ G̃z,3 ⊕ G̃z,4 ⊕ G̃z,5 ⊕ G̃z,6.

Moreover, for the G2-Hamiltonian matrix H = G−1
2 AT G−1

1 A ∈ C2n×2n and for the G1-skew-
symmetric matrix Ĥ = G−1

1 AG−1
2 AT ∈ Cm×m we have that

Y −1HY = Hc ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4 ⊕Hz,5 ⊕Hz,6,

X−1ĤX = Ĥc ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4 ⊕ Ĥz,5 ⊕ Ĥz,6.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of H and Ĥ:
Ac, Gc, G̃c have the forms as in (5.1) and Hc, Ĥc have the forms as in (5.2);

1) one block corresponding to 2n0 Jordan blocks of size 1 × 1 of H and m0 Jordan blocks
of size 1× 1 of Ĥ associated with the eigenvalue zero:

Az,1 = 0m0×2n0 , Gz,1 = Im0 , G̃z,1 = Jn0 , Hz,1 = 02n0 , Ĥz,1 = 0m0 ;
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2) blocks corresponding to a pair of j × j Jordan blocks of H and Ĥ associated with the
eigenvalue zero:

Az,2 =
`1⊕

i=1
J2(0) ⊕

`2⊕
i=1

J4(0) ⊕ · · ·⊕
`2ν+1⊕
i=1

J4ν+2(0) ,

Gz,2 =
`1⊕

i=1
R2 ⊕

`2⊕
i=1

R4 ⊕ · · ·⊕
`2ν+1⊕
i=1

R4ν+2 ,

G̃z,2 =
`1⊕

i=1
(−Γ2) ⊕

`2⊕
i=1

(−Γ4) ⊕ · · ·⊕
`2ν+1⊕
i=1

(−Γ4ν+2) ,

Hz,2 =
`1⊕

i=1
02 ⊕

`2⊕
i=1

ΣJ 2
4 (0) ⊕ · · ·⊕

`2ν+1⊕
i=1

ΣJ 2
4ν+2(0) ,

Ĥz,2 =
`1⊕

i=1
02 ⊕

`2⊕
i=1

ΣJ 2
4 (0)T ⊕ · · ·⊕

`2ν+1⊕
i=1

ΣJ 2
4ν+2(0)T ,

where `1, . . . , `ν ∈ N∪ {0}; thus, Hz,2 and Ĥz,2 both have each 2`j Jordan blocks of size
j × j for j = 1, . . . , 2ν + 1;

3) blocks corresponding to a 2j × 2j Jordan block of H and a (2j + 1) × (2j + 1) Jordan
block of Ĥ associated with the eigenvalue zero:

Az,3 =
m2⊕
i=1

[
I2

0

]
3×2

⊕
m4⊕
i=1

[
I4

0

]
5×4

⊕ · · ·⊕
m2ν⊕
i=1

[
I2ν

0

]
(2ν+1)×2ν

,

Gz,3 =
m2⊕
i=1

R3 ⊕
m4⊕
i=1

R5 ⊕ · · ·⊕
m2ν⊕
i=1

R2ν+1 ,

G̃z,3 =
m2⊕
i=1

(−Γ2) ⊕
m4⊕
i=1

(−Γ4) ⊕ · · ·⊕
m2ν⊕
i=1

(−Γ2ν) ,

Hz,3 =
m2⊕
i=1

ΣJ2(0) ⊕
m4⊕
i=1

ΣJ4(0) ⊕ · · ·⊕
m2ν⊕
i=1

ΣJ2ν(0) ,

Ĥz,3 =
m2⊕
i=1

ΣJ3(0)T ⊕
m4⊕
i=1

ΣJ5(0)T ⊕ · · ·⊕
m2ν⊕
i=1

ΣJ2ν+1(0)T ,

where m2,m4, . . . ,m2ν ∈ N ∪ {0}; thus, Hz,3 has m2j Jordan blocks of size 2j × 2j and
Ĥz,3 has m2j Jordan blocks of size (2j + 1)× (2j + 1) for j = 1, . . . , ν;

4) blocks corresponding to two (2j−1)×(2j−1) Jordan blocks of H and two 2j×2j Jordan
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blocks of Ĥ associated with the eigenvalue zero:

Az,4 =
m1⊕
i=1


0 I1

0 0
I1 0
0 0


4×2

⊕
m3⊕
i=1


0 I3

0 0
I3 0
0 0


8×6

⊕ · · ·⊕
m2ν−1⊕

i=1


0 I2ν−1

0 0
I2ν−1 0

0 0


4ν×(4ν−2)

,

Gz,4 =
m1⊕
i=1

R4 ⊕
m3⊕
i=1

R8 ⊕ · · ·⊕
m2ν−1⊕

i=1
R4ν ,

G̃z,4 =
m1⊕
i=1

(−Γ2) ⊕
m3⊕
i=1

(−Γ6) ⊕ · · ·⊕
m2ν−1⊕

i=1
(−Γ4ν−2) ,

Hz,4 =
m1⊕
i=1

02 ⊕
m3⊕
i=1

[
ΣJ3(0) 0

0 −ΣJ3(0)

]
⊕ · · ·⊕

m2ν−1⊕
i=1

[
ΣJ2ν−1(0) 0

0 −ΣJ2ν−1(0)

]
,

Ĥz,4 =
m1⊕
i=1

[
J2(0) 0

0 −J2(0)

]T

⊕
m3⊕
i=1

[
ΣJ4(0) 0

0 −ΣJ4(0)

]T

⊕ · · ·⊕
m2ν−1⊕

i=1

[
ΣJ2ν(0) 0

0 −ΣJ2ν(0)

]T

,

where m1,m3, . . . ,m2ν−1 ∈ N ∪ {0}; thus, Hz,4 has 2m2j−1 Jordan blocks of size (2j −
1)× (2j − 1) and Ĥz,4 has 2m2j−1 Jordan blocks of size 2j × 2j for j = 1, . . . , ν;

5) blocks corresponding to a 2j × 2j Jordan block of H and a (2j − 1) × (2j − 1) Jordan
block of Ĥ associated with the eigenvalue zero:

Az,5 =
n1⊕
i=1

[
0 I1

]
1×2

⊕
n3⊕
i=1

[
0 I3

]
3×4

⊕ · · ·⊕
n2ν−1⊕
i=1

[
0 I2ν−1

]
(2ν−1)×2ν

,

Gz,5 =
n1⊕
i=1

R1 ⊕
n3⊕
i=1

R3 ⊕ · · ·⊕
n2ν−1⊕
i=1

R2ν−1 ,

G̃z,5 =
n1⊕
i=1

(−Γ2) ⊕
n3⊕
i=1

(−Γ4) ⊕ · · ·⊕
n2ν−1⊕
i=1

(−Γ2ν) ,

Hz,5 =
n1⊕
i=1

ΣJ2(0) ⊕
n3⊕
i=1

ΣJ4(0) ⊕ · · ·⊕
n2ν−1⊕
i=1

ΣJ2ν(0) ,

Ĥz,5 =
n1⊕
i=1

01 ⊕
n3⊕
i=1

(
ΣJ3(0)

)T⊕ · · ·⊕
n2ν−1⊕
i=1

(
ΣJ2ν−1(0)

)T
,

where n1, n3 . . . , n2ν−1 ∈ N∪{0}; thus, Hz,5 has n2j−1 Jordan blocks of size 2j×2j and
Ĥz,5 has n2j−1 Jordan blocks of size (2j − 1)× (2j − 1) for j = 1, . . . , ν;

6) blocks corresponding to two (2j+1)×(2j+1) Jordan blocks of H and two 2j×2j Jordan
blocks of Ĥ associated with the eigenvalue zero:

Az,6 =
n2⊕
i=1

[
0 0 0 I2

0 I2 0 0

]
4×6

⊕
n4⊕
i=1

[
0 0 0 I4

0 I4 0 0

]
8×10

⊕ · · ·⊕
n2ν⊕
i=1

[
0 0 0 I2ν

0 I2ν 0 0

]
4ν×(4ν+2)

,

Gz,6 =
n2⊕
i=1

R4 ⊕
n4⊕
i=1

R8 ⊕ · · ·⊕
n2ν⊕
i=1

R4ν ,

G̃z,6 =
n2⊕
i=1

(−Γ6) ⊕
n4⊕
i=1

(−Γ10) ⊕ · · ·⊕
n2ν⊕
i=1

(−Γ4ν+2) ,

Hz,6 =
n2⊕
i=1

[
ΣJ3(0) 0

0 −ΣJ3(0)

]
⊕

n4⊕
i=1

[
ΣJ5(0) 0

0 −ΣJ5(0)

]
⊕ · · ·⊕

n2ν⊕
i=1

[
ΣJ2ν+1(0) 0

0 −ΣJ2ν+1(0)

]
,

Ĥz,6 =
n2⊕
i=1

[
ΣJ2(0)T 0

0 −ΣJ2(0)T

]
⊕

n4⊕
i=1

[
ΣJ4(0)T 0

0 −ΣJ4(0)T

]
⊕ · · ·⊕

n2ν⊕
i=1

[
ΣJ2ν(0)T 0

0 −ΣJ2ν(0)T

]
,

21



where n2, n4, . . . , n2ν ∈ N∪{0}; thus, Hz,6 has 2n2j Jordan blocks of size (2j+1)×(2j+1)
and Ĥz,6 has 2n2j Jordan blocks of size 2j × 2j for j = 1, . . . , ν;

The matrices H and Ĥ have 2`2j +m2j +n2j−1 respectively 2`2j +2m2j−1 +2n2j Jordan blocks
of size 2j × 2j for j = 1, . . . , ν and 2`2j+1 + 2m2j+1 + 2n2j respectively 2`2j+1 + m2j + n2j+1

Jordan blocks of size (2j +1)× (2j +1) for j = 0, . . . , ν. Here m2ν+1 = n2ν+1 = 0 and 2ν +1
is the smallest odd number that is larger or equal to the maximum of the nilpotency indices
of H and Ĥ.

Moreover, the form (4.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (4.3).

Proof. Without loss of generality we may assume that G1 = Im and G2 = Jn. The canonical
form is then obtained by repeatedly applying Propositions 3.3 and 3.7 to the factors of the
full rank decomposition A = B1C1, B1 ∈ Cm×r, C1 ∈ Cr×n, where r = rank A. Again, we
omit the detailed proof here and refer the reader to [13]. Uniqueness of the form is proved as
in the proof of Theorem 4.2.

6 Canonical forms for G1, G2 complex skew-symmetric

In this section we finally treat that case that both G1 and G2 are complex skew-symmetric.

Theorem 6.1 Let A ∈ C2n×2n be nonsingular and let G1, G2 ∈ C2n×2n be nonsingular and
complex skew-symmetric. Then there exists nonsingular matrices X, Y ∈ C2n×2n such that

XT AY =
[
Jξ1(µ1) 0

0 Jξ1(µ1)

]
⊕ · · ·⊕

[
Jξm(µm) 0

0 Jξm(µm)

]
,

XT G1X =
[

0 Rξ1

−Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

−Rξm 0

]
,

Y T G2Y =
[

0 −Rξ1

Rξ1 0

]
⊕ · · ·⊕

[
0 −Rξm

Rξm 0

]
,

(6.1)

where µj ∈ C \ {0}, arg µj ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m. Furthermore, for the
G2-skew-Hamiltonian matrix H = G−1

2 AT G−1
1 A and for the G1-skew-Hamiltonian matrix

Ĥ = G−1
1 AG−1

2 AT we have that

Y −1HY =
[
J 2

ξ1
(µ1) 0
0 J 2

ξ1
(µ1)

]
⊕ · · ·⊕

[
J 2

ξm
(µm) 0
0 J 2

ξm
(µm)

]
,

X−1ĤX =
[
J 2

ξ1
(µ1) 0
0 J 2

ξ1
(µ1)

]T

⊕ · · ·⊕
[
J 2

ξm
(µm) 0
0 J 2

ξm
(µm)

]T

.

(6.2)

Proof. The proof proceeds completely analogous to the proof of Theorem 4.1 using
Lemma 2.10 and Theorem 2.9.

Theorem 6.2 Let A ∈ C2m×2n and let G1 ∈ C2m×2m, G2 ∈ C2n×2n be complex skew-
symmetric and nonsingular. Then there exists nonsingular matrices X ∈ C2m×2m and
Y ∈ C2n×2n such that

XT AY = Ac ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4,

XT G1X = Gc ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4, (6.3)

Y T G2Y = G̃c ⊕ G̃z,1 ⊕ G̃z,2 ⊕ G̃z,3 ⊕ G̃z,4.
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Moreover, for the G2-skew-Hamiltonian matrix H = G−1
2 AT G−1

1 A ∈ C2n×2n and for the
G1-skew-Hamiltonian matrix Ĥ = G−1

1 AG−1
2 AT ∈ C2m×2m we have that

Y −1HY = Hc ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4,

X−1ĤX = Ĥc ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of H and Ĥ:
Ac, Gc, G̃c have the forms as in (6.1) and Hc, Ĥc have the forms as in (6.2);

1) one block corresponding to 2n0 Jordan blocks of size 1× 1 of H and 2m0 Jordan blocks
of size 1× 1 of Ĥ associated with the eigenvalue zero:

Az,1 = 02m0×2n0 , Gz,1 = Jm0 , G̃z,1 = Jn0 , Hz,1 = 02n0 , Ĥz,1 = 02m0 ;

2) blocks corresponding to a pair of j × j Jordan blocks of H and Ĥ associated with the
eigenvalue zero:

Az,2 =
`1⊕

i=1
J2(0) ⊕

`2⊕
i=1

J4(0) ⊕ · · ·⊕
`ν⊕

i=1
J2ν(0) ,

Gz,2 =
`1⊕

i=1
Γ2 ⊕

`2⊕
i=1

Γ4 ⊕ · · ·⊕
`ν⊕

i=1
Γ2ν ,

G̃z,2 =
`1⊕

i=1
Γ2 ⊕

`2⊕
i=1

Γ4 ⊕ · · ·⊕
`ν⊕

i=1
Γ2ν ,

Hz,2 =
`1⊕

i=1
02 ⊕

`2⊕
i=1

J 2
4 (0) ⊕ · · ·⊕

`ν⊕
i=1

J 2
2ν(0) ,

Ĥz,2 =
`1⊕

i=1
02 ⊕

`2⊕
i=1

J 2
4 (0)T ⊕ · · ·⊕

`ν⊕
i=1

J 2
2ν(0)T ,

where `1, . . . , `ν ∈ N∪ {0}; thus, Hz,2 and Ĥz,2 both have each 2`j Jordan blocks of size
j × j for j = 1, . . . , ν;

3) blocks corresponding to two j × j Jordan blocks of H and two (j + 1)× (j + 1) Jordan
blocks of Ĥ associated with the eigenvalue zero:

Az,4 =
m1⊕
i=1


0 I1

0 0
I1 0
0 0


4×2

⊕
m2⊕
i=1


0 I2

0 0
I2 0
0 0


6×4

⊕ · · ·⊕
mν⊕
i=1


0 Iν−1

0 0
Iν−1 0
0 0


2ν×(2ν−2)

,

Gz,4 =
m1⊕
i=1

Γ4 ⊕
m2⊕
i=1

Γ6 ⊕ · · ·⊕
mν−1⊕
i=1

Γ2ν ,

G̃z,4 =
m1⊕
i=1

(−1)2Γ2 ⊕
m2⊕
i=1

(−1)3Γ4 ⊕ · · ·⊕
mν−1⊕
i=1

(−1)νΓ2ν−2 ,

Hz,4 =
m1⊕
i=1

02 ⊕
m2⊕
i=1

[
J2(0) 0

0 −J2(0)

]
⊕ · · ·⊕

mν−1⊕
i=1

[
Jν−1(0) 0

0 −Jν−1(0)

]
,

Ĥz,4 =
m1⊕
i=1

[
−J2(0) 0

0 J2(0)

]T

⊕
m2⊕
i=1

[
−J3(0) 0

0 J3(0)

]T

⊕ · · ·⊕
mν−1⊕
i=1

[
−Jν(0) 0

0 Jν(0)

]T

,
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where m1, . . . ,mν−1 ∈ N∪ {0}; thus, Hz,4 has 2mj Jordan blocks of size j × j and Ĥz,4

has 2mj Jordan blocks of size (j + 1)× (j + 1) for j = 1, . . . , ν − 1;

4) blocks corresponding to two (j + 1)× (j + 1) Jordan blocks of H and two j × j Jordan
blocks of Ĥ associated with the eigenvalue zero:

Az,6 =
n1⊕
i=1

[
0 0 0 I1

0 I1 0 0

]
2×4

⊕
n2⊕
i=1

[
0 0 0 I2

0 I2 0 0

]
4×6

⊕ · · ·⊕
nν−1⊕
i=1

[
0 0 0 Iν−1

0 Iν−1 0 0

]
(2ν−2)×2ν

,

Gz,6 =
n1⊕
i=1

Γ2 ⊕
n2⊕
i=1

Γ4 ⊕ · · ·⊕
nν−1⊕
i=1

Γ2ν−2 ,

G̃z,6 =
n1⊕
i=1

(−1)2Γ4) ⊕
n2⊕
i=1

(−1)3Γ6 ⊕ · · ·⊕
nν−1⊕
i=1

(−1)νΓ2ν ,

Hz,6 =
n1⊕
i=1

[
J2(0) 0

0 −J2(0)

]
⊕

n2⊕
i=1

[
J3(0) 0

0 −J3(0)

]
⊕ · · ·⊕

nν−1⊕
i=1

[
Jν(0) 0

0 −Jν(0)

]
,

Ĥz,6 =
n1⊕
i=1

[
−J1(0) 0

0 J1(0)

]T

⊕
n2⊕
i=1

[
−J2(0) 0

0 J2(0)

]T

⊕ · · ·⊕
nν−1⊕
i=1

[
−Jν−1(0) 0

0 Jν−1(0)

]T

,

where n1, . . . , nν−1 ∈ N∪ {0}; thus, Hz,6 has 2nj Jordan blocks of size (j + 1)× (j + 1)
and Ĥz,6 has 2nj Jordan blocks of size j × j for j = 1, . . . , ν − 1;

Then the matrices H and Ĥ have 2`j + 2mj + 2nj−1 respectively 2`j + 2mj−1 + 2nj Jordan
blocks of size j × j for j = 1, . . . , ν. Here ν is the maximum of the nilpotency indices of H
and Ĥ.

Moreover, the form (6.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (6.3).

Proof. Without loss of generality we may assume that G1 = Jm and G2 = Jn. The canonical
form is then obtained by repeatedly applying Proposition 3.7 to the factors of the full rank
decomposition A = B1C1, B1 ∈ C2m×r, C1 ∈ Cr×2n, where r = rankA. Again, we omit the
detailed proof here and refer the reader to [13]. Uniqueness of the form is proved as in the
proof of Theorem 4.2.

7 Conclusion

We have presented canonical forms for matrix triples (A,G1, G2) where G1, G2 are complex
symmetric or complex skew-symmetric and nonsingular. The canonical form for A can be
interpreted as a variant of the singular value decomposition, because the form also displays the
Jordan canonical forms of the structured matrices H = G−1

2 AT G−1
1 A and Ĥ = G−1

1 AG−1
2 AT .
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