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Abstract

The classical singular value decomposition for a matrix A € C™*" is a canonical form
for A that also displays the eigenvalues of the Hermitian matrices AA* and A*A. In
this paper, we develop a corresponding decomposition for A that provides the Jordan
canonical forms for the complex symmetric matrices AA”T and AT A. More generally, we
consider the matrix triple (4, Gy, G3), where G; € C™*™ G5 € C™*" are invertible and
either complex symmetric and complex skew-symmetric, and we provide a canonical form
under transformations of the form (4, Gy, G) — (XTAY, XTG1 X, YTG,Y), where X, Y
are nonsingular.

Keywords singular value decomposition, canonical form, complex bilinear forms, complex
symmetric matrix, complex skew-symmetric matrix, Hamiltonian matrix, Takagi factoriza-
tion.
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1 Introduction

In [3] Bunse-Gerstner and Gragg derived an algorithm for computing the Takagi factorization
A = UTXU, U unitary, for a complex symmetric matrix AT = A € C™". The Takagi
factorization is just a special case of the singular value decomposition and combines two
important aspects: computation of singular values (i.e., eigenvalues of A*A and AA*) and
exploitation of structure with respect to complex bilinear forms (here, the symmetry of A is
exploited by choosing U and U as unitary factors for the singular value decomposition).
These two aspects can be combined in a completely different way. Instead of computing
the singular values of a general matrix A € C™*" and thus revealing the eigenvalues of AA*
and A*A, we may ask for a canonical form for A that reveals the eigenvalues of the complex
symmetric matrices AAT and ATA. In this paper, we compute such a form by solving a
more general problem: instead of restricting ourselves to the matrix A, we consider a triple
of matrices (A,G1,G2) with A € C™*" G; € C"™™ and Gy € C"*", where G and Go
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are nonsingular and either complex symmetric or complex skew-symmetric. Then we derive
canonical forms under transformations of the form

(A, G1,Go) = (Ack, G1.or, Gacr) = (XTAY, XTG1 X, YT GyY), (1.1)

with nonsingular matrices X € C™*™ and Y € C™*™. This canonical form will allow the
determination of the eigenstructure of the pair of structured matrices

H=Gy'ATG'A, H=G'AG;'AT,
because we find that

Y'Y = (YOG DH(YTATX)(X'G X T (XTAY) = Gy L AL.GT L Acr, (1.2)

2,CF 1,CcF
XT'HX = (X'GU'XTT)(XTAY)(VIG 'Y D (YTATX) = Gy Lo Ace Gyt Al (1.3)

For the special case G1 = I,,, and Go = I,,, we obtain H = AT A and H = AAT and thus,
an appropriate canonical form (1.1) will display the eigenvalues of AT A and AAT via the
identities (1.2) and (1.3). In the general case, if GI = (~1)°G; and GI = (—1)!Gs with
s,t € {0, 1}, then the matrices H and H satisfy

H'Gy = (1)°ATGT' A = (-1)°GoH, H'Gy = (-1)'AG;'AT = (=1)'GiH, (1.4

i.e., H and H are either selfadjoint or skew-adjoint with respect to the complex bilinear form
induced by G2 or G1, respectively. Indeed, setting

(@ y)e, =y Gz, (z,y)q, =y  Cax (1.5)
for x,y € C", the identities (1.4) can be rewritten as
<Hx,y)G2 = (_1)8<$)H9>G2 and <7:(x7y>G1 = (_1)t<xaﬂy>G1 for all z,y € c".

Indefinite inner products and related structured matrices have been intensively studied in
the last few decades with main focus on real bilinear or complex sesquilinear forms, see
[1, 4, 10, 14] and the references therein and, in particular, [5]. In recent years, there has also
been interest in matrices that are structured with respect to complex bilinear forms, because
such matrices do appear in applications such as the frequency analysis of high speed trains
[7, 11].

Besides revealing the eigenstructure of the matrices H and M, the canonical form (1.1)
also allows to determine the eigenstructure of the double-sized structured matrix pencil

. [G o 0 A
)\Q—A—/\[O GQ]_[AT 0},

because we have that
x 01" (6 0] [0 AN[X 0
0 Y 0 Gs AT 0 0 Y

=\ Gl,CF 0 _ 0 Acr
0 GQ,CF A(I;F 0 ’



The idea of generalizing the concept of the singular value decomposition to indefinite inner
products is not new and has been considered in [2] for the case of complex Hermitian forms.
The canonical forms presented here are the analogue in the case of complex bilinear forms.
This case is more involved, because one has to make a clear distinction between symmetric
and skew-symmetric bilinear forms, in contrast to the sesquilinear case where Hermitian
and skew-Hermitian forms are closely related. Indeed, an Hermitian matrix can be easily
transformed into a skew-Hermitian matrix by scalar multiplication with the imaginary unit
7, but this is not true for complex symmetric matrices. Therefore, we have to treat the three
cases separately that G; and Gy are both symmetric, both skew-symmetric, or that one of
the matrices is symmetric and the another skew-symmetric.

The remainder of the paper is organized as follows. In Section 2 we recall the definition
of several structured matrices and review their canonical forms. In Section 3 we develop
structured factorizations that are needed for the proofs of the results in the following sections.
In the Sections 4-6 we present the canonical forms for matrix triples (A, Gy, G2). In Section 4
we consider the case that both G; and G are complex symmetric, in Section 5 we assume
that (G1 is complex symmetric and G9 is complex skew-symmetric, and Section 6 is devoted
to the case that both G; and G5 are complex skew-symmetric.

Throughout the paper we use the following notation. I, and 0,, denote the n x n identity
and n X n zero matrices, respectively. The m X n zero matrix is denoted by 0,,x, and e; is
the jth column of the identity matrix I,, or, equivalently, the jth standard basis vector of
C™. Moreover, we denote

0 1 (—1)° 0
R, = . T, = : Jn:[

0 I, ]
1 0 0 (—1)nt

I, 0

The transpose and conjugate transpose of a matrix A are denoted by A” and A*, respectively.
We use A1 & ... D A to denote a block diagonal matrix with diagonal blocks Ay,..., Ag. If
A = [a;] € C™™ and B € C™* then A® B = [a;;B] € C" ™ denotes the Kronecker
product of A and B. We use J,()\) to denote the n x n upper triangular Jordan block
associated with the eigenvalue A and we set I, = X, R,, i.e., we have

Al 0 . 10
_1\n—1
0 \ (—1) 0

2 DMatrices structured with respect to complex bilinear forms

Our general theory will cover and generalize results for the following classes of matrices.

Definition 2.1 Let G € C™*" be invertible and let H,KC € C™**™ such that
(GH)T =GH and (GK)T = -GK.
1. If G is symmetric, then H is called G-symmetric and K is called G-skew-symmetric.

2. If G is skew-symmetric, then H is called G-Hamiltonian and K is called G-skew-
Hamiltonian.



Thus, G-symmetric and G-skew-Hamiltonian matrices are selfadjoint in the inner product
induced by G while G-skew-symmetric and G-Hamiltonian matrices are skew-adjoint. Observe
that transformations of the form

(M, G) — (P*MP,PTGP), P e C™" invertible

preserve the structure of M with respect to G, i.e., if, for example, M = H is G-Hamiltonian,
then P~'HP is PTG P-Hamiltonian as well. Thus, instead of working with G directly, one
may first transform G to a simple form using Takagi’s factorization for complex symmetric
and complex skew-symmetric matrices, see [3, 8, 15]. This factorization is a special case of
the well-known singular value decomposition.

Theorem 2.2 (Takagi’s factorization) Let G € C"*" be complex symmetric. Then there
exists a unitary matriz U € C™*™ such that

G = Udiag(oy,...,0,)UL, where oy,...,0, > 0.

There is a variant for complex skew-symmetric matrices (see [8]). This result is a just a
special case of the Youla form [17] for general complex matrices.

Theorem 2.3 (Skew-symmetric analogue of Takagi’s factorization) Let X € C"*"
be complex skew-symmetric. Then there exists a unitary matriz U € C™™™ such that

. 0 m 0 T
IC-U([_TI 0]@ @[_Tk O}@on%)U,
where r1,...,m, € R\ {0}.

As immediate corollaries, we obtain the following well-known results.

Corollary 2.4 Let G € C™*" be complex symmetric and let rank G = r. Then there exists a
nonsingular matriz X € C™*™ such that

v [I. 0
XGX_[OO.

Corollary 2.5 Let G € C™*™ be complex skew-symmetric and let rank G = r. Then 7 is
even and there exists a nonsingular matriz X € C™*™ such that

T _ JT/20
XGX—[O e

Next, we review canonical forms for the classes of matrices defined in Definition 2.1. These
canonical forms are closely related to the well-known canonical forms for pairs of matrices
that are complex symmetric or complex skew-symmetric, see [16] for an overview on this
topic. Proofs of the following results can be found, e.g., in [12].

Theorem 2.6 (Canonical form for G-symmetric matrices) Let G € C"*" be symmet-
ric and invertible and let H € C™*"™ be G-symmetric. Then there exists an invertible matrix
X € C™™ such that

X T"MX=T,M)@...0 T, (An), X'GX=Re{, @...0 Ry,

where A1, ..., A\m € C are the (not necessarily pairwise distinct) eigenvalues of H.



Theorem 2.7 (Canonical form for G-skew-symmetric matrices) Let G € C™*" be
symmetric and invertible and let K € C™" be G-skew-symmetric. Then there exists an
invertible matriz X € C™*™ such that

X KX =K. oK., X'GX=G.®G,,

where
’Cc:’Cc,l@"'@’Cc,mca Gc:Gc,l@"'@Gc,mca
ICZ = ’Cz,l ©---D ,Cz,mo—i-mea Gz = Gz,l ©---D Gz,mo—i—mea

and where the diagonal blocks are given as follows:

1) blocks associated with pairs (Aj, —\;) of nonzero eigenvalues of KC:

Je;(N) 0 ] G._{o jo]
0 T, | “T Ry 0 ]

where \j € C\ {0} and § € N for j =1,...,m, when m. > 0;

Kej=

2) blocks associated with the eigenvalue A =0 of K:
Kz =Tp;(0),  Gzj =1y,

where nj € N is odd for j =1,...,m, when my, > 0, and

0 _‘-777;‘ 0 an 0
where n; € N is even for j = m, +1,...,m, + me when me > 0.
The matriz K has the non-zero eigenvalues A1, ..., A,y —A1y. .., —Am, (not necessarily pair-

wise distinct), and the additional eigenvalue 0 if my, + me > 0.

Theorem 2.8 (Canonical form for G-Hamiltonian matrices) Let G € C*"**" be com-
plex skew-symmetric and invertible and let H € C2*2" be G-Hamiltonian. Then there exists
an invertible matriz X € C?"*2" such that

X "HX =H.dH,, XTGX =G, G,,

where
Hc:Hc,l@"'@Hc,mcy Gc:Gc,l@"'@Gc,mw
Hz — Hz,l ©---D Hz,m0+mey Gz — Gz,l D Gz,mo+m67

and where the diagonal blocks are given as follows:

1) blocks associated with pairs (Aj, —\;) of nonzero eigenvalues of H:

| T (N) 0 _| 0 R
Hea=| 0 —gpon | 99T Ry 0|

where \j € C\ {0} with arg(\;) € [0,7) and & € N for j =1,...,m, when m, > 0;



2) blocks associated with the eigenvalue A\ =0 of H.:

_ | Tg(0) 0 _| 0 Ry
Hei = 0 _jﬁj(o) } G = [ _Rﬁj 0 ’

where n; € N is odd for j =1,...,m, when m, >0, and
H.j= ‘-777j (0), G:j= F77j
where n; € N is even for j =me,+1,...,me + me when me > 0.

The matriz H has the non-zero eigenvalues A1, ..., Am,, —A1, ..., —Am, (not necessarily pair-
wise distinct), and the additional eigenvalue 0 if my, + me > 0.

Theorem 2.9 (Canonical form for G-skew-Hamiltonian matrices) Let G € C?"**n
be complex skew-symmetric and invertible and let I € C*"*?" be G-skew-Hamiltonian. Then
there exists an invertible matriz X € C?"*2" such that

X KX=Ki®®Kn, X'GX=GC1 D &G,

where )
Te; (A 0 ] [ 0 R ]
K. = J\) , G: = J .
J 0 Je; (Aj) J —Re, 0
The matriz KC has the (not necessarily pairwise distinct) eigenvalues A1, ..., \p,.

The following lemma on existence and uniqueness of structured square roots of structured
matrices will frequently be used.

Lemma 2.10 Let G € C**" be invertible and let H € C™™ be invertible and such that
HTG = GH.

1. If G € C™*™ is complex symmetric (i.e., H € C"*" is G-symmelric), then there exists
a square root S € C"*™ of H that is a polynomial in H and that satisfies o(S) C {z €
C : arg(z) € [0,m)}. The square root is uniquely determined by these properties. In
particular, S is G-symmetric.

2. If G € C™*™ if complex skew-symmetric (i.e., H € C"*" is G-skew-Hamiltonian, then
there exists a square root S € C"™™ of H that is a polynomial in H and that satisfies
o(S) € {z € C : arg(z) € [0,m)}. The square root is uniquely determined by these
properties. In particular, S is G-skew-Hamiltonian.

Proof. By the discussion in Chapter 6.4 in [9], we obtain for both cases that a square root
S of H with (S) C {z € C : arg(z) € [0,7)} exists, is unique, and can be expressed as a
polynomial in H. It is straightforward to check that a matrix that is a polynomial in H is
again G-symmetric or G-skew-Hamiltonian, respectively. 0O



3 Structured factorizations

In this section, we develop basic factorizations that will be needed for computing the canonical
forms in the Sections 4-6. We start with factorizations for matrices B € C™*" satisfying
B'B=1Ior B'B=0.

Lemma 3.1 If B € C™*" satisfies BT B = I,,, then m > n and there exists a nonsingular
matriz X € C™*™ such that

I

Tp _
XB{O

] ., XTX =1,.

Proof. By assumption B has full column rank. So there exists B € Cm™x(m=n) guch that
X =[ B B ]e€C™™is invertible. Then

o~ I, BTB
XTx=| o Z 2
BTB BTB |’
and with e
I, —BTB
X, ="
! [ 0 I, }
we have
XX (Xx)=| 0
! Y~ | o BT(I-BBT)B

Since X X is nonsingular, so is the complex symmetric matrix ET(I — BBT)E. By Corol-
lary 2.4, there exists a nonsingular matrix Xy such that

X7 (B"(I - BBT)B)Xa = In—n.

With
> I, O
X=XX; [ 0 X ]

we then obtain X7 X = I,,,. Note that

x=[n EH% _IinHIS )?,2]:[3 (1 - BB")BX, |,

and hence X7 X = I,,, implies
I
Tp _ n
X B_[ 0 ] O

Lemma 3.2 If B € C™*" satisfies rank B = n and BT B = 0, then m > 2n and there exists
a unitary matriz X € C™*™ such that

By 0 I, 0
X'B=10, |, XTX=|1, 0 0 ,
0 0 0 Im72n

where By € C™*™ is upper triangular invertible.



Proof. We present a constructive proof which allows to determine the matrix X numerically.
We may assume that m > 2, otherwise the result holds trivially. Let

Bei =uy +1ivy, up,v; € R™.

Then (using e.g. a Householder transformation, see [6]) there exists an orthogonal matrix
Q1 € R™*™ guch that Q{ul = aqe; and 0 < a3 € R. Let v; be the vector formed by the
trailing m — 1 components of QT v;. Then (using e.g. a QR-decomposition, see [6]) there
exists an orthogonal matrix Qy € R(™~1*(m=1) gych that Q%1 = B and 0 < B, € R. With
Ui =Qi1(1®Q2), then
ap +ivy by
Ul'B= i3 by |,
0 B

where By € Cm=2)x(n=1) p, b, e C1*=1) and vy, € R. Since Uj is real orthogonal, we
have

(U B)"(U{ B) = B"B =0,
and hence,

(al + iU11)2 — ﬂ% =0, (a1 + ivll)bl + 16162 = 0, B?B1 + b,{bl + bgbg = 0p—2. (31)

From the first identity in (3.1), it follows that v;; = 0 and a3 = ;. Since a1, ;1 > 0 we
have that a3 = 1 > 0, because otherwise we would have that rank B < n — 1, which is a
contradiction. With this, the last two identities in (3.1) imply that by = —iby, B By = 0,
and thus,

a1 —iby
U'B=|ioq by |,  BpecCm2xm-l,
0 B

One can easily verify that rank By =n — 1.
Applying the same procedure inductively to By we obtain the existence of a real orthogonal
matrix Us such that

a9 —ibg
UQTBl = 109 b3 R B € C(m—4)><(n—2).
0 By

Similarly, as above we can show that as > 0 and rank B, =n — 2.
Continuing the procedure, we finally obtain a real orthogonal matrix U such that

aq —iblg . —ibln
’iOzl b12 e bln
a9 e —ibgn
iOéQ e bgn
UB =
Qo
—10,
0
0




and from this we obtain that m > 2n. Moreover, we see that every other row of UB is a
multiple by ¢ of the preceding row. Thus, setting

211 —i
Z1:f|: ‘Z:|7 Z=71PD...0 72 Dly_on,
2 1 =« —
n

letting P be a permutation matrix for which premultiplication has the effect of re-arranging
the first 2n rows of a matrix in the order of 1,3,...,2n — 1,2,4,...,2n, and introducing the
unitary matrix X = (PZU)T, we then have

i a1 —’iblg —’ibln ]
a9 ... —ibyy,
XTB=+v2 an
0
L 0
and we obtain furthermore that
0o I, 0
ZZT:[O 1]@,,.@[0 1]@Im2n and XTX=1|1, 0 o |,
1 0 10
0 0 Im—?n

n

using the fact that U is real orthogonal, i.e., UTU =1. 0O

Proposition 3.3 Let B € C™" and suppose that rank B = n, rank BT B = ng < n, and
that 6o = n — ng is the dimension of the null space of BT B. Then there exists a nonsingular
X € C™*™ sych that

01 mon 0 0 I,
XT'B = [ B } , X'X=I,®| 0 I, 0 |,
o4n I, 0 0

where By € C"*" is nonsingular and ny = m —n — dg.

Proof. Since BT B is complex symmetric, by the assumption and by Corollary 2.4, there
exists a nonsingular matrix Y € C™*" such that

yTpTBy = | o 0
0 0s |-

Let B € C™*"0 be the matrix formed by the leading ng columns of BY. By Lemma 3.1 there
exists X1 € C™*™ such that

X{E:{Igﬂ}, XI'x, =1,



and we obtain that

X?BY:[I"O Bl?].

0 B;
Since

x{BY)'(xIBY) =Y"B"BY = [ ISO 00 ] :
do

we have that
Bi2 =0, BT B;=0s,.

By assumption, B has full column rank, so this also holds for B; € C("~"0)%% By Lemma 3.2
there exists a nonsingular matrix Xy € Cm=70)x(m=n0) guch that

T 0 I, O
XIBi=|05 |, XiXo=1|15, 0 0 |,
0 0 0 I,

where T' € C%*% is nonsingular and n; = m—ng—28y = m—n—7dy. With X3 = X, (In,®X2)
we then have

L, O
0 T 0 I
X{BY = | 0 | nggzlno@[16 80}@1,“.
0 0
0 0

Let P be the permutation that rearranges the block rows of XgBY in the order 4,3,1,2 and
let X = X3PT. Then

0 0
. 0 0s . 0 0 I
X'BY =| 0, X'X=I,®| 0 I, 0
o I, 0 0

Post-multiplying Y ~! to the first of these two equations and setting

By = |: ISO ;:|Y_l,

we have the asserted form. 0
In the previous results we have obtained factorizations for matrices B such that BT B is
the identity or zero. We get similar results if BT J,,B = J,, or BT J,,B = 0.

Lemma 3.4 If B € C*"*2" sqatisfies BT J,,B = J,,, then m > n and there exists a nonsin-
gular matriz X € C*™*2™ sych that

I, 0
XTB, = 8 IO . XTJ.X = J.
n
0 0

Proof. The proof is similar to that for Lemma 3.1 and is hence omitted. 0O

10



Lemma 3.5 Let b € C>™. Then there is a unitary matriz X € C*™*?™ such that
XTh = ey, XTI, X = Jp.

Proof. We again present a constructive proof that can be implemented into a numerical
algorithm. Let b = [b7,b1]7 with by,by € C™ and let Hy € C™*™ be a unitary matrix ( e.g.
a Householder matrix) such that

H’2TbQ = 561.
With Hy 'by = [b11, ..., bm1]” one then can determine (e.g. via a QR factorization) a unitary
matrix
1 [ b ﬂ] ~ T|:b11:| ['511}
G = 3 ) b = b 2 + 2, h th t G — )
bi1 [ B bu H |b11]* + 8] such tha ﬂ !

Note that GTJoG = Jy. Next, determine a unitary matrix H; € C™*™ such that
HlT[bH, b21, cey bml]T = @eq.

Finally, let

HT 0 15[ H 0

X = 2
el mr )

where G € C2m*2™ ig the unitary matrix obtained by replacing the (1,1), (1,m4+1), (m+1,1),
and (m+ 1, m+ 1) elements of the identity matrix I3, with the corresponding elements of G,
respectively. It is easily verified that X is unitary and satisfies X7b = ae; and X7 J, X = Jpp,.
a

Lemma 3.6 If B € C>™*" satisfies rank B = n and BT J,,B = 0, then m > n and there
exists a unitary matriz X € C*™*?™ such that

By

Tp _
XB—[O

] . XTI X = Jm,

where By € C™ "™ is upper triangular invertible.

Proof. By Lemma 3.5, there exists a unitary matrix X; such that

by bF
0 B
XiB=| , 7|5 X{JaXi=Jum,
3
0 DBy

where by, b3 € C* L. Since rank B = n, we have by # 0 and from
(X1B)" J,(X1B) = BT J,,B =0,
it follows that

T
Bas Bas
by = 0, T —0.

11



B
Applying the same procedure inductively to { 322 } , we obtain a unitary matrix X such that
24
XTB = [ BO] " . XTI X =,
0 2m —n

where By € C™*™ is upper triangular and invertible. 0O

Proposition 3.7 Let B € C>*™*". Suppose that rank B = n, rank BT J,,B = 2ng < n, i.e.,
8o = n — 2ng is the dimension of the null space of BT J,,B. Then there exists an invertible
matriz X € C*™X2™ sych that

T 0 2m —n T 0 0 160
X'B=| o |~ , XTI X=Jy®| 0 Jy 0 |,
0 I, 0 0

where By € C™*"™ is nonsingular and np = m — ng — dg.

Proof. Since BT J,, B is complex skew-symmetric, by the assumption and Corollary 2.5 there
exists a nonsingular matrix Y € C™*" such that

T T | Iy O
YBJmBY—[ 0 0 .

Let By € C?™*210 be the matrix formed by the leading 2ng columns of BY. By Lemma 3.4
there exists a nonsingular X; € C?™*2™ such that

I, O
xXI'p, = 0 0 . XTTInX1 = Jm.
0 I,
0 0
We have
I.,, 0 B
0 0 B
XI'BY =

! 0 I, Bss
0 0 Bug

Since X{ J X1 = Jp, also implies X;J;, X{ = Jp, then from
xXI'By)'J,(XIBY)=YTB"J,BY = [ g 0 } ,
we obtain that -
Bi3 =0, Bs3=0, [ Bas ] Jin—no { Bas } = 05,
Since B has full column rank, so does [

Xy € C2m=2n0)x(2m=2n0) gych that

B B
X [ By ] B [ 0 ] K Tnmr X2 = T

12



where EO € C%*% is invertible. Let P; be a permutation that interchanges the second and
third block rows of X{ BY and set X3 = X1 P! (I2p, ® X2). Then

IQno 0 2n0
0 EO do
XIBY=| 0 0 | m , XIJ.X3=1Ju® Jmne
0 0 o0
0 0 ny

where ny = m — nyg — dp. (For convenience, we have split the zero block row of Xg BY into
three block rows.) Let P be a permutation that changes the block rows of X BY to the
order 3,5,4,1,2 by pre-multiplication, and let X = X3P (I3, ® (—1Is,) © long1s,)- Then

0 0 2ny
i o o |4 i 0 0 I
X'y =| oy XX =du s | 0 Ty 0
n,
5 0 EO N —Is, O 0

Post-multiplying Y ! to the first equation and setting By = (I2,, ® ’Blo)Yfl, we have the
asserted form. O

In this section we have presented preliminary factorizations that will form the basis in
determining the canonical forms in the following sections.

4 Canonical form for G;,G5 complex symmetric

In this section we derive the canonical form for the matrix triple (A, G, G2) for the case
that G1,Go are complex symmetric. We start with the special case that the matrix A under
consideration is square and nonsingular.

Theorem 4.1 Let A € C"*™ be nonsingular and let G1,Gy € C™*™ be complex symmetric
and nonsingular. Then there exist nonsingular matrices X,Y € C™*"™ such that

XTAY = TJe (1) & @ Te,, (m),
XTG1X = Ry @@ Ry, (4.1)
YTGY = R ®---® Re,,

where p1; € C\ {0}, argp; € [0,7), and § € N for j = 1,...,m. Moreover, for the G-
symmetric matric H = GEIATGIIA and for the G1-symmetric matric H = GIIAGQ_IAT we
have that

Y-IHY
XX

Te () & ® T (im),
T (m)T @ 0T (um)".

Moreover, the form (4.1) is unique up to the simultaneous permutation of blocks in the right
hand side of (4.1).

(4.2)

Proof. By Lemma 2.10, H has a unique Ga-symmetric square root S € C"*™ satisfying
o(S) C {u e C\{0}: arg(u) € [0,7)}. Then by Theorem 2.6, there exists a nonsingular
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matrix Y € C™" such that
Scr 1= 277151:/ = Je, (1) ®- - ® Te,p, ()

G17cp = }V/TGQ}: = R£1 b---D Rgm,

Hoe = VIHY = T2 (1)@ -+ & T2, (m),
where p; € C\ {0}, argp; € [0,7), and §; € N for j = 1,...,m. (Here, the third line
immediately follows from H = S?). Using Gl_lAH = HGl_lA and the fact that Gl_lA is
nonsingular, we find that H and H are similar. Since the canonical form of G-symmetric
matrices in Theorem 2.6 is uniquely determined by the Jordan canonical form, we obtain

from Theorem 2.6 that the canonical forms of the pairs (H,G2) and (H,G1) coincide. In
particular, this implies the existence of a nonsingular matrix X € C™*™ such that

Her = %_lﬂ% = ..7521 ()@ - @j;n(ﬂm)y
Gl,CF = XTGlX = R& DD R&m'

Finally setting X = Gl_l)?_T and Y = A‘lGl)A(:SCF, we obtain
XTAy = X 'G7'AA7'G1XSer = Sor
XTGiX = X'Gr'GIGTX T = (XTGiX) ™ = Gt = Grer
YTGy = SEXTGIATGA'GiX Ser
SEXTGI XX "M ' X Ser
= Sngl,CF(HCF)_ISCF = Gl,CFSCF(HCF)_ISCF = Gl,CF

as desired, where we used that Scr is G cr-symmetric and that SCQ,F = Herp. It is now easy
to check that Y ™1HY and X "1HX have the claimed forms. Concerning uniqueness, we note
that the form (4.1) is already uniquely determined by the Jordan structure of H and by the
restriction p; € C\ {0}, argp; € [0,7). O

The canonical form for the case that A is singular or rectangular is more involved, because
then the matrices H and H may be singular as well. The key idea in the proof of Theorem 4.1
was the construction of a Ga-symmetric square root of H, but if H is singular, then such a
square root need not exists. (For example, the R,-symmetric nilpotent matrix 7,(0) does
not have any square root let alone a R,-symmetric one.) A second difficulty comes from the
fact that the Jordan structures of H and H may be different. For example, if

000 0 0100 1000
1000 1000 000 1
A=1g 0 o1 | O =fdl=qg 4, | C2=RORs=1, ,
00 10 0010 010 0
then we obtain that
000 0 00 0 0
i1, |00 10 g1 10000
H=GylATGrl A= | o o | R=GrtAG AT =
000 0 00 10

Here H has a1 x 1 and a 3 x 3 Jordan block associated with the eigenvalue zero, while H has
two 2 x 2 Jordan blocks associated with zero. In general, we obtain the following result.
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Theorem 4.2 Let A € C™*™ and let G, € C™*™ Gy € C™™™ be complex symmetric and
nonsingular. Then there exist nonsingular matrices X € C™*™ and Y € C™*"™ such that

;X:jnji)/ = 140 D f1Z71 D 14z72 ©® f1z73 ©® f1z747
XTG1X = Ge®G,18G,20G. 390G, 4, (4.3)
}fjﬂ(;Qif = éjc @ éiz,l @ éiz,Z ® éﬁz,S @ é§2,4-
Moreover, for the Go-symmetric matric H = G;lATGflA € C™" and for the G1-symmetric
matric H = Gl_lAGg_lAT € C™*™ we have that

Y'HY = He@Ho1 ®Hon @ Hoz®Hau,
Xﬁl,):(X - Hc EB 7:‘2'71 @ 7:(372 @ 7:[273 @ 7:[274-

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of’l-{ and H:
Ac, G, G have the forms as in (4.1) and H., H. have the forms as in (4.2);

1) one block corresponding to ng Jordan blocks of size 1 x 1 of H and mq Jordan blocks of
size 1 X 1 of H associated with the eigenvalue zero:

142,1 - 07n0><n07 (;Z,l - J}noa (;Z,l - Iﬁoa 7{z,1 - Onny 712,1 - 07n0;

2) blocks corresponding to a pair of j x j Jordan blocks of H and H associated with the
etgenvalue zero:

121 lo Ly
Ao = @ R0) & B Ji0) &---& P J(0),
=1 =1 =1
41

Oy Ly
GZQZ @RQ ©® @R4 DD @R2V7
i=1 i=1 i=1

2 U Ly
G.o= DR & PR & DR,
=1 =1 =1

4147 12 ly
H.p = P IF0) & @ IZ0) &---& @ Tz (0),
=1 =1 =1
) 2 2 >
H.o = D IZ0) @ TZ0) @ & B TE0)7,
=1 =1 =1

where (1, ..., 4, € NU{0}; thus, H,2 and 7:(272 both have each 2¢; Jordan blocks of size
jxgjforj=1,...,v;

3) blocks corresponding to a j x j Jordan blocks of H and a (j+ 1) x (j + 1) Jordan block
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ofﬂ associated with the eigenvalue zero:

mi I m2 I my—1 L/i
=1 2x1 =1 3x2 i=1 vx(v—1)
mi mao my—1
G.s= @R @© DR o0 ® R,
i=1 i=1 i=1
~ mi m2 my—1
G.3 = PRri & PR @D P R,-1,
i=1 i=1 i=1
mi m2 my—1
H.3= @0 & R0 o--& @ J-10),
i=1 i=1 i=1

my—1

mi ma
H.s5 = DROT e HOT & - ® 7007,

i=1 i=1 i=1
where my,...,my—1 € NU{0}; thus, H.3 has m; Jordan blocks of size j x j and 7:lZ,3
has m; Jordan blocks of size (j+1) x (j+1) forj=1,...,v—1;

4) blocks corresponding to a (j+1)x (5 +1) Jordan blocks of H and a j x j Jordan block
of H associated with the eigenvalue zero:

Azg = ;él [O I1]1x2@;é§1 [0 12]2x3@'”@7:é9: [0 IV—l](V—1)xu’

G.u = ETERl ® éRz DD né%l R, 1,

G = g_éle ® éile ©--® né]%lRy,

Ha= QRO @ BHO o0 ne_al 7.(0),
ny—1

s = DAOT & DBHOT &0 @ 07,
=1 =1 =1

where ny,...,ny—1 € NU{0}; thus, H. 4 has n; Jordan blocks of size (j +1) x (j +1)
and H. 4 has nj Jordan blocks of size j x j forj=1,...,v—1;

The matrices H and H have 205 +mj +n;_1 respectively 20; +mj_1 +mn; Jordan of size j X j
forj=1,...,v, where my, = n, =0 and where v is the maximum of the nilpotency index of
H and the nilpotency index of H.

Moreover, the form (4.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (4.3).

Proof. Clearly, there exist invertible matrices X and Y such that XTG X = I, and
YTG,Y = I,. Thus, replacing A by XTAY otherwise, we may assume that G; = I, and
Go = I,,. The proof then proceeds by repeatedly applying Proposition 3.3 to the factors of
the full rank decomposition A = B1Cq, By € C™*", Cy € C™", where r = rank A. In this
way, a staircase-like form is obtained in a stepwise reduction procedure. This form can then
further be reduced until the canonical form has been reached. This reduction procedure (al-
though straightforward) is very technical and tedious and is very similar to the corresponding
procedure for the case of complex sesquilinear forms. Therefore, we omit the proof here and
refer the reader to [13].
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Concerning uniqueness, in view of Theorem 4.1 it remains to show that the numbers
£j,mj,n; are uniquely determined. Note that there exists a unique sequence of subspaces

Eig,(H,0) C Eig,_1(H,0) C --- C Eig1(H,0) = ker H

where Eig ;(H, 0) contains all eigenvectors of H associated with zero that can be extended to
a Jordan chain of length at least j. Define x, = dim (Eig,(H,0) Nker A) and

rj = dim (Eig ;(H,0) Nker A) — dim (Eig j+1(H,0) Nker A), j=1,...,v—1.

Then any eigenvector of H that is associated with a Jordan block of size j x j in the
canonical form and that is also in the kernel of A contributes to ;. Similarly, we define
#y = dim (Eig, (H,0) Nker AT) and

#; = dim (Eig ;(H,0) Nker A7) — dim (Eig j11(H,0) Nker A7), j=1,...,v—1.
Then elementary counting yields
kj=4L;j+mnj_1 and AK;j=4L;+mj_1, j=1,...,v

If p; respectively p; denote the number of Jordan blocks of size j X j in the canonical form
of H and H, respectively, we also have that

pj:2€j+mj+nj,1 and ﬁj:2€j+mj,1+nj, jzl,.‘.,l/.

Hence, we obtain

pj — Kkj—kj=m; —mj_1, and p;—kKj—FKj=n;—n;_1, j=1,...,v,
from which we can successively compute m;,n;, j = v —1,...,0 using m, = n, = 0. We
furthermore obtain that )
bty =5 —mj—nj-1)
for j = 1,...,v. Thus, the numbers ¢;, m;,n; are uniquely determined by the invariant

numbers p;, pj, Kk, Kk, j=1,...,v. 0O

5 Condensed forms for G; complex symmetric, GG; complex
skew-symmetric

In this section we study the canonical forms for the case that (G1 is complex symmetric and
G2 complex skew-symmetric. Again, we start with the canonical form for the case that A is
quadratic and nonsingular.

Theorem 5.1 Let A, Gy, Gy € C*"*2" be nonsingular and let Gy be complex symmetric and

Gy be complex skew-symmetric. Then there exists nonsingular matrices X,Y € C*"*2" such
that 0 T () 0
XTAy {jﬁléﬂl)&l(m)] ® - ® { e ng(um)]’
xXTG X = [RO& RO@] @@ [R(g)m Rém}, (5.1)
YTGY = [_23& Roﬁl } SRR [_ggm Rém ]
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where p; € C\ {0}, argp; € [0,7/2), and & € N for j = 1,...,m. Moreover,
for the Go-Hamiltonian matriz H = G;lATGl_lA and for the Gp-skew-symmetric matric
H = G{AG; AT we have that

-1 _ _jgzl (p1) o —ng (ttm) 0
= [ 0 B(m) L@ ¢ [ 0 () L’ 5
gy [ TE () 0 T2 (tm) 0 '
X MHX = |: 50 —jgl(,ul) ] @...@[ 3 0 _jgm(#m) ] )

Proof. By Theorem 2.8, there exists a nonsingular matrix Y € C™*" such that

S LS P E ORI
Yo = [ 0 _‘751()‘1) @ ® 0 _j£m()\m) 7
T = 0 Ré_l 0 RE’VV‘L

VI GhY = L&lo] O @ _&mo},

where \; € C\ {0}, arg(\;) € [0,7), and & € N for j = 1,...,m. Next construct the matrix
S such that

Y15y — { Te1 (A1)

o gt | e T

0 Tem (Am) }

It is easily verified that S is G9-skew-Hamiltonian, that it satisfies 52 = H?, and that we have
o(S) C {z € C\ {0} : arg(z) € [0,7)}. Thus, by the uniqueness property of Lemma 2.10, we
obtain that S is a polynomial in H?. Moreover, applying Lemma 2.10 once more, we obtain
that S has a unique square root S € C"*" satisfying o(S) C {z € C\ {0} : arg(z) € [0,7)}
and

Tt (Am) 0 2

yflsy — ‘751 ()‘1) 2

0 J&(m} @"'@[

In fact, we must have
0(5) € {z € C\{0} : arg(z) € [0,7/2)},
because otherwise S would have eigenvalues Aj with arg(\;) € [m,2m). Clearly, being a

polynomial in S and thus in H2, it follows that S is also a polynomial in H. Let M? = \j and
arg(u;) € [0,7/2). We then obtain by Theorem 2.9 that there exists a nonsingular matrix

Y € C"*" such that

S o Tey (1) 0 ] {ng( m) 0 ]
SF::YISY:[& :
© 0 Jo()] T 0 Je ()
@) ._ T 0 R 0 R,
G2 =YTG,Y = [R& 0 } S D [Rgm R

Moreover, using G| AH = HG 1A and the fact that Gy 1 A is nonsingular, we find that H
and H are similar. Thus, by Theorem 2.7 there exists a nonsingular matrix X € C™" guch
that

AP —JE (1) ] { —TE (tim) 0
H == X IHX = 51 EB PR @ gm ,
o [ 0 Jé () 0 JZ (pm)
O _ T v 0 Rg 0 R,
GY) = XTah X = [R& 0 ] ®---D [Rgm N
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Indeed, since H is similar to H, it has the eigenvalues \; = ,ujz with partial multiplicities
&, J = 1,...,m. Since the canonical form of G-skew-symmetric matrices in Theorem 2.7

is uniquely determined by the Jordan canonical form, we find that the pairs (ﬂ, G1) and

(Her, Gi,cr) must have the same canonical form. Observe that Scr is GélF)—symmetric, but

not a square root of Hep. Instead, it is easy to check that

_ —1, 0 -1 0
SorlTter) 15“_[ 0 1. }@”'@[ 0" I ]
1 m

Using this identity and setting X = Gl_l)N(_T and Y = A_lGl)zSCF, we obtain

XTAy = X 'G7'AA'G1XScr = Scr,
XTGX = X'Gi'GiG' X T = (XTe X) ' = (GE) ! =G,
VTG = SEXTGIATGAT G X Ser
= SEXTG XX "H ' XS
= S(::FFGSF) (HCF)_ISCF = GEJIF)SCF(HCF)_l‘SCF = G(c2p)-
It is now straightforward to check that Y~'HY and X ~1H X have the claimed forms. Con-

cerning uniqueness, we note that the form (5.1) is already uniquely determined by the Jordan
structure of H and by the restriction p; € C\ {0}, argp; € [0,7/2). O

Theorem 5.2 Let A € C™*27, let G1 € C™ ™ be complex symmetric and nonsingular and
let Gy € C?"X2" be complex skew-symmetric and nonsingular. Then there exists nonsingular
matrices X € C™™ and Y € C**2" such that

XTAY = A ©A10A,0A.30A,,0A,.50 A4,
XTG1X = G'c @ Gz,l @ Gz,2 S Gz,3 S Gz,4 @ Gz,5 @ Gz,67 (53)
YTGY = Go®G.10GCan®G.30Gan®Gas®Gag.
Moreover, for the Go-Hamiltonian matric H = GQ_IATGl_lA € C?"*27 and for the Gy-skew-
symmetric matric H = G’flAG'glAT € C™*™ we have that

Y_IHY — HC @ Hz’l @ HZ,Q @ Hz73 @ Hz74 @ HZ,E) @ HZ,67
X_I’}:(X — 7:[0 @ ,}:[z’l @ 7:(,272 @ 7:(2,3 @ ﬂz74 @ 7:(2,5 @ 7:(7;76-

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of')'{ and H:
Ac, Ge, G have the forms as in (5.1) and H., H. have the forms as in (5.2);

1) one block corresppnding to 2ng Jordan blocks of size 1 x 1 of H and mqg Jordan blocks
of size 1 x 1 of H associated with the eigenvalue zero:

Az,l = 0m0><2’l’b07 Gz,l = Imo) Gz,l = Jn07 Hz,l = 02n07 H.1= Omg;

)
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2) blocks corresponding to a pair of j x j Jordan blocks of H and H associated with the
eigenvalue zero:

4y
Az2 =D R(0)®
=1

§J4<O> o--

Loy 41

@ B Jw+2(0),
i=1

51 Zg £2V+1
G.2= @GR, & DRy & Ryv4o,
=1 =1 =1
~ 12 lo Loy
G.o=D(-I)o DIy @& @ (—Twy),
i=1 i=1 =1
A lo ) lov41 )
H.o= D0 & @XIL0) &8 D XJ4.-00),
=1 =1 =1
by 41

Lo
o PrIt0) e
=1

R 4
H.2= @102 & 6_51 2T8,20)T

K2

where £y, ...,0, € NU{0}; thus, H. 2 and ﬂz,z both have each 2¢; Jordan blocks of size
jxgforj=1,...,2v+1;

3) blocks corresponding to a 2j x 2j Jordan block of H and a (2j + 1) x (2j + 1) Jordan
block of H associated with the eigenvalue zero:

ma I mq I may I v
- B[5], B[4 Bl
i=1 3x2 i=1 5%x4 =1 (2v+1)x2v
me my may
G.3 = DR & R & Roy+1 s
=1 =1 =1
- mo myq may
G.s3 = D) © ©(I) @& D(1wn),
i=1 =1 i=1
mo maq may
H.53 = @ XR0) & @XT0) &---& P XT0(0),
=1 =1 =1
n mo ma mav
Mz = @IBO)e @rI0)T e o @ X2Tnn(0)7,
=1

i=1 i=1

where ma, My, ..., ma, € NU{0}; thus, H, 3 has ma; Jordan blocks of size 2j x 2j and
H. 3 has maj Jordan blocks of size (2j +1) x (25 +1) forj=1,...,v;

4) blocks corresponding to two (25 —1) x (25 —1) Jordan blocks of H and two 2j x 25 Jordan
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blocks of H associated with the eigenvalue zero:

0 Il 0 13 0 I2I/71
mi 0 0 ms3 0 0 m2y—1 0 0
A= @15 D5 Boe @ | ,
0 0 4x2 00 8x6 0 0 4ux (4v—2)
mi m3 may—1
G.4 = P R, @ Rg D---D @D Ru,
i=1 i=1 i=1
~ mi m3 may—1
Gou = @1(—15) ® @1(—1};) @D 6_91 (—Iy—2) ,
_ mi ms Ejg (O) O o may—1 2j2y—1(0) O
Hea = 1@102 @91[ 0 —X73(0) S EB 0 —XJ20-1(0)]"°
v 0) 0 )T me [Z7(0) 0 M (27,00 0 1"
Hea = E_Bl[ 0 ,72(0)} A IOV AT oo @1 0 —22m0)

where mi, ms, . ..

1) x

,may—1 € NU{0}; thus, H, 4 has 2maj_1 Jordan blocks of size (2j —
(2§ — 1) and H 4 has 2mqj_q Jordan blocks of size 2j x 2j for j=1,...,v;

5) blocks corresponding to a 2j x 2j Jordan block of H and a (27 —1)
block of H associated with the eigenvalue zero:

x (2§ — 1) Jordan

ni na2y—1

n3
sz5 = 6_91[0 IlLXQ@@ [0 13]3><4@'”69 6_91 [0 IQV_l](Zufl)XQV’
ni n3 n2y—1
G.p5 = ©RrR O DR -0 @D Ro-1,
i=1 i=1 i=1
~ ni ns n2y—1
G.s = D) & H(-I11) & D (-Iv),
i=1 i=1 i=1
ni n3 n2y—1
H.s = DX5R(0) & EB 2Ji(0) ©--- D D XJ(0),
i=1 i i=1

do o éa(m 0o e @ (550)",

where n1,n3 ..., noy—1 € NU{0}; thus, H. 5 has naj—1 Jordan blocks of size 2j x 2j and
H.5 has naj—1 Jordan blocks of size (2j —1) x (25 —1) forj=1,...,v;

6) blocks corresponding to two (2j+1) x (2j+1) Jordan blocks of H and two 2j x 2j Jordan

blocks of H associated with the eigenvalue zero:
2210 0 0 Iy 0001y " 10 0 0 Iy
Ag = EB[ } @@[ } @...@@[ ] :
=100 0], 6 Z110140 0fg i=1 [0 [ 0 0 Avx (4v+2)
ng n4 nay
Gz,6: @Rzl D @RB DD @R4u>
i=1 i=1 i=1
- n9 ng4 n2y
G.6 = D (—TIs) ) D (—Io) DD D (—Tuy2) ,
=1 =1 =1
273(0) 0 $J5(0) 0 e (8 T5,01(0) 0
Heo = @[ Ej( )}@EB[ 0 -570)] 7 FD | 0 L8 gn0)
» 2T (0)T 2T0)T 0 PN Ejzu( )r 0
Heo = @{ zj( )T }@@[ 0 x0T P9 ~ 70 (0)7)"



where ng, N4, ..., N2y € NU{0}; thus, H. ¢ has 2ng; Jordan blocks of size (2j+1)x(2j+1)
and H. ¢ has 2ng; Jordan blocks of size 25 x 2j for j =1,...,v;

The matrices H and H have 209; +maj+mnaj_1 respectively 205 +2mo;_1+2n9; Jordan blocks
of size 2j x 25 for j =1,...,v and 20911 + 2maji1 + 2na; respectively 209541 + moj + ngji1
Jordan blocks of size (2j+1) x (2j+1) for j =0,...,v. Here may+1 = nay+1 =0 and 2v+1
is the smallest odd number that is larger or equal to the maximum of the nilpotency indices
of H and H.

Moreover, the form (4.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (4.3).

Proof. Without loss of generality we may assume that G; = I,,, and G2 = J,. The canonical
form is then obtained by repeatedly applying Propositions 3.3 and 3.7 to the factors of the
full rank decomposition A = B1C1, By € C™*" (Cy € C™"™, where r = rank A. Again, we
omit the detailed proof here and refer the reader to [13]. Uniqueness of the form is proved as
in the proof of Theorem 4.2. O

6 Canonical forms for G, G, complex skew-symmetric

In this section we finally treat that case that both G; and G4 are complex skew-symmetric.

Theorem 6.1 Let A € C*"*2?" be nonsingular and let G1,Go € C*" 2" be nonsingular and
complex skew-symmetric. Then there exists nonsingular matrices X,Y € C22" such that

Je, () 0 ] Ter () 0
XTAY = &1 D m ,
{ 0 e (1) 0 Jep(pm)
0 R 0 R
T _ 31 Em
XTGiX = “Re, 0 ©® | g g ] (6.1)
0 —R 0 —-R
T _ 3] €m
YRy = [Rsl 0 } Lo [Rém 0 ]

where p; € C\ {0}, argp; € [0,7), and & € N for j = 1,...,m. Furthermore, for the
Go-skew-Hamiltonian matric H = G2_1ATG1_1A and for the Gi-skew-Hamiltonian matrix
H =G AG; AT we have that

s [P 0 ][R 0
v = [ et L@ o[ 50" g2 o L’ 62
g [T 0 Te(im) O '
Xt = |y ﬁ(ul)} o --a| ngwm)} '

Proof. The proof proceeds completely analogous to the proof of Theorem 4.1 using
Lemma 2.10 and Theorem 2.9. 0O

Theorem 6.2 Let A € C>™ 2" gnd let G; € C*™X2™m Gy € C>™ 2" be complex skew-

symmetric and nonsingular. Then there exists nonsingular matrices X € C?*™*?™ and
Y € C*"*?" such that
XTAY = Ac D Az71 D Az72 D Az73 D Az,47
XTG1X = Ge®G,18G.20G.30G, 4, (6.3)
YTGY = Ge@Go1 ®G.o0Go30Gay.
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Moreover, for the Ga-skew-Hamiltonian matriv H = Gy ATGTA € C*2" and for the
G1-skew-Hamiltonian matriz H = Gl_lAGglAT € C?mX2m we have that

Y'HY = H @M1 ©Hon @ Hoz ®Hau,
X_lr}:{X — 7:[0 @ ﬂz,]_ @ 7:{7;72 @ ,’:[z73 @ ﬂz74-

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of')'{ and H:
A, Ge, G have the forms as in (6.1) and He, H. have the forms as in (6.2);

1) one block corresponding to 2ng Jordan blocks of size 1 x 1 of H and 2mqg Jordan blocks
of size 1 X 1 of H associated with the eigenvalue zero:

Az,l = 02m0><2noa Gz,l = Jmoa Gz,l = JTL07 Hz,l = 02noa Hz,l = 02mo;

2) blocks corresponding to a pair of j x j Jordan blocks of H and H associated with the
etgenvalue zero:

01 12 4y
Ao=P R0)d G T(0) @& @ Jn(0),
i=1 i=1 i=1

Ly
G.o= P & By & D,
; i=1

Ly
G.o= Pl & Py & - Hlu,
j =1

01 lo Ly
H.o= @0 © §IH0) @& @ Ts(0),
=1 =1 =1
~ 61 ZQ Zu
Hz,2: @02 S¥ @jf(O)T@@ @jQQV(O)T7
=1 =1 =1

where (1, ..., 4, € NU{0}; thus, H,2 and 7:(272 both have each 2¢; Jordan blocks of size
jxgjforj=1,...,v;

3) blocks corresponding to two j x j Jordan blocks of H and two (j +1) x (j +1) Jordan
blocks of H associated with the eigenvalue zero:

0 Il 0 12 0 Illfl
miL1 0 0 m210 0 My 0 O
A = s DB ,
74 Gjl I 0 @1 I 0 @1 I,_1 0
0 01, 00 ]4,4 0 0 2wx (20—2)
m ma my—1
G.4 = DI ) D Is SSRRRYe> D I,
i=1 i=1 i=1
~ mi1 m2 my—1
G.q = -1’ & @©E1’L @-e @ (-T2,
i=1 i=1 i=1
s 7z [ 75(0) 0 et 1\ J,-1(0) 0
p— 0 .« ..
HZ,4 g 2 @ = |: 0 7‘72(0) @ @ ’Liel O 7\7,/_1(0) P}
T T T
N . mi | _ 2(0) 0 ma —jg(O) 0 my—1 —jy(O) 0
Hea = i‘%{ 0 J2<o>] @i_l[ 0 50| 810 o]



where mq, ..., my—1 € NU{0}; thus, H, 4 has 2m; Jordan blocks of size j x j and 7‘22,4
has 2m; Jordan blocks of size (j +1) x (j+1) forj=1,...,v—1;

4) blocks corresponding to two (7 4+ 1) x (§j+1) Jordan blocks of H and two j x j Jordan
blocks of H associated with the eigenvalue zero:

o =80 n00], 280 n0cl 2o on 05,
G.6 = élalfz ® géﬂx P néB;FQV—Q,

Goo= ST & GEVL ee @),

Fes = E‘ﬂjﬂ) 0(0)] “ @[ ()ngﬂ Poe @ [jB(O—)JVOw)]’

o = B 400) @ 8 al] oo G0 )

where ny,...,n,—1 € NU{0}; thus, H. 6 has 2n; Jordan blocks of size (j +1) x (j +1)
and H. ¢ has 2n; Jordan blocks of size j X j for j=1,...,v—1;

Then the matrices H and H have 205 + 2mj + 2n;_1 respectively 20; + 2m;_1 + 2n; Jordan
blocks of size j X j for j = 1,...,v. Here v is the maximum of the nilpotency indices of H
and H.

Moreover, the form (6.3) is unique up to simultaneous block permutation of the blocks in
the diagonal blocks of the right hand side of (6.3).

Proof. Without loss of generality we may assume that Gy = J,,, and G = J,,. The canonical
form is then obtained by repeatedly applying Proposition 3.7 to the factors of the full rank
decomposition A = B1Cy, By € C*™*", C; € C"*?", where r = rank A. Again, we omit the
detailed proof here and refer the reader to [13]. Uniqueness of the form is proved as in the
proof of Theorem 4.2. 0O

7 Conclusion

We have presented canonical forms for matrix triples (A, G1,G2) where G1, Gy are complex
symmetric or complex skew-symmetric and nonsingular. The canonical form for A can be
interpreted as a variant of the singular value decomposition, because the form also displays the
Jordan canonical forms of the structured matrices H = G2_1ATG1_1A and H = G{TAG AT,
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