
Strategies for time-dependent PDE control using
an integrated modeling and simulation

environment. Part one: problems without
inequality constraints

Ira Neitzel, Uwe Prüfert, and Thomas Slawig

A Matheon Preprint

DFG-Research Center Matheon, Mathematics for key technologies
Technische Universität Berlin, Sekr. MA 3-1
Straÿe des 17. Juni 136 D-10623 Berlin, Germany





STRATEGIES FOR TIME-DEPENDENT PDE CONTROL USING AN

INTEGRATED MODELING AND SIMULATION ENVIRONMENT. PART ONE:

PROBLEMS WITHOUT INEQUALITY CONSTRAINTS

IRA NEITZEL ∗,+, UWE PRÜFERT ∗∗,+, AND THOMAS SLAWIG∗∗∗,++

Abstract. We show how time-dependent optimal control for partial di�erential equations can be re-
alized in a modern high-level modeling and simulation package. We summarize the general formulation
for distributed and boundary control for initial-boundary value problems for parabolic PDEs and derive
the optimality system including the adjoint equation. The main di�culty therein is that the latter has
to be integrated backwards in time. This implies that complicated implementation e�ort is necessary
to couple state and adjoint equations to compute an optimal solution. Furthermore a large amount of
computational e�ort or storage is required to provide the needed information (i.e the trajectories) of the
state and adjoint variables. We show how this can be realized in the modeling and simulation package
Comsol Multiphysics , taking advantage of built-in discretization, solver and post-processing tech-
nologies and thus minimizing the implementation e�ort. We present two strategies: The treatment of
the coupled optimality system in the space-time cylinder, and the iterative approach by sequentially
solving state and adjoint system and updating the controls. Numerical examples show the elegance of
the implementation and the e�ciency of the two strategies.

AMS subject classi�cation: 49K20, 65K10, 65N30

1. Introduction

In this paper we show how time-dependent optimal control problems can be solved using the
equation-based modeling and simulation environment Comsol Multiphysics

1. This software al-
lows a rather easy way to de�ne, discretize and solve stationary and time-dependent PDEs via the
�nite element method, with a lot of �exibility in mesh generation, choice of ansatz functions, adaptive
solver management, and post-processing facilities.

Our main focus is to show how to deal with the reversed integration direction in time for the state
and adjoint equations, respectively, that occur in the control of initial value problems for PDEs, see
for example [3]. To treat this problem we present two strategies:

• The �rst one is the classical approach of sequentially solving state and adjoint equation and
updating the control in a gradient-based iterative optimization algorithm. Here the main
challenge is to realize the reverse time directions, without any low-level data storage or copying,
i.e. just using the provided solution routines of the software.

• The second strategy is to interpret the time as an additional �space� dimension, i.e. to solve
the whole optimality system in the space-time cylinder by �nite elements. Here the main point
is the dimension of the discretized system. For the software the PDE is then �stationary�, i.e.
a boundary value problem. Then the built-in damped Newton solver can be used, and fully
coupled space-time adaptivity can be easily applied.

We show how to implement these two approaches in scripts that consist of less than 50 lines. Moreover
we emphasize the delicate adjustments and equation settings that have to be done when dealing with
the reverse time integration directions mentioned above.

We treat optimal control problems for parabolic PDEs in one and two space dimensions, for dis-
tributed and boundary control, and test problems for the heat equation. Here we computed analytical
solutions that enable us to show the applicability, �exibility, but also the limits of the two approaches
and to characterize and compare them with respect to accuracy and e�ort. Nevertheless, the scripts

Key words and phrases. Optimal control, �nite element method, control using Comsol Multiphysics .
*neitzel@math.tu-berlin.de Supported by the DFG Schwerpunktprogramm SPP 1253
**pruefert@math.tu-berlin.de Supported by the DFG Research Center MATHEON.

***ts@numerik.uni-kiel.de
+TU Berlin - Fakultät II Institut für Mathematik, Straÿe des 17. Juni 136, 10623 Berlin, Germany
++Christian-Albrechts-Universität zu Kiel, Technische Fakultät, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
1
Comsol Multiphysics is a registered trademark of Comsol Ab

1



presented in detail below can be taken for problems where analytic solutions are not known, and can be
easily modi�ed or extended for other, also nonlinear problems. A similar treatment of the stationary
nonlinear Navier-Stokes equations can be found in [4].

The structure of the paper is as follows: In Section 2 we give a general description of PDE constrained
control problems with distributed and boundary control, the form of the optimality system, and adjoint
equation. This includes some analytical results concerning the existence and uniqueness of optimal
controls. In Section 3 we apply these results to our model-problems and obtain the systems of parabolic
PDEs belonging to these speci�c problems.

Section 4 is devoted to Comsol Multiphysics 's equation setting and solution procedure for par-
abolic PDEs. In Section 5 we show how the optimality systems can be realized in the two approaches
mentioned above. Here we present the model scripts in detail and show some numerical results. We
end the paper by a short summary and outlook.

2. PDE-constrained control problems

In this section we present the form of a general PDE-constrained control problem, including the
adjoint equation, the optimality system, and a representation of the gradient of the cost. The general
form can then be specialized for the given type of state equation. We summarize the main results in
Section 2.1 and also refer to standard literature, e.g. [1], for further details.

The general form of a PDE-constrained control problem is the following. Let U, Y be Hilbert spaces.
The aim is to minimize a functional

J : Y × U → R
under the constraint

(1) e(y, u) = 0, e : Y × U → Z,

where y ∈ Y denotes the state and u ∈ U the control. Clearly y thus depends on u and we will
also sometimes write y = y(u) and de�ne Ĵ as Ĵ(u) := J(y(u), u). Additional constraints of the form
y ∈ Yad ⊂ Y, u ∈ Uad ⊂ U (i.e. state and control constraints) may be given as well, but are considered
in a forthcoming paper. The constraint (1) represents a time-dependent PDE given on a time-space
domain Q = (0, T )× Ω with corresponding boundary conditions on Σ = (0, T )× ∂Ω and initial data.

A typical example for the cost J is the tracking type functional

J(y, u) =
1
2
‖y − yd‖2

Y +
κ

2
‖u‖2

U(2)

with regularization parameter κ > 0. The functional measures the distance between the solution
y = y(u) of the state equation (1) to a given target or desired state yd. Moreover it takes into account
the control cost by the regularization term κ

2‖u‖
2
U . In a similar way one may consider a functional

that measures this distance only on the boundary Σ or a part of it. The state equation (1) consists
of the PDE, boundary conditions, and initial data. We consider distributed control problems, where
the control appears in the PDE, as well as boundary control problems, where the control enters the
formulation in the boundary conditions of the following form:

Example for distributed control

yt −∆y = u in Q

~n · ∇y + αy = g on Σ(3)

y(0) = y0 in Ω

Example for boundary control

yt −∆y = f in Q

~n · ∇y + αy = αu on Σ(4)

y(0) = y0 in Ω
The functions f ∈ L2(Q), g ∈ L2(Σ), and y0 ∈ L2(Ω) are �xed.

2.1. Analysis of the optimal control problems. In the following section we derive the mathemat-
ical foundation for the optimal control problems (3) and (4). We are concerned with the existence of a
unique optimal solution for the model problems as well as the formulation of �rst order necessary opti-
mality conditions. We point out that due to the convexity of the model problems these conditions are
also su�cient for optimality. The following results are well-known in the optimal control community,
hence we state them without proofs for the readers' convenience. We rely on the following assumption
throughout the remainder of this paper.

Assumption 2.1. Let Ω ⊂ RN , N ∈ {1, 2}, be a bounded domain with C0,1-boundary Γ if N = 2,
and a bounded interval in R if N = 1. Moreover, for Q = Ω× (0, T ), we consider the data f ∈ L2(Q),
g ∈ L2(Σ), Σ = Γ× (0, T ), and y0 ∈ L2(Ω).

2



We further de�ne the solution space

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) | yt ∈ L2(0, T, H1(Ω)∗)}.

Then a known result by Wloka, [6], or Lions, [1], concerning the solvability of the state equation reads
as follows.

Theorem 2.2. For any triple (f, g, y0) ∈ L2(Q)× L2(Σ)× L2(Ω) the initial boundary value problem

yt −∆y = f in Q,

∂ny + αy = g on Σ,

y(·, 0) = y0 in Ω

admits a unique solution y ∈ W (0, T ).

With the help of Theorem 2.2 we can de�ne the solution operator

G = GQ + GΣ + GΩ : L2(Q)× L2(Σ)× L2(Ω) → W (0, T ),

with

GQ(f) = y(f, 0, 0), GΣ(g) = y(0, g, 0), GΩ(y0) = y(0, 0, y0),

where y denotes the unique solution of the parabolic PDE with corresponding data. Hence, we can
express the dependence y = y(u) with the help of the solution operator G. We point out that the given
�xed data f , g, and y0 do not in�uence the optimization process. For simplicity, we assume them to
be zero and use the abbreviated notation y = Gu, where G := GQ or G = GΣ for distributed and

boundary control, respectively. Consequently, the reduced objective function Ĵ reads Ĵ(u) = J(Gu, u).
Due to the fact that U = L2(Q) or U = L2(Σ), respectively, are not empty, the following theorem
holds by standard arguments.

Theorem 2.3. Under Assumption 2.1, the optimal control problems (3) and (4) admit for each κ > 0
unique optimal controls u∗ ∈ L2(Q) or u∗ ∈ L2(Σ), respectively.

In the following theorems we formulate the �rst order necessary optimality conditions for (3) and
(4). A more detailed explanation how these conditions can formally be derived will be given in the
next section.

Theorem 2.4. Let u∗ be the optimal control of the distributed control problem (3) with associated state
y∗. Then there exists an adjoint state p ∈ W (0, T ) such that p is the weak solution of

(5)

−pt −∆p = y∗ − yd in Q,

∂np + αp = 0 on Σ,

p(·, T ) = 0 in Ω,

and the gradient equation

κ(u∗ − ud) + p = 0

is ful�lled for almost all (x, t) ∈ Q. Analogously, let u∗ be the optimal solution of the boundary control
problem (4). Then there exists an adjoint state p ∈ W (0, T ) satisfying the same adjoint equation, as
well as the gradient equation

κ(u∗ − ud) + p = 0

for almost all (x, t) ∈ Σ.

We refer to [5] or [1] for further details. We point out that the adjoint equation can be transformed
into an initial-boundary value problem by the time transformation τ = T − t, which allows to employ
Theorem 2.2 for the existence of a unique solution of (5) for given right-hand-sides.

3



2.2. Adjoint equations and optimality systems. In this subsection we show the general process
of obtaining the optimality system or a representation of the gradient of Ĵ . We introduce the Lagrange
functional associated with the constrained problem

min
u∈U

J(y, u) subject to (1).(6)

It is de�ned as

L : Y × U × Z∗ → R, L(y, u, p) := J(y, u) + 〈p, e(y, u)〉Z∗,Z ,

where 〈·, ·〉Z∗,Z denotes the pairing between Z and its dual Z∗. Since in the case of a PDE-constrained
problem e is vector-valued (at least due to boundary conditions and initial values) we have Z =
ZQ × ZΣ × ZΩ. Thus Z∗ is isometrically isomorphic to the Cartesian product of the duals i.e. Z∗ ∼=
Z∗

Q × Z∗
Σ × Z∗

Ω, and the duality pairing is given as

〈λ, e(y, u)〉Z∗,Z =
n∑

i=1

〈λi, ei(y, u)〉Z∗
i ,Zi ,

where i is the i-th element of {Q,Σ,Ω}. The necessary optimality condition for a saddle point of L
and a minimum of (6) are computed by setting the directional derivatives of L with respect to (y, u, z)
equal to zero in all admissible directions (ȳ, ū, λ̄). We arrive at

Ly(y, u, λ)ȳ = Jy(y, u)ȳ + 〈λ, ey(y, u)ȳ〉Z∗,Z = 0 ∀ȳ ∈ Y

Lu(y, u, λ)ū = Ju(y, u)ū + 〈λ, eu(y, u)ū〉Z∗,Z = 0 ∀ū ∈ U

Lλ(y, u, λ)λ̄ = 〈λ̄, e(y, u)〉Z∗,Z = 0 ∀λ̄ ∈ Z∗,

(7)

where the subscript denotes the corresponding partial derivative. The �rst equation is called the adjoint
equation, the second one is called the gradient equation and gives a relation between the Lagrange
multiplier z and the control u, and the third one is just the state equation (1). The adjoint may also
be written as

e′y(y, u)∗λ = −J ′y(y, u) in Y ∗,

where A∗ denotes the adjoint operator of A. The optimality system (7) may be solved directly in the
so-called one-shot-approach. An alternative approach is to use a gradient-based iterative algorithm to
solve (6). Then the directional derivative of Ĵ is needed. By the chain rule it is given as

Ĵ ′(u)ū = J ′y(y, u)y′(u)ū + J ′u(y, u)ū.(8)

In a similar way the total derivative of (1) with respect to u is

e′y(y, u)y′(u)ū + e′u(y, u)ū = 0 ∀ū ∈ U.

Adding (8) and the duality pairing between this expression and the Lagrange multiplier λ gives

Ĵ ′(u)ū = J ′y(y, u)y′(u)ū + 〈λ, e′y(y, u)y′(u)ū〉Z∗,Z

+J ′u(y, u)ū + 〈λ, e′u(y, u)ū〉Z∗,Z .

The �rst two terms result in zero due to the adjoint equation (with ȳ = y′(u) ū ). Thus Ĵ ′ can be
characterized without explicitly knowing y′(u). After solving both the state and the adjoint equation

Ĵ ′(u)ū = J ′u(y, u)ū + 〈λ, e′u(y, u)ū〉Z∗,Z(9)

can be evaluated and used in an iterative optimization algorithm.

3. Application to the examples

Now we specialize the results of the last section for distributed and boundary control for our model-
problems described in Section 2.

3.1. Lagrange functional, adjoint equation, and optimality systems. In this paper we consider
only problems with distributed observation, i.e. the distance between the state y and the desired state
yd is measured over the whole space-time domain. A possible extension to other types of objective
functions depends strongly on their properties, e.g. di�erentiability, etc. Generally, we will denote the
optimal control by u∗ with assocoated optimal state y∗.

4



3.1.1. Distributed control. The objective functional has the form

(10) J(y, u) =
1
2
‖y − yd‖2

Q +
κ

2
‖u− ud‖2

Q.

The function ud can be interpreted as a desired control, in many applications it will be zero. However,
it is helpful to construct problems with known exact solutions.

The constraint e is given by e(y, u) =
∑n

i=1 ei(y, u) with

ei(y, u) =


yt −∆y − u in Q, i = 1
~n · ∇y + αy − g on Σ, i = 2
y(0)− y0 in Ω, i = 3

The Lagrangian has the form

L(y, u, p) = J(y, u)− (yt −∆y − u, p)Q

− (~n · ∇y + αy − g, p)Σ − (y(0)− y0, p)Ω.

Here, J is the cost-functional (10), Y = L2(Q) and U = L2(Q). In a standard way, we obtain the
adjoint equation by computing the derivative in direction ȳ, cf. the �rst equation in (7),

−pt −∆p = y∗ − yd in Q

~n · ∇p + αp = 0 on Σ
p(T ) = 0. in Ω

The gradient equation is given by the derivative of L with respect to u. We get

(11) κ (u∗ − ud) + p = 0 in Q.

At last, the state equation

y∗t −∆y∗ = u∗ in Q

~n · ∇y∗ + αy∗ = g on Σ(12)

y∗(0) = y0 in Ω

has to be ful�lled.

3.1.2. Boundary control. The objective functional reads

(13) J(y, u) =
1
2
‖y − yd‖2

Q +
κ

2
‖u− ud‖2

Σ.

In this case, the function e is given by

ei(y, u) =


yt −∆y − f in Q, i = 1
~n∇y + αy − u on Σ, i = 2
y(0)− y0 in Ω, i = 3.

and the Lagrangian function reads here as

L(y, u, p) = J(y, u)− (yt −∆y − f, p)Q

− (~n · ∇y + α(y − u), p)Σ − (y(0)− y0, p)Ω,

which gives us the same adjoint equation as above. However, the gradient equation holds on the
boundary Σ:

κ (u∗ − ud) + p = 0 on Σ.

The state equation is here given by

y∗t −∆y∗ = f in Q

~n · ∇y∗ + αy∗ = u∗ on Σ
y∗(0) = y0 in Ω.

In all cases, we have to solve a coupled system of two time-dependent PDEs for the state y and
the adjoint state p, and the algebraic gradient equation, which implements the coupling between the
adjoint and the control. By uniqueness of y, p, and u, we can write for all κ > 0 the control u as
u = − 1

κp + ud and replace u by this term in the state equation. Now, we only have to solve the
adjoint equation and the modi�ed state equation, a coupled system of two time-dependent PDEs.

5



Unfortunately, the adjoint equation is a so called backward-in-time equation (with initial value given
at end-time T ) where the state equation is a common forward-in-time equation. Both equations are
well posed, but the challenge lies in solving this system numerically.

4. Solving time dependent PDEs with Comsol Multiphysics

Comsol Multiphysics is a software that solves PDEs using the �nite element method in one to
three space dimensions, using elements of arbitrary order from one to four. It provides a graphical
user interface as well as a scripting mode. Doing PDE-constrained control, we have to de�ne the
adjoint equation and implement the coupling between state, adjoint and control. But since Comsol
Multiphysics allows the user to de�ne an almost arbitrary PDE, all its solution and post-processing
features can be used also to solve optimality systems.

In this section we describe at �rst two possible approaches to solve coupled time-dependent problems:
a one-shot-approach, which uses space-time discretization and an iterative approach, which uses the
capability of Comsol Multiphysics to solve backward-in-time problems �out-of-the-box�. To become
familiar with the syntax of Comsol Multiphysics , we �rst demonstrate how to solve a single PDE.
Throughout, we will use the so called scripting mode of Comsol Multiphysics .

4.1. Time-space-elements. Comsol Multiphysics provides no space-time elements in the sense
of Vexler et. al., see for details [2]. Our idea is to de�ne the time as an additional space dimension. In
this sense, we consider the space-time domain Q where space and time are treated the same.
One example: Solving Burgers equation. Often, Burgers equation is used as a benchmark-problem for
numerical algorithms. Let x ∈ Ω = (0, π) a space and t ∈ (0, T ) a time interval. We consider the
problem of �nding y ∈ Y such that y ful�lls the time dependent, nonlinear PDE

yt − yxx + yxy = 0 in Ω× (0, T )
y = 0 on Σ

y(0) = y0 in Ω.

The �rst row is equivalent to yt − d
dx

(
dy
dx + 1

2y2
)
. We choose y0 = sin(2x) and solve the problem on

the time-interval (0, 5). The following code sequence solves the problem by using linear space-time
elements on an adaptively re�ned triangle-mesh.

% geometry and mesh:

(1) fem.geom = rect2(0,pi,0,5);

(2) fem.mesh = meshinit(fem,'hauto',3);

(3) fem.sdim = {'x' 'time'};

% unknowns and element types:

(4) fem.dim = {'y'};

(5) fem.shape = [1];

% parameters:

(6) fem.const = {'nu' '1e-2'};

(7) fcns{1}.type='inline';

(8) fcns{1}.name='y_0(x)';

(9) fcns{1}.expr='sin(2*x)';

(10) fem.functions = fcns;

% pde-form

(11) fem.form = 'general';

% coefficients + rhd side:

(12) fem.equ.ga = { { {'-nu*yx+0.5*y^2' '0' } } };

(13) fem.equ.f = { {'-ytime'} };

% boundaries: 1:t=0,2:x=pi,3:t=5,4:x=0

(14) fem.bnd.ind = [1 2 3 2];

% boundary conditions:

(15) fem.bnd.r = {{'y-y_0(x)'};

{'y' };

{ 0 }};

6



(16) fem.bnd.g = {{0};

{0};

{0} };

(17) fem.xmesh = meshextend(fem);

% solve:

(18) fem = adaption(fem,'ngen',2,'Maxiter',50,'Hnlin','off');

% plotting the adaptive mesh and the solution

(19) subplot(121),

(20) meshplot(fem);

(21) subplot(122),

(22) postplot(fem,'tridata','y','triz','y','title','y')

Listing 1.

4.1.1. Geometry and mesh (line 1�3). De�ning the geometry is the �rst step, here we de�ne a (2D)
rectangle [0, π] × [0, 5]. The mesh initialization follows. The optional parameter hauto controls the
mesh size (from 1: �ne to 9: coarse). The �rst dimension is de�ned as the space x, the second as time.

4.1.2. De�nition of the unknown and the associated �nite element type (lines 4�5): The ansatz function
type and order have to be speci�ed:

• We want the unknown to be named y instead of the default name u1.
• We choose linear �nite elements.

4.1.3. De�nition of the constants (lines 6�10). We have to de�ne the initial value y(0) and the viscosity
coe�cient ν:

• Setting ν as constant with value 10−2.
• De�ning y(0) as an in-line-function. y(0) = sin(πx).

4.1.4. De�nition of the PDE (lines 11�17). First of all, the form of the equation has to be set (line
11). Comsol Multiphysics o�ers three options:

• coefficient, the default, which is appropriate only for linear problems and corresponds to a
classical formulation of the PDE,

• general, which uses the classical formulation in divergence form and is appropriate for nonlin-
ear equations,

• weak, which requires the user to write the equation in the weak form.

We use the general form. The PDE coe�cients have to be de�ned in a substructure named fem.equ

of the main structure fem. The general equation for time-independent problems reads

∇ · Γ = F in Ω.

In our case, treating time as an additional space dimension, ∇ is the formal operator
(

d
dx

d
dtime

)
. Thus,

we have to de�ne Γ =
(
− dy

dx + 1
2y2 0

)
and F = − dy

dtime . The PDE-coe�cients for Γ are stored in a

structure fem.eq.ga (line 12), and F is stored in fem.equ.f (line 13).

4.1.5. Boundary conditions. The substructure fem.bnd de�nes the boundary conditions. Based on the
initial geometry, di�erent boundary sections can be de�ned (line 14).

Our problem has three di�erent types of boundary conditions

• homogeneous Dirichlet boundary conditions on Σ (boundaries nos. two and four).
• inhomogeneous Dirichlet boundary conditions on Ω× {0}: y(0) = sin(πx) (boundary no. one)
• no boundary condition on Ω × {5} , since this corresponds to the end of the time interval
(boundary no. three).

The numbering of the edges has to be found by trial and error. The function edgelabel is helpful to
�nd the correct ones. Two arrays with the edge indices of the two boundary sections have to be put
in the cell array fem.bnd.ind.

7



The boundary conditions on each boundary section are written as

(14)
−~n · Γl = Gl +

M∑
m=1

∂Rm

∂ul
µm, l = 1, . . . , N

Rm = 0, m = 1, . . . ,M

 on ∂Ω.

The variables µm are arti�cially introduced Lagrange multipliers, i.e. additional free variables. De-
pending on the choice of the vectors R = (Rm)M

m=1 and G = (Gl)N
l=1 (implemented in fem.bnd.r and

fem.bnd.g, both zero by default) Dirichlet, natural and mixed boundary conditions can be realized.
To de�ne Dirichlet conditions, G is set to zero. Then the �rst equation in (14) imposes no condition

on the unknowns because of the free Lagrange multipliers. In line 15, we have de�ned the Dirichlet
boundary conditions in the �rst two entries of the structure fem.bnd.r. The corresponding entries in
fem.bnd.g are set to zero. For the boundary part Ω× {5} we set fem.bnd.r and fem.bnd.g to zero.

4.1.6. Assembly and solution of the discrete system (lines 17 and 18). The routine meshextend (line
17) computes additional nodes if basis functions of order higher than one are used. Then it assembles
the discrete system.

The adaptive solver (line 18) is a damped Newton method and has a wide range of parameters, here
we set the number of new (grid) generations ngen to two, the maximum number of Newton steps to
50 and the range of the damping parameter near one (Hnlin).

4.1.7. Postprocessing (lines 19�22). To visualize the results we use the meshplot and postplot rou-
tines of Comsol Multiphysics .

For more details on the used commands and further options we refer to the Comsol Multiphysics

documentation.

Figure 1. Adaptively re�ned mesh and solution of Burger equation.

5. Control using Comsol Multiphysics

5.1. One-shot-approach. By the term �One-shot-approach� we refer the solution of an optimal con-
trol problem by solving the optimality conditions, in most cases a system of possibly time dependent
and/or non-linear PDEs, at once.

8



5.1.1. An example in 1D. Our �rst example is a problem with distributed control.

minJ(y, u) = ‖y − yd‖2
Q +

κ

2
‖u− ud‖2

Q

where the pair (y, u) solves the parabolic PDE

yt(x, t)−∆y(x, t) = u(x, t) in Q

~n · ∇y(x, t) = − sin(t)~n on Σ
y(x, 0) = 0 on Ω.

The space-time domain Q is Q = (0, π)× (0, π). The desired state is given by yd(x, t) = sin(x) sin(t)−
cos(x)−cos(x)(π−t), and the desired control is given by ud(t) = sin(x)(sin(t)+cos(t))+ 1

κ cos(x)(π−t).
One can easily check that y∗ = sin(t) sin(x), u∗ = sin(t) sin(x) + cos(t) sin(x), and p = −κ(u∗ − ud)

solves the optimality system given in Section 3.1.1.

Implementation of the optimality system. To solve the optimality system, we have to implement a
system of PDEs. The adjoint equation (5) can be implemented in a similar way as the state equation.
For the implementation of a single PDE in Comsol Multiphysics we refer to Section 4.1. The only
di�erence is that in the adjoint equation the time runs backwards and the initial data is given on t = T .
Listing 2 provides the Comsol Multiphysics code solving problem 1. We choose the regularization
parameter κ = 1.

We only explain here the di�erences to the solution of a single PDE in Listing 1. In line 2, we
discretize space and time by a rectangular grid. We use the control-reduced form by setting u = ud− 1

κp,
which results in a system only in y and p, lines 5 and 18. In line 19 and 20, we de�ne the optimality
system

(15)

(
d

dx

d

dt

)  − dy
dx − dp

dx

0 0

 =

 −dy
dt −

1
κp

dp
dt + y − yd

 .

The syntax of Comsol Multiphysics allows us to write the columns of the lhs-matrix in (15) as rows
in the cell-array fem.equ.ga. In line 20, Comsol Multiphysics substitutes ud− 1

κp by u. Again, the
column of the rhs in (15) will be written as a row in the cell-array fem.equ.f. The Dirichlet boundary
conditions on boundaries nos. one and three implements the initial values y − y0 = 0 and p(T ) = 0
(line 22). The Neumann part of the boundary-value de�nition in fem.bnd.g is set to ~n · ∇y = − sin(t)
and ~n · ∇p = 0 (line 23). In line 25 we call the linear solver femlin.

(1) fem.geom = rect2(0,pi,0,pi);

(2) fem.mesh = meshinit(fem,'hmax',2^(-3));

(3) fem.sdim = {'x' 'time'};

% unknowns and element types:

(4) fem.form = 'general';

(5) fem.dim = {'y' 'p'};

(6) fem.shape = [2 2];

% parameters:

(7) fem.const = {'kappa' '0.1'};

(8) fcns{1}.type='inline';

(9) fcns{1}.name='ud(x,time)';

(10) fcns{1}.expr='sin(x)*(sin(time)+cos(time))+cos(x)*(pi-time)';

(11) fcns{2}.type='inline';

(12) fcns{2}.name='yd(x,time)';

(13) fcns{2}.expr='sin(x)*sin(time)-cos(x)-cos(x)*(pi-time)';

(14) fcns{3}.type='inline';

(15) fcns{3}.name='g(time)';

(16) fcns{3}.expr='-sin(time)';

(17) fem.functions = fcns;

% coefficients + rhd side:

(18) fem.globalexpr = {'y0' '0' 'u' 'ud(x,time)-p/kappa'};

(19) fem.equ.ga = { { {'-yx' '0'} {'-px' '0'} } };

(20) fem.equ.f = { {'-ytime+u' 'ptime+y-yd(x,time)'} };
9



% boundaries: 1:t=0,2:x=pi,3:t=pi,4:x=0

(21) fem.bnd.ind = [1 2 3 2];

% boundary conditions:

(22) fem.bnd.r = { {'y-y0' 0};

{0 0};

{0 'p'} };

(23) fem.bnd.g = { {0 0};

{'g(time)' '0'};

{0 0} };

(24) fem.xmesh = meshextend(fem);

% solve:

(25) fem.sol = femlin(fem);

% postprocessing

(26) subplot(221),meshplot(fem)

(27) subplot(222),postplot(fem,'tridata','y','triz','y','title','y')

(28) subplot(223),postplot(fem,'tridata','u','triz','u','title','u')

(29) subplot(224),postplot(fem,'tridata','p','triz','p','title','p')

Listing 2.

Results. Table 1 shows the L2-errors ‖ū−uh‖Q and ‖ȳ−yh‖Q depending on the mesh size parameter
hmax .

hmax ‖u∗ − ud‖Q ‖y∗ − yh‖Q |J(y∗, u∗)− J(yh, uh)|

2−2 0.016417 0.00032837 0.0011716

2−3 0.0022293 3.079 · 10−5 8.3556 · 10−5

2−4 0.00030615 5.0814 · 10−6 1.025 · 10−5

2−5 4.0305 · 10−5 4.9791 · 10−7 4.7661 · 10−7

2−6 5.373 · 10−6 5.9155 · 10−8 6.6537 · 10−8

Table 1. Errors ‖ū− uh‖Q and ‖ȳ − yh‖Q.

hmax ‖u∗ − ud‖Q ‖y∗ − yh‖Q |J(y∗, u∗)− J(yh, uh)|

2−3 0.00036247 5.2636 · 10−6 4.9854 · 10−6

2−4 4.9127 · 10−5 8.0412 · 10−7 4.7442 · 10−7

2−5 6.6022 · 10−6 9.3921 · 10−8 5.787 · 10−8

Table 2. Errors ‖u∗−uh‖Q and ‖y∗−yh‖Q adaptive solver, two new grid-generations,
started at hmax.

5.1.2. Boundary control. We consider the following problem:

minJ(y, u) = ‖y − yd‖2
Q +

κ

2
‖u− ud‖2

Σ

where the pair (y, u) solves the parabolic PDE

yt(x, t)−∆y(x, t) = f(x, t) in Q

~n · ∇y(x, t) = u(x, t) on Σ
y(x, 0) = 0 on Ω.

10



Figure 2. Mesh and solutions to example 1. hauto set to 3.
The colors in the plot of the state and control indicate the error.

The domain Q is given as in Example 2.
The functions ud(x, t) = − sin(t) + 1

κ(π − t)~n, yd(x, t) = sin(x) sin(t) − cos(x) − cos(x)(π − t)
and f(x, t) = sin(x) cos(t) + sin(x) sin(t) are given, and κ is set to 10−2. For the details of the
implementation of these functions, see Listing 3.

fem.const = {'alpha' '0' 'kappa' '0.01'};

fcns{1}.type='inline'; fcns{1}.name='ud1(x,time)';

fcns{1}.expr='-sin(time)+100*(pi-time)';

fcns{2}.type='inline'; fcns{2}.name='ud2(x,time)';

fcns{2}.expr='-sin(time)+100*(time-pi)';

fcns{3}.type='inline'; fcns{3}.name='yd(x,time)';

fcns{3}.expr='sin(x)*sin(time)-cos(x)-cos(x)*(pi-time)';

fcns{4}.type='inline'; fcns{4}.name='f(x,time)';

fcns{4}.expr='sin(x)*cos(time)+sin(x)*sin(time)';

Listing 3.

The optimal control is given by u∗ = − sin(t). The control is implemented by de�ning the boundary
conditions in fem.bnd.r and fem.bnd.r, see Listing 4.

fem.bnd.r = { {'y-y0' 0} {0 0} {0 'p'} {0 0} };

fem.bnd.g = { {0 0}

{'ud2(x,time)-p' '0'}

{0 0}

{'ud1(x,time)-p' '0'}};

Listing 4.

Again, we use u = 1
κp− ud to substitute u by p. The rest of the Comsol Multiphysics -code is the

same as for Example 5.1.1.
11



Results. In the following tables we present the errors for the control, the state, and the values of
the objective function depending on the meshsize hmax of the space-time mesh. Table 3 presents the
results computed by the linear solver, while Table 4 shows the errors resulting by solving the problem
with the adaptive solver, starting at a mesh generated with hmax as shown in the �rst column.

hmax ‖u∗ − ud‖Q ‖y∗ − yh‖Q |J(y∗, u∗)− J(yh, uh)|

2−2 0.21379 0.025347 0.17679

2−3 0.10525 0.009645 0.025116

2−4 0.043199 0.0029205 0.0018136

2−5 0.017076 7.7394 · 10−4 2.3996 · 10−4

2−6 0.0057762 1.9415 · 10−4 2.1888 · 10−4

Table 3. Errors for the boundary control problem.

hmax ‖u∗ − ud‖Q ‖y∗ − yh‖Q |J(y∗, u∗)− J(yh, uh)|

2−3 0.04445 0.002287 0.001777

2−4 0.015699 6.8792 · 10−4 1.4786 · 10−4

2−5 0.0053319 1.4277 · 10−4 6.6657 · 10−5

Table 4. Errors ‖u∗−uh‖Q and ‖y∗−yh‖Q adaptive solver, two new grid-generations,
started at hmax.

5.1.3. An example in 2D. In this example we use the 3D capability of Comsol Multiphysics to solve
a problem in two space dimensions. Consider the optimal control problem

minJ(y, u) =
1
2
‖y − yd‖2

Q +
1
2
‖u− ud‖2

Q

where (y, u) ∈ W (0, T ) are solutions of the parabolic PDE

yt −∆y = u

~n · ∇y = −~n · sin(t)(sin(x1), sin(x2))>

y(0) = 0.

The space-time domain is de�ned by Q = (0, π)2 × (0, π) ⊂ R3. The functions yd and ud are given by

yd = sin(x1) sin(x2) sin(t)− cos(x1) cos(x2)− 2 cos(x1) cos(x2)(π − t)

and

ud = sin(x1) sin(x2) cos(t) + 2 sin(x1) sin(x2) sin(t) +
1
κ

cos(x1) cos(x2)(π − t)

resp. The optimal solutions are

y∗(x1, x2, t) = sin(x1) sin(x2) sin(t)
u∗(x1, x2, t) = sin(x1) sin(x2)(cos(t) + 2 sin(t))
p∗(x1, x2, t) = cos(x1) cos(x2)(π − t),

which can easily be checked by inserting them into the optimality conditions (5)�(12). In the following
listing, we present the Comsol Multiphysics code that solves this problem by the direct method
using a discretization of the space-time domain by tetraeders.

12



(1) clear all

% geometry and mesh:

(2) fem.geom = block3(pi,pi,pi,'base','corner','pos',[0 0 0]);

(3) fem.mesh = meshinit(fem,'hauto',5);

(4) subplot(221),meshplot(fem)

(5) fem.sdim = {'x1' 'x2' 'time'};

% unknowns and element types:

(6) fem.form = 'general';

(7) fem.dim = {'y' 'p'};

(8) fem.shape = [2 2];

% parameters:

(9) fem.const = {'alpha' '0' 'nu' '1.e-0'};

(10) fcns{1}.type='inline'; fcns{1}.name='ud(x1,x2,time)';

(11) fcns{1}.expr='sin(x1)*sin(x2)*cos(time)+2*sin(x1)*sin(x2)...

*sin(time)-cos(x1)*cos(x2)*(pi-time)';

(12) fcns{2}.type='inline'; fcns{2}.name='yd(x1,x2,time)';

(13) fcns{2}.expr='sin(x1)*sin(x2)*sin(time)-cos(x1)*cos(x2)...

-2*cos(x1)*cos(x2)*(pi-time)';

(14) fcns{3}.type='inline'; fcns{3}.name='g1(x1,time)';

(15) fcns{3}.expr='-sin(x1)*sin(time)';

(16) fcns{4}.type='inline'; fcns{4}.name='g2(x2,time)';

(17) fcns{4}.expr='-sin(x2)*sin(time)';

(18) fem.functions = fcns;

% coefficients + rhd side:

(19) fem.globalexpr = {'y0' '0' 'u' 'ud(x1,x2,time)-p/nu'};

(20) fem.equ.ga = { { {'-yx1' '-yx2' '0'} {'-px1' '-px2' '0'} } };

(21) fem.equ.f = { {'-ytime+u' 'ptime+y-yd(x1,x2,time)'} };

% boundaries: 1:t=0,2:t=pi,3:x2=0,4:x2=pi

(22) fem.bnd.ind = [1 4 3 2 4 3];

% boundary conditions:

(23) fem.bnd.r = { {'y-y0' 0} {0 'p'} {0 0} {0 0} };

(24) fem.bnd.g = { {0 0} {0 0} {'g1(x1,time)-alpha*y' '-alpha*p'}...

{'g2(x2,time)-alpha*y' '-alpha*p'} };

(25) fem.xmesh = meshextend(fem);

% solve:

(26) fem = adaption(fem,'ngen',3);

(27) subplot(221);meshplot(fem);

(28) subplot(222); postplot(fem,'slicedata','y','slicezspacing',...

[0 pi/4 pi/2 3*pi/4 pi],'slicexspacing',0,'sliceyspacing',0);

(29) subplot(223),postplot(fem,'slicedata','u','slicezspacing',...

[0 pi/4 pi/2 3*pi/4 pi],'slicexspacing',0,'sliceyspacing',0);

(30) subplot(224),postplot(fem,'slicedata','p','slicezspacing',...

[0 pi/4 pi/2 3*pi/4 pi] ,'slicexspacing',0,'sliceyspacing',0);

Listing 5.

In the following, we point out some di�erences to the code of the 1D example. In line 2 we de�ne the
space-time domain as a (3D) block object. In lines 14�17 we de�ne the outward normal derivative for
the boundaries nos. 3 and 4. In line 22 we group the boundaries into four boundary-groups. The �rst
group contains only boundary number one, the time-slice at time t = 0. The second group contains
only boundary number four, the time-slice at time t = π. The other boundaries are boundaries in
space. The bounds number two and �ve belong to group number four, while boundaries number three
and six belong to group number three. Lines 24 and 25 de�ne the boundary conditions on these
boundary groups. In line 27 we use the adaptive solver, and �nally, in lines 29�30 we use the postplot
routine to produce the sliceplots shown in Figure 3.

Results. Again, we tested both solvers, the linear solver femlin and the adaptive solver adaption.
In 3D, the space-time grid consists of tetraeders and the number of unknowns grows cubically when

13



re�ning the grid. For that reason, we restrict our survey to three grids generated using meshinit where
re�nement is controlled by using the parameter hauto ranging from 7 to 4. In Figure 3 we present
time-slice plots of uh, yh and ph.

(a) (b)

Figure 3. Time-slices of the solution of the 2D example: state y (a) and control u (b).
The colors indicate the values of yh and uh at the times tk = kπ/4 with k = 0, ..., 4.

hauto ‖u∗ − ud‖Q ‖y∗ − yh‖Q |J(y∗, u∗)− J(yh, uh)|

6 0.27129 0.0035163 0.013943

5 0.079391 0.00087821 0.0032201

4 0.039822 0.0003811 0.001438

Table 5. Errors 2D example

hauto ‖u∗ − ud‖Q ‖y∗ − yh‖Q |J(y∗, u∗)− J(yh, uh)|

7 0.3171 0.004792 0.016412

6 0.17107 0.0023017 0.0087468

5 0.050385 0.00054455 0.0020044

Table 6. Errors 2D example, adaptive solver

5.2. Sequential or iterative approach.

5.2.1. The gradient method. We use the solution operator G to eliminate y from the objective function.
Our aim is now to minimize the functional J(G(u), u) by the gradient method. For that, we have to
evaluate the derivative〈

d

du
J(G(u), u), h

〉
= 〈G(u)− yd, Gh〉+ κ 〈u, h〉

= 〈G∗ (G(u)− yd) , h〉+ κ 〈u, h〉 .

where h ∈ L2(Q) is a directional vector. A direction of descent is given by

v = G∗ (G(u)− yd) + κu.

Here p := G∗ (G(u)− yd)) = G∗(y − yd) is again the adjoint state given by the �rst equation in (7).
The algorithm reads now

Algorithm 5.1. (Gradient Method in function space)
14



Choose ε > 0. Choose uold arbitrarily.

Initialize yold by solving yold = G(uold).
while v > ε

solve the adjoint equation p = G∗ (G(uold)− yd)
set v = p + κ(uold − ud)
for k = 1, 2, ...

unew = uold + σv
solve the state equation ynew = G(unew)
if J(ynew, unew) < J(yold, uold)

break

end

set σ = σ/2
end

set uold = unew, yold = ynew.

end

Remark 5.2. We point out that the gradient method is used as an �easy-to-implement� iterative method
to illustrate Comsol Multiphysics ' capability of solving optimal control problems iteratively, i.e.
advoiding the coupling of forward and backward PDEs, and thus also saving memory capacity. In
realworld applications more sophisticated iterative methods with more elaborate line search strategies
should be used.

To realize this algorithm in Comsol Multiphysics , we de�ne the optimality conditions by a
system of PDEs like in the one-shot-approach instead of de�ning two separate PDEs. As a further
di�erence to the one-shot-approach, we cannot replace u by u = 1

κp − ud and we explicitly need an
additional helper variable uold.

Although we have a system of PDEs, we have to solve the state and adjoint equation separately.
Solving a single PDE will be done by using the femtime function for selected solution parts, i.e. for the
adjoint p. The advantage of this approach is that all parts of the given PDE-system live on di�erent
meshes and time intervals, but the interpolation work will be performed automatically in Comsol

Multiphysics . The coupling uold = unew will be realized by solving a trivial PDE. In fact, we
implement the following PDE-system in Comsol Multiphysics , here demonstrated for Example 1,
and written in general form:

−∇ · ∇y = unew − yt in Q

~n · ∇y = 0 on Σ
y(0) = 0 in Ω

−∇ · ∇p = y − yd + pt in Q

~n · ∇p = 0 on Σ
p(0) = 0 in Ω

uold − ρ(p + ν(uold − ud))− unew = 0 in Q

uold − ρ(p + κ(uold − ud))− unew = 0 on Σ ∪ {0} × Ω ∪ {T} × Ω
uold − unew = 0 in Q

uold − unew = 0 on Σ ∪ {0} × Ω ∪ {T} × Ω

To test this method, we will apply it to Examples 3.1.2�5.1.3.

5.2.2. Solving the 1D example with distributed control by the iterative method. In the following listings
we present the Comsol Multiphysics -code that solves Example 1 by the sequential method. In the
code, we drop the subscript in unew and write simply u. Further, we need only one state variable y.
The setting yold = ynew is redundant because we save the value of J(yold, uold) instead. In Listing 7
we de�ne the geometry as a solid-object (line 1 ).

%geometry and mesh:

(1) fem.geom = solid1([0 pi]);

fem.mesh = meshinit(fem,'hmax',2^(-3));

fem.sdim = {'x'};

% unknowns and element types:

fem.form = 'general';
15



fem.dim = {'y' 'p' 'u' 'uold'};

fem.shape = [1 1 1 1];

% parameters:

rho=1;

fem.const = {'rho' num2str(rho) 'nu' '1.e-2'};

Listing 6.

The de�nition of the functions yd, ud and g as inline functions is the same as in Listing 2, lines 8�17,
so we do not show here the lines 9�18 of our code.

The de�nition of the PDE-system can be done quite similar to the one-shot-approach. The general
form of a time dependent PDE in Comsol Multiphysics reads

a
d

dt
y + ∇ · Γ = F in Ω.

The coe�cient a will be stored in the structure fem.equ.da, see line 20. The second negative entry
marks the backward-in-time adjoint equation, the third and fourth entries are zero, because the equa-
tions for u and uold are non-di�erential. For a time-dependent PDE we have to set the initial values y0

pT , etc., this will be done in line 23. The coe�cients fem.equ.f and fem.bnd.r are rede�ned before
each call to femtime, depending on the variable to solve for, followed by a meshextend call. In lines
22 and 25 we initialize them by zeros. The reason for this �strange� programming is not easily seen:
We de�ne our problem as a system of PDEs, which results in an ill-de�ned problem because of the
di�erent time directions in state and adjoint. To overcome this ill-de�nedness, we solve it for every
solution part separately by using e.g. the parameter 'solcomp',{'p'}. See the call of femtime in
lines 30, 51, 55, and 73. But, in this case femtime solves not only the PDE for p but all equations
wherever p appears. Here, instead of solving the adjoint equation

−pt −∇ · ∇p = y − yd in Q

~n · ∇p = 0 on Σ
p(0) = 0 in Ω

it tries to solve

−pt −∇ · ∇p = y − yd in Q

~n · ∇p = 0 on Σ
p(0) = 0 in Ω

uold − rho(p + ν(uold − ud))− unew = 0 in Q

uold − ρ(p + κ(uold − ud))− unew = 0 on Σ ∪ {0} × Ω ∪ {T} × Ω

which is a completely di�erent problem. Therefore we have to rede�ne the problem each time we call
femtime. In Listing 8 we give some comments in the relevant lines.

Notice, that the coupling between u and uold is done by solving a pseudo-PDE with Dirichlet
conditons on all bounds see lines 20�25. We have to de�ne

fem.equ.f = { {0;0;'uold-rho*(p+nu*(uold-ud(x,t)))-u';0} }.

Since p runs backwards in time and also u and uold, we have to �ip the time vektor for use in the
state equation. This will be done in line 58 by the function fliplr. The �ipped tlist is used during
the solution for u and uold in order to force an evaluation ot htese variables at the given time steps, cf.
lines 51 and 73.. The listing shows that we have translated Algorithm 5.1 more or less directly into a
Comsol Multiphysics script.

% coefficients + rhd side:

fem.globalexpr = {'y0' '0' 'J' '(y-yd(x,t))^2/2+nu/2*(u-ud(x,t))^2'...

'Ja' '(ya(x,t)-yd(x,t))^2/2+nu/2*(ua(x,t)-ud(x,t))^2'};

(20) fem.equ.da = {{1 -1 0 0}};

(21) fem.equ.ga = { { {'-yx'} {'-px'} {0} {0}} };

(22) fem.equ.f = {{0 0 0 0}};

(23) fem.equ.init = { {'y0' '0' 'ud(x,pi)' 'ud(x,pi)'} };

% boundary conditions:

(24) fem.bnd.g = { {'g(t)' 0 0 0} };

(25) fem.bnd.r = {{0 0 0 0}};
16



% auxilliary fem-struct:

fem_sol = fem;

% gradient method to solve optimality system

% solve state equation for y

% redefine equations and boundary conditions

% y may only appear in state equation

(27) fem.equ.f = { {'u';0;0;0} };

(28) fem.bnd.r = { {0;0;0;0} };

(29) fem.xmesh = meshextend(fem);

(30) fem.sol = femtime(fem,'solcomp',{'y'},'tlist',...

[0,pi],'tout','tsteps','maxstep', 0.01);

J= postint(fem,'J','T',fem.sol.tlist);

J= 1/2*(J(1:end-1)+J(2:end))*diff(fem.sol.tlist)';

Jold = Inf;

D = 1; i = 0;

while J<Jold

Jold =J;

i=i+1;

% solve adjoint equation for p

% redefine equations and boundary conditions

% p may only appear in adjoint equation

(38) fem.equ.f = { {0;'y-yd(x,t)';0;0} };

fem.bnd.r = { {0 0 0 0} };

(40) fem.xmesh = meshextend(fem);

(41) fem.sol = femtime(fem,'solcomp',{'p'},...

'outcomp',{'y','p','u','uold'},...

'u',fem.sol,'tlist',[pi,0],...

'tout','tsteps','maxstep', 0.01);

% save tlist

tlist_rw = fem.sol.tlist;

rho = 1;

fem.const{2} = num2str(rho);

j=0;

% determine step size

while (J>=Jold & rho >=1.e-3)

j=j+1;

% determine new control u

% redefine equations and boundary condtions

% u may only appear in third equation

fem.equ.f = { {0;0;'uold-rho*(p+nu*(uold-ud(x,t)))-u';0} };

fem.bnd.r = { {0;0;'uold-rho*(p+nu*(uold-ud(x,t)))-u';0} };

(50) fem.xmesh = meshextend(fem);

(51) fem.sol = femtime(fem,'solcomp',{'u'},...

'outcomp',{'y','p','u','uold'},...

'u',fem.sol,'tlist',tlist_rw,...

'tout','tsteps','tsteps','strict');

% solve state equation for y

% redefine equations and boundary conditions

% y may only appear in state equation

fem.equ.f = { {'u';0;0;0} };

fem.bnd.r = { {0;0;0;0} };

fem.xmesh = meshextend(fem);

(55) fem.sol = femtime(fem,'solcomp',{'y'},...

'outcomp',{'y','p','u','uold'},...

'u',fem.sol,'tlist',[0,pi],...

17



'tout','tsteps','maxstep', 0.01);

J = postint(fem,'J','T',fem.sol.tlist);

J =1/2*( J(2:end)+J(1:end-1))*diff(fem.sol.tlist)';

% flip tlist for use in third equation

tlist_rw = fliplr(fem.sol.tlist);

rho=rho/2;

(60) fem.const{2} = num2str(rho);

end

if J<Jold

fem_sol = fem;

disp(['Successful step: J = ',num2str(J)]);

else

disp('Step failed')

end

% change in control variables

D = (postint(fem,'(uold-u)^2','T',fem.sol.tlist));

D = 1/2*(D(1:end-1)+D(2:end))*diff(fem.sol.tlist)';

% save value of control u in uold

% redefine equations and boundary condtions

% uold may only appear in fourth equation

(70) fem.equ.f = { {0;0;0;'u-uold'} };

fem.bnd.r = { {0;0;0;'u-uold'} };

fem.xmesh = meshextend(fem);

(73) fem.sol = femtime(fem,'solcomp',{'uold'},...

'outcomp',{'y','p','u','uold'},...

'u',fem.sol,'tlist',tlist_rw,...

'tout','tsteps','tsteps','strict');

end

fem = fem_sol;

clear fem_sol;

Listing 7.

The postprocessing can be done similarly to the other examples. The posteval function in line 77
extracts a structure u from fem that contains only the solutions data. See Listing 9 for an example.

% post processing

(77) u=posteval(fem,'u','solnum','all');

subplot(222);

surf(u.p(1:2:end),fem.sol.tlist(1:2:end),u.d(1:2:end,1:2:end))

Listing 8.

Results. We solved Example 5.1.1 for a set of values hmax. Table shows the errors for u, y measured
in the L2(Q)-norm and for J , and the number of iterations needed for solving the problem. Obviously,
the number of iterations depends on hmax.

5.2.3. Solving Example 5.1.2 . Secondly, we solved the boundary control problem 5.1.2 by the iterative
method. Table 8 lists the errors and the values of J as well as the number of iterations. It is remarkable
that the number of iterations is signi�cantly smaller than in the example before.

5.2.4. Solution to Example 5.1.3. At last, we apply the iterative method to the 2D-Example 5.1.3.
The program code is analoguously to the one of the 1D example 5.1.1. The geometry is de�ned by

fem.geom = rect2(0, pi, 0, pi);

the Laplace operator is de�ned as

fem.equ.ga = { { {'-yx1' '-yx2'} {'-px1' '-px2'} {0 0} {0 0}} };
18



hmax ‖u∗ − uh‖Q ‖y∗ − yh‖Q J(yh, uh)− J(y∗, u∗) #it

20 3.3096 0.088064 0.022568 61

2−1 0.63421 0.0056229 0.0029157 70

2−2 0.10418 4.1446 · 10−4 2.7439 · 10−5 137

2−3 0.035169 1.6769 · 10−4 1.0575 · 10−4 116

2−4 0.030929 1.2741 · 10−4 1.5912 · 10−4 120

2−5 0.018019 5.6166 · 10−5 1.0325 · 10−4 152

2−6 0.0023372 5.4141 · 10−6 7.0073 · 10−6 316

Table 7. Distributed controled problem: Errors and values of J with respect to the
parameter hmax.

hmax ‖u∗ − uh‖Σ ‖y∗ − yh‖Q |J(yh, uh)− J(y∗, u∗)| #it

20 0.060428 0.041127 1.3985 · 10−2 30

2−1 0.0026638 0.0015048 4.9358 · 10−4 49

2−2 8.7139 · 10−4 1.4941 · 10−4 3.0021 · 10−5 37

2−3 0.0016595 8.1605 · 10−5 6.4832 · 10−5 29

2−4 3.0045 · 10−4 6.3345 · 10−6 1.7867 · 10−5 54

2−5 3.2644 · 10−4 6.8206 · 10−6 7.4004 · 10−6 52

2−6 5.2305 · 10−4 1.2691 · 10−5 9.7372 · 10−6 44

Table 8. Boundary controled problem: Errors and values of J with respect to the
parameter hmax.

where the independent variables are called x1 and x2.

hmax ‖u∗ − uh‖Q ‖y∗ − yh‖Q |J(yh, uh)− J(y∗, u∗)| #it

20 39.290 0.19290 0.20213 271

2−1 3.1704 0.025563 0.003234 81

2−2 0.4500 0.0026441 0.002694 130

2−3 0.0671 2.6871 · 10−4 5.3364 · 10−4 230

2−4 comp. failed: memory over�ow(?) -

Table 9. Error to the 2D Example

6. Conclusions and Outlook

The �nite element package Comsol Multiphysics can be used for solving optimal control prob-
lems, provided the user o�ers the optimality system for the given problem. We studied two di�erent
approaches to solve systems of time dependent PDEs.

The one-shot-approach provides a very easily to implementable method to solve optimal control
problems. Of course, the achieved results are not comparable with ones computed by specialized
software. This has one main reason: In the one-shot-approach we used an implementation of the time
dependent PDE which do not include the time as a �special� dimension. The problem becomes a

19



singular elliptic problem. In such cases, stabilized methods are in use. Figure 4 shows one e�ect of
this lack, the error �ow through the space-time domain.

Figure 4. �Error �ow� through the space-time domain. In a �correct� implementation,
the error shold be symmetrically distributed.

The iterative method described in Algorithm 5.1 provides a mathematically correct formulation of
the optimality conditions. Our implementation uses the capability of Comsol Multiphysics to solve
coupled systems of PDEs for each unknown separately. For a correct implementation of these methods,
a deeper knowledge of Comsol Multiphysics is necessary, e.g to avoid the �hidden� coupling of
adjoint and state equation.

Altogether, Comsol Multiphysics provides the possibility for a fast implementation of optimal
control solvers. It does not redundantize specialized solvers for time-dependent optimal control prob-
lems.

A possible next step is to extend the methods described here to constrained optimal control problems.
There, Comsol Multiphysics 's ability to solve e.g. barrier problems by symbolic di�erentiation
should o�er some chances. This will be the topic of the upcoming second part.

References

[1] J. L. Lions. Optimal Control of Systems Governed by Partial Di�erential Equations. Springer-Verlag, Berlin, 1971.
[2] D. Meidner and B. Vexler. A priori error estimates for space-time �nite element discretization of parabolic optimal

control problems Part I: Problems without control constraints. submitted, 2007.
[3] U. Prüfert and F. Tröltzsch. An interior point method for a parabolic optimal control problem with regularized

pointwise state constraints. ZAMM, 87(8�9):564�589, 2007.
[4] T. Slawig. PDE-constrained control using Femlab - Control of the Navier-Stokes equations. Numerical Algorithms,

42:107�126, 2006.
[5] F. Tröltzsch. Optimale Steuerung partieller Di�erentialgleichungen. Theorie, Verfahren und Anwendungen. Vieweg,

Wiesbaden, 2005.
[6] J. Wloka. Partielle Di�erentialgleichungen. Teubner-Verlag, Leipzig, 1982.

20


