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Abstract

This work studies dynamical properties of spatially extended neu-

ronal ensembles. We first derive an evolution equation from tem-

poral properties and statistical distributions of synapses and somata.

The obtained integro-differential equation considers both synaptic and

axonal propagation delay, while spatial synaptic connectivities ex-

hibit gamma-distributed distributions. This familiy of connectivity

kernels also covers the cases of divergent, finite, and negligible self-

connections. The work derives conditions for both stationary and

nonstationary instabilities for gamma-distributed kernels. It turns out

that the stability conditions can be formulated in terms of the mean
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spatial interaction ranges and the mean spatial interaction times. In

addition, a numerical study examines the evoked spatiotemporal re-

sponse activity caused by short local stimuli and reveals maximum

response activity after the mean interaction time at a distance from

stimulus offset location equal to the mean interaction range. These

findings propose new insights to neuronal mechanisms of experimen-

tally observed evoked brain activity.

1 Introduction

Understanding the basic mechanisms of neuronal activity is supposed to yield
insights to major brain functions such as perception, memory processes or
motor coordination. The presented work attacks this task by studying spa-
tiotemporal neuronal dynamics caused by fluctuations and environmental
external stimuli.

Fluctuations in space and time are always present due to the large number
of interconnected neurons and are supposed to be responsible for large-scale
coherent phenomena near unstable neural activity states. We mention the
phenomena of hallucinations, which frequently result from specific circum-
stances such as fatigue or sleep deprivation [1] and which, in some cases,
exhbits a shift of the neural state to an instability by increased neuronal ex-
citation [2, 3]. For instance, Ermentrout and Cowan [4] introduced a meso-
scopical neuronal field theory and explained visual hallucination patterns by
loss of stability at bifurcation points.

In contrast, external stimuli may represent sensoric input as auditory
speech or visual perceptions. For instance, during cognitive experiments
encephalographic measurements reveal coherent evoked brain activity and
indicate synchronous neuronal activity on a mesoscopic spatial level [5, 6,
7, 8, 9]. In this context, Freeman [10] has shown in an early work that
encephalographic activity relates to mesoscopic dendritic currents. Dipol
and current source density models support these findings [11]. Hence, our
work aims to study neuronal mechanisms on a spatially mesoscopic level.

Many works studying mesoscopic neuronal activity [12, 13, 14, 15, 16, 17,
18, 19, 20] treat synaptically coupled neuronal ensembles. Our work follows
the basic field approach of Jirsa and Haken [5], who combined the ensemble
models of Wilson and Cowan [21] and Nunez [22]. This model considers a
single type of neurons, which are interconnected by axons terminating at
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either excitatory or inhibitory synapses. Though the intrinsic delay due to
axonal propagation had been introduced, it does not affect temporal and spa-
tial dynamics. A recent work treating intracortical activity [23, 24] extends
the model by introducing synaptic response delay and thus adds a further
time scale. It turns out that the relation between synaptic and propagation
delay affects the stability of the system. In addition to the temporal scales,
the synaptic connectivity kernels define the spatial scales of the neuronal
field. In most works, these connectivity kernels exhibit their maximum at
zero distances, i.e. strong self-connectivity. Since effects of reduced self-
connectivity has not been studied yet in a general form, we shall discuss the
family of gamma-distributed connectivity kernels which may exhibit infinite,
finite, and negligible probability densities of self-connections for diverse pa-
rameters. These cases shall be studied in the context of spontaneous and
externally evoked activity.

The paper is organized as follows. The subsequent section presents the
derivation of the field equation. In Section 3, stability conditions with respect
to spontaneous fluctuations are derived analytically, followed by a numerical
study of evoked responses caused by external stimuli. Section 4 summarizes
the results and closes the work.

2 Model derivation

The present work treats a three-section model of synaptically coupled neu-
ronal ensembles. Here, one section represents the ensemble set of synapses,
which convert the incoming presynaptic activity to postsynaptic potentials
(PSP). The adjacent model section contains the ensemble set of trigger zones
at somata converting PSPs to axonal pulse activity, while the final one rep-
resents the set of axonal fibres linking trigger zones to distant synapses. In
the following, these model sections are discussed in some detail.

2.1 Model sections

Chemical synapses convert incoming action potentials to postsynaptic cur-
rents by emission of neurotransmitters [25]. Most excitatory synapses (e)
emit neurotransmitters called glutamate, which enhance the activity of the
postsynaptic cells, while the neurotransmitter γ-aminobutyric (GABA) emit-
ted by inhibitory synapses (i) diminishes the postsynaptic cell activity. In
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addition, synapses may bind to dendrites or the soma of the postsynaptic
neuron. Hence, the efficacy of synapses is very diverse. While excitatory
synapses are often located at dendrites and act faster than inhibitory ones,
the latter are often located closer to the soma and thus have larger effects to
the neuron.

Furthermore, there is evidence that the dendritic morphology, such as
compactness of arborization and branching patterns, affects the stability of
connected neurons [14, 26], e.g. due to propagation delays along spatially
extended dendrites [27, 28]. In a simplified model, dendrites are electric
conductors which exhibit passive spread of current through the dendritic
tissue. According to this approach, Freeman [29] was one of the first to
show that the response of chemical synapses to incoming action potentials
a(t) is approximately equivalent to the convolution of a(t) with an impulse
response function he,i(t). The presented approach accounts for this finding
and neglects shunting effects.

In experimental practice single cell activation is measured frequently as
the number of action potentials exceeding a certain threshold potential during
the time interval ∆t . 2ms and a sampling procedure at rates νs ≈ 10 −
100kHz. Hence it is reasonable to assume action potentials at discrete times
t+k/νs, k = 1, . . . , [νs∆t] and the mean pulse rate at time t gives the number
of action potentials in the interval between t and t+∆t. Here, [..] denotes the
nearest integer function. In addition, our model introduces spatial patches
Γ(x) at location x each containing N synapses, that is, the activity discussed
is coarse grained in space. Consequently, postsynaptic potentials averaged
over time and space obey

V̄ e,i(x, t) =
1

∆t

[νs∆t]
∑

k=1

1

N

N
∑

l=1

g
(l)
e,i

∫ t+k/νs

−∞

dτhe,i(t − τ )a(xl, τ )

≈
∫ t

−∞

dτ he,i(t− τ )
1

∆t

[νs∆t]
∑

k=1

1

N

N
∑

l=1

g
(l)
e,ia(xl, τ + k/νs)

= ḡe,i

∫ t

−∞

dτ he,i(t− τ ) P̄e,i(x, τ ) , (1)

with xl ∈ Γ(x), g
(l)
e,i denotes the efficacy of excitatory and inhibitory synapses

at location xl and P̄e,i(x, t) represents the presynaptic pulse rate coarse
grained in time and space. Equation (1) assumes presynaptic pulse activ-
ity which is fast compared to the slow synaptic response on a time scale of
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5−10ms. We remark that the replacement of sequences of actual spike trains
a(t) is only justified if quantities relevant for the network dynamics are insen-
sitive to trial-to-trial fluctuations, i.e. time coding of spikes is not relevant.
This is given in case of uncorrelated single action potentials, which is assumed
here. The introduced spatial patches Γ(x) represent neuronal assemblies or
neuronal pools [13, 21, 22, 30] which build mesoscopic functional entities in
the brain and have been found experimentally both in cortical [31, 32] and
subcortical [33] areas.

Essentially, we assume variations of synaptic properties in the considered
neuronal population [34]. Thus PSPs V e,i(t) at single neurons become ran-
dom variables with the corresponding probability distributions pe

S(V e − V̄ e)
and pi

S(V i− V̄ i). Since excitatory and inhibitory PSPs sum up at the trigger
zone of each neuron [35, 36], the probability density function of the effective
membrane potential V = V e − V i is

pS(V − V̄ ) =
1

2π

∫

dzφe
S(z)φi

S(−z)e−izV , (2)

where V̄ = V̄ e − V̄ i and φe
S , φi

S are the characteristic functions of the corre-
sponding probability density functions of pe

S , pi
S.

We now aim to discuss the synaptic properties in more detail. According
to [10], the impulse response function from (1) reads

h(t) =
α1α2

α1 − α2

(e−α1t − e−α2t), α1, α2 > 0 .

In case of α1 = α2 = α, the function is the well-known alpha function h(t) =
α2t exp(−αt). For maximum impulse response after a delay of ∼ 5ms [37],
it is α = 200Hz. Further, h(t) represents a Green function for the temporal
operator

L̂ = (
∂

∂t
+ α1)(

∂

∂t
+ α2) (3)

with L̂h(t) = α1α2δ(t) and δ(t) being the Dirac δ function.
The latter synaptic and dendritic features define the first model section.

In the present concept of neuronal ensembles, it converts incoming presynap-
tic pulse activity to effective somatic membrane potentials.

Now, the adjacent model section focuses on the conversion of membrane
potentials to pulse activity. A single neuron generates an action potential
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a(t) at time t, i.e. it fires if the membrane potential V (t) at the trigger zone
exceeds a certain threshold Vth. Thus, the probability of a single neuron to
fire is Θ(V (t) − Vth), where Θ(z) denotes the Heaviside function. For an
ensemble of neurons at spatial location x, there is a distribution of firing
thresholds D(Vth − V̄th, t) and thus the expected number of firing neurons is

N(t) =

∫ ∞

−∞

dV pS(V − V̄ (t))

∫ ∞

−∞

dVthΘ(V − Vth)D(Vth − V̄th, t)

=

∫ ∞

−∞

dw

∫ w+V̄ (t)−V̄th

−∞

du pS(w)D(u, t).

where V̄th denotes the mean firing threshold and pS is taken from Eq. (2).
However, single neurons show refractory time periods and adaption [13, 35],
which change the threshold distribution in time. Hence, the time-averaged
pulse activity at location x is given by

N̄(x, t) =

∫ t+∆t

t

dτ

∫ ∞

−∞

dw pS(w)

∫ w+V̄ (x,τ )−V̄th

−∞

du D(u, τ )

≈
∫ ∞

−∞

dw pS(w)

∫ w+V̄ (x,t)−V̄th

−∞

du

∫ t+∆t

t

dτD(u, τ )

=

∫ ∞

−∞

dw

∫ w+V̄ (x,t)−V̄th

−∞

du pS(w)D̄(u) (4)

for the time interval ∆t sufficiently small and the time-averaged distribution
of firing thresholds D̄(u). Here, N̄(x, t) represents the average number of
firing neurons in a time interval between t and t+∆t in a neuronal ensemble
at location x. Since N̄ depends on the membrane potential V̄ , Eq. (4) gives
the general definition of the so-called transfer function.

Additionally, the change of pulse activity subject to the membrane po-
tential plays an important role concerning the temporal stability of neuronal
ensembles [22, 38] and reads

∂N̄

∂V̄
=

∫ ∞

−∞

dw pS(w)D̄(w + V̄ − V̄th). (5)

Equations (4) and (5) are general expressions for the well-known sigmoidal
conversion and the corresponding conditional pulse probability density or
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nonlinear gain [38], respectively, which are subjected to synaptic and so-
matic statistical properties.
To be more specific, in case of normal-distributed synaptic probability dis-
tributions pe,i

S , the effective membrane potentials obey a normal distribution
pS ∼ N (0, σ2

S). Additionally, for Gaussian-distributed firing thresholds

D̄(u) =
Pmax√
2πσT

e−u2/2σ2

T ,

the transfer function and nonlinear gain read

N̄ (x, t) =
Pmax

2
(1 + erf(

V̄ (x, t)− V̄th√
2σ

)) (6)

∂N̄(x, t)

∂V̄
=

Pmax√
2πσ

e−(V̄ (x,t)−V̄th)2/2σ2

,

respectively, where σ2 = σ2
S + σ2

T , erf(x) represents the Gaussian error func-
tion [39] and Pmax denotes the maximum firing rate. Equation (6) shows
accordance to previous results [40].

The present work approximates the conversion of effective postsynaptic
potentials V̄ to mean pulse rates N̄ from Eq. (6) by the logistic function [29,
38, 41, 42, 43]

N̄(x, t) = PmaxS(V (x, t)) =
Pmax

1 + e−c(V̂ (x,t)−Vr)
(7)

with parameters c, Vr defined in a later section. Equation (4) gives the major
relation of this second model section.

To close the conversion chain of state variables, the final model section
contains axonal fibres linking trigger zones and dendritic structures of ter-
minal neurons. In mathematical terms, pulse activity generated at spatial
location y propagates along axons by speed ve,i and sums up at terminal ex-
citatory and inhibitory synapses at location x according to the corresponding
axonal connectivity distributions fe(x, y) and fi(x, y), respectively. More pre-
cisely, these distributions are the probability density of axonal connections
between two spatial locations x and y. Thereby, the nonlocal interactions
yield temporal propagation delays in case of finite axonal propagation speeds.
In combination with Eq. (1), this approach is similar to the voltage-based
model of Hopfield [44]. Hence, the presynaptic pulse activity reads

P̄e,i(x, t) =

∫

V

dx′fe,i(x, x′)N̂(x′, t− |x − x′|
ve,i

) + µe,iI(x, t) (8)
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with coupling factors µe,i. The additional pulse activity I(x, t) introduces an
external input, e.g. from other cortical regions or from the midbrain [22].

In most previous works [4, 23, 45], neuronal fields exhibit axonal connec-
tions which are maximal at zero distance and monotonically decreasing for in-
creasing distance. Then, the combination of excitatory and inhibitory axonal
networks may yield four different spatial interactions, namely pure excitation,
pure inhibition, local excitation-lateral inhibition and local inhibition-lateral
excitation. In contrast, the current work picks up an interestimg result of
Nunez [22], who estimated the distribution of axonal cortico-cortical fiber
lengths in humans, i.e. the spatial range of excitatory connections, based on
distributions in mice. He found that excitatory connections in humans may
obey a gamma distribution with maximum at some centimeters. A similar
problem has been addressed by Rinzel et al. [46], who found new propagation
patterns in inhibitory networks with vanishing self-connections. Since there
is also strong anatomical evidence for self-connections in inhibitory networks
in cat visual cortex [47], we set the corresponding axonal distribution to a
decreasing exponential.

2.2 The field equation

Now, all model sections have been defined and we combine the major results
(1), (3), (7) and (8) to

L̂V (x, t) =

∫

V

aefe(x, y)S(V (x′, t− |x − y|
ve

))

−aifi(x, y)S(V (y, t − |x − y|
vi

)) dy + µI(x, t)

with ae,i = ḡe,iPmax, µ = µe − µi and

fe(x, y) =
1

2rp
eΓ(p)

|x − y|p−1e−|x−y|/re , fi(x, y) =
1

2ri
e−|x−y|/ri (9)

where p ∈ <, p > 0 is a parameter of the gamma distribution, Γ(p) de-
notes the gamma function and re, ri are the spatial interaction range of
excitatory and inhibitory connectivity kernels, respectively. After scaling
t → t

√
α1α2, x → x/re, ve,i → ve,i/(re

√
α1α2) the final field equation reads

L̂V (x, t) =

(

∂2

∂t2
+ γ

∂

∂t
+ 1

)

V (x, t)
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=

∫ ∞

−∞

aeKe(x − y)S(V (y, t − |x − y|
ve

))

−aiKi(x − y)S(V (y, t − |x − y|
vi

))dy + µI(x, t) (10)

with

Ke(x) =
1

2Γ(p)
|x|p−1e−|x| , Ki(x) =

1

2
re−r|x| , (11)

γ = (α + 1
α
) ≥ 2 and r = re/ri. Equation (10) describes the dynamics of

a coarse grained field of neuronal ensembles coupled by nonlinear, nonlocal
interactions. It is damped by synaptic delay dynamics and subjected to
delayed spatial interaction and external input. The mean spatial interaction
ranges of excitatory and inhibitory connections, respectively, are given by

ξe =

∫ ∞

−∞

dxKe(x)|x| = p, ξi =

∫ ∞

−∞

dxKi(x)|x| = 1/r

using Eq. (11). In Figure 1, both kernels are plotted for various parameters
p, r and we observe singular local excitations for p < 1 (Fig. 1, left panel). At
a first glance, this singularity of the probability density Ke may appear un-
physical. However, this effect occurs even in much more simple processes and
we mention the standard Brownian motion exhibiting a singular probability
density of sojourn times [48, 49].

In most works treating spatial structures in neuronal fields, excitatory
and inhibitory connectivity kernels are of the same functional type such as
exponentials or Gaussians. In these models, the excitation and inhibition
comes in by a different sign of the kernel functions and by different spatial
scales, say re, ri. In consequence, the spatial interaction ranges can be scaled
to ξe = 1 and ξi 6= 1. That is, the single parameter ξi reflects the relation
of the excitatory and the inhibitory spatial scale and defines the spatial in-
teraction. In contrast, Eq. (9) reveals an additional parameter p yielding
two variables ξe, ξi which define the spatial interaction ranges. The addi-
tional parameter proposes novel dynamic properties which are extracted in
the subsequent sections.

3 Stability analysis

This section aims to study the stability of a stationary state V0 which is
constant in space. In case of constant external input µI(x, t) = I0, Eq. (10)
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becomes the implicit equation

V0 = (ae − ai)S(V0) + I0. (12)

and Fig. 2 illustrates its different solutions for ae > ai.
For deviations u(x, t) = V (x, t)− V0 = u0e

λt+ikx, Eq. (10) reads

L(λ) = s

∫ ∞

−∞

dz
(

aeKe(z)e−
λ

ve
|z| − aiKi(z)e

− λ

vi
|z|

)

eikz (13)

with the nonlinear gain s = δS/δV at V = V0.
When s = 0, one has L(λ) = λ2 + γλ + 1 = 0, so that Rλ < 0 and the
perturbations u are damped out. It follows that V0 is asymptotically stable
for all small s, since the values (λ, k) satisfying the dispersion relation (13)
depend continuously on s. However, increasing s further may result in a loss
of stability; in this critical transition one has Rλ = 0. Thus setting λ = iω
for some ω ∈ R in (13), we get

1 − ω2 + iωγ = s

∫ ∞

−∞

dz
(

aeKe(z)e−iω|z|/ve − aiKi(z)e−iω|z|/vi

)

eikz. (14)

Comparing the magnitudes of both sides,

√

(1 − ω2)2 + γ2ω2 ≤ s

∫ ∞

−∞

dz (ae|Ke(z)|+ ai|Ki(z)|) . (15)

By simple calculus and the fact that γ ≥ 2,

(1 − ω2)2 + γ2ω2 ≥ 1 for all ω ∈ R. (16)

Also, by (11),
∫ ∞

−∞

dz|Ke,i(z)| = 1. (17)

Using (16) and (17) in (15), we obtain the necessary condition for loss of
stability

1 ≤ s(ae + ai). (18)

In order to investigate the dynamics of the nonlinear equation (10), it is
useful to classify the different ways in which V0 may lose its stability subject
to the parameter s in case of spontaneous fluctuations.
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3.1 Spontaneous stationary instability

For stationary bifurcations, ω = 0 and the threshold for s becomes

sc =
1

aeK̂e(kc) − aiK̂i(kc)
=

1

K̂(kc)
,

where K̂e and K̂i are the characteristic functions of Ke and Ki, respectively,
and

K̂(k) =
ae√

1 + k2
p cos(p arctan(k)) − air

2 1

r2 + k2
.

In case of a constant bifurcation, the stationary state loses stability due to
spontaneous fluctuations for

s >
1

K̂(0)
=

1

ae − ai
.

Figure 3 shows the corresponding bifurcation diagram for various parameters
ae, ai.

However, increasing s from zero, a non-constant bifurcation may emerge
for (ae +ai) > K̂(kc) > (ae−ai) with kc > 0 and ae > ai. The corresponding
sufficient condition reads for gamma-distributed kernels

∂2K̂(k)

∂k2
|k=0 > 0 ⇒ ξ2

i >
ae

2ai
ξe(ξe + 1) (19)

with

∂2K̂(k)

∂k2
= − aep(p + 1)

√
1 + k2

p+2 cos((p + 2) arctan(k)) + 2air
2 r2 − 3k2

(r2 + k2)3
,

which ensures a local maximum of K̂(k) at finite kc > 0, cf. Fig. 4, 5
and 6. The corresponding bifurcation has been found first by Turing in
non-equilibrium activator-inhibitor systems [50, 51].

For ξe < 1, Turing patterns are present for ξi > ξe (Fig. 5), while
for ξe ≥ (ae/ai)/(2 − ae/ai), ae ≤ ai they occur for ξi ≤ ξe as well. This
latter case reflects a larger mean excitation range than mean inhibition range
and has not been found in previous works. Figure 6 shows the effective
kernel aeKe(x)−aeKi(x) and corresponding Fourier transform K̂(k) for both
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ξe = 1 and ξe = 2.0. In contrast to kernels with ξe = 1, which exhibit
local excitation-lateral inhibition interaction for ξi > 1, Turing instabilities
may also occur for ξe = 2 although the kernel elicits local inhibition-lateral
excitation interaction.
Eventually recalling the findings of Nunez [22], experiments indicate ξe =
3 and ae > ai for excitatory cortico-cortical connections, i.e. long-range
interaction with r � 1 and thus ξi � 1. According to Eq. (19) and Fig. 4,
Turing patterns may not occur for these parameters and also have not been
found in experiments.

3.2 Spontaneous non-stationary instability

This type of bifurcation is characterized by a solution pair (λ, k) of (13) with
λ = iω 6= 0. We shall show that such bifurcations are possible only if the
transmission speeds ve,i are not too large, and obtain an estimate to quantify
this statement.

Considering the imaginary part of (14),

ωγ = −s
∫ ∞

−∞
dz (aeKe(z) sin(ω|z|/ve) − aiKi(z) sin(ω|z|/vi)) cos(kz)

+s
∫ ∞

−∞
dz (aeKe(z) cos(ω|z|/ve) − aiKi(z) cos(ω|z|/vi)) sin(kz).

Note that the integrand in the first integral is an even function of z while that
in the second integral is an odd function. Thus the second integral vanishes,
and we have

ωγ = −2s

∫ ∞

0

dz (aeKe(z) sin(ωz/ve) − aiKi(z) sin(ωz/vi)) cos(kz)

which yields

|ω|γ ≤ 2s

∫ ∞

0

dz (ae|Ke(z) sin(ωz/ve)| + ai|Ki(z) sin(ωz/vi)|) .

Using the fact that | sinx| ≤ |x| for all x, we obtain

|ω|γ ≤ 2s

∫ ∞

0

dz (ae|Ke(z)ωz/ve| + ai|Ki(z)ωz/vi|)

and since ω 6= 0 at a non-stationary bifurcation,

γ ≤ s

(

ae

ve

∫ ∞

0

dz 2Ke(z)z +
ai

vi

∫ ∞

0

dz 2Ki(z)z

)

.
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Note that the integrals are the definitions of the mean spatial interaction
ranges ξe and ξi for excitatory and inhibitory connections, respectively. Hence
we define

τe =
1

ve

∫ ∞

−∞

dz Ke(z)|z| = ξe/ve, τi =
1

vi

∫ ∞

−∞

dz Ki(z)|z| = ξi/vi (20)

as the mean delay times respectively for the excitatory and inhibitory infor-
mation transmission in the field. In this way, we can express a necessary
condition for non-stationary bifurcations to occur, namely

s ≥ sc =
γ

aeτe + aiτi

. (21)

Since all quantities are positive, it is clear that at least one of the velocities
ve or vi must be finite for the occurence of non-stationary bifurcations. For
the particular case when the distributions are given by (11), we have

γ

s
≤ aep

ve

+
ai/r

vi

by using the mean values of the gamma and exponential probability den-
sity distributions. This relation elicits a decreased threshold sc for increased
values of p and 1/r, i.e. the larger p and 1/r the easier nonstationary bifur-
cations may occur.

With Eq. (21) and the previous condition 1/(ae + ai) < s < 1/(ae −
ai) for nonconstant bifurcations , the parameter regime for nonstationary
bifurcation is given by

γ

τe
ae

ai

+ τi
< ais <

1
ae

ai

− 1
,

1
ae

ai

+ 1
< ais

As can be shown by simple calculus, there is a threshold

ae/ai =
γ + τi

γ − τe
, τe < γ

beyond which no nonstationary bifurcations occur, while τe > γ allows non-
stationary bifurcations for all ae/ai ≥ 1. Figure 7 illustrates these findings.
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3.3 Evoked stimulus response

Finally, we study Eq. (10) numerically and aim to extract its spatiotemporal
properties for different excitatory spatial ranges ξe. In experimental practice,
neural tissue is stimulated by local external input during a finite time interval.
We choose the external stimulus to be

I(x, t) = I0 +

{

Ilocal : x0 ≤ x ≤ x0 + ∆x , 0 ≤ t ≤ ∆T
0 : otherwise

For the numerical investigations parameters are chosen to be physiologically
reasonable as c = 1.8, Vr = 3.0 [52] and α1 = α2 = 200Hz [37, 43], i.e. γ = 2.
From [22], we obtain spatial ranges re = 20mm, ri ≈ 1mm, i.e. ξi = 0.05,
and ξe = 3. The spatial field exhibits 400 discrete elements each of length
dx = 1mm, while the time period is discretized by 100 time steps each of
duration dt = 0.4ms. In addition, the propagation speed along excitatory
axonal connections is ve = 8m/s, while the delay corresponding to short-
range inhibitory connections is neglected.

The subsequent temporal integration procedure applies an Euler algo-
rithm while the spatial integration algorithm obeys

∫ L

0

f(z)dz ≈
N

∑

i=1

1

2
(f(zi) + f(zi+1)) dx (22)

for an integrand f , here with N = 400 and L = 400mm. Furthermore,
periodic boundary conditions are set, yielding

∫ ∞

−∞

K(|x − y|)f(y)dy ≈
∫ L

0

K(L/2 − |L/2 − |x− y||)f(y)dy.

Initial values V 0(x, t) = V0 for −L/ve ≤ t ≤ 0 guarantee negligible initial
transients. For synaptic parameters ae = 25, ai = 5 and constant external
stimulus I0 = 0.1, it is V0 = 0.23 and the condition (18) for asymptotic
stability holds. The additional local stimulus of strength Ilocal = 5, width
∆x = 10mm and duration ∆T = 8ms evokes spatiotemporal activity, which
is shown as space-time plots in Fig. 8 for various excitatory spatial ranges
ξe = p. During stimulation no activity spreads into the field, while after stim-
ulus offset activation travels from the stimulus center. Graphical evaluations
reveal that the activation propagates with the axonal speed ve and exhibits
its maximum at a distance ξe · re from stimulus offset location, i.e. at the
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mean excitatory interaction range. Hence, the expected time for maximum
stimulus response is the mean interaction time τe from Eq. (20). These find-
ings coincide for all parameters ξe = p in Fig. 8. Though further analytical
examinations are necessary to validate these first numerical findings, they
would exceed the major aim of the paper and shall be discussed in future
work.

Finally, we examine the activity response evoked by a different stimulus

I(x, t) = I0 +

{

5.0 · cos(k0x) : 0 ≤ t ≤ ∆T
0 : otherwise

for the same parameters as above. Figure 9 shows results for (a) k0 =
2π/20mm−1 and (b) k0 = 2π/200mm−1. We observe diverse periodic spa-
tiotemporal patterns, which reveal the spatial periodicity of the stimulus and
the mean excitatory interaction time.

4 Conclusion

The present work introduces a three-section model for non-local interact-
ing neuronal ensembles. It considers synaptic and axonal propagation de-
lay effects besides general gamma-distributed excitatory and inhibitory ax-
onal connectivities. In a derivation step, a general somatic transfer function
is derived from statistical synaptic and somatic properties. The obtained
field equation is studied with respect to its stability towards spontaneous
fluctuations and external stimuli. Conditions for Turing and nonstationary
instabilities exhibit only a few parameters. That is, mean excitatory and
inhibitory spatial interaction ranges define the sufficient parameter regime
of spontaneous Turing patterns, while mean excitatory and inhibitory in-
teraction times determine the necessary parameter regime of spontaneous
nonstationary phenomena. Interestingly, these parameters also appear to
play an important role in the evoked response activity caused by local exter-
nal stimuli. In the numerical study, evoked activation propagates at axonal
propagation speed and its maximum occurs at a distance from stimulus on-
set equal to the mean spatial interaction range after the corresponding mean
interaction time. This rather intuitive finding gives new insights to stimulus
responses in nonlocally interacting fields and, especially, to information pro-
cessing in local brain areas during cognitive processing of external stimuli.
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Future work will discuss evoked responses analytically subjected to diverse
stationary and nonstationary spatiotemporal stimuli.
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Figure 1: Excitatory and inhibitory kernels for various parameters. All ker-
nels are finite except for Ke(x) for p = 0.5. In case of p > 1, kernel Ke(x)
exhibits a maximum far from the origin.

Figure 2: Illustration for the detection of constant stationary solutions of
Eq. (12). For I0 < 1.32, there are three solutions, while for I0 > 1.32 there
is only a single one at large values of V0. Simple iteration studies near the
solutions reveal their stability: filled circles represent stable fixed points,
while empty circles illustrate unstable fixed points. At the critical value
I = 1.32, there is a saddle node solution (hatched circle) synchronous to a
stable fixed point at large values of V0, cf. Fig. 3. Here, ae = 10, ai = 5 and
c = 1.8, Vr = 3.0 [52].

Figure 3: Bifurcation diagram and nonlinear gain for constant bifurcations
for ae > ai. Left panel: stability of the stationary state V0 with respect to
external input I0. For ae − ai > 4/c = 2.22, both stable (solid line) and
unstable branches (dashed line) exist, while for ae − ai ≤ 2.22 there is only
a single stable solution. Right panel: the nonlinear gain s with respect to
the constant state V0. The horizontal line s = 1/(ae − ai) separates stable
from unstable states and determines the critical values of V0. In both panels,
c = 1.8, Vr = 3.0.

Figure 4: Parameter regimes of Turing patterns for spatial interaction ranges
ξi and ξe and various values of ae/ai > 1. The thin solid line denotes ξi = ξe,
while filled and empty squares, triangles and diamonds mark different cases
discussed in Fig. 5 and Fig. 6.

Figure 5: Function K̂(k) for ξe < ξi. Parameter values are chosen according
to Fig. 4. Both values of ξe allow a local maximum of K̂(k) for k > 0 and
thus facilitates Turing patterns. Here, ae = 10, ai = 5.
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Figure 6: The kernel function aeKe(x) − aiKi(x) and the function K̂(k) for
ξe ≥ ξi. Parameter values are chosen according to Fig. 4. In case of ξe = 1.0,
local excitation-lateral inhibition (ξi = 1.10) yields a local maximum of K̂,
i.e. Turing patterns, while local inhibition-lateral excitation (ξi = 0.90)
prohibits Turing patterns. In constrast, ξe = 2.0 exhibits local inhibition-
lateral excitation for both values of ξi, while K̂ shows a local maximum for
ξi = 1.96. Here, ae = 10, ai = 5.

Figure 7: Necessary parameter regime for nonstationary instabilities for di-
verse mean excitatory interaction time τe and synaptic delay constant γ.
Valid parameters (hatched area) are constrained by the threshold of Eq. (21)
plotted as solid line, the threshold of constant bifurcation (dotted line) and
the threshold of asymptotic stability (dashed line).

Figure 8: Spatiotemporal stimulus response to a local stimulation for various
parameters ξe = p. Left column: Space-time plots of field activity, while the
greyscale encodes positive (white) and negative (black) deviations from the
stationary state (grey). The activity V has been clipped for |V − V0| > 0.05
due to illustrative reasons, i.e. equal-greyscaled areas occur due to clipping.
Activity propagation speeds are computed for all p along estimated lines
which are similar to the dashed line plotted for p = 3. Right column: several
time samples of spatial activity for the corresponding values of p.

Figure 9: Spatiotemporal stimulus response to a spatially periodic stimulus.
The greyscale encoding is the same as in Fig. 8.
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