STRUCTURED PSEUDOSPECTRA AND THE CONDITION OF A
NONDEROGATORY EIGENVALUE
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Abstract. Let A be a nonderogatory eigenvalue of A € C"*". The sensitivity of A with respect
to matrix perturbations A ~~ A+ A, A € A, is measured by the structured condition number
ka (A, N). Here A denotes the set of admissible perturbations. However, if A is not a vector space
over C then ka (A, \) provides only incomplete information about the mobility of A under small
perturbations from A. The full information is then given by a certain set Ka(z,y) C C which
depends on A and a pair of normalized right and left eigenvectors x,y. In this paper we study the
sets Ka (z,y) and obtain methods for computing them. In particular we show that Ka (z,y) is an
ellipse in some important cases.
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Notation. The symbols R, C denote the sets of real and complex numbers, re-
spectively. K™*" is the set of m x n matrices and K® = K"*! is the set of column
vectors of length n, K € {R,C}. By AT, A, A*, R A, 3 A we denote the transpose,
the conjugate, the conjugate transpose, the real and the imaginary part of A € C™*™,
Furthermore, I,, stands for the n X n unit matrix. Finally, n = {1,...,n} for any
positive integer n.

1. Introduction. The subject of this paper are the sets
Ka(z,y) ={y"Az; A€ A, [Al<1},  zyeC™, (1.1)

where ||| is a norm on C"*™ and A C C™*™ is assumed to be a closed cone (the latter
means, that A € A implies rA € A for all » > 0). Our motivation for considering
these sets stems from eigenvalue perturbation analysis by means of pseudospectra.
The sets Ka (z,y) provide the full first order information about the sensitivity of a
nonderogatory eigenvalue with respect to structured matrix perturbations. This is
explained in some detail in the following discussion.

Let A € C be a nonderogatory eigenvalue of algebraic multiplicity m of A € C™**™.
Let z € C™\ 0 be a right eigenvector, i.e. Ax = Az. Then there exists a unique left
generalized eigenvector § € C™ \ 0 satisfying

T (A= XIL,)™ =0, G (A= XL,)™ 1 £0, g'r = 1.

Let y* = §*(A—X1,)™ ! and let || - || be an arbitrary norm on C"*". Under a small
perturbation of A of the form

A AA)=A+A, AeCmm (1.2)

the eigenvalue A splits into m eigenvalues A;(A), ..., A\ (A) of A(A) with the first
order expansion [16]

N(A) = A+6;(8) +o(AP™),  jem. (1.3)
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where 01(A), ..., 0,,(A) are the m'" roots of y*Ax € C. Obviously,
10;(8)] = ly* Az = O(|AIY™),  jem.

We assume now that the perturbations A are elements of a nonempty closed cone
A CC*", Let

ka4, N) = max{ [y Az|Y™; AeA, A <1}
Then ra (A4, A) is the smallest number « such that
A (A) = Al < KIAIY™ +O(JA|7™) - for A€ A.

The quantity xka (A, \) is called the structured condition number of A with respect to
A and the norm || - ||. It measures the sensitivity of the eigenvalue A if the matrix A
is subjected to perturbations from the class A. In recent years some work has been
done in order to obtain estimates or computable formulas for ka (A4, ) [3, 4, 5, 7,
13, 15, 16, 18, 19]. However, the condition number can not reveal how the eigenvalue
moves into a specific direction under structured perturbations. For instance if A is a
simple real eigenvalue of a real matrix A and the perturbations A are also assumed to
be real then the perturbed eigenvalues A(A) remains on the real axis if ||A] is small
enough. Information of this kind can be obtained from the structured pseudospectrum
oa(A4,¢€), which is defined as follows.

oa(A,e) ={z€C; zis an eigenvalue of A+A for some A € A, ||A|| <€}, €>0.

Let Ca(A, A, €) denote the connected component of oa (A, €) that contains the eigen-
value A. Then we have for sufficiently small € that

Ca(A X e) ={N\j(A); Ae A Al <e jem}.
We now consider the sets
E{(2,y) ={z€C; 2" € Ka(x.y)}. (1.4)

In words, K(Am)(az:7 y) is the set of all m*" roots of the numbers y*Ax, where A € A,
[IA|l < 1. Consequently, the condition number xa (A, ) equals the radius of the

smallest disk about 0 that contains K(Am)(x, y). Moreover, (1.3) yields that

lim Ca(A M\ e)—A

e—0 el/m = K(Am)(m,y), (1'5)

where the limit is taken with respect to the Hausdorff-metric. More explicitely, (1.5)
states that to each & > 0 there exists an €y > 0 such that for all positive € < ¢,

(1) Cal(A, N €) CA+ /MUK (2, 1)),
(2) A+ /KR (2,y) C Us(CalA, A €)),

where Us(M) = {2 € C; |z—s| < ¢ for some s € M } is a §-neighborhood of M C C.
ExXAMPLE 1.1. The relation (1.5) is illustrated in Figure 1.1. The underlying
norm in the following explanation is the spectral norm.
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The upper row of the figure deals with the case m = 1. The first two pictures in
that row show the sets Craxs(A, A\, €) for the matrix

2 -5 =5
A=1|13 -4 -4
-2 2 2

and its simple eigenvalue A = i. A corresponding pair of right and left eigenvectors
satisfying y*x =1 is given by

r=02—i 34+2 —2-2|", y=(1/2)1 2—i 2—4]".

The right picture in the upper row shows the set Kﬂ(;,?xﬂ, (z,y) = Kgnxn(x,y). By (1.5)
we have

Craxs(A,i€) —i

lim - Kgaxs(z,y).

e—0 €
The pictures indicate the convergence. The scalings have been chosen such that the
displayed sets have approximately the same size. The plots of the pseudospectra com-
ponents Craxa(A,1i,€) have been generated using the formula

ognxn(A,€) ={s€C; 7,(s] —A) <e}, AeC™™" e>0.

Here T, denotes the smallest real perturbation value of second kind [2], which is
given by

RM —ySM

To(M) = sup oop_ _ , M e C*™,
(M) ve(or,)u ? 1([7 'SM RM D

where oa,_1 is the second smallest singular value. The set Krsxs(x,y) has been com-
puted using Theorem 6.2.

The left pictures in the lower row of the figure show the real pseudospectra opaxs(J3,€) =
Craxs(J3,0,€) for the 3 by 3 Jordan block

Js =

o O o

1
0
0

S = O

The right picture shows the limit set Ku(ai)m (e1,e3), wheree; =[100]T,e3=[001]".

Note that e is a right eigenvector and e is a left generalized eigenvector of Js satis-
fying ete; = 1, e} J2 = e5. Hence, (1.5) yields,

lim C]R3><3 (Jg, 0, 6)

3
e—0 €l/3 - Ku(as)xa(el’ e3)-

It is easily verified that the set Kgsxs(e1,e3) equals the interval [—1,1]. Thus,
K.s(es,er) = [-1,1] Ue™/3[-1,1] U >™/3]-1,1].

The aim of this paper is to provide methods for calculating the sets Ka(x,y). In
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doing so we concentrate on the following perturbation classes A:

Knxn7
Symyg = {Ae K™ AT = A},

Skewg = {A e K™, AT = A},
Herm = {A e C™™;, A*=A}, K € {R,C}.

(1.6)

Our further considerations are based on two observations concerning Ka (z,y), A C

(Cnxn:
(A) If A € A implies that zA € A for all z € C |, then then Ka (z,y) is a disk.
The m" root of the radius of that disk equals the condition number xa (A, \).

(B) If A is convex then Ka (z,y) is convex, too.

Statement (A) yields that Ka(z,y) is a disk for A € {C™*™, Sym¢, Skewc}. Obser-
vation (B) enables us to approximate Ka (z,y) using its support function.

The organization of this paper is as follows. In Section 1 we recall some basic facts
about convex sets and support functions and specialize them to the sets Ka (z,y). In
Section 2 we characterize the support function of Ka (x,y) for the sets A in (1.6) via
dual norms and orthogonal projectors. The results are then applied to the cases that
the underlying norm is of Holder type (see Section 3) or unitarily invariant (Section 4).
Section 5 deals with the spectral norm and Frobenius norm. The results obtained so
far will be extended in Section 6 to classes of matrices which are self- or skew-adjoint
with respect to an inner product.

o -
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FiG. 1.1. The sets defined in Example 1.1



2. Characterization by support functions. Let K be a nonempty compact
convex subset of C. Then its support function sx : C — R is defined by

sk (z) = max R(2€) = max 2T 2.1

() = max R(z6) = max =", 1)

where in the second equation the complex numbers z = 21 + 125,& = & + i& have

been identified with the corresponding vectors [21, 2], [€1, &) T € R%. The set K is
uniquely determined by its support function since we have [9, Corollary 3.1.2]

K ={¢eC; R(z¢ <sk(z) forall z € C with |z| = 1}. (2.2)
Furthermore, the boundary of K is given as
OK ={£€C; R(z&) = sk(z) for some z € C with |z] = 1}. (2.3)

This follows from (2.2) and the compactness of the unit circle. Let rx = max{|{]; & €
K }. Then rg is the radius of the smallest disk about 0 that contains K. It is easily
seen that rx = max{sk(z); z € C, |z| =1}. If sk (%) = r|z|, for some r > 0, then K
is a disk about 0 with radius r = rx. We will also need the following fact.

PrROPOSITION 2.1. Assume the nonempty compact conver set K C C is point
symmetric with respect to 0, i.e. & € K implies —¢ € K. Assume further, that
sk (z) =0 for some z € C with |z| = 1. Then K is a line segment. Specifically,

K ={0iz; 0 R, |0] <sk(iz)}.

Proof. From the point symmetry it follows that sx(z) = sx(—z). Hence, if
si(z) = 0 then R(zZ&) = 0 for all £ € K. Thus K C R(iz). By compactness and
convexity, K = {fiz; 6 € R, |0] < r} for some r > 0. It is easily verified that
r=sk(iz)if |z| =1. 0

The relations (2.2) and (2.3) can be used to approximate K via the following
method [11, Section 1.5]. Let z; = €%, j € N, where 0 = ¢; < ¢ho < ... < dn < 27.
Let {; € K, j € N, be such that #(z; §;) = s(z;). Then by (2.3) each &; is a boundary
point of K. Let K; denote the convex hull of these points, and let Ky = {{ €
C; R(z;€) < s(z;), j € N}. Then we have K1 C K C Ky, where the latter inclusion
follows from (2.2). The boundary of K; is a polygone with vertices &1,&2,...,&N.

The proposition below yields the basis for our further development.

PROPOSITION 2.2. Let A be a nonempty compact and convex subset of C**".
Then the following holds.

(i) The set Ka(z,y) defined in (1.1) is a compact convex subset of C with support

function

sa(z) = max R(Zy*Az) = max Rtr(A*(zyz")), ze€C. (24)
AcA AecA
Al <1 Al <1

If A is a cone then the mazimum is attained for some A € A with |A]| = 1.
(ii) Let |z| = 1 and let A, € A be a mazimizer for (2.4). Then y*A,z is a
boundary point of Ka(z,y).
(iii) Suppose A is a vector space over R and sa(z) = 0 for some z € C with
|z| = 1. Then Ka(x,y) is a line segment. Specifically,

Ka(z,y)={0iz; 0€R, 0] <saliz)}.



Proof. The compactness and convexity of Ka (x,y) is obvious. (2.4) is immediate
from (2.1) and the relations

Zy* Az = tr(Zy*Ax) = tr(Zzy*A) = tr((zyz*)"A) = tr(A*(z yz*)).
(ii) follows from (2.3). (iii) is a consequence of Proposition 2.1. O

3. Dual norms and orthogonal projectors. The dual of a vector norm || - || :
C™ — R is defined by

|z|'= max R(y*z), zeC. (3.1)

yeCn

Iyl =1

There is a natural extension of this definition to matrix norms.
DEFINITION 3.1. Let || - || be a norm on C™*". Then its dual is defined as
1 X" = max Rtr(Y*X), X e Cmxn, (3.2)
Y e Cmxn
Y] =1

This yields the following corollary to Proposition 2.2.
COROLLARY 3.2. For any norm ||-|| on C™*™ the support function sc of Kcnxn (2, y)
is given by sc(z) = |z||lyz*|', z € C. Thus Kcnxn(z,y) is a disk of radius ||yx*||’.
The map (X,Y) — Rtr(Y*X) is a positive definite symmetric R-bilinear form on
C™*™. Thus for each subspace (over R) A C C™*" we have the direct decomposition
C" = A @ A, where AT = { X € C™"; Rtr(A*X) = 0forall A € A}. The
orthogonal projector onto A is the linear map Pa : C**™ — C™*™ satisfying

Pa(Xi +Xo) =X, forall X; € A, Xy e AL,
We have for all X|Y € C"*",
Rtr(Pa(Y)* X) = Rtr(Pa(Y)*Pa(X)) = Rtr(Y*Pa(X)). (3.3)

The table below gives the orthogonal projectors for the subspaces introduced in (1.6).

A Pa(X)

Crxn X

Rm>m RX

Herm (X +X7%)/2 (3.4)
Syme | (X +XT)/2

Skewc (X —-X")/2

Symgp RX+XT)/2

Skewg RX—-XT)/2

The main results of this paper are based on the next lemma.
LEMMA 3.1. Let || - | be a norm on C**™ and let A C C™*™ be a vector space
over R. Suppose the orthogonal projector onto A is a contraction, i.e.

IPa(X)] < |IX]| for all X € C™¥", (3.5)



Then for all M € C"*"™,

max  Rtr(A*M) = |Pa(M)|'. (3.6)
AecA
JA[l=1

Let Ag € C™™™ be such that |Ao|| =1 and Rtr(A§Pa(M)) = ||Pa(M)].

If Pa(M) # 0 then the matriz Ay = Pa(Do) is a mazimizer for the left hand
side of (3.6).

Proof. Let L denote the left hand side of (3.6). For A € A we have Rtr(A*M) =
Rtr(A*Pa(M)). This yields L < ||[Pa(M)]|. We show the opposite inequality. For
the matrix Ay we have ||Pa(M)||’ = Rtr(AFPa(M)) = Rtr(Pa(Ao)*Pa(M)). If
Pa(Ap) =0 then [|[Pa(M)|" =0 = L. Suppose Pa(Ap) # 0. By condition (3.5) we
have ||Pa(Aog)]| < ||Ao]| = 1. The matrix A; = Pa(Ao)/||Pa(Do)]| satisfies ||Aq]] =
1 and Rtr(A7PA (M) = [Pa(M)'/[Pa(B0)]| > [Pa(M)[- Thus L > |Pa(M)]"
Consequently, L = ||Pa(M)]|" and |Pa(Ao)||=1.0

From Proposition 2.4 and Lemma 3.1 (applied to the matrix M = zyz*) we
obtain

THEOREM 3.3. Let A C C™ ™ be a vector space over R, and let san : C — R
denote the support function of Ka(z,y). Suppose (3.5) holds for the underlying norm.
Then

(i) The support function satisfies

sa(z) = |Pa(zyz)|’, ze€C. (3.7)

(i) Let|z| =1 and let Ag € C™*™ be such that || Ag|| = 1 and Rtr(A§Pa(z yz*)) =
sa(z). Theny*Pa(Ao)z € C is a boundary point of Ka(x,y). If x*Pa(Ao)y =
0 then Ka(z,y) is a line segment.

(iii) If A is a vector space over C, then

sa(z) = Palyz")|'lzl,  z€C. (3-8)

Thus Ka(z,y) is a disk about 0 with radius |Pa (yz*)|’.
Next, we consider norms that have one of the following properties (a)-(c) for all
X e Crxn,

@ IXI =X, G IXI=1X* @ IX]=1x"].

Note that two of these conditions imply the third.

LEMMA 3.2. Condition (3.5) holds for the following cases:

(i) The norm satisfies (a) and A = R™*",

(i) The norm satisfies (b) and A = Herm.

(ii) The norm satisfies (c¢) and A € {Sym¢, Skewc}.

(iv) The norm satisfies (a), (b) and (¢) and A € {Symp, Skewg}.

Proof. (a) yields [RX || = (X + X)/2| < (|X||+ | X])/2 = | X].. (b) implies
that || Prerm (X)|| = (X +X*)/2|| < (| X]|+1X*]|)/2 = || X]|. The proofs of the other
statements are analogous and left to the reader. O

THEOREM 3.4. The following assertions hold for the support function sa : C — R
Of Ka ($7 y)

(i) If the norm || - || satisfies condition (a) then sgmxn(z) = |R(z yz*)|’.

(i1) If the norm || - || satisfies condition (b) then Sgerm (%) = ||Paerm (2 yz*)||’.



(iii) If the norm || - || satisfies condition (c) then
ssyme(2) = [[Psyme (2 92) " = [|Psym (y2")||"[2]
and
sskewe (2) = [[Pskewe (2 427)[|" = [|Pskewe (y2™)||"[2]
(iv) If the norm || - || satisfies (a), (b) and (c) then
ssymy (2) = [[Psymg (zy2")" and ssiews (2) = | Psews (2y27) |’

In the next sections we specialize Theorem 3.4 to classes of norms for which the
duals can be explicitely given.

4. Norms of Holder type. The Holder-p-norm of x = [xy, ..., x,]" € C"is
defined by
(Syenlesl)”” for1<
| or 1 <p < oo,
], = § \&sen Y (4.1)
maxXjep || for p = .

We consider the following matrix norms of Holder type [8, page 717] defined by

1XNeip =[] Lll] sl I 17]],, 1< por < oo, (4.2)
where x1,...,2, denote the rows of X € C"*". Note that || X|[;|o is the row sum
norm and

» 1/p for 1 <
X1y = { (Ssvealzn) 7 for 1<p <o (43)
mMax; gem |k for p = oo,
where x5, are the entries of X. In particular, || - |22 is the Frobenius norm.

As is well known the dual of the Holder-p-norm is the Hoélder-g-norm, where
1_13 + % =1if1 <p<ooand q=1if p=oo. Using this fact the next Proposition is
easily verified.

PROPOSITION 4.1. The dual of the norm || - ||, is || - |44, where

%+%=1ifl§r<oocmdt:1ifr:oo, i

%+%:1if1§p<ooandq:12'fp:oo. (44)
To a given X € C™*™ with rows x1,...,x, a matriz Yy € C**" satisfying [|Yollsq = 1
and Rtr(YyX) = [|X|;, can be constructed via the following procedure. Let § =
[ 2] lrs- -5z} ll- 1T. Choose a nonmegative vector n = [m1,...,na]" such that
Inlly =1 and 7€ = ||€||l,. To each j € n choose a y; € C* with ||y;lls = n; and
yix] =mnjlz] |l.. Then Yo =[y],...,y) 1" has the required properties.

From Proposition 4.1 combined with Lemma 3.2 and Theorem 3.4 we get
COROLLARY 4.2. Let 1 < r,p < oo, and let t,q be given by (4.4). Let Ka(x,y) =
{y*Az; Ae A, ||All,p, <1}. Then

rlp >
(i) the set Kcnxn(x,y) is a disk of radius ||[yx*||q;



(i) the support function of Kgnxn(x,y) is
se(z) = [R(zyz")lg,  2€C
(iii) for the case p =1 and A € {Herm, Symg, Skewc, Symp, Skewgr} the support

function of Ka(x,y) is sa(2) = [|[Pa(zyz*)llq|q-
EXAMPLE 4.3. Figure 4 shows the sets

Kgnxn(z,y) = {y"Az; AeR™", [Alljjo <1}, (4.5)
KH(QX" (r,y) = {2€C; 2% € Kpnxn(2,9) }, '

where
x =144, 5+4i, 3i, —1+3i]", y = [3+4i, 3+3i, 2+2i, 5].

The plot of Kpnxn(x,y) has been generated by computing boundary points using claim
(i) of Theorem 3.3 and Proposition 4.1.
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F1G. 4.1. The sets Kgnxn(z,y) (left) and K® (z,y) (right) from Ezample 4.8.
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5. Unitarily invariant norms. In the sequel U,, denotes the set of all unitary
nxn matrices. A norm |- || on C"*™ is said to be unitarily invariant if |[UX V| = || X||
for all X € C"*™ U,V € U,. There is a one to one correspondence between the
unitarily invariant norms on C"*™ and symmetric gauge functions [20, Section II.3].
A symmetric gauge function ® is a symmetric and absolute norm on R™. The unitarily
invariant norm || - ||¢ associated with @ is given by

Xl = @([01(X), 02(X), ..., ou(X)]"), (5.1)

where 01(X) > 02(X) > ... > 0,(X) denote the singular values of X € C"*". The
unitarily invariant norm induced by the Hélder-p-norm is called the Schatten-p-norm,
which we denote by

1/p |
o = (Erewenon) ™ i1 <p <o

o1(X) if p = o0.
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Note that || X|[() is the spectral norm and [[ X2y = /tr(X*X) is the Frobenius
norm of X. In the following @' stands for the dual of the symmetric gauge function
P, ie.

(&)= max 7'¢, £ eR™ (5.2)
neR”

®(n) =1

Let X = Udiag(o)V* be a singular value decomposition, where U,V € U,, and o =
[01,...,0,] is the vector of singular values of X € C"*". Let 7 = [r1,...,7,] be a
nonnegative vector such that ®(7) = 1 and 7' o = ®(o). Let Yy = Udiag(7)V*. Then

X[ = L Rir(Y*X) > Rtr(YyX) =7"0=9(0) = |X|e. (5.3)
IYlle =1

It can be shown that the inequality in (5.3) is actually an equality. Hence we have
the following result [1, Prop. IV.2.11].

PROPOSITION 5.1. For any symmetric gauge function ® the dual of the unitarily
invariant norm || - ||o s || - ||e-

From (5.1) it follows that unitarily invariant norms have the properties (a),(b)
and (c). Thus, by combining Theorem 3.4 and Proposition 5.1 we get the result below.

THEOREM 5.2. Let ® be a symmetric gauge function on R™ and let A be one of
the sets in (3.4). Then the support function of

Ka(z,y)={y*Az; Ac A, [Alle <1},  z,yeC
is given by
sa(z) = [Pa(zya)ler = ' ([01(2),-..,0u(2)] "),  z€C,

where 01(2),...,0n(2) denote the singular values of Pa(zyz*).

6. Frobenius norm and spectral norm. In this section we provide explicite
formulas for Ka (x,y) for the case that A is one of the sets in 3.4 and the underlying
norm is the spectral norm or the Frobenius norm. First, we give a result on the
support function of an ellipse.

ProPOSITION 6.1. Let K C C be a nonempty compact convex set with support
function

sk (z) = Valz|? + R(b22), z,be C, a>1b.

Then K is an ellipse (which may be degenerated to a line segment). Specifically,

K={e?(VarPle+Va-Peis GeeRg+&<1), (61

where ¢ = arg(b).
Proof. Let E denote the set on the right hand side of (6.1), and let sg denote its
support function. Let

1 X 1 )
o= (VarPl+Va—The®2 = (Vatbl—va— bl
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Then for &1,& € R,

ei¢/2[MEl+mg2i]:af+ﬂf, where £ =& + &1 € C.

Thus

sp(z) = maxR(Z (€ + BE))

|§1<1

= gl‘g?}?( (aZ+B2)¢)

=laz + 7]
= /(lal? +182)|2]? + 28(2 aB)
=+alz|? +R(22b).

Thus sg = sk, and consequently £ = K. [

Note that the set (6.1) is a disk if b = 0 and @ > 0. It is a line segment if
a=1bl > 0.

THEOREM 6.2. Let ||A|| denote either the Frobenius norm or the spectral norm
of A € C" ", Let A CC" " gnd let a > 0, b € C be as in the tables below. Then the
support function of

Ka(z,y) ={y"Az; A€ A, A <1}
is given by

sa(z) = Va|z[2 + R(b72), z e C. (6.2)
Hence, Ka(z,y) equals the ellipse defined in (6.1).

Table for the Frobenius norm:

A a b

Crxn ] [ly[I? 0

R 3 (12l 3Ta) (yTy)

Herm sllz 2yl 3y x)?

Symg szl lyl? + |2 Ty[?) 0

Skewe sl lyl? = | Ty[?) 0

Symg 2l lyl? + l= Ty[?) (@) (yTy) + (y*2)?)
Skewg 1zl lyl? =l Ty[?) (@) (yTy) — (y*2)?)

Table for the spectral norm:
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A a b

Crxm Il yl? 0

R 3 |zl 1yl + /(2l* = 2 T22) (lyll* - IyTyIQ)} 3 @2)(yTy)

Herm I llyll* — 3ly*«/? 3(y*e)?

Symc )1 [lylI> 0

Skewg Il yl? — = Tyl 0

Skews | ([l |2 — 2Tyl + /AU FF) ) Y@ 2)Ty) - ('2)?)

Here and in the following ||z||, |ly|| denote the Euclidean norm of z,y € C™.

F:[J; Ty g]

REMARK 6.3. Theorem 6.2 makes no statement about the case that A = Symy
and the underlying norm is the spectral norm. The associated sets Ksym,(x,y) are
in general no ellipses. Figure 6 gives two examples. It shows the sets Ksym, (T;,Y;),
7 =1,2, where

T =247 244 2|7,
ro = [14+2 i 2|7,

yo=[-2 —2 3iT,
yo = [i —2+2 1+2]".

(6.3)

REMARK 6.4. Notice that Theorem 6.2 yields precise values for the structured
condition numbers of a nonderogatory eigenvalue A and the cases listed in the tables:
According to the discussion in the introduction the condition number equals the radius
r of the smallest disk about 0 that contains the set K(Am)(x, y), where z,y form a nor-

malized pair of eigenvectors. However, if Ka(x,y) is an ellipse with support function
(6.2) then r = (a + |b))/*™),

15

10

-5

-10

-15

-15

-10

10

-5

-10

-10 -5 0 5

10

FIG. 6.1. The sets Ksymg (%1,%1) (left) and Ksymg (z2,y2) (right) from Remark 6.3.

The proof of Theorem 6.2 uses the lemma below.
LEMMA 6.1. Let M = a1b7 + a2b3, where a1, az,b1,ba € C*. Then the Frobenius
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norm and the Schatten-1-norm of M are given by

1M1y = llaxl* 1011 + llazl*[[b2]1* + 2 R[ (a7 az) (552) ],

1M1y = 1M]) + 2 \/( llax|*llaz][3 — |ataz|*) ([loa][*][b21* — [b7b2]*)-

The Frobenius norms of the matrices S+ = %(M + M) are given by

(lla 16111 + llaz]®[[b2]l* % lay b1|* £ Jag baf* )

+ 3 ((ajaz) (B7B2) + (afbo) (azb) ).

1
2 _
IS¢ty = 5

The Schatten-1-norm of S_ satisfies
15-12 = 2 (15- 1% + V/aAet(A47A) ) ,

where A = [al as by 52} € C*4,
Proof. See the appendix. [

Proof of Theorem 6.2. First, we treat the case that A = R"*". Let
M=2R(zyz")=zya" +z5z".

According to Proposition 5.1 the dual of the spectral norm is the Schatten-1-norm.
Hence, by Theorem 5.2 the support function of Kgnxn(z,y) (with respect to spectral
norm) is

sgnxn (2) = || Proxn (2 y2™) [ (1) (by Theorem 5.2)
1Rz yz") [l 1)

1
=—||M
2|| ||(1)

1
= 5\/0@—1—2@, (by Lemma 6.1)

where
a. = [|M]|%
= lzylPl=® + 129l 12]1* + 2R[ (= 9)*(29)) (=*7)]
=2 (2P| [lyl* + RZ* (= =) (yTy)])
8. = (lz9l*1z9l5 = 1z 9)*zD1?) (e 2]* — |=*z[*)

= el (2 ll* =l T2 Nyll* = ly Tyl

If the underlying norm is the Frobenius norm then

. 1 1
sprxn(2) = [R(zyz™)|@) = 5HM||(2) =5V
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Next, we consider the real skew-symmetric case. Let S_ = %(M —MT). The support
function of Kgyews (%, y) with respect to spectral norm norm is

5Skewz (2) = || Pskews (2 y2") | (1) (by Theorem 5.2)

1
S CA

1
5\/2 IS_ 1%, + 2 V/det(AzAL),  (by Lemma 6.1)

1 1
VS IS-I + AR
where

IS-1I) = 5 (=l ll2l* + 125071201 = (=) T2l? — (z9) "2*)

+R[(y)(9) @) - (y)T2) (G)Ta) |-

2 (el gl = o Tyl?) + R (@ T2)(yTy) = (v72)* )],

N =

Az:[zy Zy «w ;E] = [y gy x E] diag(z,z,1,1).
—_——
A,

We have det(AA.) = |z|* det(A} A1) = |2|* det(F*F), where F = [z Z y 7.

The computions for the other cases is analogous. O

EXAMPLE 6.5. Figure 6 shows the sets
where

r=[4+3i, =1, 1+5i, —i]", y = [4i, 4+3i, 4+3i, 4+i]".  (6.5)

7. Self- and skew-adjoint perturbations. We now treat the case that A is
a set of matrices which are skew- or self-adjoint with respect to a scalar product on
C™. Specifically we show that the associated sets Ka(z,y) can be computed via the
methods in the previous sections if the scalar product is induced by a unitary matrix
and the underlying norm is unitarily invariant.

For nonsingular IT€ C"*™ we consider the scalar products

(x,y)m = x* 1y, x,yeC", xe{x, T}

Depending on whether x = T or x = x the scalar product is a bilinear form or a
sesquilinear form. We assume that II satisfies a symmetry relation of the form

IT" = oI, with eg = —1 or ¢ = 1. (7.1)
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A =Crn A =Rm*" A = Herm A = Symy

. . .
o o o
. . .
2 ) ) &

.

.
. . .
o . .
. . .

I e e e I A e e
A = Sym A = Skew A = Skew
c C R

FI1G. 6.2. The sets Ka(xz,y) for the Frobenius norm and x,y defined in (6.5).

A matrix AeC"*"™ is said to be self-adjoint (skew-adjoint) with respect to the scalar
product (-, ) if

(Az,y)n = e{z,Ay)yy for all z,yeC", (7.2)
and € = 1 (e = —1). The relation (7.2) is easily seen to be equivalent to
AT = € TIA. (7.3)

We denote the sets of self- and skew-adjoint matrices by
struct(IL x,€) == { A e C"*"; A*Il = €elIA }.
The relation (7.1) implies that (7.3) is equivalent to
(TIA)* = ¢g e IIA. (7.4)

We thus have the lemma below.
LEMMA 7.1. Let TI, A € K™*" where K = R or C. Suppose II* = €Il with
€0 = —1 or eg = 1. Then the following equivalences hold.

ITAeHerm  if ege =1, x = x,

[MAeSymg  ifee=1, x=T,
A€ struct(Il, x, €) <

IMTA eSkewyg if ege=—1, x=T,

iIIA€eHerm if ege = —1, x = x*.

In many applications II is unitary. The most common examples are

Il e {diag([k, —Insz), En7 Jn}a
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where

— 0 I’Vl 2nXx2n _ . nxn
J”_{—I,L O}E(C , E, = B eC .

PROPOSITION 7.1. Suppose I1 € C"*" is unitary and satisfies II* = eIl with
€0 = —1 or ¢g = 1. Let struct = struct(Il,x,€). Then for any unitarily invariant
norm,

Kstruet(w,y) = Kal(z,1y),
where
Herm  if e =1, % = %,
Syme  ifepe=1, x=T,
A=¢Symp ifege=1, k=T, and Il € R**" (7.5)

Skewc if ege=—1, x=TT,

Skewr if ege = —1, x =T and II € R™"*"™,

Furthermore, Kgruet(€,y) = Kherm (2, illy) if ege = —1 and x = *.
Proof. Using Lemma 7.1 and IT*II = I,, we obtain for the sets in (7.5),

Kstruet(z,y) = {y"Ax; A € struct, ||A|| <1}
={(Ily)*(ITA)z; TA € A, [[HA| <1}

The proof of the remaining statement is analogous. O

Appendix. We give the proof Lemma 6.1. To this end we need the following
fact.

PROPOSITION 7.2. Let 01 > 09 > ... > o0, denote the singular values of
M = AB*, where A,B € C"*". Then o, = 0 for k > r, and 0%,03,...,0% are
the eigenvalues of (A*A)(B*B). In particular,

> op = tr((A*A)(B*B)), [[ o7 = det((4*4)(B*B)).
k=1 k=1

Proof. Since rank(M) < r, we have o, = 0 for k > r. The squares of the singular
values of M are the eigenvalues of M*M = XY, where X = B, Y = (A*A)B*. As
ist well known XY and Y X = (A*A)(B*B) have the same nonzero eigenvalues. O

Now, let 01,09 denote the largest singular values of the matrix

M = albf +a2b§ = [a1 ag} [bl bg]*, ai,as,by,by € cn.
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Since rank(M) < 2 the other singular values of M are zero. Using Proposition 7.2 we
obtain for the Frobenius norm and the Schatten-1-norm of M,

IM||?y) = oF + o3
_tr<{||al||2 ai‘az} {||b1||2 b’fb2]>
asay lag|?| | b5b1  [|b2]l?
= llax P16 [1* + llaz|?[|b2]1* + 2 R( (afaz) (b7b2)).

1My = (o1 + 02)*
=07 4+ 03 + 24/ 0203

= [|M]Iy) + 2/,

lai]l®  aiaz | [lIb1]l*  bibe
= det
g ([ lazl] | B30 |2l

= (llav]*lazl* — laaa|)(|[bal|||b2]|* — [6752[*)-

where

Next, we compute the norms of the symmetric and the skew-symmetric part of M.
Let Sy = %(M + MT). Then St can be written in the form Sy = AB?, where

- = 1
A= [01 ax by bg] , By = 5 [bl by +a; :E(_IQ] .

We have

laall* ajas  a{bi abs

asar lazl* azbi  agbs

A*A = bla; blas |b1]? b*l‘—bg )
bjor blaz By [lball
b1]2 bib  £blar b as
Bip, — 1| B 2l £bjar +bay
dldalby talby af®  afo
tajbi tafby  Gar ol

Using Proposition 7.2 we obtain for the Frobenius norm of Sy,
IS £y = tr((A*A)(BLB))
1
= 5 (llaal*1Ball* + llaal*[[b]1* oy b1[* & ag ba|* )

0 ((ajaz) (5752) + (af o) (azby) ).

We now determine the Schatten-1-norm of S_. Since rank(S_) < 4, at most 4 singular
values of S_ are nonzero. Let o1 > 09 > 03 > 04 denote these singular values. Since
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S_ is skew-symmetric, its singular values have even multiplicity [10, Sect. 4.4, Exercise

26].

Thus o1 = 09 and o3 = 04. This yields

||5—||%1) = (01 + 02 + 03 + 04)°
= (201 + 203)*
=2(20% 4 207) + 80103
=2|[S_|Iy) + 8 (of030507) "/

= 2||S_ |7y + 8det((A*A)(B* B_))"/*.

Since 4 B* B_ is unitarily similar to A*A, we have det(B* B_) = g det(A*A). Hence,

15-12) = 2 (1S 1% + v/et(A7A) ) .
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