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Abstract. Let λ be a nonderogatory eigenvalue of A ∈ Cn×n. The sensitivity of λ with respect
to matrix perturbations A  A + ∆,∆ ∈ ∆, is measured by the structured condition number
κ∆(A, λ). Here ∆ denotes the set of admissible perturbations. However, if ∆ is not a vector space
over C then κ∆(A, λ) provides only incomplete information about the mobility of λ under small
perturbations from ∆. The full information is then given by a certain set K∆(x, y) ⊂ C which
depends on ∆ and a pair of normalized right and left eigenvectors x, y. In this paper we study the
sets K∆(x, y) and obtain methods for computing them. In particular we show that K∆(x, y) is an
ellipse in some important cases.

Key words. eigenvalues, structured perturbations, pseudospectra, condition numbers

AMS subject classifications. 15A18, 15A57, 65F15, 65F35

Notation. The symbols R, C denote the sets of real and complex numbers, re-
spectively. Km×n is the set of m × n matrices and Kn = Kn×1 is the set of column
vectors of length n, K ∈ {R, C}. By A⊤, Ā, A∗, ℜA, ℑA we denote the transpose,
the conjugate, the conjugate transpose, the real and the imaginary part of A ∈ Cm×n.
Furthermore, In stands for the n × n unit matrix. Finally, n = {1, . . . , n} for any
positive integer n.

1. Introduction. The subject of this paper are the sets

K∆(x, y) = { y∗∆x; ∆ ∈ ∆, ‖∆‖ ≤ 1 }, x, y ∈ C
n×n, (1.1)

where ‖·‖ is a norm on Cn×n and ∆ ⊆ Cn×n is assumed to be a closed cone (the latter
means, that ∆ ∈ ∆ implies r∆ ∈ ∆ for all r ≥ 0). Our motivation for considering
these sets stems from eigenvalue perturbation analysis by means of pseudospectra.
The sets K∆(x, y) provide the full first order information about the sensitivity of a
nonderogatory eigenvalue with respect to structured matrix perturbations. This is
explained in some detail in the following discussion.

Let λ ∈ C be a nonderogatory eigenvalue of algebraic multiplicity m of A ∈ Cn×n.
Let x ∈ Cn \ 0 be a right eigenvector, i.e. Ax = λ x. Then there exists a unique left
generalized eigenvector ŷ ∈ Cn \ 0 satisfying

ŷ∗(A − λ In)m = 0, ŷ∗(A − λ In)m−1 6= 0, ŷ∗x = 1.

Let y∗ = ŷ∗(A− λ In)m−1 and let ‖ · ‖ be an arbitrary norm on Cn×n. Under a small
perturbation of A of the form

A A(∆) = A + ∆, ∆ ∈ C
n×n (1.2)

the eigenvalue λ splits into m eigenvalues λ1(∆), . . . , λm(∆) of A(∆) with the first
order expansion [16]

λj(∆) = λ + θj(∆) + O(‖∆‖2/m), j ∈ m. (1.3)
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where θ1(∆), . . . , θm(∆) are the mth roots of y∗∆x ∈ C. Obviously,

|θj(∆)| = |y∗∆x|1/m = O(‖∆‖1/m), j ∈ m.

We assume now that the perturbations ∆ are elements of a nonempty closed cone
∆ ⊆ Cn×n. Let

κ∆(A, λ) = max{ |y∗∆x|1/m; ∆ ∈ ∆, ‖∆‖ ≤ 1 }.

Then κ∆(A, λ) is the smallest number κ such that

|λj(∆) − λ| ≤ κ ‖∆‖1/m + O(‖∆‖2/m) for ∆ ∈ ∆.

The quantity κ∆(A, λ) is called the structured condition number of λ with respect to
∆ and the norm ‖ · ‖. It measures the sensitivity of the eigenvalue λ if the matrix A
is subjected to perturbations from the class ∆. In recent years some work has been
done in order to obtain estimates or computable formulas for κ∆(A, λ) [3, 4, 5, 7,
13, 15, 16, 18, 19]. However, the condition number can not reveal how the eigenvalue
moves into a specific direction under structured perturbations. For instance if λ is a
simple real eigenvalue of a real matrix A and the perturbations ∆ are also assumed to
be real then the perturbed eigenvalues λ(∆) remains on the real axis if ‖∆‖ is small
enough. Information of this kind can be obtained from the structured pseudospectrum
σ∆(A, ǫ), which is defined as follows.

σ∆(A, ǫ) = { z ∈ C; z is an eigenvalue of A+∆ for some ∆ ∈ ∆, ‖∆‖ ≤ ǫ }, ǫ > 0.

Let C∆(A, λ, ǫ) denote the connected component of σ∆(A, ǫ) that contains the eigen-
value λ. Then we have for sufficiently small ǫ that

C∆(A, λ, ǫ) = {λj(∆); ∆ ∈ ∆, ‖∆‖ ≤ ǫ, j ∈ m}.

We now consider the sets

K
(m)
∆

(x, y) = { z ∈ C; zm ∈ K∆(x, y) }. (1.4)

In words, K
(m)
∆

(x, y) is the set of all mth roots of the numbers y∗∆x, where ∆ ∈ ∆,
‖∆‖ ≤ 1. Consequently, the condition number κ∆(A, λ) equals the radius of the

smallest disk about 0 that contains K
(m)
∆

(x, y). Moreover, (1.3) yields that

lim
ǫ→0

C∆(A, λ, ǫ) − λ

ǫ1/m
= K

(m)
∆

(x, y), (1.5)

where the limit is taken with respect to the Hausdorff-metric. More explicitely, (1.5)
states that to each δ > 0 there exists an ǫ0 > 0 such that for all positive ǫ < ǫ0,

(1) C∆(A, λ, ǫ) ⊂ λ + ǫ1/m Uδ(K
(m)
∆

(x, y)),

(2) λ + ǫ1/mK
(m)
∆

(x, y) ⊂ Uδ(C∆(A, λ, ǫ)),

where Uδ(M) = { z ∈ C; |z−s| < δ for some s ∈ M} is a δ-neighborhood of M ⊂ C.
Example 1.1. The relation (1.5) is illustrated in Figure 1.1. The underlying

norm in the following explanation is the spectral norm.
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The upper row of the figure deals with the case m = 1. The first two pictures in
that row show the sets CR3×3(A, λ, ǫ) for the matrix

A =




2 −5 −5
3 −4 −4
−2 2 2




and its simple eigenvalue λ = i. A corresponding pair of right and left eigenvectors
satisfying y∗x = 1 is given by

x = [2 − i 3 + 2i − 2 − 2i]⊤, y = (1/2)[1 2 − i 2 − i]⊤.

The right picture in the upper row shows the set K
(1)
Rn×n(x, y) = KRn×n(x, y). By (1.5)

we have

lim
ǫ→0

CR3×3(A, i, ǫ) − i

ǫ
= KR3×3(x, y).

The pictures indicate the convergence. The scalings have been chosen such that the
displayed sets have approximately the same size. The plots of the pseudospectra com-
ponents CR3×3(A, i, ǫ) have been generated using the formula

σRn×n(A, ǫ) = { s ∈ C; τ̃n(sI − A) ≤ ǫ }, A ∈ C
n×n, ǫ > 0.

Here τ̃n denotes the smallest real perturbation value of second kind [2], which is
given by

τ̃n(M) = sup
γ∈(0,1]

σ2n−1

([
ℜM −γ ℑM

γ−1 ℑM ℜM

])
, M ∈ C

n×n,

where σ2n−1 is the second smallest singular value. The set KR3×3(x, y) has been com-
puted using Theorem 6.2.

The left pictures in the lower row of the figure show the real pseudospectra σR3×3(J3, ǫ) =
CR3×3(J3, 0, ǫ) for the 3 by 3 Jordan block

J3 =




0 1 0
0 0 1
0 0 0


 .

The right picture shows the limit set K
(3)
Rn×n(e1, e3), where e1 = [1 0 0]⊤, e3 = [0 0 1]⊤.

Note that e1 is a right eigenvector and e∗1 is a left generalized eigenvector of J3 satis-
fying e∗1e1 = 1, e∗1J

2
3 = e∗3. Hence, (1.5) yields,

lim
ǫ→0

CR3×3(J3, 0, ǫ)

ǫ1/3
= K

(3)
R3×3(e1, e3).

It is easily verified that the set KR3×3(e1, e3) equals the interval [−1, 1]. Thus,

K
(3)
R3×3(e3, e1) = [−1, 1] ∪ eπi/3[−1, 1] ∪ e2πi/3[−1, 1].

The aim of this paper is to provide methods for calculating the sets K∆(x, y). In
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doing so we concentrate on the following perturbation classes ∆:

Kn×n,
SymK = {∆ ∈ Kn×n; ∆T = ∆ },
SkewK = {∆ ∈ Kn×n; ∆T = −∆ },
Herm = {∆ ∈ Cn×n; ∆∗ = ∆ }, K ∈ {R, C}.

(1.6)

Our further considerations are based on two observations concerning K∆(x, y), ∆ ⊆
C

n×n:
(A) If ∆ ∈ ∆ implies that z∆ ∈ ∆ for all z ∈ C , then then K∆(x, y) is a disk.

The mth root of the radius of that disk equals the condition number κ∆(A, λ).
(B) If ∆ is convex then K∆(x, y) is convex, too.

Statement (A) yields that K∆(x, y) is a disk for ∆ ∈ {Cn×n, SymC, SkewC}. Obser-
vation (B) enables us to approximate K∆(x, y) using its support function.

The organization of this paper is as follows. In Section 1 we recall some basic facts
about convex sets and support functions and specialize them to the sets K∆(x, y). In
Section 2 we characterize the support function of K∆(x, y) for the sets ∆ in (1.6) via
dual norms and orthogonal projectors. The results are then applied to the cases that
the underlying norm is of Hölder type (see Section 3) or unitarily invariant (Section 4).
Section 5 deals with the spectral norm and Frobenius norm. The results obtained so
far will be extended in Section 6 to classes of matrices which are self- or skew-adjoint
with respect to an inner product.
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2. Characterization by support functions. Let K be a nonempty compact
convex subset of C. Then its support function sK : C → R is defined by

sK(z) = max
ξ∈K

ℜ(z̄ ξ) = max
ξ∈K

zT ξ, (2.1)

where in the second equation the complex numbers z = z1 + iz2, ξ = ξ1 + iξ2 have
been identified with the corresponding vectors [z1, z2]

⊤, [ξ1, ξ2]
⊤ ∈ R2. The set K is

uniquely determined by its support function since we have [9, Corollary 3.1.2]

K = {ξ ∈ C; ℜ(z̄ ξ) ≤ sK(z) for all z ∈ C with |z| = 1}. (2.2)

Furthermore, the boundary of K is given as

∂K = {ξ ∈ C; ℜ(z̄ ξ) = sK(z) for some z ∈ C with |z| = 1}. (2.3)

This follows from (2.2) and the compactness of the unit circle. Let rK = max{ |ξ|; ξ ∈
K }. Then rK is the radius of the smallest disk about 0 that contains K. It is easily
seen that rK = max{sK(z); z ∈ C, |z| = 1 }. If sK(z) = r |z|, for some r ≥ 0, then K
is a disk about 0 with radius r = rK . We will also need the following fact.

Proposition 2.1. Assume the nonempty compact convex set K ⊂ C is point
symmetric with respect to 0, i.e. ξ ∈ K implies −ξ ∈ K. Assume further, that
sK(z) = 0 for some z ∈ C with |z| = 1. Then K is a line segment. Specifically,

K = { θ iz; θ ∈ R, |θ| ≤ sK(iz) }.

Proof. From the point symmetry it follows that sK(z) = sK(−z). Hence, if
sK(z) = 0 then ℜ(z̄ ξ) = 0 for all ξ ∈ K. Thus K ⊂ R(iz). By compactness and
convexity, K = { θ iz; θ ∈ R, |θ| ≤ r } for some r ≥ 0. It is easily verified that
r = sK(iz) if |z| = 1.

The relations (2.2) and (2.3) can be used to approximate K via the following
method [11, Section 1.5]. Let zj = eiφj , j ∈ N , where 0 = φ1 < φ2 < . . . < φN < 2π.
Let ξj ∈ K, j ∈ N, be such that ℜ(z̄j ξj) = s(zj). Then by (2.3) each ξj is a boundary
point of K. Let K1 denote the convex hull of these points, and let K2 = {ξ ∈
C; ℜ(z̄jξ) ≤ s(zj), j ∈ N }. Then we have K1 ⊆ K ⊆ K2, where the latter inclusion
follows from (2.2). The boundary of K1 is a polygone with vertices ξ1, ξ2, . . . , ξN .

The proposition below yields the basis for our further development.
Proposition 2.2. Let ∆ be a nonempty compact and convex subset of Cn×n.

Then the following holds.
(i) The set K∆(x, y) defined in (1.1) is a compact convex subset of C with support

function

s∆(z) = max
∆ ∈ ∆

‖∆‖ ≤ 1

ℜ(z̄ y∗∆x) = max
∆ ∈ ∆

‖∆‖ ≤ 1

ℜ tr(∆∗(z yx∗)), z ∈ C. (2.4)

If ∆ is a cone then the maximum is attained for some ∆ ∈ ∆ with ‖∆‖ = 1.
(ii) Let |z| = 1 and let ∆z ∈ ∆ be a maximizer for (2.4). Then y∗∆zx is a

boundary point of K∆(x, y).
(iii) Suppose ∆ is a vector space over R and s∆(z) = 0 for some z ∈ C with

|z| = 1. Then K∆(x, y) is a line segment. Specifically,

K∆(x, y) = { θ iz; θ ∈ R, |θ| ≤ s∆(iz) }.
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Proof. The compactness and convexity of K∆(x, y) is obvious. (2.4) is immediate
from (2.1) and the relations

z̄ y∗∆x = tr(z̄ y∗∆x) = tr(z̄ xy∗∆) = tr((z yx∗)∗∆) = tr(∆∗(z yx∗)).

(ii) follows from (2.3). (iii) is a consequence of Proposition 2.1.

3. Dual norms and orthogonal projectors. The dual of a vector norm ‖ · ‖ :
Cn → R is defined by

‖x‖′ = max
y ∈ Cn

‖y‖ = 1

ℜ(y∗x), x ∈ C
n. (3.1)

There is a natural extension of this definition to matrix norms.
Definition 3.1. Let ‖ · ‖ be a norm on C

m×n. Then its dual is defined as

‖X‖′ := max
Y ∈ C

m×n

‖Y ‖ = 1

ℜ tr(Y ∗X), X ∈ C
m×n. (3.2)

This yields the following corollary to Proposition 2.2.
Corollary 3.2. For any norm ‖·‖ on Cn×n the support function sC of KCn×n(x, y)

is given by sC(z) = |z| ‖yx∗‖′, z ∈ C. Thus KCn×n(x, y) is a disk of radius ‖yx∗‖′.
The map (X, Y ) 7→ ℜ tr(Y ∗X) is a positive definite symmetric R-bilinear form on

C
n×n. Thus for each subspace (over R) ∆ ⊆ C

n×n we have the direct decomposition
Cn×n = ∆ ⊕ ∆⊥, where ∆⊥ = {X ∈ Cn×n; ℜ tr(∆∗X) = 0 for all ∆ ∈ ∆ }. The
orthogonal projector onto ∆ is the linear map P∆ : Cn×n → Cn×n satisfying

P∆(X1 + X2) = X1 for all X1 ∈ ∆, X2 ∈ ∆⊥.

We have for all X, Y ∈ Cn×n,

ℜ tr(P∆(Y )∗X) = ℜ tr(P∆(Y )∗P∆(X)) = ℜ tr(Y ∗P∆(X)). (3.3)

The table below gives the orthogonal projectors for the subspaces introduced in (1.6).

∆ P∆(X)

Cn×n X

R
n×n ℜX

Herm (X + X∗)/2

SymC (X + X⊤)/2

SkewC (X − X⊤)/2

SymR ℜ(X + X⊤)/2

SkewR ℜ(X − X⊤)/2

(3.4)

The main results of this paper are based on the next lemma.
Lemma 3.1. Let ‖ · ‖ be a norm on Cn×n and let ∆ ⊆ Cn×n be a vector space

over R. Suppose the orthogonal projector onto ∆ is a contraction, i.e.

‖P∆(X)‖ ≤ ‖X‖ for all X ∈ C
n×n. (3.5)
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Then for all M ∈ Cn×n,

max
∆ ∈ ∆

‖∆‖ = 1

ℜ tr(∆∗M) = ‖P∆(M)‖′. (3.6)

Let ∆0 ∈ Cn×n be such that ‖∆0‖ = 1 and ℜ tr(∆∗
0 P∆(M)) = ‖P∆(M)‖′.

If P∆(M) 6= 0 then the matrix ∆1 = P∆(∆0) is a maximizer for the left hand
side of (3.6).

Proof. Let L denote the left hand side of (3.6). For ∆ ∈ ∆ we have ℜ tr(∆∗M) =
ℜ tr(∆∗P∆(M)). This yields L ≤ ‖P∆(M)‖′. We show the opposite inequality. For
the matrix ∆0 we have ‖P∆(M)‖′ = ℜ tr(∆∗

0P∆(M)) = ℜ tr(P∆(∆0)
∗P∆(M)). If

P∆(∆0) = 0 then ‖P∆(M)‖′ = 0 = L. Suppose P∆(∆0) 6= 0. By condition (3.5) we
have ‖P∆(∆0)‖ ≤ ‖∆0‖ = 1. The matrix ∆1 = P∆(∆0)/‖P∆(∆0)‖ satisfies ‖∆1‖ =
1 and ℜ tr(∆∗

1P∆(M)) = ‖P∆(M)‖′/‖P∆(∆0)‖ ≥ ‖P∆(M)‖′. Thus L ≥ ‖P∆(M)‖′.
Consequently, L = ‖P∆(M)‖′ and ‖P∆(∆0)‖ = 1.

From Proposition 2.4 and Lemma 3.1 (applied to the matrix M = z yx∗) we
obtain

Theorem 3.3. Let ∆ ⊆ Cn×n be a vector space over R, and let s∆ : C → R

denote the support function of K∆(x, y). Suppose (3.5) holds for the underlying norm.
Then

(i) The support function satisfies

s∆(z) = ‖P∆(z yx∗)‖′, z ∈ C. (3.7)

(ii) Let |z| = 1 and let ∆0 ∈ Cn×n be such that ‖∆0‖ = 1 and ℜ tr(∆∗
0P∆(z yx∗)) =

s∆(z). Then y∗P∆(∆0)x ∈ C is a boundary point of K∆(x, y). If x∗P∆(∆0)y =
0 then K∆(x, y) is a line segment.

(iii) If ∆ is a vector space over C, then

s∆(z) = ‖P∆(yx∗)‖′ |z|, z ∈ C. (3.8)

Thus K∆(x, y) is a disk about 0 with radius ‖P∆(yx∗)‖′.
Next, we consider norms that have one of the following properties (a)-(c) for all

X ∈ Cn×n.

(a) ‖X‖ = ‖X̄‖, (b) ‖X‖ = ‖X∗‖, (c) ‖X‖ = ‖X⊤‖.

Note that two of these conditions imply the third.
Lemma 3.2. Condition (3.5) holds for the following cases:
(i) The norm satisfies (a) and ∆ = R

n×n.
(ii) The norm satisfies (b) and ∆ = Herm.
(iii) The norm satisfies (c) and ∆ ∈ {SymC, SkewC}.
(iv) The norm satisfies (a), (b) and (c) and ∆ ∈ {SymR, SkewR}.
Proof. (a) yields ‖ℜX‖ = ‖(X + X̄)/2‖ ≤ (‖X‖ + ‖X̄‖)/2 = ‖X‖. (b) implies

that ‖PHerm(X)‖ = ‖(X +X∗)/2‖ ≤ (‖X‖+‖X∗‖)/2 = ‖X‖. The proofs of the other
statements are analogous and left to the reader.

Theorem 3.4. The following assertions hold for the support function s∆ : C → R

of K∆(x, y).
(i) If the norm ‖ · ‖ satisfies condition (a) then sRm×n(z) = ‖ℜ(z yx∗)‖′.
(ii) If the norm ‖ · ‖ satisfies condition (b) then sHerm(z) = ‖PHerm(z yx∗)‖′.
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(iii) If the norm ‖ · ‖ satisfies condition (c) then

sSym
C
(z) = ‖PSym

C
(z yx∗)‖′ = ‖PSym

C
(yx∗)‖′ |z|

and

sSkewC
(z) = ‖PSkewC

(z yx∗)‖′ = ‖PSkewC
(yx∗)‖′ |z|

(iv) If the norm ‖ · ‖ satisfies (a), (b) and (c) then

sSym
R
(z) = ‖PSym

R
(z yx∗)‖′ and sSkewR

(z) = ‖PSkewR
(z yx∗)‖′

In the next sections we specialize Theorem 3.4 to classes of norms for which the
duals can be explicitely given.

4. Norms of Hölder type. The Hölder-p-norm of x = [x1, . . . , xn]⊤ ∈ Cn is
defined by

‖x‖p =





(∑
j∈n |xj |p

)1/p

for 1 ≤ p < ∞,

maxj∈n |xj | for p = ∞.
(4.1)

We consider the following matrix norms of Hölder type [8, page 717] defined by

‖X‖r|p =
∣∣∣∣ [ ‖x⊤

1 ‖r, . . . , ‖x⊤
n ‖r ]⊤

∣∣∣∣
p
, 1 ≤ p, r ≤ ∞, (4.2)

where x1, . . . , xn denote the rows of X ∈ Cn×n. Note that ‖X‖1|∞ is the row sum
norm and

‖X‖p|p =





(∑
j,k∈n |xjk|p

)1/p

for 1 ≤ p < ∞,

maxj,k∈m |xjk| for p = ∞,
(4.3)

where xjk are the entries of X. In particular, ‖ · ‖2|2 is the Frobenius norm.
As is well known the dual of the Hölder-p-norm is the Hölder-q-norm, where

1
p + 1

q = 1 if 1 ≤ p < ∞ and q = 1 if p = ∞. Using this fact the next Proposition is
easily verified.

Proposition 4.1. The dual of the norm ‖ · ‖r|p is ‖ · ‖t|q, where

1
r + 1

t = 1 if 1 ≤ r < ∞ and t = 1 if r = ∞,

1
p + 1

q = 1 if 1 ≤ p < ∞ and q = 1 if p = ∞.
(4.4)

To a given X ∈ Cn×n with rows x1, . . . , xn a matrix Y0 ∈ Cn×n satisfying ‖Y0‖t|q = 1
and ℜ tr(Y ∗

0 X) = ‖X‖r|p can be constructed via the following procedure. Let ξ =

[ ‖x⊤
1 ‖r, . . . , ‖x⊤

n ‖r ]⊤. Choose a nonnegative vector η = [ η1, . . . , ηn]⊤ such that
‖η‖q = 1 and η⊤ξ = ‖ξ‖p. To each j ∈ n choose a yj ∈ C

n with ‖yj‖t = ηj and
y∗

j x⊤
j = ηj‖x⊤

j ‖r. Then Y0 = [ y⊤
1 , . . . , y⊤

n ]⊤ has the required properties.
From Proposition 4.1 combined with Lemma 3.2 and Theorem 3.4 we get
Corollary 4.2. Let 1 ≤ r, p ≤ ∞, and let t, q be given by (4.4). Let K∆(x, y) =

{ y∗∆x; ∆ ∈ ∆, ‖∆‖r|p ≤ 1}. Then
(i) the set KCn×n(x, y) is a disk of radius ‖yx∗‖t|q;
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(ii) the support function of KRn×n(x, y) is

sR(z) = ‖ℜ(z yx∗)‖t|q, z ∈ C;

(iii) for the case p = r and ∆ ∈ {Herm, SymC, SkewC, SymR, SkewR} the support
function of K∆(x, y) is s∆(z) = ‖P∆(z yx∗)‖q|q.

Example 4.3. Figure 4 shows the sets

KRn×n(x, y) = { y∗∆x; ∆ ∈ Rn×n, ‖∆‖1|∞ ≤ 1 },

K
(3)
Rn×n(x, y) = { z ∈ C; z3 ∈ KRn×n(x, y) },

(4.5)

where

x = [ 1 + i, 5 + 4i, 3i, −1 + 3i ]⊤, y = [ 3 + 4i, 3 + 3i, 2 + 2i, 5 ].

The plot of KRn×n(x, y) has been generated by computing boundary points using claim
(ii) of Theorem 3.3 and Proposition 4.1.
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0

1

2

3

4

5

Fig. 4.1. The sets K
Rn×n (x, y) (left) and K

(3)

Rn×n (x, y) (right) from Example 4.3.

5. Unitarily invariant norms. In the sequel Un denotes the set of all unitary
n×n matrices. A norm ‖·‖ on Cn×n is said to be unitarily invariant if ‖UXV ‖ = ‖X‖
for all X ∈ Cn×n, U, V ∈ Un. There is a one to one correspondence between the
unitarily invariant norms on Cn×n and symmetric gauge functions [20, Section II.3].
A symmetric gauge function Φ is a symmetric and absolute norm on R

n. The unitarily
invariant norm ‖ · ‖Φ associated with Φ is given by

‖X‖Φ := Φ([σ1(X), σ2(X), . . . , σn(X)]⊤), (5.1)

where σ1(X) ≥ σ2(X) ≥ . . . ≥ σn(X) denote the singular values of X ∈ C
n×n. The

unitarily invariant norm induced by the Hölder-p-norm is called the Schatten-p-norm,
which we denote by

‖X‖(p) :=





(∑
k∈n σk(X)p

)1/p

if 1 ≤ p < ∞,

σ1(X) if p = ∞.
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Note that ‖X‖(∞) is the spectral norm and ‖X‖(2) =
√

tr(X∗X) is the Frobenius
norm of X. In the following Φ′ stands for the dual of the symmetric gauge function
Φ, i.e.

Φ′(ξ) = max
η ∈ Rn

Φ(η) = 1

η⊤ξ, ξ ∈ R
n. (5.2)

Let X = Udiag(σ)V ∗ be a singular value decomposition, where U, V ∈ Un and σ =
[σ1, . . . , σn]⊤ is the vector of singular values of X ∈ Cn×n. Let τ = [τ1, . . . , τn]⊤ be a
nonnegative vector such that Φ(τ ) = 1 and τ⊤σ = Φ(σ). Let Y0 = Udiag(τ )V ∗. Then

‖X‖′Φ = max
Y ∈ Cn×n

‖Y ‖Φ = 1

ℜ tr(Y ∗X) ≥ ℜ tr(Y ∗
0 X) = τ⊤σ = Φ′(σ) = ‖X‖Φ′ . (5.3)

It can be shown that the inequality in (5.3) is actually an equality. Hence we have
the following result [1, Prop. IV.2.11].

Proposition 5.1. For any symmetric gauge function Φ the dual of the unitarily
invariant norm ‖ · ‖Φ is ‖ · ‖Φ′ .

From (5.1) it follows that unitarily invariant norms have the properties (a),(b)
and (c). Thus, by combining Theorem 3.4 and Proposition 5.1 we get the result below.

Theorem 5.2. Let Φ be a symmetric gauge function on Rn and let ∆ be one of
the sets in (3.4). Then the support function of

K∆(x, y) = { y∗∆x; ∆ ∈ ∆, ‖∆‖Φ ≤ 1}, x, y ∈ C
n,

is given by

s∆(z) = ‖P∆(z yx∗)‖Φ′ = Φ′( [σ1(z), . . . , σn(z)]⊤ ), z ∈ C,

where σ1(z), . . . , σn(z) denote the singular values of P∆(z yx∗).

6. Frobenius norm and spectral norm. In this section we provide explicite
formulas for K∆(x, y) for the case that ∆ is one of the sets in 3.4 and the underlying
norm is the spectral norm or the Frobenius norm. First, we give a result on the
support function of an ellipse.

Proposition 6.1. Let K ⊂ C be a nonempty compact convex set with support
function

sK(z) =
√

a |z|2 + ℜ(b z̄2), z, b ∈ C, a ≥ |b|.

Then K is an ellipse (which may be degenerated to a line segment). Specifically,

K =
{

eiφ/2(
√

a + |b| ξ1 +
√

a − |b| ξ2 i); ξ1, ξ2 ∈ R, ξ2
1 + ξ2

2 ≤ 1
}

, (6.1)

where φ = arg(b).
Proof. Let E denote the set on the right hand side of (6.1), and let sE denote its

support function. Let

α =
1

2
(
√

a + |b| +
√

a − |b|) eiφ/2, β =
1

2
(
√

a + |b| −
√

a − |b|) eiφ/2.
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Then for ξ1, ξ2 ∈ R,

eiφ/2[
√

a + |b| ξ1 +
√

a − |b| ξ2 i] = αξ + βξ̄, where ξ = ξ1 + ξ2 i ∈ C.

Thus

sE(z) = max
|ξ|≤1

ℜ(z̄ (α ξ + β ξ̄))

= max
|ξ|≤1

ℜ( (αz + β̄ z) ξ)

= |α z + β̄ z|

=
√

(|α|2 + |β̄|2)|z|2 + 2ℜ(z̄2 αβ)

=
√

a |z|2 + ℜ(z̄2 b).

Thus sE = sK , and consequently E = K.

Note that the set (6.1) is a disk if b = 0 and a > 0. It is a line segment if
a = |b| > 0.

Theorem 6.2. Let ‖∆‖ denote either the Frobenius norm or the spectral norm
of ∆ ∈ Cn×n. Let ∆ ⊆ Cn×n and let a ≥ 0, b ∈ C be as in the tables below. Then the
support function of

K∆(x, y) = { y∗∆x; ∆ ∈ ∆, ‖∆‖ ≤ 1}

is given by

s∆(z) =
√

a |z|2 + ℜ(b z̄2), z ∈ C. (6.2)

Hence, K∆(x, y) equals the ellipse defined in (6.1).

Table for the Frobenius norm:

∆ a b

Cn×n ‖x‖2‖y‖2 0

Rn×n 1
2 ‖x‖2‖y‖2 1

2 (x⊤x) (y⊤y)

Herm 1
2‖x‖2‖y‖2 1

2 (y∗x)2

SymC

1
2 (‖x‖2‖y‖2 + |x⊤y|2) 0

SkewC
1
2 (‖x‖2‖y‖2 − |x⊤y|2) 0

SymR

1
4 (‖x‖2‖y‖2 + |x⊤y|2) 1

4 ( (x⊤x) (y⊤y) + (y∗x)2)

SkewR
1
4 (‖x‖2‖y‖2 − |x⊤y|2) 1

4 ( (x⊤x) (y⊤y) − (y∗x)2)

Table for the spectral norm:
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∆ a b

C
n×n ‖x‖2‖y‖2 0

Rn×n 1
2

[
‖x‖2 ‖y‖2 +

√
(‖x‖4 − |x⊤x|2)(‖y‖4 − |y⊤y|2)

]
1
2 (x⊤x)(y⊤y)

Herm ‖x‖2‖y‖2 − 1
2 |y∗x|2 1

2 (y∗x)2

SymC ‖x‖2‖y‖2 0

SkewC ‖x‖2‖y‖2 − |x⊤y|2 0

SkewR
1
2 ( ‖x‖2‖y‖2 − |x⊤y|2 +

√
det(F ∗F ) ) 1

2 ((x⊤x)(y⊤y) − (y∗x)2)

F =
[
x x̄ y ȳ

]

Here and in the following ‖x‖, ‖y‖ denote the Euclidean norm of x, y ∈ Cn.

Remark 6.3. Theorem 6.2 makes no statement about the case that ∆ = SymR

and the underlying norm is the spectral norm. The associated sets KSym
R
(x, y) are

in general no ellipses. Figure 6 gives two examples. It shows the sets KSym
R
(xj , yj),

j = 1, 2, where

x1 = [2 + i 2 + i 2]⊤, y1 = [−2 − 2 3i]⊤,

x2 = [1 + 2i i 2]⊤, y2 = [i − 2 + 2i 1 + 2i]⊤.
(6.3)

Remark 6.4. Notice that Theorem 6.2 yields precise values for the structured
condition numbers of a nonderogatory eigenvalue λ and the cases listed in the tables:
According to the discussion in the introduction the condition number equals the radius

r of the smallest disk about 0 that contains the set K
(m)
∆

(x, y), where x, y form a nor-
malized pair of eigenvectors. However, if K∆(x, y) is an ellipse with support function
(6.2) then r = (a + |b|)1/(2m).
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Fig. 6.1. The sets KSymR
(x1, y1) (left) and KSymR

(x2, y2) (right) from Remark 6.3.

The proof of Theorem 6.2 uses the lemma below.

Lemma 6.1. Let M = a1b
∗
1 + a2b

∗
2, where a1, a2, b1, b2 ∈ Cn. Then the Frobenius
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norm and the Schatten-1-norm of M are given by

‖M‖2
(2) = ‖a1‖2‖b1‖2 + ‖a2‖2‖b2‖2 + 2ℜ[ (a∗

1a2) (b∗1b2) ],

‖M‖2
(1) = ‖M‖2

(2) + 2
√

( ‖a1‖2‖a2‖2
2 − |a∗

1a2|2 ) ( ‖b1‖2‖b2‖2 − |b∗1b2|2 ).

The Frobenius norms of the matrices S± = 1
2 (M ± M⊤) are given by

‖S±‖2
(2) =

1

2

(
‖a1‖2‖b1‖2 + ‖a2‖2‖b2‖2 ± |a⊤

1 b1|2 ± |a⊤
2 b2|2

)

+ℜ
(

(a∗
1a2) (b∗1b2) ± (a⊤

1 b2) (a⊤
2 b1)

)
.

The Schatten-1-norm of S− satisfies

‖S−‖2
(1) = 2

(
‖S−‖2

(2) +
√

det(A∗A)
)

,

where A =
[
a1 a2 b̄1 b̄2

]
∈ Cn×4.

Proof. See the appendix.

Proof of Theorem 6.2. First, we treat the case that ∆ = R
n×n. Let

M = 2ℜ(z y x∗) = z y x∗ + z̄ ȳ x̄∗.

According to Proposition 5.1 the dual of the spectral norm is the Schatten-1-norm.
Hence, by Theorem 5.2 the support function of KRn×n(x, y) (with respect to spectral
norm) is

sRn×n(z) = ‖PRn×n(z yx∗)‖(1) (by Theorem 5.2)

= ‖ℜ(z yx∗)‖(1)

=
1

2
‖M‖(1)

=
1

2

√
αz + 2

√
βz, (by Lemma 6.1)

where

αz = ‖M‖2
(2)

= ‖z y‖2‖x‖2 + ‖z̄ ȳ‖2‖x̄‖2 + 2ℜ[ ((z y)∗(z̄ ȳ)) ((x∗x̄) ]

= 2 (|z|2‖x‖2‖y‖2 + ℜ[z̄2(x⊤x) (y⊤y)])

βz = ( ‖z y‖2‖z̄ȳ‖2
2 − |(z y)∗(z̄ ȳ)|2 ) ( ‖x‖2‖x̄‖2 − |x∗x̄|2 )

= |z|4(‖x‖4 − |x⊤x|2)(‖y‖4 − |y⊤y|2).

If the underlying norm is the Frobenius norm then

sRn×n(z) = ‖ℜ(z yx∗)‖(2) =
1

2
‖M‖(2) =

1

2

√
αz.
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Next, we consider the real skew-symmetric case. Let S− = 1
2 (M −M⊤). The support

function of KSkewR
(x, y) with respect to spectral norm norm is

sSkewR
(z) = ‖PSkewR

(z yx∗)‖(1) (by Theorem 5.2)

=
1

2
‖S−‖(1)

=
1

2

√
2 ‖S−‖2

(2) + 2
√

det(A∗
zAz), (by Lemma 6.1)

=

√
1

2
‖S−‖2

(2) +
1

2

√
det(A∗

zAz)

where

‖S−‖2
(2) =

1

2

(
‖z y‖2‖x‖2 + ‖z̄ ȳ‖2‖x̄‖2 − |(z y)⊤x|2 − |(z̄ȳ)⊤x̄|2

)

+ℜ
[
((z y)∗(z̄ ȳ)) (x∗x̄) − ((z y)⊤x̄) ((z̄ȳ)⊤x)

]
.

= |z|2 (‖x‖2‖y‖2 − |x⊤y|2) + ℜ[z̄2 ( (x⊤x)(y⊤y) − (y∗x)2 )],

Az =
[
z y z̄ ȳ x x̄

]
=

[
y ȳ x x̄

]
︸ ︷︷ ︸

=A1

diag(z, z̄, 1, 1).

We have det(A∗
zAz) = |z|4 det(A∗

1A1) = |z|4 det(F ∗F ), where F =
[
x x̄ y ȳ

]
.

The computions for the other cases is analogous. �

Example 6.5. Figure 6 shows the sets

K∆(x, y) = { y∗∆x; ∆ ∈ ∆, ‖∆‖(2) ≤ 1 }, (6.4)

where

x = [ 4 + 3i, −1, 1 + 5i, −i ]⊤, y = [ 4i, 4 + 3i, 4 + 3i, 4 + i ]⊤. (6.5)

7. Self- and skew-adjoint perturbations. We now treat the case that ∆ is
a set of matrices which are skew- or self-adjoint with respect to a scalar product on
Cn. Specifically we show that the associated sets K∆(x, y) can be computed via the
methods in the previous sections if the scalar product is induced by a unitary matrix
and the underlying norm is unitarily invariant.

For nonsingular Π∈Cn×n we consider the scalar products

〈x, y〉Π = x⋆Πy, x, y∈C
n, ⋆∈{∗,⊤}.

Depending on whether ⋆ = ⊤ or ⋆ = ∗ the scalar product is a bilinear form or a
sesquilinear form. We assume that Π satisfies a symmetry relation of the form

Π⋆ = ǫ0Π, with ǫ0 = −1 or ǫ0 = 1. (7.1)
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Fig. 6.2. The sets K∆(x, y) for the Frobenius norm and x, y defined in (6.5).

A matrix ∆∈Cn×n is said to be self-adjoint (skew-adjoint) with respect to the scalar
product 〈·, ·〉Π if

〈∆x, y〉Π = ǫ 〈x, ∆y〉Π for all x, y∈C
n, (7.2)

and ǫ = 1 (ǫ = −1). The relation (7.2) is easily seen to be equivalent to

∆⋆Π = ǫΠ∆. (7.3)

We denote the sets of self- and skew-adjoint matrices by

struct(Π, ⋆, ǫ) := { ∆ ∈ C
n×n ; ∆⋆Π = ǫΠ∆ }.

The relation (7.1) implies that (7.3) is equivalent to

(Π∆)⋆ = ǫ0 ǫΠ∆. (7.4)

We thus have the lemma below.
Lemma 7.1. Let Π, ∆ ∈ Kn×n where K = R or C. Suppose Π⋆ = ǫ0Π with

ǫ0 = −1 or ǫ0 = 1. Then the following equivalences hold.

∆∈struct(Π, ⋆, ǫ) ⇔





Π∆∈Herm if ǫ0ǫ = 1, ⋆ = ∗,

Π∆∈SymK if ǫ0ǫ = 1, ⋆ = ⊤,

Π∆∈SkewK if ǫ0ǫ = −1, ⋆ = ⊤,

i Π∆∈Herm if ǫ0ǫ = −1, ⋆ = ∗.

In many applications Π is unitary. The most common examples are

Π ∈ {diag(Ik,−In−k), En, Jn},
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where

Jn =

[
0 In

−In 0

]
∈ C

2n×2n, En =




1

. .
.

1


 ∈ C

n×n.

Proposition 7.1. Suppose Π ∈ C
n×n is unitary and satisfies Π⋆ = ǫ0Π with

ǫ0 = −1 or ǫ0 = 1. Let struct = struct(Π, ⋆, ǫ). Then for any unitarily invariant
norm,

Kstruct(x, y) = K∆(x, Πy),

where

∆ =





Herm if ǫ0ǫ = 1, ⋆ = ∗,

SymC if ǫ0ǫ = 1, ⋆ = ⊤,

SymR if ǫ0ǫ = 1, ⋆ = ⊤, and Π ∈ Rn×n

SkewC if ǫ0ǫ = −1, ⋆ = ⊤,

SkewR if ǫ0ǫ = −1, ⋆ = ⊤ and Π ∈ Rn×n.

(7.5)

Furthermore, Kstruct(x, y) = KHerm(x, iΠy) if ǫ0ǫ = −1 and ⋆ = ∗.
Proof. Using Lemma 7.1 and Π∗Π = In we obtain for the sets in (7.5),

Kstruct(x, y) = { y∗∆x; ∆ ∈ struct, ‖∆‖ ≤ 1 }
= { (Πy)∗(Π∆)x; Π∆ ∈ ∆, ‖Π∆‖ ≤ 1 }
= K∆(x, Πy).

The proof of the remaining statement is analogous.

Appendix. We give the proof Lemma 6.1. To this end we need the following
fact.

Proposition 7.2. Let σ1 ≥ σ2 ≥ . . . ≥ σn denote the singular values of
M = AB∗, where A, B ∈ Cn×r. Then σk = 0 for k > r, and σ2

1 , σ
2
2 , . . . , σ

2
r are

the eigenvalues of (A∗A)(B∗B). In particular,

r∑

k=1

σ2
k = tr((A∗A)(B∗B)),

r∏

k=1

σ2
k = det((A∗A)(B∗B)).

Proof. Since rank(M) ≤ r, we have σk = 0 for k > r. The squares of the singular
values of M are the eigenvalues of M∗M = XY , where X = B, Y = (A∗A)B∗. As
ist well known XY and Y X = (A∗A)(B∗B) have the same nonzero eigenvalues.

Now, let σ1, σ2 denote the largest singular values of the matrix

M = a1b
∗
1 + a2b

∗
2 = [a1 a2] [b1 b2]

∗, a1, a2, b1, b2 ∈ C
n.
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Since rank(M) ≤ 2 the other singular values of M are zero. Using Proposition 7.2 we
obtain for the Frobenius norm and the Schatten-1-norm of M ,

‖M‖2
(2) = σ2

1 + σ2
2

= tr

([
‖a1‖2 a∗

1a2

a∗
2a1 ‖a2‖2

] [
‖b1‖2 b∗1b2

b∗2b1 ‖b2‖2

])

= ‖a1‖2‖b1‖2 + ‖a2‖2‖b2‖2 + 2ℜ( (a∗
1a2) (b∗1b2) ).

‖M‖2
(1) = (σ1 + σ2)

2

= σ2
1 + σ2

2 + 2
√

σ2
1σ

2
2

= ‖M‖2
(2) + 2

√
β,

where

β = det

([
‖a1‖2 a∗

1a2

a∗
2a1 ‖a2‖2

] [
‖b1‖2 b∗1b2

b∗2b1 ‖b2‖2

])

= ( ‖a1‖2‖a2‖2 − |a∗
1a2|2)(‖b1‖2‖b2‖2 − |b∗1b2|2 ).

Next, we compute the norms of the symmetric and the skew-symmetric part of M .
Let S± = 1

2 (M ± M⊤). Then S± can be written in the form S± = AB∗
±, where

A =
[
a1 a2 b̄1 b̄2

]
, B± =

1

2

[
b1 b2 ±ā1 ±ā2

]
.

We have

A∗A =




‖a1‖2 a∗
1a2 a⊤

1 b1 a⊤
1 b2

a∗
2a1 ‖a2‖2 a⊤

2 b1 a⊤
2 b2

b⊤1 a1 b⊤1 a2 ‖b1‖2 b∗1b2

b⊤2 a1 b⊤2 a2 b∗2b1 ‖b2‖2




,

B∗
±B± =

1

4




‖b1‖2 b∗1b2 ± b⊤1 a1 ± b⊤1 a2

b∗2b1 ‖b2‖2 ± b⊤2 a1 ± b⊤2 a2

± a⊤
1 b1 ± a⊤

1 b2 ‖a1‖2 a∗
1a2

± a⊤
2 b1 ± a⊤

2 b2 a∗
2a1 ‖a2‖2




.

Using Proposition 7.2 we obtain for the Frobenius norm of S±,

‖S±‖2
(2) = tr((A∗A)(B∗

±B±))

=
1

2

(
‖a1‖2‖b1‖2 + ‖a2‖2‖b2‖2 ± |a⊤

1 b1|2 ± |a⊤
2 b2|2

)

+ℜ
(

(a∗
1a2) (b∗1b2) ± (a⊤

1 b2) (a⊤
2 b1)

)
.

We now determine the Schatten-1-norm of S−. Since rank(S−) ≤ 4, at most 4 singular
values of S− are nonzero. Let σ1 ≥ σ2 ≥ σ3 ≥ σ4 denote these singular values. Since
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S− is skew-symmetric, its singular values have even multiplicity [10, Sect. 4.4, Exercise
26]. Thus σ1 = σ2 and σ3 = σ4. This yields

‖S−‖2
(1) = (σ1 + σ2 + σ3 + σ4)

2

= (2σ1 + 2σ3)
2

= 2(2σ2
1 + 2σ2

3) + 8σ1σ3

= 2‖S−‖2
(2) + 8 (σ2

1σ
2
2σ

2
3σ2

4)
1/4

= 2‖S−‖2
(2) + 8 det((A∗A)(B∗

−B−))1/4.

Since 4 B∗
−B− is unitarily similar to A∗A, we have det(B∗

−B−) = 1
64 det(A∗A). Hence,

‖S−‖2
(1) = 2

(
‖S−‖2

(2) +
√

det(A∗A)
)

.
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