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Abstract. We study the variation of the spectrum of matrices under perturbations which are self- or skew-adjoint with
respect to a scalar product. Computable formulae are given for the associated µ-values. The results can be used to calculate
spectral value sets for the perturbation classes under consideration. We discuss the special case of complex Hamiltonian
perturbations of a Hamiltonian matrix in detail.
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1. Introduction. µ-values are well established tools in stability analysis of uncertain systems and
in eigenvalue perturbation theory [10, 13, 22, 27]. They can be used to characterize several important
quantities including stability radii, structured eigenvalue condition numbers [14] and the structured dis-
tance to uncontrollability [16]. The relationship of spectral value sets with µ-values will be displayed
below. There is a vast literature on the problem of calculating µ-values with respect to various pertur-
bation classes [1, 3, 5, 15, 23, 24]. In this paper we give computable formulae for µ if the underlying
perturbation class is a set of self-adjoint or skew-adjoint matrices with respect to a scalar product. The
scalar product is assumed to be defined by a unitary matrix, see Section 6. It will be shown that in this
case the associated µ-values can be obtained by solving a simple one parameter optimization problem.

We use the following notation. The symbols N, R, C represent the sets of positive integers, real
numbers and complex numbers respectively. By C

n×m we denote the set of n by m matrices with entries
in C. Furthermore, Cn = Cn×1 is the set of column vectors of length n. The conjugate, the transpose
and the conjugate transpose of A∈Cn×m will be written A, A⊤ and A∗. If A is square then σ(A) and
ρ(A) = C \ σ(A) denote its spectrum and its resolvent set. The n× n identity matrix will be written In.
By a perturbation class ∆ we mean a nonempty closed subset of C

l×q which is star shaped with respect
to 0 ∈ Cl×q, i.e. if ∆ ∈ ∆ then t∆ ∈ ∆ for 0 ≤ t ≤ 1. We now give the definition of µ-values.

Definition 1.1. Let ∆ ⊆ Cl×q be a perturbation class and let ‖ · ‖ be a norm on Cl×q.
• The µ-value of M ∈ Cq×l with respect to ∆ and ‖ · ‖ is

µ∆(M) := ( inf{ ‖∆‖ ; ∆ ∈ ∆, 1 ∈ σ(∆M) } )
−1

. (1.1)

Thus µ∆(M) is the inverse of the smallest norm of a ∆ ∈ ∆ such that 1 is an eigenvalue of the
matrix product ∆ M . If there is no such ∆ ∈ ∆ then µ∆(M) = 0.

• If l = q then the µ-value of M of second kind is defined as

µ̃∆(M) := inf { ‖∆‖ ; ∆ ∈ ∆, det(M − ∆) = 0 }. (1.2)

Thus µ̃∆(M) is the structured distance of M to the set of singular matrices. We have µ̃∆(M) = 0
iff M is singular, and µ̃∆(M) = ∞ iff there is no ∆ ∈ ∆ such that det(M − ∆) = 0.

It is easily seen that µ̃∆(M) = µ∆(M−1)−1 if M is nonsingular. Furthermore, if the underlying
norm is the spectral norm then

µCl×q(M) = σmax(M), and µ̃Cn×n(M) = σmin(M), (1.3)

where σmax(·) and σmin(·) denote the maximum and the minimum singular value respectively.
We now briefly discuss the relationship of µ-values with the perturbation analysis of eigenvalues.

Consider matrix perturbations of the form

A A∆ = A + B∆C, ∆ ∈ ∆, ‖∆‖ < δ, (1.4)

where A ∈ C
n×n, B ∈ C

n×l, C ∈ C
q×n are fixed matrices. The set of all eigenvalues of all matrices A∆

given by (1.4) is called a spectral value set (stuctured pseudospectrum). It is denoted by

σ∆(A, B, C; δ) :=
⋃

∆∈∆, ‖∆‖<δ

σ(A + B∆C)

= {s∈C; ∃∆ ∈ ∆ : ‖∆‖ < δ, and det(sIn − (A + B∆C)) = 0}.

(1.5)
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Let G(s) := C(sIn − A)−1B, s ∈ ρ(A), be the transfer function of the triple (A, B, C). From the well
known equivalence [9, Proposition 2.3]

s∈σ(A + B∆C) ⇔ 1∈σ(∆G(s)) (1.6)

it follows that

µ∆(G(s)) = ( inf{ ‖∆‖ ; ∆∈∆, s∈σ(A + B∆C) } )−1 , s∈ρ(A). (1.7)

This in turn yields

σ∆(A, B, C; δ) = σ(A) ∪ {s ∈ ρ(A); µ∆(G(s)) > δ−1}, δ > 0. (1.8)

For the case B = C = In and ∆ ⊆ Cn×n we simplify notation and denote the associated spectral value
sets by

σ∆(A; δ) := σ∆(A, In, In; δ) =
⋃

∆∈∆, ‖∆‖<δ

σ(A + ∆). (1.9)

From the definition of µ̃ it is immediate that for A ∈ C
n×n,

µ̃∆(s In − A) = inf{‖∆‖ | ∆∈∆, s∈σ(A + ∆) }, s∈C, (1.10)

σ∆(A; δ) = {s ∈ C; µ̃∆(s In − A) < δ }, δ > 0. (1.11)

The statements (1.8) and (1.11) yield that spectral value sets can be calculated by evaluating the functions
s 7→ µ∆(G(s)) and s 7→ µ̃∆(s In − A) respectively.

The organization of this paper is as follows. In Section 2 we provide useful characterizations for µ
with respect to Hermitian, symmetric and skew-symmetric perturbations. These characterizations are
then used in Sections 4 and 5 to compute the associated µ-values by maximizing or minimizing a certain
eigenvalue of a Hermitian pencil. Some facts on Hermitian matrices which are needed in the proofs
are given in Section 3. In Section 6 we show how the results obtained so far can be extended to the
perturbation classes of self- and skew-adjoint matrices with respect to a scalar product. The last section
deals with a special case: µ-values and spectral value sets for Hamiltonian perturbations of Hamiltonian
matrices.

2. Hermitian, symmetric, and skew-symmetric perturbations . In this section we consider
µ-values with respect to the perturbation classes ∆ ∈ {Herm(n), Sym(n), Skew(n)}, where

Herm(n) := {∆ ∈ Cn×n ; ∆∗ = ∆ },
Sym(n) := {∆ ∈ Cn×n ; ∆⊤ = ∆ },

Skew(n) := {∆ ∈ Cn×n ; ∆⊤ = −∆ }.
(2.1)

First, we give a characterization of µ which holds for arbitrary perturbation classes ∆ ⊆ Cl×q. Let

ν∆(x, y) := inf{ ‖∆‖ ; ∆ ∈ ∆, ∆x = y }, x ∈ C
q, y ∈ C

l.

Note that

ν∆(x, y) ≥ ‖y‖/‖x‖ for all x 6= 0, (2.2)

since ∆x = y implies ‖∆‖‖x‖ ≥ ‖y‖.
Lemma 2.1. For any M ∈ Cq×l,

µ∆(M) = (inf{ ν∆(Mv, v) ; v∈C
n, ‖v‖ = 1 })−1 .

If M ∈ C
n×n and ∆ ⊆ C

n×n then

µ̃∆(M) = inf{ ν∆(v, Mv) ; v∈C
n, ‖v‖ = 1 }.
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Proof. This follows from the equivalences

1 ∈ σ(∆M) ⇔ ∆(Mv) = v for some v with ‖v‖ = 1,

det(M − ∆) = 0 ⇔ ∆v = Mv for some v with ‖v‖ = 1.

Throughout the rest of this paper the underlying norm ‖ · ‖ is the spectral norm. The proposition
below gives the ν-values for the classes defined in (2.1).

Proposition 2.1. Let x, y∈C
n, x 6= 0. Then

(a) νHerm(x, y) =

{
‖y‖/‖x‖ if y∗x∈R,

∞ otherwise,

(b) νSkew(x, y) =

{
‖y‖/‖x‖ if yT x = 0,

∞ otherwise,

(c) νSym(x, y) = ‖y‖/‖x‖.
Proof. Without loss of generality we may assume that ‖x‖ = 1.
(a). Let α := x∗y. Suppose there exists ∆∈Herm(n) such that ∆x = y. Then α = x∗∆x∈R. Thus,

νHerm(x, y) = ∞ if α 6∈ R. Assume now that α∈R and the vectors x and y are linearly independent. Let
β := ‖y − αx‖ and z := β−1(y − αx). Then ‖z‖ = 1, x∗z = 0, y = αx + βz and α2 + β2 = ‖y‖2. Let

∆0 := αxx∗ + β(zx∗ + xz∗) − αzz∗.

Then ∆0∈Herm(n) and ∆0x = y. A straightforward computation yields that ∆∗
0∆0 = ∆2

0 = ‖y‖2(xx∗+
zz∗). Since the unit vectors x and z are orthogonal to each other we have ‖xx∗ + zz∗‖ = 1. Hence
‖∆0‖ =

√
‖∆∗

0∆0‖ = ‖y‖ and therefore νHerm(x, y) = ‖y‖, using (2.2). Suppose now that α ∈ R and
x and y are linearly dependent, and set ∆0 := αxx∗. Then y = αx, ∆0 ∈ Herm(n), ∆0x = y and
‖∆0‖ = |α| = ‖y‖. Thus νHerm(x, y) = ‖y‖.

(c). Let α := xT y. Suppose first that x̄ (the conjugate of x) and y are linearly independent, and let
z = β−1(ȳ − ᾱx), where β := ‖ȳ − ᾱx‖ 6= 0. Then we have ‖z̄‖ = ‖z‖ = 1, x∗z = 0 = x̄∗z̄, y = αx̄ + βz̄
and |α|2 + β2 = ‖y‖2. Set

∆0 := αx̄x∗ + β(z̄x∗ + x̄z∗) − ᾱz̄z∗.

Then ∆0∈Sym(n) and ∆0x = y. By a straightforward computation one obtains ∆∗
0∆0 = ‖y‖2(xx∗+zz∗).

Thus ‖∆0‖ = ‖y‖. Suppose now that x̄ and y are linearly dependent, and set ∆0 := αx̄x∗. Then y = αx̄,
∆0∈Sym(n), ∆0x = y and ‖∆0‖ = |α| = ‖y‖.

(b). If there exists ∆ ∈ Skew(n) such that ∆x = y then xT y = xT ∆x = 0. Suppose the latter
condition holds. Then the skew-symmetric matrix

∆0 := yx∗ − x̄yT

satisfies ∆0x = y and ‖∆0‖ = ‖y‖.
The statement of Proposition 2.1 is covered by the results in [20]. We have given a proof here for the

convenience of the reader.
By combining Proposition 2.1 with Lemma 2.1 we obtain the Theorem below.
Theorem 2.2. Let M ∈C

n×n. Then the following holds.
(a) If the Hermitian matrix Mh = 1

2i
(M −M∗) is definite then µHerm(M) = 0 and µ̃Herm(M) = ∞.

Otherwise

µHerm(M) = max{ ‖Mv‖ ; v ∈ C
n, ‖v‖ = 1, v∗Mhv = 0 }, (2.3)

µ̃Herm(M) = min{ ‖Mv‖ ; v ∈ C
n, ‖v‖ = 1, v∗Mhv = 0 }.

(b) Let Ms = 1
2 (M + M⊤). Then for n ≥ 2,

µSkew(M) = max{ ‖Mv‖ ; v ∈ C
n, ‖v‖ = 1, vT Msv = 0 } (2.4)

µ̃Skew(M) = min{ ‖Mv‖ ; v ∈ C
n, ‖v‖ = 1, vT Msv = 0 }. (2.5)

(c) We always have

µSym(M) = max{ ‖Mv‖ ; v ∈ C
n, ‖v‖ = 1 } = σmax(M),

µ̃Sym(M) = min{ ‖Mv‖ ; v ∈ C
n, ‖v‖ = 1 } = σmin(M).
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Proof. By (2.3) and Proposition 2.1,

µHerm(M) = (inf{ νHerm(Mv, v) ; v∈C
n, ‖v‖ = 1 })−1 , (2.6)

νHerm(Mv, v) =

{
‖Mv‖−1 if 0 = ℑ((Mv)∗v) = v∗Mhv

∞ otherwise.
if ‖v‖ = 1. (2.7)

Hence µHerm(M) = ∞−1 = 0 if Mh is definite. Otherwise (2.6) and (2.7) yield (2.3). The proof of the
other statements is analogous. For (2.4) and (2.5) one needs the fact that v⊤Msv = 0 for some nonzero
v ∈ C

n if n ≥ 2 (see Lemma 5.3). Hence µSkew(M) 6= ∞ 6= µ̃Skew(M).
Note that the µ-values for the symmetric case coincide with the µ-values for the unstructured case

∆ = C
n×n (see relation (1.3)). For the sake of computation of µ-values for the Hermitian and the skew-

symmetric case we provide now a reformulation of the characterizations in Theorem 2.2. To this end we
introduce the following notation. For H, H0, H1 ∈ Herm(n), S ∈ Sym(n) we define

mh(H0, H1) := sup{ v∗H0v ; v ∈ Cn, v∗H1v = 0, ‖v‖ = 1 },
mh(H0, H1) := inf{ v∗H0v ; v ∈ C

n, v∗H1v = 0, ‖v‖ = 1 },
mhs(H, S) := sup{ v∗Hv ; v ∈ Cn, vT Sv = 0, ‖v‖ = 1 },
mhs(H, S) := inf{ v∗Hv ; v ∈ C

n, vT Sv = 0, ‖v‖ = 1 }.

(2.8)

We have the following corollary to Theorem 2.2.
Corollary 2.3. Let M ∈C

n×n, Mh = 1
2i

(M − M∗), Ms = 1
2 (M + M⊤). Then

(a) if Mh is not definite,

µHerm(M) =
√

mh (M∗M, Mh),

µ̃Herm(M) =
√

mh (M∗M, Mh);

(b) if n ≥ 2,

µSkew(M) =
√

mhs (M∗M, Ms),

µ̃Skew(M) =
√

mhs (M∗M, Ms).

Thus, in order to calculate the µ-values for the Hermitian and the skew-symmetric case it remains
to give computable formulas for the quantities defined in (2.8). This is done in the following sections.

3. Some facts on Hermitian matrices. This section contains results on Hermitian matrices which
are needed later on. In the sequel λ1(H) ≥ λ2(H) ≥ . . . ≥ λn(H) denote the eigenvalues of H∈Herm(n)
in decreasing order. We also use the notation λmax(H) := λ1(H), λmin(H) := λn(H). Furthermore,
Ek(H) stands for the eigenspace belonging to λk(H),

Ek(H) := { v∈C
n | Hv = λk(H) v }.

Note that λk(H) = v∗Hv for all v ∈ Ek(H) with ‖v‖ = 1. Let Sk denote the set of k-dimensional
subspaces of Cn. The Courant-Fischer principle states that

λk(H) = max
V∈Sk

min
v ∈ V
‖v‖ = 1

v∗Hv = min
V∈Sn−k+1

max
v ∈ V
‖v‖ = 1

v∗Hv. (3.1)

In particular,

λmax(H) = max
v ∈ Cn

‖v‖ = 1

v∗Hv, λmin(H) = min
v ∈ Cn

‖v‖ = 1

v∗Hv. (3.2)

Furthermore, (3.1) implies the following well known inclusion result for the eigenvalues of H + F .

λk(H) + λmin(F ) ≤ λk(H + F ) ≤ λk(H) + λmax(F ), H, F ∈ Herm(n). (3.3)
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Let I ⊆ R be an interval and let H : I → Herm(n) be an analytic function. We consider the maps

φk : I → R φk(t) = λk(H(t)).

Suppose that the eigenvalue φk(τ ) has constant multiplicity for all τ in a neighbourhood of t ∈ I. It is
well known that in this case φk is differentiable at t and the derivative satisfies

φ̇k(t) = v∗Ḣ(t)v,

where Ḣ(t) denotes the derivative of H(·) at t and v∈Ek(H(t)), ‖v‖ = 1. If φk changes multiplicity at
t then the function φk(·) is not necessarily differentiable at t. However, the right and the left derivative
always exist.

Proposition 3.1. Let t ∈ I. Suppose that φk(t) = φj(t) for k0 ≤ j ≤ k1 and φk(t) 6= φj(t) for
1 ≤ j < k0 and k1 < j ≤ n. Let V ∈Cn×(k1−k0+1) be a matrix whose columns form an orthonormal basis
of the eigenspace Ek(H(t)). The right derivative of φk(·) at t exists and is given by

lim
h→0+

φk(t + h) − φk(t)

h
= λk1−k+1(V

∗Ḣ(t)V ) = v∗Ḣ(t)v,

where v∈Ek(H(t)) is any unit vector satisfying v = V ξ for some ξ∈Ek1−k+1(V
∗Ḣ(t)V ), ‖ξ‖ = 1. The

left derivative of φk(·) at t is given by

lim
h→0+

φk(t) − φk(t − h)

h
= λk−k0+1(V

∗Ḣ(t)V ) = v∗Ḣ(t)v,

where v∈Ek(H(t)) is any unit vector satisfying v = V ξ for some ξ∈Ek−k0+1(V
∗Ḣ(t)V ), ‖ξ‖ = 1.

Proof. This follows from [2, page 149]. See also [19, Theorem 8.4].
Corollary 3.2. Suppose t is not the right boundary point of I and the function φk : I → R attains

a local minimum at t. Assume further that φk(t) > φk+1(t). Then v∗Ḣ(t)v ≥ 0 for all v ∈ Ek(H(t)).
The statement below can be found in [12]. An analogous result for singular values has been derived

in [21, 23]. We give a proof for completeness.
Proposition 3.3. Let t be an interior point of I and suppose that φk(·) attains a local extremum

at t. Then there exists 0 6= v∈Ek(H(t)) such that v∗Ḣ(t)v = 0.
Proof. Assume the local extremum is a minimum. Then the right derivative of φk is nonnegative and

the left derivative is nonpositive. Hence, according to Proposition 3.1 there exist v0, v1∈Ek(H(t)) \ {0}
such that v∗0Ḣ(t)v0 ≥ 0 and v∗1Ḣ(t)v1 ≤ 0. If these inequalities are strict in both cases then v0 and v1 are
linearly independent, and hence the vectors vθ = (1− θ) v0 + θ v1∈Ek(H(t)) are nonzero for all θ∈ [0, 1].
By continuity we have v∗θḢ(t)vθ = 0 for some θ. The proof for a local maximum is analogous.

4. Computation of mh(H0, H1) and mh(H0, H1). In this section we provide useful characteriza-
tions of the quantities mh(H0, H1), mh(H0, H1) defined in (2.8).

Theorem 4.1. Let H0, H1 ∈ Herm(n) and φ(t) = λmin(H0 + t H1), t ∈ R.
(i) The function t 7→ φ(t) is quasiconcave 1 , and

mh(H0, H1) = sup
t∈R

φ(t). (4.1)

(ii) If H1 is indefinite then the supremum in (4.1) is attained at some t0 in the interval [t1, t2], where

t1 = −
λmax(H0) − λmin(H0)

λmax(H1)
, t2 =

λmax(H0) − λmin(H0)

|λmin(H1)|
. (4.2)

(iii) If H1 is semidefinite but not definite then

mh(H0, H1) = λmin(V ∗H0V ), (4.3)

where V is a matrix whose columns form an orthonormal basis of ker H1.

1Let I be an interval. A function f : I → R is said to be quasiconcave if each superlevel set {x ∈ I; f(x) ≥ c}, c ∈ R, is
an interval. f : I → R is said to be quasiconvex if each sublevel set {x ∈ I; f(x) ≤ c}, c ∈ R, is an interval. A continuous
function f : I → R is quasiconcave (quasiconvex) iff each local extremum of f is a global maximum (minimum).
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(iv) If H1 is definite then mh(H0, H1) = ∞.
(v) If H1 is positive (negative) semidefinite then the function φ(·) is increasing (decreasing).
(vi) If H1 is positive (negative) definite then the function φ(·) is strictly increasing (strictly decreasing)

and limt→∞ φ(t) = ∞ (limt→−∞ φ(t) = ∞).
Proof. We will need the following inequalities which are consequences of (3.3).

λmin(H0) + λmin(t H1) ≤ φ(t) ≤ λmax(H0) + λmin(t H1), (4.4)

φ(t∗) + λmin(t H1) ≤ φ(t∗ + t) ≤ φ(t∗) + λmax(t H1), t, t∗ ∈ R. (4.5)

Note that

λmin(t H1) =

{
λmin(H1) t if t ≥ 0,

λmax(H1) t if t ≤ 0.

For any unit vector v ∈ Cn satisfying v∗H1v = 0 and any t ∈ R we have by (3.2),

φ(t) ≤ v∗(H0 + t H1)v = v∗H0v.

This implies

sup
t∈R

φ(t) ≤ mh(H0, H1). (4.6)

Suppose now that the function φ(·) attains a local extremum at t0. Then by Proposition 3.3 there exists
a unit vector v0 satisfying (H0 + t0 H1)v0 = φ(t0) v0 and v∗0H1v0 = 0, whence v∗0H0v0 = φ(t0). Thus
mh(H0, H1) ≤ φ(t0) ≤ supt∈R φ(t), and then (4.6) yields

sup
t∈R

φ(t) = φ(t0) = mh(H0, H1).

Thus each local extremum of φ is the global maximum. This implies that the function φ is quasiconcave.
Suppose now, that H1 is indefinite and let t1, t2 be defined as in (4.2). Then for t 6∈ [t1, t2], λmax(H0) +
λmin(t H1) ≤ λmin(H0) = φ(0). By combining this with (4.4) we obtain φ(t) ≤ φ(0). Consequently, φ
attains a local maximum at some t0 ∈ [t1, t2]. We thus have shown (ii) and (4.1) for the case that H1

is indefinite. Suppose now, that H1 is semidefinite. Then v∗H1v = 0 if and only if v ∈ ker H1. If H1

is definite then kerH1 = {0}. This implies (iii) and (iv). (v) and (vi) are immediate consequences of
(4.4) and (4.5). Thus (4.1) holds for the case that H1 is definite. We now prove (4.1) for the semidefinite
case by contradiction. Assume without loss of generality that H1 is positive semidefinite but not definite.
Assume further, that (4.1) fails. Then by (v) and (4.6) there are unit vectors vk, k ∈ N, and an ǫ > 0
such that

v∗k(H0 + k H1)vk = φ(k) < mh(H0, H1) − ǫ,

whence

0 ≤ v∗kH1vk ≤
1

k
(mh(H0, H1) − v∗kH0vk − ǫ). (4.7)

By compactness there is a subsequence vkj
which converges to a unit vector v̂. It follows from (4.7)

that v̂∗H1v̂ = 0. But then v̂∗H0v̂ ≥ mh(H0, H1) by definition of mh(H0, H1). Therefore mh(H0, H1) −
v∗kj

H0vkj
− ǫ < 0 for kj large enough. The latter contradicts (4.7).

Remark 4.2. The function

(H0, H1) 7→ mh(H0, H1) (4.8)

is discontinuous at (H0, H1) if H1 is semidefinite but not definite, since then an arbitrarily small pertur-
bation of H1 can change the dimension of ker H1. However, if H1 is indefinite then the function (4.8)
is continuous at (H0, H1). This is seen as follows. If H1 is indefinite, then H1 + E1 is indefinite for all
E1 ∈ Uǫ = {E ∈ Herm(n); ‖E‖ ≤ ǫ}, ǫ > 0 sufficiently small. Let

a = max{λmax(H0 + E) − λmin(H0 + E); E ∈ Uǫ },

T1 = −a/ min{λmax(H1 + E); E ∈ Uǫ },

T2 = a/ min{ |λmin(H1 + E)|; E ∈ Uǫ }.
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Then by part (ii) of Theorem 4.1 we have for all (E0, E1) ∈ U2
ǫ ,

mh(H0 + E0, H1 + E1) = max
t∈[T1,T2]

λmin(H0 + E0 + t(H1 + E1)).

The right hand side of the latter identity is a continuous function of (E0, E1) since the maximum is taken
over a compact set.

Remark 4.3. The quasiconcavity of the function t 7→ λmin(H0+tH1), t ∈ R, can also be shown in the
following way. The first relation in (3.2 ) yields that the function t 7→ λmax(H0 + tH1), t ∈ R, is convex
for any H0, H1 ∈ Herm(n). Thus t 7→ −λmax((−H0) + t(−H1)) = λmin(H0 + tH1) is quasiconcave.

Remark 4.4. If H1 is indefinite the mh(H0, H1) can easily be computed via (4.1) and (4.2). If H1

is semidefinite but not definite then (4.3) can be used for computation.
For mh(H0, H1) we have the following result. Its proof is analogous to that of Theorem 4.1. and

therefore omitted.
Theorem 4.5. Let H0, H1 ∈ Herm(n) and φ(t) = λmax(H0 + t H1), t ∈ R.
(i) The function t 7→ φ(t) is convex , and

mh(H0, H1) = inf
t∈R

φ(t). (4.9)

(ii) If H1 is indefinite then the infimum in (4.9) is attained at some t0 in the interval [t1, t2], where

t1 =
λmax(H0) − λmin(H0)

λmin(H1)
, t2 =

λmax(H0) − λmin(H0)

λmax(H1)
. (4.10)

(iii) If H1 is semidefinite but not definite then

mh(H0, H1) = λmax(V
∗H0V ), (4.11)

where V is a matrix whose columns form an orthonormal basis of ker H1.
(iv) If H1 is definite then mh(H0, H1) = −∞.
(v) If H1 ist positive (negative) semidefinite then the function φ(·) is increasing (decreasing).
(vi) If H1 is positive (negative) definite then the function φ(·) is strictly increasing (strictly decreasing)

and limt→−∞ φ(t) = −∞ (limt→∞ φ(t) = −∞).

5. Computation of mhs(H, S) and mhs(H, S). We now treat the Hermitian-symmetric case. Re-
call the definition in (2.8),

mhs(H, S) = sup{ v∗Hv ; v ∈ C
n, v⊤Sv = 0, ‖v‖ = 1 }, H ∈ Herm(n), S ∈ Sym(n).

If S = 0 then mhs(H, S) = λmax(H). Suppose that rank(S) = 1. Then S can be written in the form
S = xx⊤ for some nonzero x ∈ Cn. Hence, for any v ∈ Cn, v⊤Sv = (v⊤x)2. Let V = { v ∈ Cn ; v⊤x = 0 }.
Then

mhs(H, S) = mhs(H, xx⊤) = sup
v∈V,‖v‖=1

v∗Hv. (5.1)

If n = 1 then V = 0. Thus mhs(H, xx⊤) = −∞. Suppose n ≥ 2 and let V ∈ Cn×(n−1) be a matrix whose
columns form an orthonormal basis of V . Then (5.1) yields

mhs(H, xx⊤) = max
ξ∈Cn−1,‖ξ‖=1

(V ξ)∗H(V ξ) = λmax(V
∗HV ).

If rank(S) ≥ 2 then mhs(H, S) can be computed by minimizing the second largest eigenvalue of a
hermitian pencil. The precise statement is as follows.

Theorem 5.1. Suppose rank(S) ≥ 2. Let t1 = 2‖H‖/σ2(S), where σ2(S) denotes the second largest
singular value of S. Then

mhs(H, S) = min
0≤t≤t1

λ2

([
H t S
tS H

])
.

The function to be minimized is quasiconvex.
We split the proof into several lemmas. Let us introduce some notation.
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• For t ∈ R we set

F (t) :=

[
H t S
tS H

]
, φ(t) := λ2(F (t)).

• For a unit vector v ∈ Cn,

Uv :=

{ [
z1 v
z2 v

]
; z1, z2 ∈ C

}
.

Note that Uv is a 2-dimensional subspace of C2n, and

[
z1 v
z2 v

]∗

F (t)

[
z1 v
z2 v

]
= (|z1|

2 + |z2|
2) v∗Hv + 2tℜ(z1z2 v⊤Sv), z1, z2 ∈ C. (5.2)

Lemma 5.1. For any H ∈ Herm(n), S ∈ Sym(n) we have mhs(H, S) ≤ inft∈R φ(t).
Proof. Let v ∈ Cn be a unit vector satisfying v⊤Sv = 0. Thus by the Courant-Fischer max-min-

principle and (5.2),

φ(t) ≥ min
x∈Uv , ‖x‖=1

x∗Hx = v∗Hv for all t ∈ R.

Hence, φ(t) ≥ mhs(H, S).
Lemma 5.2. Let v1, . . . , vd be a basis of the eigenspace Ek(H). Then

E2k−1(F (0)) = E2k(F (0)) =
⊕d

j=1Uvj
,

where ⊕ denotes the direct sum.
The simple proof is left to the reader.
Lemma 5.3. Let V be a subspace of Cn of dimension dimV ≥ 2. Then to any S ∈ Sym(n) there is

a nonzero v ∈ V satisfying v⊤Sv = 0.
Proof. For z1, z2 ∈ C let vz1,z2

= z1 v1 + z2 v2, where v1, v2 ∈ V are linearly independent vectors. The
function (z1, z2) 7→ v⊤z1,z2

S vz1,z2
is a homogeneous quadratic polynomial and has a zero (z1, z2) 6= (0, 0).

Lemma 5.4. The following statements are equivalent.
(i) mhs(H, S) = φ(0) = λmax(H).
(ii) Either dim E1(H) ≥ 2, or dimE1(H) = 1 and v⊤Sv = 0 for v ∈ E1(H).
(iii) The function R ∋ t 7→ φ(t) attains its minimum at t = 0.
Proof. By Lemma 5.2 we have λmax(H) = φ(0).
(i) ⇔ (ii). First note that mhs(H, S) ≤ max{ v∗Hv; v ∈ Cn, ‖v‖ = 1} = λmax(H). Equality holds

if and only if there is a unit vector v ∈ E1(H) such that v⊤Sv = 0. By Lemma 5.3 the latter condition
is satisfied if dimE1(H) ≥ 2.

The implication (i) ⇒ (iii) follows from Lemma 5.1.
(iii) ⇒ (i). Since (i) is satisfied if dimE1(H) ≥ 2 we may assume that dim E1(H) = 1. Then

by Lemma 5.2, E2(F (0)) = E1(F (0)) = Uv for a unit vector v ∈ E1(H). Furthermore, from (iii) and
Corollary 3.2 it follows that 0 ≤ x∗Ḟ (0)x for all x ∈ E2(F (0)). In other words, we have for all z1, z2 ∈ C,

0 ≤

[
z1 v
z2 v

]∗ [
0 S
S 0

] [
z1 v
z2 v

]
= 2ℜ(z1 z2 v⊤Sv).

This implies v⊤Sv = 0. Thus mhs(H, S) = v∗Hv = φ(0).
Lemma 5.5. Suppose the function R ∋ t 7→ φ(t) has a local extremum at t0 6= 0. Then there is a unit

vector v ∈ Cn satisfying v∗Hv = φ(t0) and v⊤Sv = 0. Hence, φ(t0) ≤ mhs(H, S).
Proof. If the assumption of the Lemma holds then by Proposition 3.3 there is a nonzero v0 ∈ C

2n,
such that

F (t0) v0 = φ(t0) v0, (5.3)

v∗0 Ḟ (t0)v0 = 0. (5.4)
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Let

H0 := H − φ(t0) In, v0 =

[
x
y

]
, x, y ∈ C

n.

Then (5.3) is equivalent to the equations

H0x = −t0Sy, H0y = −t0 Sx, (5.5)

which imply

x∗H0x = −t0 x⊤Sy = y∗H0y

x∗H0y = −t0 x⊤Sx = −t0 y⊤Sy.
(5.6)

Since t0 6= 0 it follows that

x⊤Sy∈R, (5.7)

y⊤Sy = x⊤Sx. (5.8)

We have that v∗0Ḟ (t0)v0 = 2ℜ(x⊤S y). Thus, (5.4) and (5.7) yield

x⊤Sy = 0. (5.9)

Now let

β :=

{
1 if xT Sx = 0,

i xT Sx
|xT Sx| otherwise.

Then we have

(x ± βy)⊤S(x ± βy) = xT Sx + β2y⊤Sy + 2βx⊤Sy

= x⊤Sx + β2x⊤Sx︸ ︷︷ ︸
=−xT Sx

+2β x⊤Sy︸ ︷︷ ︸
=0

(using (5.8) and (5.9))

= 0,

and

(x ± βy)∗H0(x ± βy) = x∗H0x + |β|2y∗H0y ± 2ℜ(x∗H0y β)

= −t0 ( (1 + |β|2) x⊤Sy︸ ︷︷ ︸
=0

±2ℜ(x⊤Sxβ)︸ ︷︷ ︸
=0

) (using (5.6) and (5.9))

= 0.

At least one of the vectors x ± β y is nonzero and can therefore be divided by its norm. The resulting
vector v ∈ C

n has the required properties.
Lemma 5.6. The function R ∋ t 7→ φ(t) satisfies φ(t) = φ(−t) for all t ∈ R. If rank(S) ≥ 2 then φ

attains its minimum in the interval [0, t1], where t1 = 2‖H‖/σ2(S).

Proof. Let T =

[
−In 0
0 In

]
. Then F (−t) = T F (t) T−1. Thus φ(t) = φ(−t). Next, we give a lower

bound for φ(t).

The eigenvalues of

[
0 t S

t S 0

]
=

[
0 t S∗

t S 0

]
are the singular values of S and their negatives. In

particular,

λ2

([
0 t S
tS 0

])
= σ2(tS) = |t|σ2(S).

Furthermore,

φ(0) = λ2

([
H 0
0 H

])
= λmax

([
H 0
0 H

])
= λmax(H) ≤ ‖H‖.
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We conclude that

φ(t) = λ2

([
H tS
tS H

])
≥ λ2

([
0 tS
tS 0

])
− λmax

([
H 0
0 H

])
≥ |t|σ2(S) − ‖H‖.

Thus, if |t| ≥ t1 then φ(t) ≥ φ(0). Consequently φ attains its minimum at some t0 ∈ R with |t0| ≤ t1.
Since φ(t) = φ(−t) there exists a minimizer t0 ≥ 0.

We now summarize the results and finish the proof of Theorem 5.1. By Lemma 5.1,

mhs(H, S) ≤ inf
t∈R

φ(t). (5.10)

By Lemma 5.6 the infimum is attained for some t0 ∈ [0, t1]. If t0 = 0 is a minimizer then equality holds
in (5.10) by Lemma 5.4. If t0 6= 0 is a local extremum then equality hold in (5.10) by Lemma 5.5. This
in particular shows that each local extremum is a global minimum. Thus φ is quasiconvex, and the proof
is complete.

From Theorem 5.1 and the fact that mhs(H, S) = −mhs(−H,−S) one easily obtains the following
result.

Theorem 5.2. Let H ∈ Herm(n), S ∈ Sym(n) with rank(S) ≥ 2, and t1 = 2‖H‖/σ2(S). Then

mhs(H, S) = max
0≤t≤t1

λ2n−1

([
H t S
tS H

])
.

The function to be maximized is quasiconcave.
Remark 5.3. With the same reasoning as in Remark 4.2 one can show that the functions

Herm(n) × Sym(n) ∋ (H, S) 7−→ mhs(H, S),

Herm(n) × Sym(n) ∋ (H, S) 7−→ mhs(H, S)

are continuous at all (H, S) with rank(S) ≥ 2.

6. Self- and skew-adjoint matrices. We now treat µ-values with respect to linear subspaces
which are induced by a scalar product on Cn. Specifically we show that these µ-values are closely related
to the µ-values with respect to Hermitian, symmetric and skew-symmetric perturbations.
For nonsingular Π∈Cn×n we consider the scalar products

〈x, y〉Π = x⋆Πy, x, y∈C
n, ⋆∈{∗,⊤}.

Depending on whether ⋆ = ⊤ or ⋆ = ∗ the scalar product is a bilinear form or a sesquilinear form. We
assume that Π satisfies a symmetry relation of the form

Π⋆ = ǫ0Π, with ǫ0 = −1 or ǫ0 = 1. (6.1)

A matrix ∆∈Cn×n is said to be self-adjoint (skew-adjoint) with respect to the scalar product 〈·, ·〉Π if

〈∆x, y〉Π = ǫ 〈x, ∆y〉Π for all x, y∈C
n, (6.2)

and ǫ = 1 (ǫ = −1). The relation (6.2) is easily seen to be equivalent to

∆⋆Π = ǫΠ∆. (6.3)

We denote the sets of self- and skew-adjoint matrices by

struct(Π, ⋆, ǫ) := { ∆ ∈ C
n×n ; ∆⋆Π = ǫΠ∆ }.

The relation (6.1) implies that (6.3) is equivalent to

(Π∆)⋆ = ǫ0 ǫΠ∆. (6.4)

We thus have the lemma below.
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Lemma 6.1. Let Π, ∆ ∈ Cn×n. Suppose Π⋆ = ǫ0Π with ǫ0 = −1 or ǫ0 = 1. Then the following
equivalences hold.

∆∈struct(Π, ⋆, ǫ) ⇔





Π∆∈Herm(n) if ǫ0ǫ = 1, ⋆ = ∗,

Π∆∈Sym(n) if ǫ0ǫ = 1, ⋆ = ⊤,

Π∆∈Skew(n) if ǫ0ǫ = −1, ⋆ = ⊤,

±i Π∆∈Herm(n) if ǫ0ǫ = −1, ⋆ = ∗.

In many applications Π is unitary. The most common examples are Π ∈ {diag(Ik,−In−k), En, Jn},
where

Jn :=

[
0 In

−In 0

]
∈ C

2n×2n, En :=




1

. .
.

1


 ∈ C

n×n. (6.5)

For unitary Π the µ-values of the associated self- and skew-adjoint classes can be expressed in terms of
the µ-values for Herm(n), Sym(n) and Skew(n):

Corollary 6.1. Suppose Π∈Cn×n is unitary and satisfies Π⋆ = ǫ0Π with ǫ0 = −1 or ǫ0 = 1. Let
struct = struct(Π, ⋆, ǫ). Then for any M ∈Cn×n,

µstruct(M) =





µHerm(MΠ∗) if ǫ0ǫ = 1, ⋆ = ∗,

µSym(MΠ∗) if ǫ0ǫ = 1, ⋆ = ⊤,

µSkew(MΠ∗) if ǫ0ǫ = −1, ⋆ = ⊤,

µHerm(±i MΠ∗) if ǫ0ǫ = −1, ⋆ = ∗,

(6.6)

and

µ̃struct(M) =





µ̃Herm(ΠM) if ǫ0ǫ = 1, ⋆ = ∗,

µ̃Sym(ΠM) if ǫ0ǫ = 1, ⋆ = ⊤,

µ̃Skew(ΠM) if ǫ0ǫ = −1, ⋆ = ⊤,

µ̃Herm(±i ΠM) if ǫ0ǫ = −1, ⋆ = ∗.

(6.7)

Proof. Since Π is unitary, we have

µstruct(M) = ( inf{ ‖∆‖ ; ∆∈struct, 1 ∈ σ(∆ M) } )−1

= ( inf{ ‖Π∆‖ ; ∆∈struct, 1 ∈ σ((Π∆) (MΠ∗)) } )−1, (6.8)

µ̃struct(M) = inf{ ‖∆‖ ; ∆∈struct, det(M − ∆) = 0 }

= inf{ ‖Π∆‖ ; ∆∈struct, det(ΠM − Π∆) = 0 }. (6.9)

Thus, the first three identities in (6.6) and (6.7) are consequences of the first three equivalences in Lemma
6.1. On replacing in (6.8) and (6.9) Π by ±i Π one obtains the fourth identity in (6.6) and (6.7) from the
fourth equivalence in Lemma 6.1.

7. Application: Spectral value sets for Hamiltonian matrices. A matrix which is skew-
adjoint with respect to the sesquilinear form induced by Jn is called Hamiltonian. Let

Ham(n) := {∆ ∈ C
2n×2n ; ∆∗Jn = −Jn∆ }

denote the set of complex Hamiltonian matrices. Each H ∈ Ham(n) has block structure

H =

[
A C
B −A∗

]
with A ∈ C

n×n and B, C ∈ Herm(n).
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Fig. 7.1. The sets σHam(Hγ ; 1) (upper row) and σ
Cn×n (Hγ ; 1) (lower row).

The spectral value sets of H with respect to unstructured perturbations are by (1.3) and (1.11),

σCn×n(H; δ) =
⋃

∆∈Cn×n, ‖∆‖<δ

σ(H + ∆) = {s ∈ C; σmin(s In − H) < δ }, δ > 0.

The spectral value sets with respect to Hamiltonian perturbations are

σHam(H; δ) =
⋃

∆∈Ham(n), ‖∆‖<δ

σ(H + ∆) = {s ∈ C; f(s) < δ }, δ > 0, (7.1)

where

f : C → R, f(s) := µ̃Ham(s In − H). (7.2)

By Corollary 6.1 we have f(s) = µ̃Herm(Φ(s)), where Φ(s) = Jn(sIn − H) =

[
−B sIn + A∗

−sIn + A C

]
.

Since Φ(s)−Φ(s)∗

2i
= −i (ℜs) Jn and Φ(s)∗Φ(s) = (s In − H)∗(s In − H) we obtain from Corollary 2.3 and

Theorem 4.1,

f(s) =

√
mh( Φ(s)∗Φ(s), Φ(s)−Φ(s)∗

2i
)

=
√

mh( (s In − H)∗(s In − H), −i (ℜs) Jn )

=





√
mh((s In − H)∗(s In − H), 0) if s ∈ iR,

√
mh((s In − H)∗(s In − H), i Jn) otherwise,

=





σmin(s In − H) if s ∈ iR,
√

max
t∈R

λmin ((s In − H)∗(s In − H) + t i Jn) otherwise.
(7.3)
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Furthermore, by (4.2) the maximum in (7.3) is attained for some t ∈ R satisfying

|t| ≤ σmax(s In − H)2 − σmin(s In − H)2.

Remark 7.1. Since f(s) = σmin(s In − H) for s ∈ iR, the structured and the unstructured spectral
value sets coincide on the imaginary axis. Precisely, iR ∩ σHam(H; δ) = iR ∩ σCn×n(H; δ).

Proposition 7.2. Let H ∈ Ham(n), and consider the function f defined in (7.2).
(i) The restriction of f to the set C\ iR is continuous. Hence, for each δ > 0 the set σHam(H; δ)\ iR

is an open subset of C.
(ii) Let s ∈ C \ iR. Then f(s) = σmin(s In − H) iff there exists a right singular vector v 6= 0 to

σmin(s In − H) satisfying v∗Jnv = 0.
(iii) Let s ∈ iR be an eigenvalue of H. Let E = { v ∈ C

n; Hv = s v} be the associated eigenspace,
and let D(s, ǫ) = { z ∈ C; |s − z| < ǫ } denote the open disk of radius ǫ > 0 about s. Then the
following assertions are equivalent.
(a) The function f is discontinuous at s.
(b) We have v∗Jnv 6= 0 for all v ∈ E \ {0}.
(c) There exist ǫ > 0 and δ > 0 sucht that σH am(H; δ) ∩ D(s, ǫ) ⊂ iR.

Proof. From Remark 4.2 we obtain that the function

g : C → R, g(s) =
√

mh((s In − H)∗(s In − H), i Jn)

is continuous. By definition of mh we have for all s ∈ C that g(s) ≤ σmin(s In − H). Equality holds iff
there exists a right singular vector v 6= 0 to the singular value σmin(s In − H) such that v∗Jnv = 0. If s
is an eigenvalue of H then the singular vectors to σmin(s In − H) = 0 are the eigenvectors belonging to
s. Hence, all statements of the proposition follow from (7.1) and the fact that f(s) = g(s) for s 6∈ iR and
f(s) = σmin(s In − H) for s ∈ iR.

The upper row in Figure 7.1 shows the spectral value sets σHam(Hγ ; 1) for the Hamiltonian matrices

Hγ =

[
0 γ−1 C

γ B 0

]
, B = diag(1, 6,−6), C = diag(1, 6,−6), γ ∈ {1, 1.3, 5, 6}.

The lower row in the figure shows the sets σCn×n(Hγ ; 1) for comparison. The crosses mark the eigenvalues
of Hγ .
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