
Senario tree approximation and risk aversionstrategies for stohasti optimization ofeletriity prodution and tradingAndreas Eihhorn1, Holger Heitsh2, and Werner R�omish31 Humboldt University, Department of Mathematis, 10099 Berlin, Germany;eihhorn�math.hu-berlin.de, http://www.math.hu-berlin.de/~eihhorn2 Humboldt University, Department of Mathematis, 10099 Berlin, Germany;heitsh�math.hu-berlin.de, http://www.math.hu-berlin.de/~heitsh3 Humboldt University, Department of Mathematis, 10099 Berlin, Germany;romish�math.hu-berlin.de, http://www.math.hu-berlin.de/~romish1 IntrodutionThe deregulation of energy markets has led to several new hallenges for ele-tri power utilities. Eletri power has to be generated in a ompetitive en-vironment and, in addition, oordinated with several trading ativities. Ele-triity portfolios for spot and derivative markets beome important, and theeletrial load as well as eletriity pries beome inreasingly unpreditable.Hene, the number of unertainty soures and the �nanial risk for eletriutilities have inreased. These fats initiated the development of stohastioptimization models for produing and trading eletriity. We mention, forexample, stohasti hydro-eletri and trading models [13, 32℄ and stohastihydro-thermal prodution and trading models [12, 18, 19, 28, 37, 38, 39℄. Foran overview on stohasti programming models in energy we refer to [40℄.Typial stohasti optimization models for produing and trading eletri-ity, however, are foused on (expeted) pro�t maximization while risk man-agement is onsidered as an extra task. Power utilities often separate theplanning of their hydro-thermal eletriity prodution versus a preliminaryand simpli�ed trading model from the risk management. However, alterna-tively, risk management may be integrated into the (hydro-thermal) powerprodution and trading planning by maximizing expeted pro�t and mini-mizing (or bounding) a ertain risk funtional simultaneously [3, 9, 26℄. Suhintegrated risk management strategies promise additional overall eÆieny forpower utilities.Mathematial modeling for integrated risk management of an eletriityproduing and trading utility leads to multi-stage stohasti programs withrisk objetives or risk onstraints. In the present paper, we disuss two basi



2 Andreas Eihhorn, Holger Heitsh, and Werner R�omishaspets of implementing suh models: (i) the approximate representation ofthe underlying probability distribution by a �nite disrete distribution, i.e.,by a �nite number of senarios with their probabilities, and (ii) modeling andminimization of risk.The �rst is typially an indispensable �rst step towards a solution of astohasti optimization model. On the other hand, this is a highly sensitiveonern, in partiular, if dynami deision strutures are involved (multi-stage stohasti programming [36℄). Then, the senarios of the approximatedistribution must exhibit tree struture. Moreover, it is of interest to getby with a moderate number of senarios to have the resulting problemtratable. We refer to the overview [6℄ and to several di�erent approahes[4, 5, 22, 20, 25, 27, 31℄ for senario tree generation. In setion 4 we willpresent respetive approximation shemes relying on quantization or MonteCarlo sampling and senario redution. This approah is based on suitablestability results to ensure that the obtained approximated problem are indeedrelated to the original (in�nite dimensional) problem. Therefore, these stabil-ity results will be presented in setion 3. They involve distanes of probabilitydistributions and, for the multi-stage ase, a �ltration distane that evaluatesthe information inrease over time.The seond topi requires the seletion of appropriate risk funtionals thatallow to quantify risk and preserve tratability of the optimization model.We argue that polyhedral risk funtionals satisfy both demands. These aregiven as (the optimal values of) ertain simple linear stohasti programs.Well-known risk funtionals suh as AVaR (or CVaR) and expeted polyhe-dral utility belong to this lass and, moreover, multi-period risk funtionalsfor multi-stage stohasti programs are suggested. For stohasti programsinorporating polyhedral risk funtionals it has been shown that numerialtratability as well as stability results known for lassial (non-risk-averse)stohasti programs remain valid. In partiular, the same senario tree ap-proximation methods an be used.In a ase study, we present illustrative numerial results from an eletriityportfolio optimization model for a muniipal power utility. In partiular, it isshown that the use of di�erent risk objetives leads to di�erent risk aversionstrategies by trading at derivative markets. They require less than additional1% of the optimal expeted revenue.2 Mathematial frameworkLet (
;F ;P) be a probability spae and let a number T 2 N of timestepsbe given. We onsider a multivariate stohasti proess � = (�1; :::; �T ) where�t 2 Lr(
;F ;P;Rd) with some d 2 N and r 2 [1;1℄, i.e., eah omponent of �has moments of order r. For abbreviation we set �t := (�1; :::; �t). We onsidera linear multi-stage stohasti program of the form



Senario trees and risk aversion strategies for stohasti optimization 3v(�) = minx1;:::;xT 8>><>>:E " TX�=1hbt(�t); xti# ��������xt 2 Lr0(
; �(�t);P;Rmt );xt 2 Xt a.s.;At;0xt +At;1(�t)xt�1 = ht(�t) a.s.(t = 1; :::; T ) 9>>=>>;(1)with some numbers mt; nt 2 N and r0 2 [1;1℄, polyhedral sets Xt � Rmt ,tehnology matries At;01 2 Rnt�mt�� , reourse matries At;1 2 Rnt�mt�� ,and vetors ht 2 Rnt and bt 2 Rmt . Here, At;1, ht, and bt may depend on �t(t = 1; :::; T ) aÆnely linearly. The random vetors xt represent the deisionsfor time t = 1; :::; T . They have to be �(�t)-measurable, respetively, i.e., theymay only depend on the outomes of � until time t (nonantiipativity). Thevetors bt an be interpreted as ost fators.Note that in (1) optimality of the stohasti osts hbt(�t); xti is determinedin terms of expetation, i.e., the optimization is risk-neutral. In setion 5 and6 we will onsider the risk-averse alternativev(�) = minx1;:::;xT 8>>>><>>>>:  � �(zt1 ; :::; ztJ )�(1� ) � E [zT ℄ ����������xt 2 Lr0(
; �(�t);P;Rmt );xt 2 Xt a.s.;At;0xt +At;1(�t)xt�1 = ht(�t) a.s.zt := �Pt�=1hb� (�� ); x� i(t = 1; :::; T ) 9>>>>=>>>>; (2)where the objetive is supplemented with a (multi-period) risk funtional �(risk measure). The number  2 [0; 1℄ is a �xed weighting parameter. Therandom values zt represent the aumulated revenues at eah time t. Clearly, itholds that zt 2 Lp(
; �(�t);P) with p 2 [1;1℄ given by the relation 1p = 1r+ 1r0 .The risk funtional � is applied to a subset of J timesteps 1 < t1 < t2 < ::: <tJ = T . Note that, sine risk funtionals are nonlinear by nature, problem(2) is no longer linear. However, it will be onentrated on the employmentof risk funtionals from the lass of polyhedral risk funtionals whih exhibita favorable sort of nonlinearity; f. setion 5.3 Stability of multi-stage problemsStudying stability of the multi-stage stohasti programs (1) onsists in re-garding it as an optimization problems in the in�nite dimensional linear spae�Tt=1Lr0(
;F ;P;Rmt ). This is a Banah spae when endowed with the normkxkr0 :=  TXt=1 E�jxtjr0�! 1r0 for r0 2 [1;1) and kxk1 := maxt=1;:::;T ess sup jxtj;where j � j denotes some norm on the relevant Eulidean spaes. Analogously,� an be understood as an element of the Banah spae �Tt=1Lr(
;F ;P;Rd)with norm k�kr. For the integrability numbers r and r0 it will be imposedbelow that



4 Andreas Eihhorn, Holger Heitsh, and Werner R�omishr := 8<:2 [1;1) ; if only osts or only right-hand sides are random2 ; if only osts and right-hand sides are randomT ; if all tehnology matries are randomr0 := 8<: rr�1 ; if only osts are randomr ; if right-hand sides are random but tehnology matries aren't1 ; if all tehnology matries are random (3)with regard to problem (1). The hoie of r and the de�nition of r0 are moti-vated by the knowledge on existing moments of the input proess, by havingthe stohasti program well de�ned (in partiular, suh that hbt(�t); xti is in-tegrable for every deision x and t = 1; : : : ; T ) and by satisfying the onditions(A2) and (A3) (see below).Sine r0 depends on r and our assumptions will depend on both r andr0, we will add some omments on the hoie of r and its interplay withthe struture of the underlying stohasti programming model. To have thestohasti program well de�ned, the existene of ertain moments of � hasto be required. This fat is well known for the two-stage situation (see, e.g.,[36, Chapter 2℄). If either right-hand sides or osts in a multi-stage model(1) are random, it is suÆient to require r � 1. The exibility in ase thatthe stohasti proess � has moments of order r > 1 may be used to hooser0 as small as possible in order to weaken the ondition (A3) (see below) onthe feasible set. If the linear stohasti program is fully random (i.e., osts,right-hand sides and tehnology matries are random), one needs r � T tohave the model well de�ned and no exibility on r0 remains.3.1 AssumptionsNext we introdue some notation. Let F denote the objetive funtion de�nedon Lr(
;F ;P;Rs) � Lr0(
;F ;P;Rm) ! �R by F (�; x) := E [PTt=1hbt(�t); xti℄andX (�) := fx 2 �Tt=1Lr0(
; �(�t);P;Rmt ) jx1 2 X1; xt 2 Xt(xt�1; �t) (t � 1)gthe set of feasible elements of (1) withXt(xt�1; �t) := fxt 2 Rmt : xt 2 Xt; At;0xt +At;1(�t)xt�1 = ht(�t)gdenoting the t-th feasibility set for every t = 2; : : : ; T . That allows to rewritethe stohasti program (1) in the formv(�) = inffF (�; x) : x 2 X (�)g: (4)and, for any " � 0, letS"(�) := fx 2 X (�) : F (�; x) � v(�) + "gdenote the "-approximate solution set (level-set) of the stohasti program (4).Sine, for " = 0, the set S"(�) oinides with the set solutions to (4), we willalso use the notation S(�) := S0(�). The following onditions will be imposedon (4):



Senario trees and risk aversion strategies for stohasti optimization 5(A1) � 2 Lr(
;F ;P;Rs), i.e., R
 j�(!)jrdP(!) < 1, where r and r0 arehosen aording to (3).(A2) There exists a Æ > 0 suh that for any ~� 2 Lr(
;F ;P;Rs) satisfyingk~���kr � Æ, any t = 2; : : : ; T and any x1 2 X1(~�1), x� 2 X� (x��1; ~�� ), � =2; : : : ; t � 1, there exists an �(~�t)-measurable xt 2 Xt(xt�1; ~�t) (relativelyomplete reourse loally around �).(A3) The optimal values v(~�) of (4) with input ~� are �nite for all ~� in aneighborhood of � and the objetive funtion F is level-bounded loallyuniformly at �, i.e., for some "0 > 0 there exists a Æ > 0 and a boundedsubset B of Lr0(
;F ;P;Rm) suh that S"0(~�) is ontained in B for all~� 2 Lr(
;F ;P;Rs) with k~� � �kr � Æ.For any ~� 2 Lr(
;F ;P;Rs) with k~� � �kr � Æ, ondition (A2) implies theexistene of some feasible ~x in X (~�) and (3) implies the �niteness of theobjetive F (~�; �) at any feasible ~x. A suÆient ondition for (A2) to hold is theomplete reourse ondition on every reourse matrix At;0, i.e., At;0Xt = Rnt ,t = 1; : : : ; T . The loally uniform level-boundedness of the objetive funtionF is quite standard in perturbation results for optimization problems (see, e.g.,[35, Theorem 1.17℄). The �niteness ondition on the optimal value v(�) is notimplied by the level-boundedness of F for all relevant pairs (r; r0). In general,the onditions (A2) and (A3) get weaker for inreasing r and dereasing r0,respetively.3.2 Optimal valuesThe �rst stability result for multi-stage stohasti programs represents a quan-titative ontinuity property of optimal values. Its main observation is thatmulti-stage models behave stable at some stohasti input proess if both itsprobability distribution and its �ltration are approximated with respet tothe Lr-distane and the �ltration distaneDf(�; ~�) := sup">0 infx2S"(�)~x2S"(~�) T�1Xt=2 maxnkxt � E [xt j�(~�t)℄kr0 ; k~xt � E [~xt j�(�t)℄kr0o ;(5)where E [ � j�(�t )℄ and E [ � j�(~�t )℄, t = 1; : : : ; T , the orresponding onditionalexpetations, respetively. Note that for the supremum in (5) only small "'sare relevant and that the approximate solution sets are bounded for " 2 (0; "0℄aording to (A3).The following stability result for optimal values of program (4) is takenfrom [24, Theorem 2.1℄.Theorem 1. Let (A1), (A2) and (A3) be satis�ed and the setsX1 be nonemptyand bounded. Then there exist positive onstants L and Æ suh that the esti-mate jv(�)� v(~�)j � L�k� � ~�kr +Df(�; ~�)� (6)



6 Andreas Eihhorn, Holger Heitsh, and Werner R�omishholds for all random elements ~� 2 Lr(
;F ;P;Rs ) with k~� � �kr � Æ.We note that the onstant L depends on k�kr in general.3.3 Approximate SolutionsTo prove a stability result for (approximate) solutions of (4) a stronger versionof the �ltration distane Df is needed, namely,D�f (�; ~�) := supx2B1 TXt=2 kE [xt j�(�t)℄� E [xt j�(~�)t℄kr0 ; (7)where B1 := fx : 
 ! Rm : x is measurable; jx(!)j � 1 for all ! 2 
g.Notie that the sum is extended by the additional summand for t = T and thatthe former in�mum is replaed by a supremum with respet to a suÆientlylarge bounded set. If in addition to assumption (A3) we require that for some"0 > 0 there exist onstants Æ > 0 and C > 0 suh that j~xj � C for P-almostevery ! 2 
 and all all ~x 2 S"0(~�) with ~� 2 Lr(
;F ;P;Rs) and k~�� �kr � Æ,we have Df(�; ~�) � C D�f (�; ~�): (8)Sometimes it is suÆient to onsider the unit ball in Lr0 rather than B (f.[22, 23℄). However, in ontrast to Df the distane D�f always satis�es thetriangle inequality.Now, we state the seond stability result that represents a Lipshitz prop-erty of approximate solution sets ([23, Theorem 2.4℄).Theorem 2. Let (A1), (A2) and (A3) be satis�ed with r0 2 [1;1) and the setX1 be nonempty and bounded. Assume that the solution sets S(�) and S(~�)are nonempty for some ~� 2 Lr(
;F ;P;Rs) with k� � ~�kr � Æ (with Æ > 0from (A3)). Then there exist �L > 0 and �" > 0 suh thatdl1 �S"(�); S"(~�)� � �L" �k� � ~�kr +D�f (�; ~�)� (9)holds for any " 2 (0; �"), where the funtional dl1 denotes the Pompeiu-Hausdor� distane.4 Constrution of senario treesWe aim at generating a senario tree �tr suh that the distanesk� � �trkr and D�f (�; �tr) (10)are small and, hene, the optimal values v(�) and v(�tr), and the approximatesolution sets S"(�) and S"(�tr) are lose to eah other aording to Theorems1 and 2, respetively.



Senario trees and risk aversion strategies for stohasti optimization 74.1 ApproahThe idea is to start with a good initial approximation �̂ of � having a �nitenumber of senarios �i = (�i1; : : : ; �iT ) 2 RTd with probabilities pi > 0, i =1; : : : ; N , and ommon root, i.e., �11 = : : : = �N1 =: ��1 . These senarios mightbe obtained by quantization tehniques [16℄ or by sampling or resamplingtehniques based on parametri or nonparametri stohasti models of �.In the following we assume thatk� � �̂kr + D�f (�; �̂) � " (11)holds for some given (initial) tolerane " > 0. For example, ondition (11) maybe satis�ed for D�f given by (7) and for any tolerane " > 0 if �̂ is obtained bysampling from a �nite set with suÆiently large sample size (see [22, Example5.3℄).Next we desribe an algorithmi proedure that starts from �̂ and ends upwith a senario tree proess �tr having the same root node ��1 , less nodes than�̂ and allowing for onstrutive estimates of k�̂ � �trkr .The idea of the algorithm onsists in forming lusters of senarios basedon senario redution on the time horizon f1; : : : ; tg reursively for inreasingtime t. To this end, the Lr-seminorm k � kr;t on Lr(
;F ;P;Rs) (with s = Td)given by k�kr;t := �E�j�jrt �� 1r (12)is used at step t, where j � jt is a seminorm on Rs whih, for eah � =(�1; : : : ; �T ) 2 Rs , is given by j�jt := j(�1; : : : ; �t; 0; : : : ; 0)j.The senario tree onstrution algorithm determines reursively stohastiproesses �̂t having senarios �̂t;i endowed with probabilities pi, i 2 I :=f1; : : : ; Ng, and, in addition, partitions Ct = fC1t ; : : : ; CKtt g of the index setI , i.e., Ckt \ Ck0t = ; (k 6= k0) and Kt[k=1Ckt = I: (13)The index sets Ckt 2 Ct, k = 1; : : : ;Kt, represent lusters of senarios (seeFigure 1 for an illustration). To de�ne these lusters we aim to aggregatesimilar senarios at eah time-period.The initialization of the senario tree generation proedure onsists insetting �̂1 := �̂, i.e., �̂1;i = �i, i 2 I , and C1 = fIg. At step t (with t > 1) weonsider eah luster Ckt�1, i.e., eah senario subset f�̂t�1;igi2Ckt�1 , separatelyand delete senarios f�̂t�1;jgj2Jkt by the forward seletion algorithm of [21℄suh that �PKt�1k=1 Pj2Jkt pj mini2Ikt ���̂t�1;i � �̂t�1;j��rt� 1ris bounded from above by some presribed tolerane. Here, the index set Iktof remaining senarios is given by
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1 2 3 4t t t t= = = =Fig. 1. Illustration of the tree onstrution by reursive senario lusteringIkt = Ckt�1 n Jkt :As in the general senario redution proedure in [21℄, the index set Jkt issubdivided into index sets Jkt;i, i 2 Ikt suh thatJkt = Si2Ikt Jkt;i and Jkt;i := fj 2 Jkt : i = ikt (j)gwith ikt (j) 2 argmini2Ikt j�̂t�1;i � �̂t�1;j jrt :Next we de�ne a mapping �t : I ! I suh that�t(j) = � ikt (j) ; j 2 Jkt ; k = 1; : : : ;Kt�1j ; otherwise: (14)Then the senarios of the stohasti proess �̂t = f�̂t�gT�=1 are de�ned by�̂t;i� = � ��� (i)� ; � � t�i� ; otherwise (15)with probabilities pi for eah i 2 I . The proesses �̂t are illustrated in Figure2, where �̂t orresponds to the t-th piture for t = 1; : : : ; T . The partition Ctat t is de�ned by Ct = f��1t (i) : i 2 Ikt ; k = 1; : : : ;Kt�1g; (16)i.e., eah element of the index sets Ikt de�nes a new luster and the newpartition Ct is a re�nement of the former partition Ct�1.The senarios and their probabilities of the �nal senario tree �tr := �̂Tare given by the struture of the �nal partition CT , i.e., they have the form�ktr = ���1 ; ��2(i)2 ; : : : ; ��t(i)t ; : : : ; ��T (i)T � and �kT = Xj2CkT pj if i 2 CkT (17)for eah k = 1; : : : ;KT . The index set It of realizations of �trt is given by



Senario trees and risk aversion strategies for stohasti optimization 9It := Kt�1[k=1 Ikt :For eah t 2 f1; : : : ; Tg and eah i 2 I there exists an unique index kt(i) 2f1; : : : ;Ktg suh that i 2 Ckt(i)t . Moreover, we have Ckt(i)t = fig[ Jkt�1(i)t;i foreah i 2 It. The probability of the i-th realization of �trt is �it =Pj2Ckt(i)t pj .The branhing degree of senario i 2 It�1 oinides with the ardinality ofIkt(i)t .The next result quanti�es the relative error of the t-th onstrution stepand is proved in [22, Theorem 3.4℄.Theorem 3. Let the stohasti proess �̂ with �xed initial node ��1 , senarios�i and probabilities pi, i = 1; : : : ; N , be given. Let �tr be the stohasti proesswith senarios �ktr = (��1 ; ��2(i)2 ; : : : ; ��t(i)t ; : : : ; ��T (i)T ) and probabilities �kT ifi 2 CkT , k = 1; : : : ;KT . Then we have�̂ � �trr � TXt=20�Kt�1Xk=1 Xj2Jkt pj mini2Ikt j�it � �jt jr1A 1r : (18)4.2 Flexible algorithmSummarizing the above ideas yields the following senario tree onstrutionalgorithm that allows to ontrol the tree struture as well as the approximationtolerane with respet to the Lr-distane.Algorithm 1 (forward tree onstrution)Let N senarios �i with probabilities pi, i = 1; : : : ; N , �xed root ��1 2 Rd andprobability distribution P , r � 1 and toleranes "r, "t, t = 2; : : : ; T , be givensuh that TPt=2 "t � "r.Step 1: Set �̂1 := �̂ and C1 = ff1; : : : ; Ngg.Step t: Let Ct�1 = fC1t�1; : : : ; CKt�1t�1 g. Determine disjoint index sets Ikt andJkt suh that Ikt [ Jkt = Ckt�1, the mapping �t(�) aording to (14) and astohasti proess �̂t having N senarios �̂t;i with probabilities pi aordingto (15) and suh that�̂t � �̂t�1rr;t = Kt�1Xk=1 Xj2Jkt pj mini2Ikt j�it � �jt jr � "rt :Set Ct = f��1t (i) : i 2 Ikt ; k = 1 : : : ;Kt�1g.
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5Fig. 2. Stepwise senario tree onstrution for an exampleStep T+1: Let CT = fC1T ; : : : ; CKTT g. Construt a stohasti proess �tr havingKT senarios �ktr suh that �ktr;t := ��t(i)t , t = 1; : : : ; T , if i 2 CkT withprobabilities �kT aording to (17), k = 1; : : : ;KT .While the �rst piture in Figure 2 illustrates the proess �̂, the t-th pitureorresponds to the situation after Step t, t = 2; 3; 4; 5 of the algorithm. The�nal piture orresponds to Step 6 and illustrates the �nal senario tree �tr.The proof of the following orollary is also given in [22℄.Corollary 1. Let a stohasti proess �̂ with �xed initial node ��1 , senarios �iand probabilities pi, i = 1; : : : ; N , be given. If �tr is onstruted by Algorithm1, we have k�̂ � �trkr � TXt=2 "t � "r:The next results states that the distane jv(�)� v(�tr)j of optimal values getssmall if the initial tolerane " in (11) as well as "r are small (f. [23, Theorem3.4℄.



Senario trees and risk aversion strategies for stohasti optimization 11Theorem 4. Let (A1), (A2) and (A3) be satis�ed with r0 2 [1;1) and the setX1 be nonempty and bounded. Let L > 0, Æ > 0 and C > 0 be the onstantsappearing in Theorem 2 and (8), respetively. If ("(n)r ) is a sequene tending to0 suh that the orresponding toleranes "(n)t in Algorithm 1 are noninreasingfor all t = 2; : : : ; T , the orresponding sequene (�(n)tr ) has the propertylim supn!1 jv(�)� v(�(n)tr )j � Lmaxf1; Cg"; (19)where " > 0 is the initial tolerane in (11).5 Polyhedral risk funtionalsThe results and methods from setion 3 and setion 4 rest upon the linearityof problem (1) to some extent. Hene, in general they are not valid for the risk-averse problem (2) inorporating a general (nonlinear) risk funtionals � suhas, e.g., Value-at-Risk (� = VaR�) or standard deviation. Also algorithmiapproahes for (1) might be destroyed by the inorporation of general riskfuntionals. However, in this setion we onsider the risk-averse problem (2)with � being hosen as a so-alled polyhedral risk funtional. This lass of riskfuntionals has been introdued in [8, 7℄. The key feature of these funtionalsis that they, though being non-linear, do not destroy mathematial struturesof stohasti programs suh as linearity or onvexity.5.1 De�nitionThe reason for the favorable behavior of polyhedral risk funtionals in (2) isobvious from their de�nition: a polyhedral risk funtional � is given by (theoptimal value of) a linear stohasti minimization problem of the form�(z) = inf8>><>>:E 24 JXj=0hj ; yji35 ��������y 2 �Jj=0Lp(
; �(�tj );P;Rkj )yj 2 Yj a.s. (j = 0; :::; J);Pj�=0hwj;� ; yj�� i = ztj a.s. (j = 1; :::; J);Pj�=0 Vj;�yj�� = rj a.s. (j = 0; :::; J) 9>>=>>;(20)for every z = (zt1 ; :::; ztJ ) 2 �Jj=1Lp(
; �(�tj );P) with some p 2 [1;1). Thenumbers kj 2 N0 , dj 2 N0 (j = 0; :::; J), vetors j 2 Rkj , rj 2 Rdj (j =0; :::; J), wj;� 2 Rkj�� (j = 1; :::; J , � = 0; :::; j), matries Vj;� 2 Rdj�kj��(j = 0; :::; J , � = 0; :::; j), and polyhedral ones Yj � Rkj (j = 0; :::; J) haveto be hosen in advane suh that the resulting funtional exhibits suitablerisk funtional properties. Clearly, if de�nition (20) is inserted into (2) with1 = 1, one ends up with the problem1 The hoie  = 1 is not restritive at all sine the so-alled mean-risk objetive � �(zt1 ; :::; ztJ ) � (1 � ) � E [zT ℄ an be expressed as another polyhedral riskfuntional of the form (20); f. [8, 7℄.



12 Andreas Eihhorn, Holger Heitsh, and Werner R�omishinf8>>>>>><>>>>>>:E 24 JXj=0hj ; yji35 ������������x 2 �
Tt=1Lr0(
;At;P;Rmt ); xt 2 Xt a.s. (t � 1);y 2 �Jj=1Lp(
;Atj ;P;Rkj ); yj 2 Yj a.s. (j � 0);At;0xt +At;1(�t)xt�1 = ht(�t) a.s. (t = 2; :::; T );zt = zt(x; �) := �Pt�=1hb� (�� ); x� i (t = 1; :::; T );Pj�=0hwj;� ; yj�� i = ztj a.s. (j = 1; :::; J);Pj�=0 Vj;�yj�� = rj a.s. (j = 0; :::; J)

9>>>>>>=>>>>>>;(21)i.e., the non-linearity of the funtional � is transformed into a problem ofthe form (1) with additional deision variables yj and additional linear on-straints. This fat is not only useful for stability analysis (see below), it is alsoappreiated with regard to algorithmi issues. Note that this transformationis also possible if integer variables are inorporated into (1).Most well-known risk funtionals (e.g., VaR� and standard deviation whihare both not polyhedral) depend on a single random variable z only ratherthan on a �nite sequene zt1 ; :::; ztJ . In the framework of (2) this means J = 1and t1 = T . Several oherene axioms for suh single-period risk funtionalshave been suggested in [1, 14, 30℄ whih are broadly aepted. For medium-and long-term eonomi ativities (suh as the model in setion 6) one maywant to use multi-period risk funtionals (J > 1) that take into aount thetemporal development of pro�ts and losses, e.g., to avoid liquidity problemsat intermediate time-periods. Also for this ase oherene axioms are sug-gested [2, 15, 33℄. In both the one- and the multi-period ase suh axioms givediretions for the hoie of the vetors and matries in (20).5.2 PropertiesBeause the arguments ztj in (20) appear on the right-hand sides of the on-straits, it an be onluded that the funtional � is always onvex [8, 7℄. Hene,the theory of onvex duality an be applied. This yields dual representationsfor � whih an be useful for interpretation and veri�ation of oherene ax-ioms, and for algorithmi approahes, too.Theorem 5. ([8, 33, 7℄) Let � be a polyhedral risk funtional of the form (20)and let the following onditions for Yj , j , wj;� , and Vj;� be satis�ed:� omplete reourse: � Vj;0w0j;0�Yj = Rdj+1 (j = 1; :::; J),� dual feasibility: TJj=0D�;j 6= ; withD�;j := ( (uv; uw) 2 RJ � RP dj :j +PJ�=maxf1;jg uv;�w�;��j +PJ�=j V ��;��juw;� 2 �Y �j ).Then the funtional � is �nite, onvex, and ontinuous on �Jj=1Lp(
; �(�tj );P)and it is representable by



Senario trees and risk aversion strategies for stohasti optimization 13�(z) = sup8>><>>:�E hPJj=1��jztj + h�j ; rji�i ���������j 2 Lp0(
; �(�tj );P);�j 2 Lp0(
; �(�tj );P;Rdj );(E [�j�tj ℄ ; E [�j�tj ℄) 2 D�;j a.s.(j = 0; :::; J) 9>>=>>;with p0 2 (1;1℄ being de�ned by 1=p+ 1=p0 = 1.The above dual representation an be read as follows: the supremum oper-ator aims at making � large where z is small (in ompliane with the respetiveonstraints). Hene, �(z) an be understood as a worst ase weighted expeta-tion of z (possibly biased by h�j ; rji). If � satis�es the oherene axioms from[2℄, then (and only then) the onstraints in the dual representation are suhthat all the � multipliers are probability densities and h�j ; rji is always zero.5.3 Single-period examplesFor J = 1 and t1 = T , i.e., for the single-period situation, polyhedral riskfuntionals an be found in eonomi literature.Example 1. The Conditional or Average Value-at-Risk at level � 2 (0; 1)(CVaR� or AVaR�, f. [34℄ and [14, Chapter 4.4℄) is given byAVaR�(z) := 1�Z �0 VaR��(z)d�� = infy02Rny0 + 1�E h(y0 + z)�io (22)where the representation on the right is due to [34℄. By introduing variablesfor positive and negative parts of y0+z, respetively, AVaR� an be rewrittenin the form (20) with J = 1, d0 = d1 = 0, k0 = 1, k1 = 2, 0 = 1, 1 =�0; 1��, w1;0 = (1;�1), w1;1 = �1, Y0 = R, and Y1 = R2+ . Hene, AVaR� isa polyhedral risk funtional. Moreover, omplete reourse and dual feasibilityare satis�ed and the dual representation of Theorem 5 readsAVaR�(z) = sup��E [�z℄ : � 2 Lp0(
;F ;P); � 2 [0; 1� ℄ a.s.; E [�℄ = 1	where the � multipliers an be interpreted as densities. We note that AVaR�is known to be a onvex risk funtional in the sense of [14℄, a oherent riskfuntional in the sense of [1℄, and it is 1st and 2nd order stohasti dominaneonsistent [30℄.Example 2. Consider expeted utility as a risk funtional, i.e., �u(z) = �E [u(z)℄with some onave and non-dereasing utility funtion u : R ! R. This ap-proah goes bak to goes bak to [29℄. Typially, non-linear utility funtionsu : R ! R are used within this framework. Of ourse, in suh ases �u annotbe represented by a linear stohasti program. However, in ases when thedomain of the outome z an be bounded a priori, it makes sense to onsiderpieewise linear utility funtions u. In this ase, �u is onvex and pieewise



14 Andreas Eihhorn, Holger Heitsh, and Werner R�omishlinear, hene, aording to [35, Example 3.54℄ there exist k 2 N, w 2 Rk , 2 Rk , and v 2 f0; 1gk suh that�u(�) = inf �h; yi ��y 2 Rk ; y � 0 hw; yi = �; hv; yi = 1 	for all � 2 R. For this ase, the expeted utility risk funtional reads�u(z) = inf �E [h; y1i℄ ����y1 2 Lp(
;A;P;Rk ); y1 � 0 a.s.hw; y1i = z a.s.; hv; y1i = 1 a.s. �where [35, Theorem 14.60℄ is used to justify the interhange of in�mum andexpetation. Hene, �u is a polyhedral risk funtional with k0 = d0 = 0,k1 = k, d1 = 1, 1 = , w1;0 = w, V1;0 = v0, and Y1 = Rk1+ . The speial ase ofthe expeted regret (expeted loss), i.e., the ase that �(z) = E [(z � )�℄ withsome target  2 R, is obtained by setting k = 3, w = (; 1;�1), v = (1; 0; 0),and  = (0; 0;�1).5.4 Multi-period examplesFor J > 1, i.e., for the multi-period situation, only few (polyhedral) riskfuntionals are suggested in eonomi literature. However, the framework ofpolyhedral risk funtionals is onstrutive: various multi-period polyhedralrisk funtionals have been proposed in [8, 7, 33℄ that an be understood asmulti-period extentions of AVaR�. They all satisfy the basi risk ohereneaxioms from [2℄, but they di�er with respet to the inorporation of the infor-mation dynamis. We present a seletion of those in the following (keeping theoriginal index numbers). It is assumed that the random variables zt representaumulated revenues as in problem (2).Example 3. The funtional�2(zt1 ; :::; ztJ ) := infy02Rny0 + 1� 1J PJj=1 E h�ztj + y0��io :from [8℄ an be understood as AVaR� applied to a ompound lottery, i.e.,applied to z0 given by z0(!) := z�(!)(!) with � being uniformly distributedon ft1; :::; tJg and independent of zt1 ; :::; ztJ . Clearly, �2 an be representedthrough (20) by introduing (stohasti) variables for the positive and thenegative part of ztj +y0, respetively, for j = 1; :::; J . Hene, it is a polyhedralrisk funtional. It satis�es omplete reourse and dual feasibility. The dualrepresentation aording to Theorem 5 given by�2(z) = sup��E hPJj=1 �jztji ����� 2 �Jj=1Lp(
; �(�tj );P); PJj=1 E [�j ℄ = 1�j 2 [0; 1� ℄ a.s. (j = 1; :::; J); �aims at plaing the available probability mass of � to stages where z =(zt1 ; :::; ztJ ) takes low values.



Senario trees and risk aversion strategies for stohasti optimization 15Example 4. The polyhedral risk funtional �4 from [8℄, though being de�nedvia an in�mum representation of the form (20), is easier to ath by its dualrepresentation aording to Theorem 5 given by�4(z) = sup8<:�E hPJj=1 �jztji ������� 2 �Jj=1Lp(
; �(�tj );P);�j 2 [0; 1� ℄ a.s.; E [�j ℄ = 1J (j = 1; :::; J)�j = E [�j+1 j�(�tj )℄ a.s. (j = 1; :::; J � 1)9=;with z = (zt1 ; :::; ztJ ). Here, the multiplier proess � has to be a martingaleand, hene, all timesteps are weighted equally.Example 5. In [2℄ it was suggested to apply a single-period risk funtionalto the pointwise minimum of z = (zt1 ; :::; ztJ ), i.e., to z0 given by z0(!) :=minfzt1(!); :::; ztJ (!)g. Doing so by using AVaR� yields the funtional�6(z) = infy02R�y0 + 1�E h�y0 +minj=1;:::;J ztj��i�= infy02R �y0 + 1�E [maxf0;�y0 � zt1 ; :::;�y0 � ztJg℄�whih an also be represented in the form (20) by introduing (stohasti)variables yj;2 = maxf0;�y0 � zt1 ; :::;�y0 � ztjg = maxfyj�1;2;�y0 � ztjg forj = 1; :::; J ; f. [7℄. Then, omplete reourse and dual feasibility are satis�edand there is also a dual representation aording to Theorem 5.5.5 StabilityAt the �rst glane it seems as if stability of problem (2) with � being hosenas a polyhedral risk funtional (20) were overed by the results from setion3 due to the reformulation (21). However, a loser look to the latter problemreveals that it is not ompletely of the form (1): the resulting reourse matriesbeome stohasti when the dynami onstraints in (21) are integrated. Hene,Theorem 1 and Theorem 2 are not valid for problem (21) and annot besuitably modi�ed easily.For this reason, stability of (2) is analyzed in [10, 7℄ systematially. Startingwith the �nding of further ontinuity properties of � (stronger than plainontinuity as stated in Theorem 5), a stability theorem for the optimal values(orresponding to Theorem 1) an be proven. However, the �ltration distanethere is even more involved than Df in (5) from Theorem 1.For the justi�ation of the senario tree generation methods in setion 4,it is neessary to estimate these problem dependent objets by problem in-dependent ones as in (8). In order to get a similar estimate for the involved�ltration distane for problem (2), it turns out to be neessary to impose fur-ther tehnial onditions on � (beside omplete reourse and dual feasibility).However, these onditions an be shown to be satis�ed for all known polyhe-dral risk funtionals from [8, 7, 33℄ as long as the integrability number p isset to 1. We onlude that there is a theoretial basis for the senario treeapproximation methods from setion 4 also in the situation of the risk-averseproblem (2) if � is hosen as a suitable polyhedral risk funtional.
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Fig. 3. Shemati diagram for the optimization model omponents6 Case studyIn this �nal setion we apply the theoretial results presented above to a pra-tial model for eletriity portolio optimization. This shall demonstrate theuse of senario trees as well as the e�et of di�erent polyhedral risk funtion-als.6.1 ModelThe model is a mean-risk multi-stage stohasti program of the form (2)onsidering a medium-term time horizon of one year in hourly disretization(T = 8760). It is tailored to the situation of a muniipal power utility servingan eletriity demand and a heat demand for ertain ustomers; see Fig. 3.Future demands as well as future market pries for eletriity are stohastiand some deisions have to made before these values are known exatly. Itis assumed that the power utility is suÆiently small suh that it an beonsidered as a prie-taker, i.e., its deisions do not a�et market pries.Furthermore, it is assumed that the power utility features a ombined heatand power (CHP) prodution plant that an serve the heat demand ompletelybut the eletriity demand only in part. Hene, additional soures of eletriityhave to be used. Eletriity an be obtained from the spot market of a powerexhange (suh as the European Energy Exhange EEX), or by purhasing abilateral supply ontrat from a larger power produer. The latter possibility issuspeted to be more expensive, but relying on the spot market only is knownto be extremely risky. Spot prie risk, however, may be redued (hedged) bymeans of derivative produts. Here, we onsider futures from EEX (Phelix-futures, purely �nanial ontrats).
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 0  1000  2000  3000  4000  5000  6000  7000  8000  9000Fig. 4. Branhing struture of the input senario tree of 40 senarios (T = 8760)The pratial purpose of this model is to evaluate given supply ontratsin omparison with relying on spot and future market only [9, 11℄. In thepresentation here, however, we fous on the qualitative output with respetto the e�et of the di�erent polyhedral risk funtionals from setion 5.The stohasti input proess � = (�1; :::; �T ) is approximated by a senariotree, f. Fig. 4, generated from statistial models (see [11℄) by the methodsfrom setion 4. Eah �t onsists of eletriity demand �et , heat demand �ht ,EEX spot pries �st , as well as base and peak future pries �fbmt and �fpmt (foreah month m = 1; :::; 12). However, to avoid tehnial problems related toarbitrage, the future pries are alulated as fair pries from the spot priesin the senario tree, i.e., the methods from setion 4 are applied only to the�rst three omponents �et , �ht , and �st (t = 1; :::; T ).The deisions at eah time t onsist of CHP prodution amounts, EEXspot market volumes (eletriity may be bought or sold), future stok, andontrat exibility (if there is any). The CHP prodution is subjet to sev-eral tehnial (dynami) onstraints whih are slightly simpli�ed suh that nointeger variables ome into play, i.e., everything is linear. There are no par-tiular onstraints for spot and future trading, but the priing rules for EEXfutures (initial margin, variation margin, transation osts) make it neessaryto introdue some auxiliary variables and onstraints. Finally, there are thedemand satisfation onstraints requiring that eletriity demand and heatdemand are always met. The overall model (inorporating a polyhedral riskfuntional) is linear, i.e., it is of the form (2) resp. (21). Of ourse, the latterformulation is used for implementation.
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Fig. 6. Optimal ash values zt (wealth) over time (t = 1; :::; T ), high fuel osts
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Senario trees and risk aversion strategies for stohasti optimization 216.2 Simulations resultsTogether with a senario tree (f. Fig. 4) the overall optimization model isa (large-sale) linear program. For the simulation results presented here, weused a senario tree of 40 senarios and approx. 150000 nodes. The deisionvariables are de�ned on the tree. For solving the linear program the ILOGCPLEX 9.1 software was employed. We restrit the presentation here to thease that no additional delivery ontrats are involved (beside EEX futures).Then, the di�erent e�ets of the polyhedral risk funtionals from setion 5an be observed best.In Fig. 5 the aumulated revenues zt over time for eah senario, i.e., thetemporal developments of the ompany's wealth, are shown after optimiza-tion with di�erent polyhedral risk funtionals. Of ourse, the tree strutureof the input senario tree an also be found in these outputs sine the (op-timal) revenues are stohasti in the same manner. Optimizing the expetedoverall revenue E [zT ℄ only (without any risk funtional) yields large dispersion(spread) at time T (f. top of Fig. 5). The inorporation of the (single-period)AVaR applied to zT redues this spread onsiderably, but yields high spreadand very low values for zt at earlier time-periods t < T . Clearly, this behavioris not aeptable for a (small) power utility. The multi-period polyhedral riskfuntionals from setion 5 are e�etive suh that dispersion is somehow betterdistributed over all time-periods.The graphs in Fig. 5 suggest that the e�et of �2, �4, and �6 is more orless the same. However, Fig. 6 reveals that there are further di�erenes amongthese multi-period risk funtionals. For the alulation of these graphs, thefuel osts for the CHP plant have been augmented slightly in order to givethe ash value urves a di�erent diretion. The di�erene between the multi-period funtionals is, roughly speaking, that �4 aims at equal spread at alltimes, whereas �2 and �6 try to �nd a maximal level that is rarely underrun.The di�erent shapes of the ash value urves are ahieved by di�erentpoliies of future trading. Future trading is revealed through the jumps in theash value urves and is expliitely shown in Fig. 7. These graphs display theoverall future stok volumes (in Euro) at eah stage. If no risk is onsideredthen there is no future trading at all sine, due to the fair-prie assumption,there is no bene�t from futures in terms of the expeted revenue. Using AVaR,�2, or �6 leads to extensive future trading ativity, whereas the appliation of�4 yields more moderate future trading ativity.Finally, we mention that, within this appliation model, the inorporationof a polyhedral risk funtional into the objetive redues the expeted overallrevenue E [zT ℄ only by approx. 1%. The additional omputational e�ort arisingfrom the risk measure is also very moderate.
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