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Abstract

Lyapunov and exponential dichotomy spectral theory is extended from ordinary differen-
tial equations (ODEs) to nonautonomous differential-algebraic equations (DAEs). By using
orthogonal changes of variables, the original DAE system is transformed into appropriate
condensed forms, for which concepts such as Lyapunov exponents, Bohl exponents, expo-
nential dichotomy and spectral intervals of various kinds can be analyzed via the resulting
underlying ODE. Some essential differences between the spectral theory for ODEs and that
for DAEs are pointed out. Numerical methods for computing the spectral intervals associated
with Lyapunov and Sacker-Sell (exponential dichotomy) spectra are derived by modifying and
extending those methods proposed for ODEs [26]. Perturbation theory and error analysis are
discussed, as well. Finally, some numerical examples are presented to illustrate the theoretical
results and the properties of the numerical methods.
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1 Introduction

More than a century ago, fundamental concepts and results for the stability theory of ordinary
differential equations were presented in Lyapunov’s famous thesis [58]. One of the most important
notions, the so-called Lyapunov exponent (or Lyapunov characteristic number), has proved very
useful in studying growth rates of solutions to linear ODEs. In the nonlinear case, by linearizing
along a particular solution, Lyapunov exponents also give information about the convergence
or divergence rates of nearby solutions. The spectral theory for ODEs was further developed
throughout the 20th century, and concepts such as Bohl exponents, exponential dichotomy (also
well-known as Sacker–Sell) spectra were introduced, see [1, 18, 19, 69]. Unlike the development
of the analytic theory, the development of numerical methods to compute Lyapunov exponents
and also other spectral intervals has only recently been studied. In a series of papers, see [22,
23, 25, 26, 28, 29, 30], Dieci and Van Vleck have developed algorithms for the computation of
Lyapunov and Bohl exponents as well as Sacker-Sell spectral intervals. These methods have also
been analyzed concerning their sensitivity under small perturbations (stability), the relationship
between different spectra, the error analysis, and efficient implementation techniques.
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This paper is devoted to the generalization of some theoretical results as well as numerical
methods from the spectral theory for ODEs to differential-algebraic equations (DAEs). In par-
ticular, we are interested in the characterization of the dynamical behavior of solutions to initial
value problems for linear systems of DAEs

E(t)ẋ = A(t)x+ f(t), (1)

on the half-line I = [0,∞), together with an initial condition

x(0) = x0. (2)

Here we assume that E,A ∈ C(I,Rn×n), and f ∈ C(I,Rn) are sufficiently smooth. We use the
notation C(I,Rn×n) to denote the space of continuous functions from I to R

n×n.
Linear systems of the form (1) occur when one linearizes a general implicit nonlinear system

of DAEs
F (t, x, ẋ) = 0, t ≥ 0, (3)

along a particular solution [11]. In this paper for the discussion of spectral intervals, we restrict
ourselves to regular DAEs, i. e., we require that (1) (or (3) locally) has a unique solution for
sufficiently smooth right hand sides and appropriately chosen (consistent) initial conditions, see
[51] for a discussion of existence and uniqueness of solution of more general nonregular DAEs.

DAEs like (1) and (3) arise in constrained multibody dynamics [36], electrical circuit simulation
[39, 40], chemical engineering [31, 32] and many other applications, in particular when the dynamics
of a system is constrained or when different physical models are coupled together in automatically
generated models [63]. While DAEs provide a very convenient modeling concept, many numerical
difficulties arise due to the fact that the dynamics is constrained to a manifold, which often is
only given implicitly, see [8, 42, 66] or the recent textbook [51]. These difficulties are typically
characterized by one of many index concepts that exist for DAEs, see [8, 38, 42, 51].

The fact that the dynamics of DAEs is constrained also requires a modification of most classical
concepts of the qualitative theory that was developed for ODEs. Different stability concepts for
DAEs have been discussed already in [2, 43, 44, 53, 59, 61, 67, 68, 70, 71, 72, 73]. Only very few
papers, however, discuss the spectral theory for DAEs, see [16, 17] for results on Lyapunov expo-
nents and Lyapunov regularity, [57] for the concept of exponential dichotomy used in numerical
solution to boundary value problems, and [14, 35] for robustness results of exponential stability
and Bohl exponents. All these papers use the tractability index approach as it was introduced in
[38, 60] and consider linear systems of DAEs of tractability index 1, only. Here we allow general
regular DAEs of arbitrary index and we use reformulations based on derivative arrays as well as
the strangeness index concept [51]. As in the ODE case there is also a close relation of the spectral
theory to the theory of adjoint equations which has recently been studied in the context of control
problems in [3, 4, 5, 13, 52].

In this paper, we systematically extend the classical spectral concepts (Lyapunov, Bohl, Sacker-
Sell) that were introduced for ODEs, to general linear DAEs with variable coefficients of the form
(1). We show that substantial differences in the theory arise and that most statements in the
classical ODE theory hold for DAEs only under further restrictions, here our results extend results
on asymptotic stability given in [53]. After deriving the concepts and analyzing the relationship
between the different concepts of spectral intervals, we then derive two alternative numerical
approaches to compute the corresponding spectra.

The outline of the paper is as follows. In the following section, we recall some concepts from
the theory of differential-algebraic equations. Then we give a short review on the spectral theory
for ODEs and also on numerical methods for computing various spectral intervals. We discuss
in detail the extension of spectral concepts to DAEs in Section 3. The relation between the
spectral characteristics of DAE systems and those of their underlying ODE systems is investigated.
Furthermore, the stability of the spectra with respect to perturbations arising in the system data is
analyzed. In Section 4 we propose numerical methods for computing the Lyapunov and the Sacker-
Sell (exponential dichotomy) spectral intervals and discuss implementation details as well as the
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associated error analysis. In Section 5 we present numerical examples to illustrate the theoretical
results and the properties of the numerical methods. We finish the paper with a summary and a
discussion of open problems.

2 Preliminaries

2.1 A review of DAE theory

In this section we briefly recall some concepts from the theory of differential-algebraic equations,
see e.g. [8, 38, 51, 65]. We follow [51] in notation and style of presentation.

Definition 1 Consider system (1) with sufficiently smooth coefficient functions E,A. A function
x : I → R

n is called a solution of (1) if x ∈ C1(I,Rn) and x satisfies (1) pointwise. It is called a
solution of the initial value problem (1)–(2) if x is a solution of (1) and satisfies (2). An initial
condition (2) is called consistent if the corresponding initial value problem has at least one solution.

For the analysis as in [10, 12, 49, 51], we use derivative arrays

Mℓ(t)żℓ = Nℓ(t)zℓ + gℓ(t), (4)

where
(Mℓ)i,j =

(

i
j

)

E(i−j) −
(

i
j+1

)

A(i−j−1), i, j = 0, . . . , ℓ,

(Nℓ)i,j =

{

A(i) for i = 0, . . . , ℓ, j = 0,
0 otherwise,

(zℓ)j = x(j), j = 0, . . . , ℓ,

(gℓ)i = f (i), i = 0, . . . , ℓ,

(5)

using the convention that
(

i
j

)

= 0 for i < 0, j < 0 or j > i. In more detail, we have

Mℓ =















E

Ė −A E

Ë − 2Ȧ 2Ė −A E
...

. . .
. . .

E(ℓ) − ℓA(ℓ−1) · · · · · · ℓĖ − A E















, Nℓ =















A 0 · · · 0

Ȧ 0 · · · 0

Ä 0 · · · 0
...

...
...

A(ℓ) 0 · · · 0















. (6)

To guarantee existence and uniqueness of solutions, we make the following hypothesis, see [51].

Hypothesis 2 There exist integers µ, a, and d such that the inflated pair (Mµ, Nµ) associated
with the given pair of matrix functions (E,A) has the following properties:

1. For all t ∈ I we have rankMµ(t) = (µ + 1)n − a such that there exists a smooth matrix
function Z2 of size (µ+ 1)n× a and pointwise maximal rank satisfying ZT

2 Mµ = 0.

2. For all t ∈ I we have rank Â2(t) = a, where Â2 = ZT
2 Nµ[In 0 · · · 0]T such that there exists a

smooth matrix function T2 of size n× d, d = n− a, and pointwise maximal rank satisfying
Â2T2 = 0.

3. For all t ∈ I we have rankE(t)T2(t) = d such that there exists a smooth matrix function Z1

of size n× d and pointwise maximal rank satisfying rank Ê1T2 = d with Ê1 = ZT
1 E.

Since Gram-Schmidt orthonormalization is a continuous process, we may assume without loss of
generality that the columns of the matrix functions Z1, Z2, and T2 in Hypothesis 2 are pointwise
orthonormal.

Definition 3 The smallest possible µ for which Hypothesis 2 holds is called the strangeness index
of (1). Systems with vanishing strangeness index are called strangeness-free.
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The strangeness index can be considered as a generalization of the differentiation index as intro-
duced in [7], see [51] for a detailed analysis of the relationship between different index concepts.
It has been shown in [48], see also [51], that under some constant rank conditions, every uniquely
solvable (regular) linear DAE of the form (1) with sufficiently smooth E,A satisfies Hypothesis 2
and that there exists a reduced system

Ê(t)ẋ = Â(t)x+ f̂(t), (7)

that is strangeness-free and has the same solution as (1), where

Ê(t) =

[

Ê1(t)
0

]

, Â =

[

Â1

Â2

]

,

with block entries

Ê1 = ZT
1 E, Â1 = ZT

1 A, Â2 = ZT
2 Nµ̂[ In 0 · · · 0 ]T . (8)

System (7) can be viewed as a different representation (remodeling) of system (1), where all
necessary differentiations of (1) that are needed to describe the solution are already represented
in the model. This representation avoids many of the numerical difficulties that are associated
with DAEs that have a non-vanishing strangeness-index (differentiation index larger than 1), see
[8, 51]. The reduction to the form (7) can be carried out in a numerically stable way at any time
instance t, see [55, 51] and this idea can also be extended to over- and underdetermined systems
as well as locally to general nonlinear systems, [54, 50, 51]. For this reason, in the following, we
assume that the DAE is given in the form (7) and for ease of notation we leave off the hats.

2.2 Spectral intervals for ODEs and their approximation

In this section, we give a brief review of important qualitative and numerical results on the
spectral theory for linear ODEs. We refer to [25, 26, 29, 45] for more details. Consider the linear
homogeneous ODE

ẋ = A(t)x, t ∈ I, (9)

where A ∈ C(I,Rn×n) is a bounded matrix function. For a nontrivial solution x of (9), we define

λu(x) = lim sup
t→∞

1

t
ln ||x(t)|| , λl(x) = lim inf

t→∞

1

t
ln ||x(t)|| . (10)

These quantities, which characterize the asymptotic behavior of the solution x, are called the
upper and lower Lyapunov exponents, respectively.

Since A is bounded, the Lyapunov exponents are finite. Let X : I → R
n×n be a fundamental

solution matrix of (9), i.e. X satisfies,

Ẋ = A(t)X, (11)

then, the Lyapunov exponents for the i-th column of X are well-defined as

λu(Xei), and λℓ(Xei), i = 1, 2, ..., n, (12)

where ei denotes the i-th unit vector. Without loss of generality, we may assume that the columns
of X are ordered such that the upper Lyapunov exponents are ordered decreasingly as

λu(Xe1) ≥ λu(Xe2) ≥ ... ≥ λu(Xen).

When
∑n

i=1 λ
u(Xei) is minimized with respect to all possible fundamental solution matrices,

then the λu
i = λu(Xei) are called (upper) Lyapunov exponents of (9) and the columns of the

corresponding fundamental solution matrix are said to form a normal basis of (9).
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In general, the Lyapunov exponents satisfy the Lyapunov inequality

n
∑

i=1

λu
i ≥ lim sup

t→∞

1

t

∫ t

0

tr(A(s))ds, (13)

where tr(A(s)) is the trace of the matrix A(s). Furthermore, it is always possible to construct
a normal basis from an arbitrary fundamental solution matrix. Hence, we may assume that
the columns of X form a normal basis with decreasingly ordered Lyapunov exponents. We may
proceed analogously for the lower Lyapunov exponents. Alternatively, we may consider the adjoint
equation associated with (9) given by

ẏ = −AT (t)y, (14)

and let {−µu
i }n

i=1 be the upper Lyapunov exponents (ordered increasingly) of (14) with associated
fundamental solution matrices Y (t). Then, see [15], the fundamental solution matrices satisfy the
Lagrange identity

Y T (t)X(t) = Y T (0)X(0) for all t ∈ I.

If the columns of X form a normal basis for (9), then the columns of Y form a normal basis for
(14). Hence, we have the following relationship between the Lyapunov exponents of the ODE and
its adjoint,

λℓ
i = −µu

i , i = 1, 2, ..., n.

Definition 4 The Lyapunov spectrum ΣL of (9) is the union of intervals

ΣL :=
n
⋃

i=1

[λℓ
i , λ

u
i ],

and the intervals [λℓ
i , λ

u
i ], i = 1, 2, ..., n, are called Lyapunov spectral intervals. If each of the

Lyapunov spectral intervals shrinks to a point, i.e., if λℓ
i = λu

i for all i = 1, 2, ..., n, then the
system is called Lyapunov-regular. (Note that this property is often called just regularity and it
is not related to the regularity notion for DAEs.) If a system is Lyapunov-regular, then we simply
write λi for the Lyapunov exponents.

Remark 5 The definition of (Lyapunov-)regularity in Definition 4 is due to Perron [64] and it
is different from, but equivalent to, the original definition by Lyapunov [58], which defines the
system (9) to be regular if the time average of the trace has a finite limit and equality holds in
(13). In [19], only the set of all upper Lyapunov exponents for (9) is called the Lyapunov spectrum.
Clearly, these two different definitions of Lyapunov spectra are equivalent if and only if the system
is Lyapunov-regular.

A fundamental property of Lyapunov exponents and Lyapunov spectra is that they are preserved
under specific similarity transformations.

Definition 6 A change of variables z = V −1x with an invertible matrix function V ∈ C1(I,Rn×n)
is called a kinematic similarity transformation if V and V −1 are bounded. If V̇ is bounded as well,
then it is called a Lyapunov transformation.

The key idea for the numerical computation of Lyapunov exponents for Lyapunov-regular systems
comes from the following two results.

Theorem 7 [58] Let B = [bij ] ∈ C(I,Rn×n) be bounded and upper-triangular. Then the system

Ṙ = B(t)R, (15)

is Lyapunov-regular if and only if all the limits

lim
t→∞

1

t

∫ t

0

bii(s)ds, i = 1, 2, ..., n, (16)

exist and these limits coincide with the Lyapunov exponents λi for i = 1, 2, ..., n.
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Theorem 8 [33, 64] Consider the linear system (9). Then there exists a Lyapunov transforma-
tion to upper triangular form, and moreover, this transformation can be chosen to be pointwise
orthogonal.

Proof. A constructive proof for the existence of an orthogonal Lyapunov transformation to trian-
gular form is as follows. We want to determine an orthogonal matrix function Q ∈ C1(I,Rn×n)
such that the change of variables X(t) = Q(t)R(t) transforms the system (11) to the triangular
form (15). Inserting this change of variables we see that B has to satisfy

B(t) = QT (t)A(t)Q(t)−QT (t)Q̇(t).

We introduce the skew-symmetric matrix function S(Q) := QT Q̇ = QTAQ − B. Then, since Q
is orthogonal and B is upper triangular, we obtain the strict lower triangular part of the skew-
symmetric matrix function S by the corresponding part of QTAQ and the remaining parts by
skew-symmetry. Thus, Q is well-defined and (numerically) computable as the unique solution of
the initial value problem

Q̇ = QS(Q), Q(0) = Q0

where Q0 is the Q factor in a QR factorization of X(0).

It should be noted that the norm of a fundamental solution matrix X of (11) is preserved
under orthogonal changes of variable. Hence, if the columns of X form a normal basis, then the
columns of R = QTX form a normal (and in addition, triangular) basis as well.

The constructive proof of Theorem 8 gives the basic idea for computing Lyapunov exponents
as well as Lyapunov spectra. Unfortunately, one faces a (numerical) difficulty arising from the
sensitivity of Lyapunov exponents under small perturbations. Even if the system is Lyapunov-
regular, then it is not guaranteed that this property is preserved under small perturbations, i.e.
the Lyapunov spectrum of a slightly perturbed system does not necessarily stay close to that of
the unperturbed system. To treat this problem, we introduce the following concept of stability.

Definition 9 Consider a homogeneous linear system of the form (9) and a perturbed system
ẋ = [A(t) + ∆A(t)]x. The upper Lyapunov exponents, λu

1 ≥ ... ≥ λu
n, are called stable if for any

ε > 0 there exists a δ = δ(ǫ) > 0 such that supt≥0 ||∆A(t)|| < δ implies

|λu
i − νu

i | < ǫ, i = 1, . . . , n,

where the quantities νu
i , i = 1, . . . , n are the (decreasingly ordered) upper Lyapunov exponents of

ẋ = [A(t) + ∆A(t)]x.

To give a characterization when Lyapunov exponents are stable, we need the following concept,
see [25].

Definition 10 A fundamental solution matrix X of (11) (as well as the columns of X) are said
to be integrally separated if for i = 1, 2, ..., n− 1, there exist constants β > 0 and γ > 0 such that

||X(t)ei||
||X(s)ei||

· ||X(s)ei+1||
||X(t)ei+1||

≥ γeβ(t−s),

for all t, s with t ≥ s. If the system (9) has an integrally separated fundamental solution matrix,
then it is called an integrally separated system.

We will see later that integral separation plays a key role in the computation of spectral intervals.
The properties of an integrally separated system can be summarized as follows, see [25] and the
references therein.

Proposition 11

i) Integral separation is invariant under Lyapunov transformations (or kinematic similarity
transformations).
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ii) An integrally separated system has pairwise distinct upper (and pairwise distinct lower) Lya-
punov exponents.

iii) Distinct upper Lyapunov exponents are stable if and only if there exists an integrally separated
fundamental solution matrix.

iv) If a system is integrally separated, then so is its adjoint system and thus the lower Lyapunov
exponents are stable as well.

v) Let B be the Banach space of continuous bounded matrix valued functions A, supplied with
the norm ||A|| = supt≥0 ||A(t)||. Systems with integral separation property form an open and
dense subset of B, i.e., integral separation is a generic property in B.

For the triangular system (15), one can define the integral separation by using an alternative
concept.

Definition 12 Consider the triangular system (15). The diagonal functions bii(t), i =
1, 2, ..., n, of B are said to be integrally separated if for i = 1, 2, ..., n − 1 there exist constants
β > 0 and γ ∈ R such that

∫ t

s

[bii(τ ) − bi+1,i+1(τ )]dτ ≥ β(t− s) − γ, for all t ≥ s. (17)

Thus, if the diagonal elements of B are integrally separated, then for t, s such that t−s is sufficiently
large, the integral in the left hand side of (17) is strictly positive.

Definition 13 Consider a scalar continuous function f and suppose that H > 0. The Steklov
function fH is defined by

fH(t) :=
1

H

∫ t+H

t

f(τ )dτ.

The following two results provide the basis for numerical tests of integral separability.

Theorem 14 [1] Two scalar continuous functions f1, f2 are integrally separated if and only if
there exists scalar H > 0 such that their Steklov difference is positive, i.e., for H sufficiently large,
there exists β > 0 such that

fH
1 (t) − fH

2 (t) ≥ β > 0, for all t ≥ 0.

Theorem 15 [26, 29] For the system (15) with B bounded, continuous, and triangular, a nec-
essary and sufficient condition for the existence of an integrally separated fundamental solution
matrix is that the diagonal elements of B are integrally separated.

An important consequence of the existence of an integrally separated fundamental solution matrix
is that in this case we can numerically approximate the Lyapunov exponents using the following
result.

Theorem 16 [25, 26] Consider (15) with B bounded, continuous, and triangular. If the diagonal
of B is integrally separated, then ΣL = ΣCL, where

ΣCL :=

n
⋃

i=1

[λℓ
i,i, λ

u
i,i],

with

λℓ
i,i := lim inf

t→∞

1

t

∫ t

0

bii(s)ds, λ
u
i,i := lim sup

t→∞

1

t

∫ t

0

bii(s)ds, i = 1, 2, ..., n.
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Thus, under the integral separability condition, the Lyapunov spectrum of (9) can be computed
by first transforming the system into the triangularized form (15) and then approximating the
Lyapunov spectrum for the scalar equations associated with the diagonal elements. In general, if
the system is not integrally separated, then we have ΣCL ⊆ ΣL. However, in [29] it has been shown
that equality holds under an assumption that is a weaker condition than the integral separation.

Another concept that can be used to describe the behavior of solutions to (9) is that of Bohl
exponents [6], see also [19].

Definition 17 Let x be a nontrivial solution of (9). The (upper) Bohl exponent κu
B(x) of this

solution is the greatest lower bound of all those values ρ for which there exist constants Nρ > 0
such that

||x(t)|| ≤ Nρe
ρ(t−s) ||x(s)|| (18)

for any t ≥ s ≥ 0. If such numbers ρ do not exist, then one sets κu
B(x) = +∞.

Similarly, the lower Bohl exponent κℓ
B(x) is the least upper bound of all those values ρ′ for

which there exist constants N ′
ρ > 0 such that

||x(t)|| ≥ N ′
ρe

ρ′(t−s) ||x(s)|| , 0 ≤ s ≤ t. (19)

The interval [κℓ
B(x), κu

B(x)] is called the Bohl interval of the solution x.

It follows directly from the definition, that Lyapunov exponents and Bohl exponents are related
via

κℓ
B(x) ≤ λℓ(x) ≤ λu(x) ≤ κu

B(x).

Bohl exponents characterize the uniform growth rate of solutions, while Lyapunov exponents
simply characterize the growth rate of solutions departing from t = 0. If the supremum of the
upper Lyapunov exponents for all solutions to (9) is negative, then the system is asymptotically
stable, a property which for constant coefficient systems is characterized by the property that
all eigenvalues have negative real part. If the same holds for the supremum of the upper Bohl
exponents of (9), then the system is (uniformly) exponentially stable.

One then has the following formulas characterizing the Bohl exponents, see e.g. [19],

κu
B(x) = lim sup

s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t− s

, κℓ
B(x) = lim inf

s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t− s

.

It is also well-known [19] that if the coefficient matrix function A(t) is integrally bounded, i.e., if

sup
t≥0

∫ t+1

t

||A(s)|| ds <∞,

then the Bohl exponents for (9) are finite. For a continuous bounded function A, this condition
trivially holds. Moreover, unlike the Lyapunov exponents, the Bohl exponents are stable without
any extra assumption.

A third alternative concept to Lyapunov spectra is the theory of exponential dichotomy spectra
developed by Sacker and Sell [69].

Definition 18 The fundamental matrix solution X is said to admit an exponential dichotomy if
there exist a constant projection matrix P : R

n×n → R
n×n (i.e. P 2 = P ) and constants α, β > 0,

as well as K,L ≥ 1, such that
∣

∣

∣

∣X(t)PX−1(s)
∣

∣

∣

∣ ≤ Ke−α(t−s), t ≥ s,
∣

∣

∣

∣X(t)(I − P )X−1(s)
∣

∣

∣

∣ ≤ Leβ(t−s), t ≤ s.
(20)

The Sacker-Sell (or exponential-dichotomy) spectrum ΣS ⊂ R for (9) is given by those values λ
such that the shifted system

ẋλ = [A(t) − λI]xλ

does not have exponential dichotomy. The complement of ΣS is called the resolvent set.
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It is worth noting that the property that a system possesses an exponential dichotomy, as well as
the exponential dichotomy spectrum are preserved under Lyapunov transformations (or kinematic
similarity transformations). In [69] it has been shown that ΣS is the union of at most n disjoint
closed intervals, and furthermore that it is stable. It is also not difficult to see that

ΣL ⊆ ΣS .

Theorem 19 [30] Consider the system (15) with B = [bij ] bounded, continuous, and upper tri-
angular. The Sacker-Sell spectrum of the triangular system (15) and that of the corresponding
diagonal system

ẋ = D(t)x, with D(t) = diag(b11(t), . . . , bnn(t)), t ∈ I, (21)

coincide.

Thus, one can retrieve ΣS of the original system (9) from the diagonal elements of the triangu-
larized system (15). Furthermore, the Sacker-Sell spectrum of the diagonal system (21) can be
approximated as follows. For i = 1, 2, ..., n, and for λ ∈ R, one introduces the two diagonal systems

ẏi =

[

λ 0
0 bii(t)

]

yi and ẏi =

[

bii(t) 0
0 λ

]

yi. (22)

Considering the sets Λi := {λ ∈ R : the systems in (22) are not integrally separated}, i =
1, 2, ..., n one defines the integral separation spectrum ΣI for (21) as

ΣI :=
n
⋃

i=1

Λi. (23)

Then it has been shown in [25, 26] that for a diagonal system ΣI = ΣS . ForH > 0 and i = 1, 2, ..., n
one then may compute

αH
i := inf

t≥0

1

H

∫ t+H

t

bii(s)ds and βH
i := sup

t≥0

1

H

∫ t+H

t

bii(s)ds, (24)

and these quantities present practically (but expensively) numerically computable quantities to
approximate the integral separation spectrum for (21), and thus, the Sacker-Sell spectrum for (15).

Theorem 20 [26] Consider the diagonal system (21) and let Λi, i = 1, 2, ..., n, be the i-th interval
in ΣS for this system. Then, for H > 0 sufficiently large,

Λi = [αH
i , β

H
i ], for all i = 1, 2, ..., n,

where αH
i , β

H
i are defined in (24).

In order to discuss the relationship between the Sacker-Sell spectrum and the Bohl intervals,
we first consider the scalar case.

Lemma 21 For a scalar equation
ẋ = a(t)x, t ≥ 0, (25)

where a is a bounded and continuous function, the Sacker-Sell spectrum and the Bohl interval
coincide, i.e., ΣS = [κl

B, κ
u
B].

Proof. Let λ ∈ R such that λ /∈ ΣS . Then there exist constants α, β > 0 and K,L ≥ 1 such that
for t ≥ s, either e−λ(t−s)e

R

t

s
a(τ)dτ ≤ Ke−α(t−s) or eλ(t−s)e−

R

t

s
a(τ)dτ ≤ Le−β(t−s), which holds

if and only if either λ − α ≥ κu
B or λ + β ≤ κl

B, respectively, i.e. λ /∈ [κl
B, κ

u
B]. Consequently,

the Bohl interval is contained in the Sacker-Sell spectrum. The proof of the converse direction is
similar. The proof is complete.

For the scalar case we thus have the following analytic representation of the Bohl exponents.
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Proposition 22 Consider the scalar equation (25), where a is a bounded and continuous function.
Then there exists a (sufficiently large but finite) H > 0 such that

inf
s≥0

1

H

∫ s+H

s

a(τ )dτ = lim inf
s,t−s→∞

1

t− s

∫ t

s

a(τ )dτ = κl
B,

and

sup
s≥0

1

H

∫ s+H

s

a(τ )dτ = lim sup
s,t−s→∞

1

t− s

∫ t

s

a(τ )dτ = κu
B.

Proof. To verify the first identity in each formula, it suffices to repeat the arguments in the proof
of [26, Theorem 8.4]. The second identity follows directly by the definition of Bohl exponents.

The presented summary of results for ODEs shows that triangularization allows the numerical
computation of the Sacker-Sell spectra and, therefore, also of inclusion regions for the Lyapunov
spectra. Essentially there are two ways to realize this triangularization, i.e., the transformation
of the system (9) to the form (15). Using the (discrete) QR-algorithm [37] one may compute the
triangular form for discrete time points. With this, one may compute the fundamental solution
matrix X directly by an appropriate numerical integration. As an alternative way, one can use
the continuous QR-algorithm to determine the triangular matrix coefficient B in (15) by solving
the matrix differential equation for the orthogonal matrix function Q(t) [22, 25, 26]. For further
details on numerical methods and their implementation, see [21, 24, 25, 26, 27].

3 Spectral theory for DAEs

In this section we generalize the classical spectral results for ODEs that we have reviewed in
Subsection 2.2 to DAEs. An essential step in the computation of spectral intervals for linear
DAEs of the form (1) is to first transform the system to a reduced strangeness-free form (7),
which has the same solution set as (1), see [51], and then to consider the spectral results in this
framework. This transformation will not alter the spectral sets which will be defined in terms of
the fundamental solution matrices that have not changed. Under Hypothesis 2 this transformation
can always be done and this reduced form can even be computed numerically at every time instance
t. For this reason, we may assume in the following that the system is given in the reduced form
(7), i.e. we assume that our homogeneous DAE is already strangeness-free and has the form

E(t)ẋ = A(t)x, t ∈ I, (26)

where

E(t) =

[

E1(t)
0

]

, A(t) =

[

A1(t)
A2(t)

]

,

and E1 ∈ C(I,Rd×n) and A2 ∈ C(I,R(n−d)×n) are of full column rank.
Note that for convenience of notation, we have left off the hats in the coefficients.

3.1 Lyapunov exponents and Lyapunov spectral intervals

We first generalize the concepts of Lyapunov and Bohl exponents.

Definition 23 A matrix function X ∈ C1(I,Rn×k), d ≤ k ≤ n, is called fundamental solution
matrix of (26) if each of its columns is a solution to (26) and rankX(t) = d, for all t ≥ 0.

A fundamental solution matrix is said to be maximal if k = n and minimal if k = d, re-
spectively. A maximal fundamental matrix solution, denoted by X(t, s), is called principal if it
satisfies the projected initial condition E(t0)(X(t0, t0) − I) = 0, for some t0 ≥ 0.

10



We see that a major difference between ODEs and DAEs is that fundamental solution matrices for
DAEs are not necessarily square and of full-rank. Every fundamental solution matrix has exactly
d linearly independent columns and a minimal fundamental matrix solution can be easily made
maximal by adding n− d zero columns.

Definition 24 For a given fundamental solution matrix X of a strangeness-free DAE system of
the form (26), and for d ≤ k ≤ n, we introduce

λu
i = lim sup

t→∞

1

t
ln ||X(t)ei|| and λℓ

i = lim inf
t→∞

1

t
ln ||X(t)ei|| , i = 1, 2, ..., k.

The columns of a minimal fundamental solution matrix form a normal basis if Σd
i=1λ

u
i is minimal.

The λu
i , i = 1, 2, ..., n, belonging to a normal basis are called (upper) Lyapunov exponents and the

intervals [λℓ
i , λ

u
i ], i = 1, 2, ..., d, are called Lyapunov spectral intervals. The set of the Lyapunov

spectral intervals is called the Lyapunov spectrum of (26).

Definition 25 Suppose that U ∈ C(I,Rn×n) and V ∈ C1(I,Rn×n) are pointwise nonsingular
matrix functions such that V and V −1 are bounded. Then the transformed DAE system

Ẽ(t) ˙̃x = Ã(t)x̃, (27)

with Ẽ = UEV , Ã = UAV − UEV̇ and x = V x̃ is called globally kinematically equivalent
to (26) and the transformation is called a global kinematical equivalence transformation. If,
furthermore, also U and U−1 are bounded then we call this a strong global kinematical equivalence
transformation.

It is clear that the Lyapunov exponents of a DAE system as well as the normality of a basis formed
by the columns of a fundamental solution matrix are preserved under global kinematic equivalence
transformations.

Lemma 26 Consider a strangeness-free DAE system of the form (26) with continuous coefficients
and a minimal fundamental solution matrix X. Then there exist pointwise orthogonal matrix
functions U ∈ C(I,Rn×n) and V ∈ C1(I,Rn×n) such that in the fundamental matrix equation

EẊ = AX associated with (26), the change of variables X = V R, with R =

[

R1

0

]

and R1 ∈

C1(I,Rd×d), and the multiplication of both sides of the system from the left with UT leads to the
system

E1Ṙ1 = A1R1, (28)

where E1 := UT
1 EV1 is pointwise nonsingular and A1 := UT

1 AV1 − UT
1 EV̇1. Here, U1, V1 are the

matrix functions consisting of the first d columns of U, V , respectively.

Proof. Since a smooth and full column rank matrix function has a smooth QR-decomposition,
see [24, Prop. 2.3], there exists a pointwise orthogonal matrix function V such that X = V R =
[

R1

0

]

, where R1 is pointwise nonsingular. By substituting X = V R into the fundamental matrix

equation EẊ = AX, we obtain

EV

[

Ṙ1

0

]

= (AV − EV̇ )

[

R1

0

]

.

Since, by assumption, the first d rows of E are of full row rank, we have that the first d columns
of EV , given by EV1, have full column rank. Thus, there exists a smooth QR-decomposition

EV1 = U

[

E1

0

]

,

11



where U is pointwise orthogonal and E1 is pointwise nonsingular. Looking at the leading d × d
block in the transformed equation, we arrive at

E1Ṙ1 = [UT
1 AV1 − UT

1 EV̇1]R1,

which proves the assertion.

The system (28) is an implicitly given ODE, since E1 is nonsingular. It is called essentially
underlying implicit ODE system of (26). Since orthonormal changes of basis keep the Euclidean
norm invariant, the Lyapunov exponents of the columns of the matrices X and R, and therefore
those of the two systems are the same.

Theorem 27 Let Z be a minimal fundamental solution matrix for (26) such that the upper Lya-
punov exponents of its columns are ordered decreasingly. Then there exists a nonsingular upper
triangular matrix C ∈ R

d×d such that the columns of X(·) = Z(·)C form a normal basis.

Proof. By Lemma 26, there exists a pointwise orthogonal matrix function V such that V TZ =
[

R1

0

]

with R1 satisfying the implicit system

E1Ṙ1 = A1R1,

or equivalently, satisfying the explicit ODE system

Ṙ1 = E−1
1 A1R1.

Here E1,A1 are defined as in Lemma 26. Note that the Lyapunov exponents of Z are exactly
the Lyapunov exponents of R1. Due to Lyapunov’s theorem on the construction of a normal
basis for ODEs (see [58, p. 233]), there exists an upper triangular nonsingular matrix C ∈ R

d×d

such that the columns of R1C form a normal basis of (28). This implies that the columns of
RC = V TZC form a normal basis as well. Because the normality is preserved under global
kinematical equivalence transformations, the proof is complete.

As in the case of ODEs it is useful to introduce the adjoint equation to (26), see e.g. [4, 52].

Definition 28 The DAE system

d

dt
(ET y) = −AT y, or ET (t)ẏ = −[AT (t) + ĖT (t)]y, t ∈ I, (29)

is called the adjoint system associated with (26).

Lemma 29 Fundamental solution matrices X,Y of (26) and its adjoint equation (29) satisfy the
Lagrange identity

Y T (t)E(t)X(t) = Y T (0)E(0)X(0), t ∈ I.

Let U, V ∈ C1(I,Rn×n) define a strong global kinematic equivalence for system (26). Then the
adjoint of the transformed DAE system (27) is strongly globally kinematically equivalent to the
adjoint of (26).

Proof. Differentiating the product Y (t)TE(t)X(t) and using the definition of the adjoint equation,
we obtain (leaving off the arguments) that

d

dt
(Y TE)X + Y TEẊ = −Y TAX + Y TAX = 0

and hence the Lagrange identity follows. By assumption, the matrices V T , UT define a strong
global kinematic equivalence transformation for the adjoint equation leading to the adjoint of
(27).
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Despite these results, the relationship between the dynamics of a DAE system and its adjoint
is more complicated than in the ODE case, except if some extra assumptions are added. In order
to see this and to better understand the dynamical behavior of DAEs, we apply an orthogonal
change of basis to transform the system (26) into appropriate condensed forms.

Theorem 30 Consider the strangeness-free DAE system (26). If the pair of coefficient matrices
is sufficiently smooth, then there exists an orthogonal matrix function Q̂ ∈ C1(I,Rn×n) such that
by the change of variables x̂ = Q̂Tx, the submatrix E1 is compressed, i.e., the transformed system
has the form

[

Ê11 0
0 0

]

˙̂x =

[

Â11 Â12

Â21 Â22

]

x̂, t ∈ I. (30)

Furthermore, the system (30) is still strangeness-free and thus Ê11 and Â22 are pointwise nonsin-
gular.

Proof. In order to show the existence of appropriate transformations, we use again the theorem
on the existence of smooth QR decompositions, see [20, Prop. 2.3] and [51, Thm. 3.9]. If E is
continuously differentiable, then there exist a matrix function Q̂1 ∈ C1(I,Rn×d) with pointwise
orthonormal columns and a pointwise nonsingular Ê11 ∈ C1(I,Rd×d) such that

E1 = Ê11Q̂
T
1 .

Since d rows of Q̂T
1 pointwise form orthonormal basis in R

n and since the Gram-Schmidt process
is continuous, we can complete this basis by adding a smooth (and pointwise orthonormal) matrix
Q̂2 ∈ C1(I,Rn×(n−d)) so that

Q̂ :=

[

Q̂T
1

Q̂T
2

]

is pointwise orthogonal. Then, we have

E1 =
[

Ê11 0
]

Q̂.

Since we have started with a strangeness-free system, it follows that the corresponding transformed
matrix Â partitioned as in (30) has a nonsingular block Â22.

Remark 31 Alternatively we could have used a transformation in Theorem 30 that compresses
the block A2, thus obtaining a transformed system

[

Ẽ11 Ẽ12

0 0

]

˙̃x =

[

Ã11 Ã12

0 Ã22

]

x̃, t ∈ I. (31)

with Ẽ11 and Ã22 nonsingular. The proof for the condensed from (31) follows analogously to that
of Theorem 30 by compressing the second block row of A. Most of the results that we present
below carry over directly to this system. For the analysis we prefer to use (30), while for the
construction of numerical algorithms the form (31).

System (30) is a strangeness-free DAE in semi-implicit form. Since Q̂ is orthogonal and since
the Euclidean norm is used, it follows that ||x̂|| = ||x||. Performing this transformations allows to
separate the differential and the algebraic components of the solutions. Partitioning x̂ = [x̂T

1 , x̂
T
2 ]T

appropriately, solving for the second component and substituting it into the first block equation
one gets the associated underlying (implicit) ODEs,

Ê11
˙̂x1 = Âsx̂1, (32)

where Âs := Â11−Â12Â
−1
22 Â21 denotes the Schur complement. For (31), the associated underlying

implicit ODE system is
Ẽ11

˙̃x1 = Ã11x̃1, (33)

respectively. The following result extends the asymptotic stability results of [53] in terms of
Lyapunov exponents.
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Theorem 32 Let λu(Â−1
22 Â21) be the upper Lyapunov exponent of the matrix function Â−1

22 Â21.
If

λu(Â−1
22 Â21) ≤ 0, (34)

then the (upper and lower) Lyapunov exponents of (30) and those of (32) coincide if they are both
ordered decreasingly.

An analogous result holds for the Lyapunov exponents of (31) and those of (33).

Proof. It is clear that each minimal fundamental solution matrix X̂ of (30) has the form

X̂ =

[

X̂1

Â−1
22 Â21X̂1

]

,

where X̂1 is a fundamental solution of (32). Let x̂ be a column of X̂. Then

x̂ =

[

x̂1

Â−1
22 Â21x̂1

]

,

where x̂1 is the corresponding column of X̂1. Using the triangle inequality, we then have

||x̂1|| ≤ ||x̂|| ≤
√

2(1 +
∣

∣

∣

∣

∣

∣
Â−1

22 Â21

∣

∣

∣

∣

∣

∣
) ||x̂1|| , (35)

from which it follows that

λu(x̂1) ≤ λu(x̂) ≤ λu(1 +
∣

∣

∣

∣

∣

∣
Â−1

22 Â21

∣

∣

∣

∣

∣

∣
) + λu(x̂1) = λu(x̂1)

and thus, λu(x̂) = λu(x̂1). Analogously we prove that λl(x̂1) ≤ λl(x̂).
Since λu(Â−1

22 Â21) ≤ 0, for any ε > 0, there exists T ≥ 0 such that

1

t
ln(1 +

∣

∣

∣

∣

∣

∣
Â−1

22 Â21

∣

∣

∣

∣

∣

∣
) ≤ ε for all t ≥ T,

which implies that 1 +
∣

∣

∣

∣

∣

∣
Â−1

22 Â21

∣

∣

∣

∣

∣

∣
≤ eεt, for all t ≥ T . As in the case of upper exponents, we

have
||x̂(t)|| ≤

√
2eεt ||x̂1(t)|| , t ≥ T.

Hence, we obtain that λl(x̂) ≤ ε + λl(x̂1). Since ε can be chosen arbitrarily, it follows that
λl(x̂) ≤ λl(x̂1). Thus, it follows that λl(x̂1) = λl(x̂). As a consequence of this construction,
the columns of the fundamental solution matrix X̂ of (30) form a normal basis if and only if the
corresponding columns of X1 form a normal basis of (32).

The proof for the Lyapunov exponents of (31) and (33) is trivial.

Remark 33 A sufficient condition for (34) is that Â−1
22 Â21 is bounded or has a less than expo-

nential growth rate. This is for example the case if there exist constants γ > 0 and k ∈ N such

that
∣

∣

∣

∣

∣

∣
Â−1

22 Â21(t)
∣

∣

∣

∣

∣

∣
≤ γtk for all t ∈ I.

Alternatively, we could use (31) and the corresponding underlying ODE (33). In this case such
a boundedness or restriction in the growth rate is not required. However, a similar boundedness
condition on Ã−1

22 in (31) will be needed, if one considers perturbed or inhomogeneous DAE
systems.

The next step of our analysis is the extension of the concept of Lyapunov-regularity to DAEs.

Definition 34 The DAE system (26) is said to be Lyapunov-regular if each of its Lyapunov
spectral intervals reduces to a point, i.e., λl

i = λu
i , i = 1, 2, ..., d.
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To analyze the Lyapunov-regularity of the DAE system (26), we again study the transformed
semi-implicit system (30) and the underlying ODE system. Since the Lyapunov exponents for a
DAE system are preserved under global kinematic equivalence transformations, also the Lyapunov-
regularity is preserved, i. e. the DAE system (26) is Lyapunov-regular if and only if the semi-
implicit DAE system (30) is Lyapunov-regular. Thus, we immediately have the following equiva-
lence result.

Proposition 35 Consider the DAE system (30) and suppose that the boundedness condition (34)
holds. Then, the DAE system (30) is Lyapunov-regular if and only if the underlying ODE system
(32) is Lyapunov-regular.

Unlike for ODEs, to obtain the equivalence between the Lyapunov-regularity of (26) and that
of its adjoint system we need some extra conditions.

Theorem 36 Consider the DAE system (30) and suppose that the boundedness condition (34)
holds. Assume further, that for the transformed system (30) the conditions

λu(Â12Â
−1
22 ) ≤ 0, λu(Ê11) ≤ 0, λu(Ê−1

11 ) ≤ 0. (36)

hold. If λl
i are the lower Lyapunov exponents order of (26) and −µu

i are the upper Lyapunov
exponents of the adjoint system (29), both in increasing order, then

λl
i = µu

i , i = 1, 2, ..., d,

Furthermore, system (26) is regular if and only if (29) is regular, and in this case we have the
Perron identity

λi = µi, i = 1, 2, ..., d, (37)

where {−µi}d
i=1 are the Lyapunov exponents of (29) in increasing order.

Proof. Without loss of generality, we may consider the adjoint system (29) for the semi-implicit
form (30)

[

ÊT
11 0
0 0

]

˙̂y = −
([

ÂT
11 +

˙̂
ET

11 ÂT
21

ÂT
12 ÂT

22

])

ŷ. (38)

The underlying ODE of the adjoint system is then given by

ÊT
11

˙̂y1 = −(ÂT
11 − ÂT

21Â
−T
22 Â

T
12 +

˙̂
E

T

11)ŷ1, (39)

which is exactly the adjoint of the underlying ODE system (32). It also follows immediately that
the Lagrange identity Ŷ T

1 Ê11X̂1 ≡ const holds for fundamental matrix solutions X̂1, Ŷ1 of (32)
and its adjoint, respectively. Note that if the columns of X1 form a normal basis for (32) then
those of Ŷ1 := Ê−T

11 X̂−T
1 form a normal basis for the adjoint. Hence, (37) holds for the Lyapunov

spectra of the underlying ODE systems and due to the preservation of Lyapunov spectra under
global kinematic equivalence, the proof is complete.

Note that the last two inequalities in (36) just imply λu(Ê11) = λu(Ê−1
11 ) = 0.

Corollary 37 Suppose that (26) is Lyapunov-regular and the assumptions of Theorem 36 hold.
Then, with As defined as in (30), the limit

lim
t→∞

1

t

∫ t

0

tr(Ê−1
11 Âs(s))ds,

exists and is equal to
∑d

i=1 λi.
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If one of the conditions (34), (36) fails to hold, then in general the spectral symmetry between the
DAE system (30), the underlying ODE system (32), and their adjoint systems does not hold.

The following examples show that the DAE and its adjoint may be Lyapunov-regular, but the
Perron identity (37) does not hold and also the converse implication may not hold. It is also
possible that the Lyapunov-regularity of a DAE system does not imply the Lyapunov-regularity
of its adjoint and vice versa.

Example 38 Consider the DAE system

eatẋ1 = eatλx1 + x2,
0 = −ebtx2,

(40)

for t ∈ I, with constants a ≤ 0, b ≤ 0 and λ ∈ R. The adjoint system is

eatẏ1 = −(eatλ+ aeat)y1,
0 = −y1 + ebty2.

(41)

It is easy to see that both (40) and (41) are Lyapunov-regular. The only Lyapunov exponent for
(40) is λ, while the only Lyapunov exponent for (41) is −λ − a − b. So, the Perron identity (37)
between the Lyapunov exponents does not hold if a+ b 6= 0. In addition, the Lyapunov exponent
of (41) is not necessarily equal to that of its underlying ODE. Note that in this example all the
coefficient matrices are bounded.

Example 39 Consider the systems (40) and (41) as in Example 38 but assume that a is positive,
i. e. the leading coefficient matrix is unbounded and assume that λ is given by the time-varying
function λ(t) = sin(ln(t+ 1)) + cos(ln(t+ 1)). Then, the Lyapunov spectrum of (40) is [−1, 1] and
that of the adjoint (41) is [−1 − a − b, 1 − a − b]. Neither the DAEs nor their underlying ODEs
are Lyapunov-regular. However, if a + b = 2, then (37) holds for the upper Lyapunov exponents
but the spectra of the DAE and its adjoint are not symmetric at all.

As we have defined it, Lyapunov-regularity is an asymptotic property of solutions to a DAE
system. Hence, the Lyapunov-regularity definition presented here seems to be more natural than
that based on the Perron identity (37) given in [17]. Clearly, if the conditions (34) and (36) hold,
then the different definitions of Lyapunov-regularity are equivalent.

The following two examples demonstrate the effect of the algebraic constraint on the dynamical
behavior of solutions. We stress that again in these examples the coefficient matrices are bounded.

Example 40 Consider the DAE system

ẋ1 = −x1,
0 = x1 − e−t+t sin(t)x2.

Here the underlying ODE is Lyapunov-regular, but the DAE itself is not. Conversely, consider
the DAE

ẋ1 = [sin(ln(t+ 1) + cos(ln(t+ 1))]x1,

0 = −x1 + et sin(ln(t+1))−tx2.

Here the DAE is Lyapunov-regular but the underlying ODE is not.

Example 41 The DAE system

ẋ1 = −3x1 + et sin(t)−tx2,
0 = x2,

is Lyapunov-regular. However, its adjoint system

ẏ1 = 3y1,
0 = et sin(t)−ty1 + y2,

is not.
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We see from these examples that not the boundedness of the original coefficient matrices, but the
boundedness of the coefficients in (34), (36) is relevant.

In this section we have introduced the concepts of Lyapunov spectra and Lyapunov-regularity
for strangeness-free DAEs of the form (26). Since these concepts only depend on the solution of
the DAE and not on the representation of the system of DAEs, whether it is in the form (26) or
in the general form (1), we immediately have all the results also for DAEs in the general form.

3.2 Stability of Lyapunov exponents

The analysis performed in the last subsection changes substantially if the DAE (26) is subject to
perturbations, i. e. if one studies perturbed DAEs

(E(t) + ∆E(t))ẋ = (A(t) + ∆A(t))x, t ∈ I, (42)

with perturbation functions ∆E(t), ∆A(t). If we allow general perturbations, then it is very
difficult to analyze the behavior of the system due to the fact that the strangeness-index may
change or the solvability of the system may be destroyed, see [9, 34, 62]. The complete perturbation
analysis for this case is still an open problem even for constant coefficient systems. For this
reason we require that the pair of perturbation functions (∆E,∆A), ∆E, ∆A ∈ C(I,Rn×n) are
sufficiently smooth such that by applying a similar orthogonal transformation as from (26) to (30)
(but not the same), we obtain

[

Ê11 + ∆Ê11 0
0 0

]

˙̂x =

[

Â11 + ∆Â11 Â12 + ∆Â12

Â21 + ∆Â21 Â22 + ∆Â22

]

x̂, t ∈ I. (43)

If this is the case then we say that the perturbations are admissible.

Lemma 42 Consider a strangeness-free DAE of the form (26) and the set P of all pairs of
admissible perturbation functions (∆E,∆A) such that in the transformed systems (43) the blocks
Ê11 and Â22 are still invertible and have bounded inverses. If (∆E,∆A) ∈ P is sufficiently small,
then (43) remains strangeness-free.

Proof. The assertion follows, since for sufficiently small admissible pairs of perturbations (∆E,∆A)
the functions I − Ê−1

11 ∆Ê11 and I − Â−1
22 ∆Â22 remain pointwise nonsingular.

If the unperturbed DAE systems corresponding to the transformed system (43) has boundedly
invertible blocks Ê11 and Â22, then we call these DAEs robustly strangeness-free. In the following
we restrict ourselves to robustly strangeness-free DAE systems under admissible perturbations.

Definition 43 The upper Lyapunov exponents λu
1 ≥ ... ≥ λu

d of (30) are said to be stable if for
any ǫ > 0, there exists δ > 0 such that the conditions supt ||∆E(t)|| < δ, supt ||∆A(t)|| < δ on the
perturbations imply that the perturbed DAE system (43) is strangeness-free and

|λu
i − γu

i | < ǫ, for all i = 1, 2, ..., d,

where the γu
i are the ordered upper Lyapunov exponents of the perturbed system (43).

The DAE system (30) and the perturbed system (43) are called asymptotically equivalent if
they are strangeness-free and

lim
t→∞

||∆E(t)|| = lim
t→∞

||∆A(t)|| = 0.

It is clear that the stability of upper Lyapunov exponents and the asymptotic equivalence of
DAE systems are invariant under strong global kinematic equivalence transformations. Since the
Lyapunov exponents do not depend on the behavior of the coefficient matrices on a finite interval,
we have the following result (see also [1, Theorem 5.2.1] or [26, Theorem 3.1]).
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Theorem 44 Suppose that the DAE system (30) and the perturbed system (43) are asymptotically
equivalent. Then the stability of the Lyapunov exponents of (30) implies λu

i = γu
i , for all i =

1, 2, ..., d, where again the γu
i are the ordered upper Lyapunov exponents of the perturbed system

(43).

Proof. Due to the asymptotic equivalence of the two systems, given an arbitrary ǫ > 0, there
exists T > 0 (sufficiently large) such that

sup
t≥T

||∆E(t)|| < δ, sup
t≥T

||∆A(t)|| < δ, (44)

where δ (depending on ǫ) is as in Definition 43. By definition, the Lyapunov exponents are
invariant with respect to changes occurring in the coefficient matrices on a finite interval [0, T ].
On the other hand, due to the stability (of the Lyapunov exponents), the inequalities (44) imply
that

|λu
i − γu

i | < ǫ, for all i = 1, 2, ..., d.

Since ǫ can be chosen arbitrarily small, the proof is complete.

As our next step we extend the concept of integral separation to DAEs.

Definition 45 A minimal fundamental solution matrix X for (26) (or (30)) is called integrally
separated if for i = 1, 2, ..., d− 1 there exist constants β > 0 and γ > 0 such that

||X(t)ei||
||X(s)ei||

· ||X(s)ei+1||
||X(t)ei+1||

≥ γeβ(t−s),

for all t, s with t ≥ s ≥ 0. If a DAE system has an integrally separated minimal fundamental
solution matrix, then we say it has the integral separation property.

Analogous to the result for ODEs in Proposition 11, we then have the following facts.

Proposition 46 Consider a strangeness-free DAE system of the form (30).

1. If (30) is integrally separated then the same holds for any globally kinematically equivalent
system, i. e. also for (26).

2. If (30) is integrally separated, then it has pairwise distinct upper and pairwise distinct lower
Lyapunov exponents.

3. Suppose that Â−1
22 Â21 is bounded. Then, the DAE system (30) is integrally separated if and

only if and the underlying ODE (32) is integrally separated.

Proof.

1. Let X̂ be a fundamental solution matrix of (30). Suppose that, under a global kinematic
equivalence transformation, the transformed fundamental solution matrix X̃ is given as
X̃ = V X̂, where V is smooth, and V as well as V −1 are bounded. Then,

∣

∣

∣

∣

∣

∣
V (t)X̂(t)ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
V (s)X̂(s)ei

∣

∣

∣

∣

∣

∣

≥ 1

cond(V )

∣

∣

∣

∣

∣

∣
X̂(t)ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
X̂(s)ei

∣

∣

∣

∣

∣

∣

,

for all t, s and i = 1, 2, ..., d, where

cond(V ) := sup
t,s

||V (t)||
∣

∣

∣

∣V −1(s)
∣

∣

∣

∣ .

A similar estimate for i+ 1 with the change of variables t↔ s, yields
∣

∣

∣

∣

∣

∣
V (s)X̂(s)ei+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
V (t)X̂(t)ei+1

∣

∣

∣

∣

∣

∣

≥ 1

cond(V )

∣

∣

∣

∣

∣

∣
X̂(s)ei+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
X̂(t)ei+1

∣

∣

∣

∣

∣

∣

.
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Multiplying the left and right side of these two inequalities for i and i+ 1, we obtain

∣

∣

∣

∣

∣

∣
V (t)X̂(t)ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
V (s)X̂(s)ei

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣
V (s)X̂(s)ei+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
V (t)X̂(t)ei+1

∣

∣

∣

∣

∣

∣

≥ 1

[cond(V )]2

∣

∣

∣

∣

∣

∣
X̂(t)ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
X̂(s)ei

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣
X̂(s)ei+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
X̂(t)ei+1

∣

∣

∣

∣

∣

∣

≥ 1

[cond(V )]2
γeβ(t−s),

for all t, s and i = 1, 2, ..., d− 1, which immediately yields the assertion.

2. This part is immediate.

3. The proof is similar to that of Part 1. We use again the estimates (35) between the columns
of X̂ and the corresponding columns of the fundamental solution for (32).

Remark 47 Note that the integral separation property is of a rather uniform nature. It is stronger
than the property that

||X(t)ei||
||X(t)ei+1||

≥ γeβt, t ∈ I,

which is sufficient for the Lyapunov exponents to be pairwise distinct. This is the reason, why in
Part 3. of Proposition 46 we require a stronger assumption than the condition (34) that we have
used before.

Theorem 48 Suppose that the coefficient matrices in (30) are such that

Â−1
22 Â21, Â12Â

−1
22 , Ê11, Ê

−1
11 (Â11 − Â12Â

−1
22 Â21) are bounded. (45)

If the system (30) has d pairwise distinct upper and pairwise distinct lower Lyapunov exponents
and they are stable, then the system admits integral separation. Conversely, if there exists an
integrally separated fundamental solution matrix to (30), then the system has d stable pairwise
distinct upper and stable pairwise distinct lower Lyapunov exponents.

Proof. Under the boundedness assumption of Â−1
22 Â21, the DAE system (30) possesses the same

Lyapunov exponents as its underlying ODE (32). The boundedness conditions (45) imply that if
the perturbations ∆E and ∆A are small enough, then the underlying explicit ODE

˙̂x1 = Âx̂1 = Ê−1
11 (Â11 − Â12Â

−1
22 Â21)x̂1

is only affected by a small perturbation in the coefficient matrix Â. By invoking Part 3 of Propo-
sition 46 and the well-known result for ODEs [1], see also [25], the proof for system (30) follows.

Remark 49 Theorem 46 is stated for both the upper and the lower Lyapunov exponents. But
one should note that although both upper and lower Lyapunov exponents are pairwise distinct,
the Lyapunov spectral intervals may intersect each other, see Example 53 below.

Unlike the case of ODEs, the integral separation of a DAE system does not automatically imply
that of its adjoint system.

Theorem 50 Consider a strangeness-free DAE system of the form (30) and suppose that Â−1
22 Â21,

Â12Â
−1
22 , Ê11, and Ê−1

11 are bounded. Then, the system has an integrally separated fundamental
solution matrix if and only if its adjoint (29) has an integrally separated fundamental solution
matrix.
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Proof. The proof follows immediately by using the structure of the fundamental solution matrices
of (30), the Lagrange identity, the first statement of Theorem 36, and Part 3. of Proposition 46.

Recall that if the columns of X̂1 form a normal basis for (32) then the columns of Y1 :=
Ê−T

11 X̂−T
1 form a normal basis for the adjoint. But, as the following example shows, without the

boundedness conditions in Theorem 50, the integral separation of the DAE (30) does not imply
the integral separation of the underlying ODE (32).

Example 51 Consider the DAE system

ẋ1 = x1 + x2,
ẋ2 = x2,
0 = x1 − x3,
0 = x2 − e−tx4.

Clearly, the underlying ODE
[

ẋ1

ẋ2

]

=

[

1 1
0 1

] [

x1

x2

]

is not integrally separated, but the DAE system has a minimal fundamental solution

X(t) =









et tet

0 et

et tet

0 e2t









,

which is integrally separated. This illustrates the need for the boundedness assumptions in (45).

3.3 Bohl exponents and Sacker-Sell spectrum

The extension of Bohl exponents and Bohl intervals to strangeness-free DAE systems of the form
(26) is straightforward. Definition 17 can be applied directly to DAEs and it is not difficult to
verify the following statements.

Proposition 52 Consider the DAE system (26) and the transformed system (30). Then we have
the following properties of Bohl exponents.

1. Bohl exponents are invariant under global kinematical equivalence transformations.

2. Consider a minimal fundamental solution matrix X̂ for (30). If Â−1
22 Â21 is bounded, then

the Bohl intervals for the columns of X̂ are exactly the Bohl intervals for the corresponding
fundamental solution matrix X̂1 of the underlying ODE (32).

3. If the Bohl intervals of the columns of a minimal fundamental solution matrix X of (26) are
d disjoint closed intervals, then X has integrally separated columns.

4. If the columns of a fundamental solution matrix X of (26) are integrally separated, then the
upper (or the lower) Bohl exponents of the columns of X columns are distinct, but the Bohl
intervals may intersect each other.

Proof.

1. Suppose that V ∈ C1(I,Rn×n) such that V and V −1 are bounded. Let x be an arbitrary
solution to (26). Since

||V (t)x(t)||
||V (s)x(s)|| ≥

1

cond(V )

||x(t)||
||x(s)|| ,
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we have
ln ||V (t)x(t)|| − ln ||V (s)x(s)||

t− s
≥ ln ||x(t)|| − ln ||x(s)|| − ln cond(V )

t− s
.

Taking the lim sup on both sides as s, t− s tend to ∞, we obtain

κu
B(V x) ≥ κu

B(x).

Conversely, we have x = V −1V x, hence similarly we obtain

κu
B(x) ≥ κu

B(V x).

As a consequence, we have κu
B(V x) = κu

B(x). The proof for the lower Bohl exponents is
obtained analogously.

2. The proof is similar to that of Theorem 32.

3. Without loss of generality, we assume that the Bohl intervals of X are ordered decreasingly.
For the sake of simplicity, it suffices to consider the first two columns x1 and x2. By the
definition of the Bohl exponents, there exist positive constants Ni,Mi, i = 1, 2 such that

Nie
κl

i(t−s) ||xi(s)|| ≤ ||xi(t)|| ≤Mie
κu

i (t−s) ||xi(s)|| , for all t ≥ s,

for i = 1, 2, where κl
i and κu

i are lower and upper Bohl exponents for xi, respectively. Then,
it is easy to see that

||x1(t)||
||x1(s)||

||x2(s)||
||x2(t)||

≥ N1e
κl
1(t−s)

M2eκu
2
(t−s)

=
N1

M2
e(κ

l
1−κu

2 )(t−s)

holds for all t ≥ s. Since the intervals [κl
1, κ

u
1 ] and [κl

2, κ
u
2 ] are disjoint, the positivity of

(κl
1 − κu

2 ) is obvious, which verifies the integral separation of x1 and x2.

4. For the converse statement, we consider again the first two columns x1 and x2. By the
integral separation property, there exist positive constants β, γ such that

||x1(t)||
||x1(s)||

||x2(s)||
||x2(t)||

≥ γeβ(t−s) t ≥ s,

or equivalently
||x1(t)||
||x1(s)||

≥ γeβ(t−s) ||x2(t)||
||x2(s)||

,

which implies

ln ||x1(t)|| − ln ||x1(s)||
t− s

≥ ln γ + β(t− s) + ln ||x2(t)|| − ln ||x2(s)||
t− s

.

Taking the lim sup on both sides of the above inequality as s, t−s tend to infinity, we obtain

lim sup
s,t−s→∞

ln ||x1(t)|| − ln ||x1(s)||
t− s

≥ lim sup
s,t−s→∞

ln ||x1(t)|| − ln ||x1(s)||
t− s

,

which implies that κu
1 > κu

2 . By taking the lim inf instead of the lim sup, we obtain the
result for the lower Bohl exponents.

Even though we have shown that integral separation implies disjoint upper and lower Bohl
exponents, the Bohl intervals may still overlap as the following example demonstrates.
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Example 53 Consider the system

ẋ1(t) = [sin(ln t) + cos(ln t)]x1(t),
ẋ2(t) = [sin(ln t) + cos(ln t) − 1]x2(t),

with t ≥ 1that is an extension to DAEs of an example by Perron [64]. It is easy to see that
this system is integrally separated. However, the Bohl intervals [−

√
2,
√

2] and [−
√

2− 1,
√

2− 1]
are clearly not disjoint. Similarly, also the Lyapunov spectral intervals of this system [−1, 1] and
[−2, 0] overlap.

In order to extend the concept of exponential dichotomy to DAEs, we first introduce shifted
DAE systems.

Definition 54 Consider a strangeness-free DAE of the form (26). For λ ∈ R, the DAE system

E(t)ẋ = [A(t) − λE(t)]x, t ∈ I, (46)

is called a shifted DAE system.

By the transformation of Theorem 30, the shifted DAE transforms as

[

Ê11 0
0 0

]

˙̂x =

[

Â11 − λÊ11 Â12

Â21 Â22

]

x̂, t ∈ I, (47)

and clearly, the shifted DAE system inherits the strangeness-free property from the original DAE.
In the previous subsection, we have seen that minimal fundamental solution matrices are useful

in the analysis of Lyapunov exponents. Unfortunately, they do not have the semi-group property
as fundamental solutions in the ODE case have. However, for strangeness-free systems it is easy
to introduce a (unique) maximal fundamental solution matrix X which possesses a semi-group
property by demanding that it satisfies the projected initial condition

E(t0) (X(t0) − In) = 0. (48)

Example 55 Condition (48) is, however, not the right condition, if the system is not strangeness-
free. Consider the

E(t)ẋ(t) = A(t)x(t), t ∈ I,

with

E(t) =

[

0 0
1 −t

]

, A(t) =

[

−1 t
0 0

]

,

see [47, 51]. The strangeness index of this system is 1. It is easy to see that the trivial solution
X ≡ 0 is the only maximal fundamental matrix solution, but it does not satisfy (48).

In the following, when it is necessary to emphasize the dependence of the fundamental solution
matrix on the initial time t0, we write X(t, t0).

In the case of the transformed strangeness-free system (30), a maximal fundamental solution
matrix that satisfies the corresponding projected initial condition (48) is easily obtained as

X̂(t, t0) =

[

X̂1(t, t0) 0

Â−1
22 Â21(t)X̂1(t, t0) 0

]

, (49)

where X̂1 is a fundamental solution matrix for (32) satisfying X̂1(t0, t0) = Id. For this maxi-
mal fundamental solution matrix X̂(t, t0), we introduce the generalized inverse matrix function
X̂−(t, t0) defined by

X̂−(t, t0) :=

[

X̂−1
1 (t, t0) 0

Â−1
22 Â21(t0)X̂

−1
1 (t, t0) 0

]

, (50)

for t ≥ t0. The matrix functions X̂ and X̂− satisfy the following relations.
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Proposition 56 Let X̂ as in (49) be the maximal fundamental solution matrix of (30) and let
X̂− be as in (50). Then for t1 ≥ t0, the following identities hold.

1. X̂(t1, t0)X̂
−(t1, t0)X̂(t1, t0) = X̂(t1, t0),

2. X̂−(t1, t0)X̂(t1, t0)X̂
−(t1, t0) = X̂−(t1, t0),

3. X̂(t1, t0)X̂
−(t1, t0) =

[

I 0

Â−1
22 (t1)Â21(t1) 0

]

,

4. X̂−(t1, t0)X̂(t1, t0) =

[

I 0

Â−1
22 (t0)Â21(t0) 0

]

,

and these four properties define the matrix X̂− uniquely.
Furthermore, X̂ satisfies the semigroup property, i.e. for t2 ≥ t1 ≥ t0, we have

X̂(t2, t1)X̂(t1, t0) = X̂(t2, t0).

Proof. By using the formulae (49) and (50), the identities 1.-4. as well as the semigroup property
are easily verified by elementary matrix calculations.

The identities 1.-2. in Proposition 56 mean that X−(t1, t0) is a reflexive generalized inverse of
X(t1, t0), while the identities 3.-4. guarantee that this generalized inverse is unique, see [4, 5].

In the following, for ease of notation, we use t0 = 0 and the abbreviation X̂(t) := X̂(t, 0). We
then introduce the concept of exponential dichotomy for DAEs as in [57].

Definition 57 The semi-implicit DAE system (30) is said to have an exponential dichotomy if
for a maximal fundamental solution matrixX̂(t), there exists a projection matrix P ∈ R

d×d and
constants α, β > 0, and K,L ≥ 1 such that

∣

∣

∣

∣

∣

∣

∣

∣

X̂(t)

[

P 0
0 0

]

X̂−(s)

∣

∣

∣

∣

∣

∣

∣

∣

≤ Ke−α(t−s), t ≥ s,
∣

∣

∣

∣

∣

∣

∣

∣

X̂(t)

[

Id − P 0
0 0

]

X̂−(s)

∣

∣

∣

∣

∣

∣

∣

∣

≤ Leβ(t−s), t ≤ s.
(51)

Furthermore, we say that a general DAE system (26) has an exponential dichotomy if there exists
a global kinematical equivalence transformation that reduces (26) to the semi-implicit form and
the reduced system has an exponential dichotomy.

For a strangeness-free DAE in the form (30), exponential dichotomy can again be characterized
via the underlying ODE.

Theorem 58 The DAE system (30) has an exponential dichotomy if and only if Â−1
22 Â21 is

bounded and the corresponding underlying ODE (32) has an exponential dichotomy.

Proof. Suppose that (51) holds. Using the structure of X̂ and X̂−, we can rewrite (51) as

∣

∣

∣

∣

∣

∣

∣

∣

[

X̂1(t)PX̂
−1
1 (s)

Â−1
22 (t)Â21(t)X̂1(t)PX̂

−1
1 (s)

]
∣

∣

∣

∣

∣

∣

∣

∣

≤ Ke−α(t−s), t ≥ s,
∣

∣

∣

∣

∣

∣

∣

∣

[

X̂1(t)(Id − P )X̂−1
1 (s)

Â−1
22 (t)Â21(t)X̂1(t)(Id − P )X̂−1

1 (s)

]
∣

∣

∣

∣

∣

∣

∣

∣

≤ Leβ(t−s), t ≤ s,

(52)

which implies that the underlying ODE (32) has an exponential dichotomy. Setting t = s, we
obtain
∣

∣

∣

∣

∣

∣

∣

∣

[

Id
Â−1

22 (t)Â21(t)

]
∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

X̂(t)

[

P 0
0 0

]

X̂−(t)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

X̂(t)

[

Id − P 0
0 0

]

X̂−(t)

∣

∣

∣

∣

∣

∣

∣

∣

≤ K + L, t ∈ I,
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from which the boundedness of Â−1
22 (t)Â21(t) is clear.

If Â−1
22 Â21 is bounded and (32) has an exponential dichotomy, then clearly the inequalities in

(52) hold.

The following facts associated with exponential dichotomy of DAEs follow easily.

Proposition 59 Consider a strangeness-free DAE of the form (30) that has an exponential di-
chotomy.

1. Every globally kinematically equivalent system has an exponential dichotomy, i. e. in par-
ticular the exponential dichotomic property is invariant under global kinematical equivalence
transformations.

2. If a fundamental solution matrix X̂ of (30) has an exponential dichotomy, then so does
the fundamental solution matrix that fulfills the projected initial condition (48) at t0 = 0.
Furthermore, the projection P can be chosen to be orthogonal.

Proof. The first part simply follows by the definition of exponential dichotomic DAE systems. By
Theorem 58, to verify the second statement, it suffices to consider the underlying ODE system (32)
and analyze its exponential dichotomy. Invoking [26, Lemma 6.1], the underlying ODE system (32)
also admits an exponential dichotomy for its (principal) matrix solution that satisfies X̂1(0) = Id
and the projection P can be chosen to be orthogonal. Finally, note that the fundamental matrix
solution for (30) constructed with this X̂1, see (49), is exactly the unique fundamental solution
matrix that fulfills the projected initial condition.

After these preparations we can define Sacker-Sell spectra for DAEs.

Definition 60 The Sacker-Sell (or exponential dichotomy) spectrum of the DAE system (30) is
defined by

ΣS := {λ ∈ R, the shifted DAE (47) does not have an exponential dichotomy} . (53)

The complement of ΣS is called the resolvent set for the DAE system (30).
The Sacker-Sell spectrum of the DAE system (26) is defined as the Sacker-Sell spectrum of its

transformed DAE system (30).

With these definitions we have the following properties of Sacker-Sell spectra for DAEs.

Lemma 61 Consider the DAE system (30) and suppose that Â−1
22 Â21 is bounded. Then,

1. the Sacker-Sell spectrum of the DAE system (30) is exactly the Sacker-Sell spectrum of the
underlying ODE (32). Thus, it consists of at most d closed intervals.

2. the Sacker-Sell spectrum of the DAE system (26) does not depend on the choice of an or-
thogonal change of basis that transforms it into the form (30).

Proof.

1. Consider an arbitrary λ ∈ R. By Theorem 58, the shifted DAE system (47) with this λ has
an exponential dichotomy if and only if the corresponding shifted underlying ODE system
has an exponential dichotomy. This implies that the resolvent set of (30) and that of (32) are
exactly the same which proves the assertion. Since the dimension (the size) of the underlying
ODE system (32) is d, it has been shown in [69] that the Sacker-Sell spectrum of (32) consists
of at most d closed intervals.

2. As a consequence of Proposition 59, Part 1, two globally kinematically equivalent semi-
implicit DAE systems must possess the same Sacker-Sell spectrum. Therefore, the Sacker-
Sell spectrum of the DAE system (26) does not depend on the choice of a global kinematic
equivalence transformation that transforms it into the form (30).
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We also obtain the relationship of Sacker-Sell spectra and the integral separation property.

Theorem 62 Suppose that the Sacker-Sell spectrum of (26) is given by d disjoint closed intervals.
Then there exists a minimal fundamental solution matrix of (26) with integrally separated columns.

Proof. Without loss of generality, it is sufficient to consider the transformed system (30). By
Theorem 58, the assumption implies that Â−1

22 Â21 is bounded. Then, by Lemma 61, the Sacker-
Sell spectrum of the underlying ODE (32) consists of the same d disjoint intervals. By invoking [26,
Theorem 6.3], then (32) has an integrally separated fundamental solution matrix denoted by X̂1.
Hence, by construction (see Part 3. of Proposition 46), there exists a corresponding fundamental
solution for the DAE system (30) whose columns are integrally separated.

For the converse of this result we again need a boundedness condition.

Theorem 63 Suppose that for the DAE system (30), Â−1
22 Â21 is bounded and there exists a min-

imal and integrally separated fundamental solution matrix X̂. Then the Sacker-Sell spectrum for
(30) is given exactly by the d (not necessarily disjoint) Bohl intervals associated with the columns
of X̂.

Proof. Because of the relations between (30) and its underlying ODE (32), the verification of the
statement reduces to that for the underlying ODE system (32). Due to a theorem of Bylov (see
[1, Corollary 5.3.2] or [25, Theorem 2.31]), there exists a kinematic equivalence transformation
that transforms (32) into diagonal form. The diagonalized system obtained in this way is inte-
grally separated as well. By Lemmas 21 and 22 we have that the Sacker-Sell spectrum for the
diagonal ODE system is exactly the set of Bohl intervals for all scalar equations corresponding
to the diagonal elements. Since Bohl intervals are invariant under global kinematic equivalence
transformations, the proof is complete.

Remark 64 As we have seen already for ODEs, if we take an arbitrary minimal fundamental
solution matrix of (30), then the set of Bohl intervals associated with its columns is only a subset
of the Sacker-Sell spectrum of (30). The integral separation assumption then ensures that the two
sets coincide.

Corollary 65 Consider the strangeness-free DAE system (26). Then the Lyapunov spectrum is
contained in the Sacker-Sell spectrum, i.e. we have ΣL ⊆ ΣS.

Proof. Suppose that the columns of a fundamental solution matrix X of (26) form a normal
basis. Then, by definition, the Lyapunov spectrum is exactly the set of Lyapunov intervals for
the columns of X. Since for an arbitrary solution x of (26), the Lyapunov interval is contained
in the Bohl interval and since the Bohl intervals are contained in the Sacker-Sell spectrum (see
Remark 64), the proof is complete.

The following well-known example example of Perron [64] shows that Lyapunov spectral inter-
vals can be strict subsets of Sacker-Sell spectral intervals.

Example 66 Consider the ODE

ẋ = [sin(ln(t+ 1)) + cos(ln(t+ 1))]x,

with solution x(t) = x(0)e(t+1) sin(ln(t+1)). The Lyapunov spectrum is given by [−1, 1], while the
Bohl interval (and the Sacker-Sell spectrum) is given by [−

√
2,
√

2], see [19] and [25].

Finally we analyze the relation between the Sacker-Sell spectra of the DAE system (30) and its
adjoint (38).
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Lemma 67 Consider the implicit scalar differential equation

e(t)ẋ = a(t)x, t ∈ I,

where e, e−1, and e−1a are continuous and bounded. Let the Sacker-Sell spectrum associated with
this system be given by the interval [α, β]. Then the Sacker-Sell spectrum of the adjoint equation

e(t)ẏ = −(a(t) + ė(t))y

is given by [−β,−α].

Proof. Without loss of generality, we assume that e(t) > 0 for all t ∈ I. Let the Sacker-Sell
spectrum of the adjoint equation be denoted by [ᾱ, β̄]. Due to Proposition 22, we have

α = lim inf
s,t−s→∞

1

t− s

∫ t

s

a(τ )

e(τ )
dτ

and

β̄ = lim sup
s,t−s→∞

−1

t− s

∫ t

s

[

a(τ )

e(τ )
+
ė(τ )

e(τ )

]

dτ.

By some elementary manipulations, we obtain

β̄ = lim sup
s,t−s→∞

−1

t− s

[
∫ t

s

a(τ )

e(τ )
dτ + ln e(t) − ln e(s)

]

.

Since e and e−1 are bounded, we get

lim
s,t−s→∞

1

t− s
(ln e(t) − ln e(s)) = 0,

and, therefore, β̄ = −α. The proof that ᾱ = −β follows analogously.

Before we can prove the symmetry property for the Sacker-Sell spectra of the DAE and its
adjoint, we need the following lemma.

Lemma 68 Consider an implicit ODE of the form

E(t)ẋ = A(t)x (54)

with E(t) pointwise nonsingular. Suppose that both E(t) and A(t) are continuous and that E−1A
is bounded. Then there exist pointwise orthogonal matrix functions U ∈ C(I,Rn,n) and V ∈
C1(I,Rn,n) such that the transformed matrix functions

E = [eij ] = UTEV and A = [aij ] = UTAV − UTEV̇

are both in upper triangular form.

Proof. We give a constructive proof. We want to determine triangular matrix functions E and A
with

A = UTAV − UTEV̇ = UTAV − UTEV V T V̇ = UTAV − EV T V̇ ,

and
E−1A = E−1UTAV − V T V̇

being both triangular. Due to the orthogonality of V we must have that S(V ) = [si,j ] := V T V̇ is
skew-symmetric. Hence, the strictly lower triangular part of S(V ) can be determined first by the
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corresponding part of W = [wij ] = E−1UTAV and the remaining part then is determined by the
skew-symmetry of S(V ), i.e.,

sij =







wij , i > j,
0, i = j,

−wji, i < j,
1 ≤ i, j ≤ d. (55)

The orthogonal matrix function V then solves the differential equation

V̇ = V S(V ). (56)

At t = 0, we can obtain V (0) by using a QR-factorization of an initial value for the fundamental
solution matrix X(0) associated with (54) say, the identity matrix. Since W = E−1UTAV =
V TE−1AV , the boundedness of E−1A implies the boundedness of W , thus the boundedness of
S(V ), as well. Thus, V can be determined as the (unique) solution to the initial value problem
(56). With this, a unique matrix function U is then determined via

EV = UE (57)

and this then uniquely determines A.

It should be noted that the computation of the triangularization in (68) can actually be im-
plemented numerically by using smooth QR-factorizations, see [20, Subsection 2.1].

Using (68), we can now prove the following theorem.

Theorem 69 Consider the DAE system (30). Suppose that Â−1
22 Â21, Â12Â

−1
22 , Ê11, and Ê−1

11 are
bounded. Then, the Sacker-Sell spectrum of (30) and that of the adjoint system are symmetric
with respect to the origin, i. e., if [αi, βi], (1 ≤ i ≤ d) is an arbitrary Sacker-Sell spectral interval
for (30), then [−βi,−αi] is a Sacker-Sell spectral interval for the adjoint system and vice versa.

Proof. By Lemma 61, it suffices to consider the Sacker-Sell spectrum associated with the underlying
ODEs (32) and (39). By Lemma 68, there exist pointwise orthogonal matrix functions U1 ∈
C(I,Rd,d) and V1 ∈ C1(I,Rd,d) such that (32) is equivalently transformed to

E1ż1 = A1z1,

where E1 = UT
1 Ê11V1,A1 = UT

1 ÂsV1 − UT
1 Ê11V̇1 are both upper triangular. Similarly, the equiv-

alence transformation associated with U, V transforms the adjoint equation (39) to

ET ζ̇1 = −(AT
1 + Ė)ζ1,

with lower triangular coefficients. By Theorem 19, the Sacker-Sell spectrum of systems in trian-
gular form is exactly the union of the Sacker-Sell spectra associated with each scalar equations
corresponding to the diagonal elements. By invoking Lemma 67, the proof is complete.

In this section we have introduced the concepts of Sacker-Sell (exponential dichotomy) spectra
for strangeness-free DAEs of the form (26). Again, since these concepts only depend on the solution
of the DAE and not on the representation of the system of DAEs, whether it is in the form (26)
or in the general form (1), we immediately have all the results also for DAEs in the general form.

3.4 Stability of the Sacker-Sell spectrum

In this section we analyze the stability properties of the Sacker-Sell spectrum of a DAE system
of the form (26) under admissible perturbations. This means we restrict ourselves to consider
the perturbed DAE system (43). We assume that the boundedness condition (45) holds and that
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there exist positive constants Mi, 1 ≤ i ≤ 4, Nj , j = 1, 2 and δ such that for t ∈ I the following
bounds are given,

supt

∣

∣

∣

∣

∣

∣
Ê−1

11 (Â11 − Â12Â
−1
22 Â21)

∣

∣

∣

∣

∣

∣
≤M1, supt

∣

∣

∣

∣

∣

∣
Â−1

22

∣

∣

∣

∣

∣

∣
≤M2, supt

∣

∣

∣

∣

∣

∣
Â−1

22 Â21

∣

∣

∣

∣

∣

∣
≤M3,

supt

∣

∣

∣

∣

∣

∣
Â12Â

−1
22

∣

∣

∣

∣

∣

∣
≤M4, supt

∣

∣

∣

∣

∣

∣
Ê11

∣

∣

∣

∣

∣

∣
≤ N1, supt

∣

∣

∣

∣

∣

∣
Ê−1

11

∣

∣

∣

∣

∣

∣
≤ N2,

supt

∣

∣

∣

∣

∣

∣
∆Ê

∣

∣

∣

∣

∣

∣
≤ δ, supt

∣

∣

∣

∣

∣

∣
∆Â

∣

∣

∣

∣

∣

∣
≤ δ.

(58)

Lemma 70 Consider a strangeness-free DAE in the form (30) and a perturbed system of the form
(43) with the bounds (58). If

δ < min{M−1
2 , N−1

2 }, (59)

then the perturbed system (43) remains strangeness-free and we have the estimates

∣

∣

∣

∣

∣

∣
(Â22 + ∆Â22)

−1
∣

∣

∣

∣

∣

∣
≤ M2

1 −M2δ
,
∣

∣

∣

∣

∣

∣
(Ê11 + ∆Ê11)

−1
∣

∣

∣

∣

∣

∣
≤ N2

1 −N2δ
, t ∈ I.

Proof. We have
Â22 + ∆Â22 = Â22(I + Â−1

22 ∆Â22).

Since
∣

∣

∣

∣

∣

∣
Â−1

22 ∆Â22

∣

∣

∣

∣

∣

∣
≤ δM2 < 1, we conclude the matrix (I + Â−1

22 ∆Â22) is invertible for all t ∈ I

and the estimate
∣

∣

∣

∣

∣

∣
(I + Â−1

22 ∆Â22)
−1
∣

∣

∣

∣

∣

∣
≤ 1

1 −M2δ

holds. Hence, the matrix Â22 + ∆Â22 is invertible for all t ∈ I as well, and

∣

∣

∣

∣

∣

∣
(Â22 + ∆Â22)

−1
∣

∣

∣

∣

∣

∣
≤ M2

1 −M2δ
.

The claim for Ê11 +∆Ê11 is proved similarly. Note that the invertibility of these matrices implies
the strangeness-free property of the perturbed DAE system (43).

It is not difficult to verify that (43) satisfies the boundedness condition (45). Using the esti-
mates in Lemma 70, we immediately see that

∣

∣

∣

∣

∣

∣
(Â22 + ∆Â22)

−1(Â21 + ∆Â21)
∣

∣

∣

∣

∣

∣
≤ M3 +M2δ

1 −M2δ
,

and we obtain an estimate for the perturbation arising in the coefficient of the underlying ODE
associated with the perturbed system (43) given by

∣

∣

∣

∣

∣

∣
(Â12 + ∆Â12)(Â22 + ∆Â22)

−1(Â21 + ∆Â21) − Â12Â
−1
22 Â21

∣

∣

∣

∣

∣

∣
≤ M3 +M2δ

1 −M2δ
(1 +M4)δ =: M5(δ)δ,

where M5(δ) = M3(1 + M4) + O(δ) for sufficiently small δ. Let us reformulate the underlying
unperturbed and perturbed ODE into explicit form as

˙̂x1 = Ê−1
11 (Â11 − Â12Â

−1
22 Â21)x̂1,

and
˙̂x1 = (Ē11)

−1(Ā11 − Ā12Ā
−1
22 Ā21)x̄1,

respectively, where Ē11 = Ê11 + ∆Ê11 and Āij = Âij + ∆Âij , i, j = 1, 2. Setting Âs = Â11 −
Â12Â

−1
22 Â21 and Ās = Ā11 − Ā12Ā

−1
22 Ā21, we then obtain

∣

∣

∣

∣

∣

∣
Ē−1

11 Ās − Ê−1
11 Âs

∣

∣

∣

∣

∣

∣
=
∣

∣

∣

∣

∣

∣
(1 + Ê−1

11 ∆Ê11)
−1Ê−1

11 Ās − Ê−1
11 Âs

∣

∣

∣

∣

∣

∣
≤ N2(M1+M5)δ+N

2
2M5δ

2 =: M6(δ)δ,
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where M6(δ) = N2(M1 +M3 +M3M4) +O(δ).
These elementary calculations show that the explicit underlying ODE is only affected by a

small perturbation if the perturbations ∆E, ∆A affecting the DAE system are sufficiently small.
Furthermore, since the boundedness condition (45) is fulfilled, the Sacker-Sell spectrum of the
perturbed DAE system is exactly that of the associated underlying ODE system. This then
implies the stability result for the Sacker-Sell spectrum (and the resolvent set).

Theorem 71 Consider the DAE system (30) and the perturbed system (43). Assume that (45)
holds and that (30) has a Sacker-Sell spectrum that consists of k, k ≤ d, disjoint increasingly
ordered closed finite intervals, i. e.,

ΣS =

k
⋃

i=1

[αi, βi].

Let ε > 0 be sufficiently small such that βi + ε < αi+1 − ε for some i, 0 ≤ i ≤ k. For i = 0
and i = k, set β0 = −∞ and αk+1 = ∞, respectively. Then there exists δ > 0 so that if the
perturbations satisfy the inequality

max{sup
t

∣

∣

∣

∣

∣

∣
∆Ê(t)

∣

∣

∣

∣

∣

∣
, sup

t

∣

∣

∣

∣

∣

∣
∆Â(t)

∣

∣

∣

∣

∣

∣
} ≤ δ,

then the interval (βi + ε, αi+1 − ε) is contained in the resolvent set of the perturbed DAE system
(43).

Proof. Consider an arbitrary λ ∈ (βi + ε, αi+1 − ε). Let the fundamental solution of the shifted
system (47) be denoted by X̂λ and the corresponding part for the underlying ODE by X̂1,λ. Since
λ belongs to the resolvent set of (30) and since λ > βi + ε and λ < αi+1 − ε, it is clear that there
exist a projection matrix P , and constants α, β > ε as well as K,L ≥ 1 such that

∣

∣

∣

∣

∣

∣
X̂1,λ(t)PX̂−1

1,λ(s)
∣

∣

∣

∣

∣

∣
≤ Ke−α(t−s), t ≥ s,

∣

∣

∣

∣

∣

∣
X̂1,λ(t)(I − P )X̂−1

1,λ(s)
∣

∣

∣

∣

∣

∣
≤ Leβ(t−s), t ≤ s.

By invoking the Roughness Theorem (see [18, p. 34]) and using the estimate for the perturbation
appearing in the associated explicit underlying ODE, if δ is sufficiently small such that in addition
to the condition (59), the inequality

∆ = M6(δ)δ < min{ α

4K2
,
β

4L2
}, (60)

holds, then there exists a projection P̄ with the same null-space as P such that for the fundamental
solution matrices X̄λ and X̄1,λ associated with the corresponding shifted system for (43) and its
underlying shifted ODE, respectively, we have

∣

∣

∣

∣

∣

∣
X̄1,λ(t)P̄ X̄−1

1,λ(s)
∣

∣

∣

∣

∣

∣
≤ 5

2K
2e−(α−2K∆)(t−s), t ≥ s,

∣

∣

∣

∣

∣

∣
X̄1,λ(t)(I − P̄ )X̄−1

1,λ(s)
∣

∣

∣

∣

∣

∣
≤ 5

2L
2e(β−2L∆)(t−s), t ≤ s.

It is easy to see that by (60) it follows that (α− 2K∆) and (β− 2L∆) are strictly positive. Thus,
the perturbed and shifted underlying ODE has an exponential dichotomy. Applying Theorem 58,
we obtain that the shifted and perturbed DAE system has an exponential dichotomy as well. But
this means that λ belongs to the resolvent set of the perturbed DAE system (43).

Corollary 72 Let the assumptions of Theorem 71 hold and let ε > 0 be sufficiently small such
that βi−1 + ε < αi − ε < αi ≤ βi < βi + ε < αi+1 − ε, for 0 ≤ i ≤ k. For i = 0 and i = k, set
β0 = −∞ and αk+1 = ∞, respectively. Then, there exists δ > 0 so that if

max{sup
t

∣

∣

∣

∣

∣

∣
∆Ê(t)

∣

∣

∣

∣

∣

∣
, sup

t

∣

∣

∣

∣

∣

∣
∆Â(t)

∣

∣

∣

∣

∣

∣
} ≤ δ,
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then the Sacker-Sell interval [αi, βi] either remains a Sacker-Sell interval associated with the per-
turbed system or it is possibly split into several new Sacker-Sell intervals, but the smallest left
end-point and the largest right end-point stay in the interval [αi − ε, βi + ε].

We remark that by using the Roughness Theorem (see [18, p. 34]) and the estimates of the
perturbation for the explicit underlying ODE, the bound δ in Theorem 71 and Corollary 72 can
be calculated explicitly in terms of ε and the constants Mi, Ni. Furthermore, the exponential
dichotomy spectrum does not depend on the finite-time behavior of the coefficients, i. e. we have
the following corollary for asymptotically equivalent DAE systems.

Corollary 73 Let the assumptions of the Theorem 71 hold. If the perturbations ∆Ê,∆Â are such
that the DAE system (30) and the perturbed system (43) are asymptotically equivalent, then their
Sacker-Sell spectra are the same.

In this section we have analyzed the Lyapunov, and Sacker-Sell spectra for DAEs and their stability
under perturbations. We have shown that the classical results for ODEs can be extended to DAEs.
These results then form the basis for the computational methods that we consider in the following
section.

4 Numerical Computation of Spectral Intervals for DAEs

In this section we extend the approaches that were derived for the computation of spectral intervals
for ODEs in [25, 26, 29] to DAEs. We derive numerical methods for computing Lyapunov and
Sacker-Sell spectra for DAEs of the form (26) based on smooth QR factorizations. We discuss
both continuous time and discrete time versions of these numerical methods.

4.1 Continuous QR-algorithm

The basic idea for the numerical computation of spectral intervals for DAEs is to first transform
the DAE system into an appropriate semi-implicit form, and then to apply a triangularization
process to the coefficient matrices of the underlying implicit ODE. Throughout this section we
assume that the DAE system is given in the strangeness-free form (26), i. e. whenever the value of
E(t), A(t) is needed, this has to be computed from the derivative array as described in Section 2.1.
This can be done for example with the FORTRAN code GELDA [55] or the corresponding MATLAB

version [56].
Although for the analysis we have preferred the semi-explicit form (30), in the numerical

realization we use the transformation from the strangeness-free system (26) to the form (31),
whose existence has been shown in Theorem 30. Note that the two forms (30) and (31) are
globally kinematically equivalent so they have the same spectral intervals.

Suppose that the lower row-block A2 in (26) is continuously differentiable. By assumption it has
full-row rank. Therefore, see [20], there exist a pointwise nonsingular (and upper triangular) matrix
function Ã22 ∈ C1(I,R(n−d)×(n−d)) and a pointwise orthogonal matrix function Q̃ ∈ C1(I,Rn×n)
such that

A2 =
[

0 Ã22

]

Q̃. (61)

A numerical implementation of this smooth factorization can be obtained by using a sequence of
Householder transformations applied to the augmented matrix

[

In
A2

]

.

The triangularization process should be carried out pointwise from the bottom and the explicit
multiplication of the elementary Householder transformations can be avoided. To make the fac-
torization unique and to obtain the smoothness, we require the diagonal elements of Ã22 to be
positive, see [20]. Another possibility would be to derive differential equations for Q̃ (or its House-
holder factors) and to solve the corresponding initial value problems, see [20, 46].

30



The transformation x̃ = Q̃Tx leads to a DAE of the form (31), where

[

Ẽ11 Ẽ12

0 0

]

=

[

E1

0

]

Q̃,

[

Ã11 Ã12

0 Ã22

]

=

[

A1

A2

]

Q̃−
[

E1

0

]

˙̃Q. (62)

In order to evaluate ˙̃Q at any time instance, we use either an appropriate finite difference formula
or the method derived in [46].

Since in the form (31) the solution component x̃2 associated with the algebraic equations
vanishes, i. e., x̃2 = 0, we only have to deal with the underlying implicit ODE (33) for the
dynamic component x̃1.

By the construction given in the proof of Lemma 68, there exist pointwise orthogonal matrix
functions U1 ∈ C(I,Rn,n) and V1 ∈ C1(I,Rn,n) such that the transformed matrix functions

E1 = [eij ] = UT
1 Ẽ11V1 and A1 = [aij ] = UT

1 Ã11V1 − UT
1 Ẽ11V̇1

are both in upper triangular form. Combining this transformation with the preliminary change
of variables x̃ = Q̃Tx, we obtain that there exist pointwise orthogonal matrix functions U =
diag(U1, Ia) ∈ C(I,Rn×n), V = diag(V1, Ia)Q̃ ∈ C1(I,Rn×n) such that by the new change of
variables z = V Tx and by multiplying both sides of (26) with UT from the left, we arrive at a
special upper triangular DAE system

[

E1 UT
1 Ẽ12

0 0

]

ż =

[

A1 UT
1 Ã12

0 Ã22

]

z,

where E1, A1, and Ã22 are upper triangular matrix functions of appropriate sizes.
In the case of explicit ODEs, i. e., if E = In, it is easy to see that Q̃ = In, U = V = U1 = V1

and the presented triangularization procedure reduces to that for ODEs, see Subsection 2.2 and
[25, 26].

As a consequence of the formula (55), in practice, we evaluate A1 by setting K = [kij ] =

UT
1 Ã11V1, and obtain

aij =







(kij − kji), i < j,
kij , i = j,
0, i > j,

1 ≤ i, j ≤ d. (63)

Note that it is not necessary to invert E1 in order to compute S(Q) in (55). Indeed, let L = [lij ]

be the strictly lower triangular part of W1 = E−1
1 UT

1 Ã11V1, then (55) implies the linear system of
equations









e1,1 e1,2 · · · e1,d

0 e2,2 · · · e2,d

· · · · · ·
0 0 · · · ed,d

















0 0 · · · 0
l2,1 0 · · · 0
· · · · · 0
ld,1 ld,2 · · · 0









=









∗ ∗ · · · ∗
k2,1 ∗ · · · ∗
· · · · · ∗

kd,1 kd,2 · · · ∗









. (64)

Solving for the entries lij from the bottom row up to the top row we obtain

ld,j =
kd,j

ed,d
, j = 1, 2, ..., d− 1,

ld−1,j =
kd−1,j−ed−1,dld,j

ed−1,d−1
, j = 1, 2, ..., d− 2,

li,j =
ki,j−

Pd
k=i+1

ei,klk,j

ei,i
, i = d− 2, ..., 2; j = 1, ..., i− 1.

In this way the computational cost to determine L and S(V1) is d3/3 + O(d2), only. The skew-
symmetric matrix S(V1) is then given by

S(V1) = L− LT . (65)
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Another important issue in the numerical implementation is to preserve the orthogonality of V1

during the integration. There are different choices of methods to achieve this. The first is to
use orthogonal integrators, e.g., Runge-Kutta-Gauß schemes, see [41]. The second is to apply
first an arbitrary integration scheme, and then to reorthogonalize the obtained numerical solution
at every grid point by a standard method, e. g., the Gram-Schmidt orthogonalization process.
This is called projected integration. In the ODE case, in [24, 27], the authors have suggested and
analyzed a third possibility, which is based on solving initial value problems for the elementary
Householder or Givens transformations. An extension of the latter approach to implicit ODEs
would give an efficient solution as well. We refer to [22, 26] for more details on the methods and
numerical experiments in the case of explicit ODEs.

Finally, we extend the procedures for computing the Lyapunov and Sacker-Sell spectral inter-
vals to the implicit ODE of the form

E1(t)Ṙ1 = A1(t)R1, t ∈ I, (66)

with upper triangular matrix functions E1,A1. Here R1 is a fundamental solution matrix of the
triangularized underlying implicit ODE and it is exactly the R-part of a QR-factorization of the
fundamental solution to the underlying implicit ODE (33). By multiplying both sides of (66) by
E−1
1 , one arrives at an explicit ODE system of upper triangular form as in the ODE case. From

the boundedness of Ẽ−1
11 Ã11 and the proof of Lemma 68, the boundedness of E−1

1 A1 is obvious.
However, the computation of E−1

1 should be avoided, because only the information lying in the
diagonal elements is relevant for the computation of the spectral intervals.

In the following, we proceed as in the case of explicit ODEs in [26]. Due to Theorem 16, if the
functions aii/eii, i = 1, . . . , d are integrally separated, then the Lyapunov spectrum of the implicit
ODE (66), which coincides with the Lyapunov spectrum of the DAE (26), can be determined as
follows

ΣL =

d
⋃

i=1

[λl
i, λ

u
i ], (67)

with

λl
i := lim inf

t→∞

1

t

∫ t

0

aii(s)

eii(s)
ds, λu

i := lim sup
t→∞

1

t

∫ t

0

aii(s)

eii(s)
ds, i = 1, 2, ..., d.

Let

λi(t) :=
1

t

∫ t

0

aii(s)

eii(s)
ds, i = 1, 2, ..., d, (68)

which can be approximated by solving auxiliary initial value problems

{

φ̇i = aii(t)
eii(t)

φi, t ∈ I,

φi(0) = 0;
i = 1, 2, ..., d, (69)

and then setting

λi(t) =
1

t
φi(t), i = 1, 2..., d. (70)

Since
λl

i = lim
τ→∞

inf
t≥τ

λi(t) and λu
i = lim

τ→∞
sup
t≥τ

λi(t),

for given t0 and T , 0 < t0 < T , i = 1, 2, ..., d, the quantities

λl
i(t0, T ) := inf

t0≤t≤T
λi(t) and λu

i (t0, T ) := sup
t0≤t≤T

λi(t)

give approximate values for λl
i and λu

i , respectively.
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To test the integral separation of the functions {aii/eii}d
i=1 in practice, we use Theorem 14.

Choosing a sufficiently large H, then the Steklov difference of aii/eii and ai+1,i+1/ei+1,i+1 is given
by

Si(t,H) :=
1

H
{[φi(t+H) − φi(t)] − [φi+1(t+H) − φi+1(t)]} , t ∈ I, i = 1, ..., d− 1. (71)

Analogously, by Theorem 19 and Proposition 22, the functions aii/eii, i = 1, . . . , d also present
information about the Sacker-Sell intervals of the implicit ODE (66) even without the integral
separability. Concretely, for given T ≥ H > 0 and 0 < t0 < T −H, we set bii(t) = aii(t)/eii(t),
i = 1, 2, ..., d, defined on [0, T ]. We compute the Steklov averages of bii with respect to the given
H as

ψi,H(t) :=
1

H

∫ t+H

t

bii(s)ds, T −H ≥ t ≥ t0.

This computation can be realized by solving auxiliary initial value problems as in the case of
testing integral separation. Then, we use the quantities

κl
i(t0, T,H) := inf

t0≤t≤T−H
ψH,i(t) and κu

i (t0, T,H) := sup
t0≤t≤T−H

ψH,i(t)

as approximations to the endpoints of the Sacker-Sell spectral intervals. Due to the property that
the Sacker-Sell intervals include the Lyapunov intervals we then have obtain also bounds for the
Lyapunov intervals.

We summarize the procedure for computing approximations to Lyapunov and Sacker-Sell spec-
tral intervals in the following algorithm.

Algorithm 1 (Continuous QR algorithm for computing Lyapunov and Sacker-Sell
spectra)

• Input: A pair of sufficiently matrix functions (E,A) in the form of the

strangeness-free DAE (26) (if they are not available directly they must be

obtained pointwise as output of a routine such as GELDA); the values T,H, τ
such that H ∈ (0, T ) and τ ∈ (0, T ); V1(t0) as initial value for (56). Here we

may use V1(t0) = Id.

• Output: Bounds for spectral intervals {λl
i, λ

u
i }d

i=1.

• Initialization:

1. Set j = 0, t0 := 0. Compute Q̃(t0), Ẽ11(t0), and Ã11(t0) as in (31).

2. Compute U1(t0), E1(t0),A1(t0).

3. Set λi(t0) = 0, φi(t0) = 0, i = 1, ..., d.

While tj < T

1. j := j + 1.

2. Choose a stepsize hj and set tj = tj−1 + hj.

3. Compute Q̃(tj), then Ẽ11(tj), Ã11(tj), see (61) and (62).

4. Evaluate V1(tj) by solving (56).

5. Compute U1(tj), E1(tj),A1(tj) as in (57), (63), respectively.

6. Compute φi(tj), λi(tj), i = 1, ..., d as in (69), (70).

7. Compute Si(t,H), i = 1, 2, ..., d− 1, by (71).

8. If desired, test integral separation via Theorem 14.

9. Update minτ≤t≤tj
λi(t) and maxτ≤t≤tj

λi(t).
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The corresponding algorithm for computing Sacker-Sell spectra is similar. A slight difference is
that instead of computing λi(t) at each meshpoint (see Step 6.), we evaluate the Steklov averages
ψH,i(t) by the formula

ψH,i(t) =
1

H
(φi(t+H) − φi(t)), i = 1, 2, ..., d.

Finally, we use the last step for computing infτ≤t≤T−H ψH,i(t) and supτ≤t≤T−H ψH,i(t).

4.2 Discrete QR-algorithm

While in the continuous QR-algorithm, the fundamental solution matrix R1 of the triangularized
implicit ODE system (66) is not evaluated directly, in the discrete QR-algorithm, R1 is indirectly
evaluated by a reorthogonalized integration of DAE system (26), an implicitly determined transfor-
mation to the semi-implicit form (31), and an appropriate QR-factorization. Note that R1 is upper
triangular as well and the diagonal elements of the normalized R1 are given by eφi(t), i = 1, 2, ..., d,
with the auxiliary functions φi defined in (69).

To apply the discrete QR-algorithm, we first choose a mesh 0 = t0 < t1 < ... < tN−1 < tN = T .
(This mesh may be different from that in Algorithm 1). At t0, we set

Z0 = Q0 := Id.

For j = 1, 2, . . . , N , let X [j] be the solution to the matrix initial value problem

{

EẊ [j] = AX [j], tj−1 ≤ t ≤ tj ,
X [j](tj−1) = χj−1,

(72)

with the initial condition

χj−1 := Q̃(tj−1)

[

Qj−1

0

]

. (73)

Here, Q̃ is defined and computed as in (61). We stress that χj−1 defined in this way is a consistent
initial value assigned at tj−1 for DAE system (26). Then, we have that

Q̃(tj)
TX [j](tj) =

[

Zj

0

]

, (74)

where Zj is the value of the rescaled fundamental solution matrix for the underlying ODE (33).
Then, we compute QR-factorizations

Zj = QjΘj , j = 1, 2, . . . , N

where all the diagonal elements of the triangular matrices Θj are chosen to be positive. Now,

letting X̃1 be the normalized fundamental solution matrix of (33), then it follows that

X̃1(tj) = ZjQ
T
j−1X̃1(tj−1)

= QjΘjQ
T
j−1Qj−1Θj−1 · · ·Θ1Q0

= QjΘjΘj−1 · · ·Θ1.

Hence
R1(tj) = ΘjΘj−1 · · ·Θ1.

Note that the quantities Θj give information about the local growth rates of the fundamental

solution matrix X̃1 on [tj−1, tj ]. Furthermore, we obtain

λi(tj) =
1

tj
ln[R1(tj)]i,i =

1

tj
ln

j
∏

ℓ=1

[Θℓ]i,i =
1

tj

j
∑

ℓ=1

ln[Θℓ]i,i, i = 1, 2, . . . , d,
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where the functions λi are defined as in (68). For computing the Lyapunov spectrum, we solve the
associated optimization problems infτ≤t≤T λi(t) and supτ≤t≤T λi(t), i = 1, 2, . . . , d, respectively,
with a given τ ∈ (0, T ).

The approximation of the Sacker-Sell spectrum is obtained analogously. We summarize the
procedure in the following algorithm.

Algorithm 2 (Discrete QR-algorithm for computing Lyapunov and Sacker-Sell spec-
tra)

• Input: A pair of sufficiently smooth matrix functions (E,A) in the form

of the strangeness-free DAE (26) (if they are not available directly they

must be obtained pointwise as output of a routine such as GELDA), the time

interval [0, T ], τ ∈ (0, T ), and a mesh 0 = t0 < t1 < ... < tN−1 < tN = T

• Output: Bounds for spectral intervals {λl
i, λ

u
i }d

i=1.

• Initialization:

1. Set t0 := 0, Z0 = Q0 = Id and compute Q̃(t0) as in (31).

2. Set λi(t0) := 0 and si := 0 for i = 1, . . . , d (for computing the sum si of the

logarithms).

While j ≤ N

1. j := j + 1.

2. Compute the initial values χj−1 via (73).

3. Solve the initial value problem (72) for X [j] on [tj−1, tj ].

4. Compute Q̃(tj) by (61) and then Zj by (74).

5. Compute the QR factorization Zj = QjΘj.

6. Update si := si + ln[Θj ]i,i and λi(tj) = 1
tj
sj , i = 1, 2, . . . , d.

7. If desired, test the integral separation property by using {si}d
i=1, if

necessary.

8. Update minτ≤t≤tj
λi(t) and maxτ≤t≤tj

λi(t), i = 1, 2, . . . , d.

Remark 74 If the same mesh is used in Algorithms 1 and 2 and all calculations are done in exact
arithmetic and without discretization errors, then the quantities si at the end of the j-th step of
Algorithm 2 are exactly the values φi(tj) defined in Algorithm 1.

Advantages of the discrete Algorithm are a simpler implementation and that existing DAE
solvers for strangeness-free problems like BDF or Runge-Kutta methods, see [8, 42, 51] can be
used. However, a disadvantage of the discrete method is that it creates numerical integration
errors on each of the local intervals and these may grow very fast, in particular if the DAE system
is very unstable and the subintervals are very long.

In Algorithms 1 and 2 we face the following error sources in the course of the numerical approxi-
mation of the spectral intervals.

In the continuous QR method, Algorithm 1 the following sources of errors arise.

1. The error in computing the QR factorization to compute Q̃ has to be considered together
with the additional error in the numerical differentiation of Q̃. While the QR factorization
is numerically backward stable and so the errors can be neglected, the error that arises in
the numerical differentiation can be avoided by using the method of [46].

2. In the computation of V1(tj) the integration error has to be considered, while the error in
the QR factorizations to determine U1(tj), E1(tj), and the error arising in the solution of the
linear system for L can be neglected again if backward stable methods are used.
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3. We definitely have to consider the integration error for φi as well as

4. the error from truncating to a finite interval and

5. the error in the solution of the optimization problems.

In the discrete QR method, Algorithm 2 the following sources of errors arise.

1. The error in computing the QR-factorization of Q̃ causes an error in the initial value χj−1

which then influences the

2. integration error for X [j] arising from discretization.

3. The error in computing the QR-factorizations that determine Qj ,Θj can again be neglected
compared to these errors and

4. the error from truncating to a finite interval and

5. the error in solving the optimization problems.

For each method, the errors arising from the first 3 sources can be estimated and kept under control
as well. In the literature, there have been some attempts to give error estimates for truncated
time exponents and for the accumulated integration error, see [22]. Special and careful attention
was paid to the efficient orthogonal integration in [24, 27]. The first systematical error analysis
for QR methods in computing Lyapunov exponents was given in [28, 30]. We refer to these papers
and references therein for more details.

Unfortunately, all existing results were given for regular ODE systems, only. For non-regular
systems, choosing sufficiently large bounds for T, t0, and H and giving error estimates for the
approximate values of lim inf and lim sup are difficult tasks and this is work in progress. For the
illustration of some of the difficulties, see the numerical examples given in the next section.

5 Numerical examples

We have implemented both the continuous and the discrete variants of the QR methods described
in Section 4 in MATLAB. The following results are obtained with Version 7.0 on an IBM computer
with Intel CPU T2300 1.66 GHz. For the orthogonal integration, we have used the projected
integration technique, see [21].

To illustrate the properties of the procedures we consider two examples, one of a Lyapunov
regular DAE system and another DAE system which is not Lyapunov regular. In the second case,
we calculated not only the Lyapunov spectral intervals, but also the Sacker-Sell intervals.

Example 75 Our first example is a Lyapunov-regular DAE system which is constructed similar
to the ODE examples in [22, 26]. We derived a DAE system of the form (26) as follows. We
began with an upper triangular implicit ODE system, applied appropriate transformations and
then added additional algebraic variables. In this way we obtained a semi-implicit DAE system of
the form (31) which was then transformed again to obtain a DAE system of the form (26) whose
spectral information is the same as that of original implicit ODE system.

The original triangular implicit ODE system had the form D(t) ˙̄x1 = B(t)x̄1, where

D(t) =

[

1 + 1
t+1 0

0 1

]

, B(t) =

[

λ1 − 1
t+1 1

0 λ2 + cos (t+ 1)

]

, t ∈ I, λi ∈ R (i = 1, 2).

Here λi, i = 1, 2, (λ1 < λ2) are given real parameters. We then transformed and obtained the
implicit ODE system Ẽ11(t) ˙̃x1 = Ã11(t)x̃1 given by

Ẽ11 = U1DV
T
1 , Ã11 = U1BV

T
1 + U1DV

T
1 V̇1V

T
1 ,
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T h λ1 λ2 CPU − time
500 0.1 4.9341 −0.0043 2.55
500 0.05 4.9337 −0.0038 5.01
500 0.01 4.9337 −0.0037 24.89
1000 0.1 4.9632 −0.0006 5.01
1000 0.05 4.9628 −0.0001 10.01
1000 0.01 4.9627 −0.0001 49.84
2000 0.1 4.9799 −0.0010 10.17
2000 0.05 4.9794 −0.0005 20.02
10000 0.1 4.9956 −0.0009 49.91
10000 0.05 4.9951 −0.0003 99.71

Table 1: Lyapunov exponents for Example 78 computed via the continuous QR-Euler method

with U1(t) = Gγ1
(t), V1(t) = Gγ2

(t) with the Givens rotation

Gγ(t) =

[

cos γt sin γt
− sin γt cos γt

]

and some real parameters γ1, γ2. We chose additional blocks Ẽ12 = U1, Ã12 = V1, Ã22 = U1V1 and
finally

Ẽ =

[

Ẽ11 Ẽ12

0 0

]

, Ã =

[

Ã11 Ã12

0 Ã22

]

.

Using a 4 × 4 orthogonal matrix

G(t) =









cos γ3t 0 0 sin γ3t
0 cos γ4t sin γ4t 0
0 − sin γ4t cos γ4t 0

− sin γ3t 0 0 cos γ3t









,

with real values γ3, γ4 we obtained E = ẼGT , A = AGT + ẼGT ĠGT and applied the methods
to the DAE system E(t)ẋ = A(t)x which is a strangeness-free DAE system of the form (26).
Furthermore, because Lyapunov-regularity together with Lyapunov exponents are invariant with
respect to orthogonal change of variables, this system is Lyapunov-regular with the Lyapunov
exponents λ1, λ2.

For our numerical tests we have used the values

λ1 = 5, λ2 = 0, γ1 = γ4 = 2, γ2 = γ3 = 1.

As numerical integration method in the continuous QR algorithm, we used the (projected) first
order explicit Euler method and the (projected) second order explicit trapezoidal rule, both with
constant stepsize h. The approximate values of the Lyapunov exponents are then calculated with
different stepsizes h and for different time intervals [0, T ]. The results are displayed in Tables 1
and 2, respectively. We display the CPU time measured in seconds.

The graph of the functions λ1(t), λ2(t) is depicted in Figure 1. The monotonic, respectively
oscillatory behavior of the two Lyapunov exponents is well approximated and the (admittedly
slow) convergence of the computed Lyapunov exponents towards the exact Lyapunov exponents
can be observed.

The numerical results of the discrete QR algorithm are displayed in Table 3. We have used
the same meshes as in the computations with the continuous QR algorithm and we have used
the implicit Euler method with a constant stepsize h/10 for the numerical integration of the
DAE in the subintervals. Without this refinement, the approximate values are substantially less

37



T h λ1 λ2 CPU − time
500 0.1 4.9333 −0.0033 4.95
500 0.05 4.9336 −0.0036 9.83
500 0.01 4.9337 −0.0037 48.81
1000 0.1 4.9624 −0.0004 9.88
1000 0.05 4.9626 −0.0002 19.61
1000 0.01 4.9951 −0.0003 100.28
2000 0.1 4.9789 0.0000 19.63
2000 0.05 4.9951 −0.0003 101.02
10000 0.1 4.9946 0.0002 97.55
10000 0.05 4.9948 −0.0001 195.51

Table 2: Lyapunov exponents for Example 78 computed via the continuous QR-Trapezoid method

0 100 200 300 400 500 600
−1

0

1

2

3

4

5

Figure 1: Graph of the functions λi(t), i = 1, 2 in Example 75.

T h λ1 λ2 CPU − time
500 0.1 5.0324 −0.0137 9.87
500 0.05 4.9818 −0.0087 19.59
500 0.01 4.9431 −0.0047 97.31
1000 0.1 5.0625 −0.0100 19.63
1000 0.05 5.0114 −0.0050 38.87
2000 0.1 5.0799 −0.0104 39.20
2000 0.05 5.0284 −0.0053 78.15
10000 0.1 5.0963 −0.0102 194.89
10000 0.05 5.0443 −0.0052 389.64

Table 3: Lyapunov exponents computed by the discrete QR method with the implicit Euler method
as integrator
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T t0 h [λl
1, λ

u
1 ] [λl

2, λ
u
2 ] CPU − time

1000 100 0.1 [−1.0018, 0.5865] [−6.0006,−4.8928] 5.28
5000 100 0.1 [−1.0018, 1.0004] [−6.0006,−4.3846] 26.02
10000 100 0.1 [−1.0018, 1.0004] [−6.0006,−4.0235] 51.52
10000 500 0.1 [−0.0647, 1.0004] [−6.0006,−4.0235] 51.63
10000 100 0.05 [−1.0028, 1.0000] [−6.0001,−4.0229] 103.42
20000 100 0.1 [−1.0018, 1.0004] [−6.0006,−4.0007] 103.50
20000 500 0.1 [−0.4598, 1.0004] [−6.0006,−4.0007] 103.32
20000 100 0.05 [−1.0028, 1.0000] [−6.0001,−4.0001] 210.95
50000 100 0.05 [−1.0028, 1.0000] [−6.0001,−4.0001] 519.45
50000 500 0.05 [−0.9844, 1.0000] [−6.0001,−4.0001] 518.15
100000 100 0.05 [−1.0028, 1.0000] [−6.0001,−4.0001] 1044.94
100000 500 0.05 [−0.9998, 1.0000] [−6.0001,−4.0001] 1050.36

Table 4: Lyapunov spectral intervals computed by the continuous QR-Euler method

accurate than the corresponding values computed by the continuous QR method. By comparing
the numerical results for the continuous and discrete QR algorithm we see that the continuous
QR method is more efficient and accurate than the discrete QR method. It is also interesting to
observe that the discrete QR method oscillates when the stepsize is decreased.

Example 76 (A DAE system which is not Lyapunov regular) With the same transformations as
in Example 75 we also constructed a DAE that is not Lyapunov regular by changing the matrix
B(t) in Example 75 to

B(t) =

[

sin(ln(t+ 1)) + cos(ln(t+ 1)) + λ1 1
0 sin(ln(t+ 1)) − cos(ln(t+ 1)) + λ2

]

, t ∈ I.

Here we chose λ1 = 0, λ2 = −5. Since Lyapunov and Sacker-Sell spectra are invariant with
respect to global kinematical equivalence transformation, it is easy to compute the Lyapunov
spectral intervals as [−1, 1] and [−6,−4] and the Sacker-Sell spectral intervals as [−

√
2,
√

2] and
[−5 −

√
2,−5 +

√
2].

We computed first the approximate Lyapunov spectral intervals with different initial and end
points t0, T , and stepsizes h via the continuous QR-Euler method. The results are displayed
in Table 4 and we observe that the method computes reasonably good approximations to the
Lyapunov spectral intervals but that the method is sensitive to the choice of the values of T
and t0. This is already a well-known difficulty in the case of ODEs, see [26]. The graphs of the
functions λ1(t), λ2(t) are shown in Figure 2.

Finally, we used the continuous QR algorithm for approximating the Sacker-Sell intervals with
different T,H and h. The numerical results displayed in Table 5 illustrate well the success of the
QR algorithm but also the difficulty in choosing appropriately large values of T and H.

A plot of the graph of the Steklov averages ψH,i(t), i = 1, 2 with H = 500 is given in Figure 3.

In order to improve the described numerical methods it is important to carry out a careful error
analysis of the different components of the method as well as a detailed analysis of the convergence
behavior with respect to the choice of initial and end point t0, T . This is current work in progress.

6 Conclusion

In this paper we have extended the classical spectral concepts and numerical methods for ap-
proximating (Lyapunov, Bohl and Sacker-Sell) spectral intervals that are well-known for ordinary
differential equations to linear differential-algebraic equations with variable coefficients.
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Figure 2: The graph of functions λi(t), i = 1, 2 in Example 76.

T H h [κl
1, κ

u
1 ] [κl

2, κ
u
2 ] CPU − time

1000 100 0.1 [−1.2042, 1.3811] [−6.4049,−4.8927] 6.20
5000 100 0.1 [−1.2042, 1.4131] [−6.4049,−3.5990] 30.79
10000 100 0.1 [−1.2042, 1.4131] [−6.4049,−3.5867] 61.94
10000 500 0.1 [−0.7327, 1.4030] [−6.2142,−3.5872] 94.80
10000 100 0.05 [−1.2049, 1.4127] [−6.4046,−3.5860] 147.19
20000 100 0.1 [−1.3461, 1.4131] [−6.4049,−3.5867] 123.57
20000 500 0.1 [−1.3416, 1.4030] [−6.2142,−3.5872] 201.26
20000 100 0.05 [−1.3468, 1.4127] [−6.4046,−3.5860] 283.10
50000 100 0.1 [−1.4132, 1.4131] [−6.4049,−3.5867] 310.36
50000 500 0.1 [−1.4132, 1.4030] [−6.2142,−3.5872] 506.65
100000 100 0.1 [−1.4132, 1.4131] [−6.4049,−3.5867] 646.15
100000 500 0.1 [−1.4132, 1.4030] [−6.3633,−3.5872] 976.30
200000 500 0.1 [−1.4132, 1.4030] [−6.4147,−3.5872] 1973.43

Table 5: Sacker-Sell spectral intervals computed by the continuous QR-Euler method
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Figure 3: Graph of Steklov averages ψH,i(t), i = 1, 2, H = 500.

In the theoretical analysis of the spectral theory we have used appropriate orthogonal changes
of variables to transform the original DAE system to a particular strangeness-free form for which
the underlying ODE systems are easily obtained. The relationship between different spectra of
the DAE systems and those of their corresponding underlying ODE system has been analyzed.
We have proven that under some boundedness conditions, the Lyapunov and the Sacker-Sell
(exponential dichotomy) spectrum of a DAE system and those of its underlying ODE system
coincide. Several significant differences between the spectral theory for ODEs and that for DAEs
have been discussed as well and the stability of these spectra has been investigated. In particular,
we have shown that the Sacker-Sell spectrum of a robustly strangeness-free DAE system is stable
with respect to admissible structured perturbations. In general, if either the DAE system in
consideration is not robustly strangeness-free or it is subject to an unstructured perturbation,
then the spectral stability cannot be expected. We have proposed two numerical methods based
on QR factorization for calculating Lyapunov and Sacker-Sell spectra. The algorithms as well as
related implementation techniques have been discussed. Finally, two DAE examples have been
presented for illustration.

Experimental numerical results have not only illustrated the efficiency and the reliability of the
computational methods, but the numerical results also indicate the difficulties that may arise in
the implementation and the use of these methods. In particular a detailed error and perturbation
analysis is necessary. Similarly to the ODE case, an extension of such algorithms to nonlinear
DAEs should also be carried out.

Further work is also necessary in developing more efficient implementation techniques and a
complete error analysis for the overall numerical methods proposed in this paper.
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