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Abstract

We study a planning problem arising in SDH/WDM multi-layer telecommunication net-
work design. The goal is to find a minimum cost installation of link and node hardware of
both network layers such that traffic demands can be realized via grooming and a survivable
routing. We present a mixed-integer programming formulation that takes many practical side
constraints into account, including node hardware, several bitrates, and survivability against
single physical node or link failures. This model is solved using a branch-and-cut approach
with problem-specific preprocessing and cutting planes based on either of the two layers. On
several realistic two-layer planning scenarios, we show that these cutting planes are still useful
in the multi-layer context, helping to increase the dual bound and to reduce the optimality
gaps.

Keywords: telecommunication networks, multi-layer network design, mixed-integer pro-
gramming, cutting planes
MSC classification (2000): 90B18, 90C57, 68M10

1 Introduction

During the last decade, dense wavelength division multiplexing (DWDM) has turned out to be the
dominant network technology in high-capacity optical backbone networks. It provides a flexible
way to expand capacity in optical networks without requiring new cabling. Current DWDM
systems usually provide 40 or 80 different wavelengths on a single optical fiber to carry high
capacity channels, e.g., 2.5, 10, or 40 Gbps per wavelength. Typically, these capacities exhibit
economies of scale, such that, for instance, the cost of 10 Gbps is only three times the cost of
2.5 Gbps. Low-granularity traffic given, for instance, in units of 2 Mbps, can be routed through
these high-capacity wavelength channels. Flexible optical network nodes selectively terminate a
wavelength or let them pass through to the next fiber, provided that an add/drop multiplexer
with sufficient switching capacity has been installed to handle the terminating traffic. Ultra
long-haul transmission permits high capacity optical channels via several fiber segments requiring
transponders only at the end of the whole path, whose cost depends on the data rate and the
length of the chosen path.

The corresponding network design problem can be summarized as follows. Given is a set of
network nodes together with potential optical fiber connections between them. This network is
called the physical layer. On every fiber, a fixed number of lightpath channels can be transmitted
simultaneously, each of them corresponding to a capacitated path in the physical network. The
nodes together with the lightpath connections form a so-called logical network on top of the
physical one. Setting aside some technical limitations, any path in the physical network can be
used for a lightpath, which leads to many parallel logical links. In practice, however, the set of
admissible lightpaths is often restricted to several short paths between each node-pair. A lightpath
can be equipped with different bandwidths, and lower-rate traffic demands have to be routed via
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the lightpaths without exceeding their capacities. A demand may be 141-protected, i. e., twice the
demand value must be routed such that in case of any single physical link or node failure, at least
the demand value survives. To terminate a lightpath, a sufficiently large electrical cross-connect
(EXC) must be installed at both end-nodes. The goal is to minimize total installation cost.

Like in any other publication where integrated two-layer solution approaches are used for
computations, we do not explicitly assign wavelengths to the lightpaths because finding a suitable
wavelength assignment is an extremely hard problem on its own. Instead, we make sure that the
maximum number of lightpaths on each fiber is not exceeded, and propose to solve the wavelength
assignment and converter installation problem in a subsequent step, as done successfully in [16],
for instance. It has been shown in [17] that such an approach causes at most a marginal increase
in the overall installation cost on practical instances.

The network planning task is particularly driven by two parameters: the bound on the number
of wavelengths per fiber and the transponder prices. A shortage in wavelengths may force the
network planner to employ optical channels with high data rates. To keep the total transponder
cost low, a suitable set of lightpaths has to be chosen in order to make the best possible use of these
high data rates. To draw the maximal benefit out of the optical and the aggregation equipment,
both layers have to be optimized together.

Already the optimal design of a single layer network is a challenging task that has been con-
sidered by many research groups, see for instance [2,13,25,26] and references therein. A branch-
and-cut algorithm enhanced by user-defined, problem-specific cutting planes has been proven to
be a very successful solution approach in this context. The combined optimization of two layers
significantly increases the complexity of the planning task. This is mainly due to the combined
network design problem with integer capacities on the logical layer and the fixed-charge network
design problem on the physical layer, and due to the large number of logical links with correspond-
ing integer capacity variables. In previous publications, mixed-integer programming techniques
have been used for designing a logical layer with respect to a fixed physical layer [3,11,12] or
for solving an integrated two-layer planning problem with some simplifying assumptions, like no
node hardware or wavelength granularity demands [14,18]. Recently, Belotti et al. [5] have used
a Lagrangean approach for a two-layer network design problem with simultaneous mean demand
values and non-simultaneous peak demand values. Orlowski et al. [22] present several heuristics
for a two-layer network design problem, which solve a restricted version of the original problem as
a sub-MIP within a branch-and-cut framework. Raghavan and Stanojevi¢ [27] consider the case
where all paths are eligible and develop a branch-and-price algorithm for a fixed physical layer.

In this paper, we present a mathematical model for the described planning problem and solve
it using a branch-and-cut approach with user-defined cutting planes. To our knowledge, this
is the first time that so many practically relevant side constraints are taken into account in one
integrated two-layer planning model, let alone in integrated computation approaches. This includes
node hardware, several bitrates on the logical links, and in particular survivability against physical
node and link failures.

On the algorithmic side, we show that a branch-and-cut approach is still useful for an integrated
planning of two network layers with all these side constraints, provided that the MIP solver is
accelerated by problem-specific cutting plane routines. The algorithm is tested on several network
instances provided by Nokia Siemens Networks. By adding a variety of strong single-layer cutting
planes for both layers to the solver, we can significantly raise the dual bounds on our network
instances. Especially in the unprotected case, most of the optimality gap is closed. With 1+1-
protection, the problem is much harder to solve due to the increased problem size and other effects
discussed in our computational results. However, the employed cutting planes turn out to be useful
also with protection.

The paper is structured as follows. In Section[2, we will present our mixed-integer programming
model. Section [3 describes the used cutting planes and states some known results about their
strength. We show in Section [4 how to generate these inequalities during the branch-and-cut
algorithm, and provide computational results in Section [5l Eventually, conclusions are drawn in
Section [6.



2 Mathematical model

2.1 Mixed-integer programming model

We will now introduce the mixed-integer programming model on which our cutting planes are
based. Afterwards, we will describe some basic preprocessing steps that we have applied to
strengthen the formulation.

Parameters The physical network is represented by an undirected graph (V) E). The logical
network is modeled by an undirected graph (V, L) with the same set of nodes and a fixed set L of
admissible logical links. Each logical link represents an undirected path in the physical network. In
consequence, any two nodes 7, 7 € V may be connected by many parallel logical links corresponding
to different physical paths, collected in the set L;; = Lj;. Looped logical links are forbidden, i.e.,
Li; =0 for all i € V. Let (i) = Ujev Li; be the set of all logical links starting or ending at i.
Eventually, L., C L denotes the set of logical links containing edge e € E. Likewise, L; C L refers
to the set of logical links containing node 7 € V' as an inner node.

We consider different types of capacities for logical links, physical links, and nodes. Each
logical link ¢ € L has a set M, of available capacity modules (corresponding to different bit-rates),
each of them with a cost of k" € R and a base capacity of C}" € Z. that can be installed on ¢ in
integer multiples. Similarly, every node i € V has a set M; of node modules (representing different
EXC types), at most one of which may be installed at i. Module m € M; provides a switching
capacity of C™ € Z4 (e.g., in bits per second) at a cost of k" € R4. On a physical link e € E, a
fiber supporting up to B € Zy (e.g., 40) lightpaths may be installed at a cost of k, € R..

For the routing part, a set H = HP U H" of undirected point-to-point communication demands
is given, where HP comprises the 1+1-protected demands and H" the unprotected ones. Protected
demands are expected to survive any single physical node or link failure. For each demand h € H;j,
a demand volume of dj, has to be routed from ¢ to j. For 1+1-protected demands, dj refers to
twice the original demand value that would have to be routed if the demand was unprotected. By
adding constraints that limit the amount of flow for a protected commodity through a node or
physical link to %dh, it is guaranteed that at least the original demand survives any single physical
link or node failure. From now on, the demands are assumed to be directed in an arbitrary way.
For any pair of nodes 7,5 € V, let H;; be the set of all demands directed from ¢ to j, where
H;; = () for all i € V. As the direction of the demands is arbitrary, we may assume without loss
of generality that for all nodes ¢,j € V, either H;; or Hj; is empty.

From the demands, two sets K?” and K" of protected and unprotected commodities are con-
structed, where K := K? U K" denotes the set of all commodities. With every commodity k € K
and every node i € V, a demand value d¥ € 7Z is associated such that Diev d¥ = 0. Every pro-
tected commodity k € KP consists of a single 1+1-protected point-to-point demand (i.e., d¥ # 0 for
exactly two nodes). In contrast, unprotected commodities k € K" are derived by aggregating un-
protected point-to-point demands at a common source node. Thus, every commodity k£ € K" has
a unique source node s € V but may have several target nodes, whereas protected commodities
have a unique target ¢, € V. The (undirected) emanating demand of a node i € V| i.e., the total
demand value starting or ending at node 4, is given by d; := >, . ;¢ |d¥|. The demand value d* of
a commodity is defined as the demand for k emanating from its source node, i.e., d* := d’;k > 0.
For protected commodities, this value is already doubled.

Variables The model comprises four classes of variables, representing the flow and different
capacity types. First, for a logical link ¢ € L and a module m € My, the logical link capacity
variable y;* € Zy represents the number of modules of type m installed on £. For any physical
link e € E, the binary physical link capacity variable z, € {0,1} indicates whether e is equipped
with a fiber or not. Similarly, for a node i € V' and a node module m € M;, the binary variable
a2 € {0,1} denotes whether module m is installed at node ¢ or not. Eventually, the routing

of the commodities is modeled by flow variables. In order to model diversification of protected
commodities, we need fractional flow variables ff, i flff ;i € Ry representing the flow for commodity



k € K on logical link ¢ € L;; directed from 7 to j and from j to ¢, respectively. For notational
convenience, ff := flffij + flffji denotes the total flow for £ € K on £ € L;; in both directions.

In our model, a flow variable flffij for commodity k and logical link ¢ € L;; is omitted if any
of the following conditions is satisfied: (i) j = s, (ii) k¥ € K? and i = ty, and (iii) k¥ € K? and ¢
contains the source or target node of k as an inner node. The first two types of variables represent
flow into the unique source node or out of the unique target node of a protected commodity. They
are not generated in order to reduce cycle flows in the edge-flow formulation. Notice that for the
aggregated unprotected commodities, we have to allow flow from one target node to another, and
thus flow out of target nodes. Including the third type of variables would allow flow to be routed
through an end-node u of a protected commodity without terminating at that node, and then back
to u on another logical link. As such routings are not desired in practice, we exclude flow variables
whose logical link contains an end-node of the corresponding commodity as an inner node. Again,
in the unprotected case, such variables have to be admitted because commodities may consist of
several aggregated demands.

Objective and Constraints The objective and constraints of our mixed-integer programming
model read as follows:

min Z Z kit + Z Z Koyt + Z KeZe (1)
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The objective (1) aims at minimizing the total installation cost. The flow-conservation (2) and ca-
pacity constraints (3) describe a multi-commodity flow and modular capacity assignment problem
on the logical layer. For a protected commodity, the flow diversification constraints (4) restrict
the flow through an intermediate node to half the demand value. In this way, the original demand
is guaranteed to survive single node failures as well as single physical link failures, except for the
direct physical link between source s; and target t;. This exception is covered by the variable
bound (5). The generalized upper bound constraints (6) guarantee that at each node i € V, at
most one node module is installed. The node switching capacity constraints (7)) ensure that the
switching capacity of the network element installed at a node ¢ € V' is sufficient for all traffic that
can potentially be switched at i. Note that since all traffic is counted twice, it is compared to
twice the installed node capacity. Eventually, the physical link capacity constraints make sure
that the maximum number of modules on a physical link is not exceeded, and set the physical link
capacity variables to 1 whenever a physical link is used.



2.2 Preprocessing

To strengthen the formulation, we applied some simple improvements to the model presented in
Section [2:

e If the cost of a fiber on physical link e € F is zero, the corresponding capacity variable z.
can be fixed to 1 in advance. This is automatically done by any modern MIP solver.

e For unprotected commodities £k € K*“, it is allowed to route more than the commodity

demand value, but there is no reason to do so. Bounding all flow variables by the demand
value does not change the optimal objective value but usually leads to less cycling in LP
solutions: flffij,flffji < dF.
For protected commodities k € KP, the survivability requirements forbid to route more
than half the demand value through any logical link: féfij, féf i < %dk. These bounds are
the same as the link diversification constraints (5), but for all flow variables. They are
redundant but may help the MIP solver during its preprocessing step because the implicit
bounds via the node diversification constraints and the network structure are hard to detect
for a general-purpose MIP solver.

e Obviously, at least the emanating demand must be switched at every node. Consequently,
an EXC must be installed at every demand end-node ¢ € V, so the node GUB inequality
(6) can be changed into an equality at such nodes: ), . ar, 27" = 1. This does not affect the
optimal MIP value but strengthens the LP relaxation significantly.

e For the same reason, node modules whose switching capacity is smaller than the emanating
demand at a node cannot be installed at that node. Consequently, if C]" < d; for some node
1 € V and a node module m € M;, the corresponding variable 27" can be removed from the
MIP formulation. This often leads to more integral =]" variables in the LP relaxation and
to better LP values, especially when combined with the previous rule.

e Two bounds on logical link module variables can be derived from the fiber capacity bounds
and the total demand in the network. Both bounds are usually not tight and do not affect
the LP solution, but may help the MIP solver in deriving further relations between the
variables to strengthen other bounds.

First, as no more than B channels can be routed through a given physical link e € E, every
module variable on logical links ¢ € L. can be bounded by B.

Second, the amount of flow that can be routed through any logical link ¢ € L is bounded
by the total unprotected demand plus half the protected demand in the network (except for
undesired cycle flow in the edge-flow formulation). Consequently, the number of modules of
type m € My that possibly needs to be installed on ¢ is bounded by

ol (g5

heHY heHP

e Sometimes it is evident that in any optimal solution, a small link module will not be installed
more than a given number of times on a link because a larger module provides the same or
more capacity at a lower price. More precisely, consider a link ¢ € L and two of its capacity
modules my, my € My such that C;"* < C;"2. If the relation

mao mo
R ¢

my — mi
Ky &

holds then at most » modules of type m; will be installed in any optimal solution because r
modules of type m; incur the same cost as one unit of type mo, but the latter one provides
the same or more capacity. Furthermore, even if equality holds in the above relation, one



large module is preferable to several smaller ones because every module uses one physical
channel, independent of its bitrate. Consequently, the variable bound

Yt < [r—1]

can be added to the formulation. It cuts off some non-optimal solutions and maybe some
optimal ones (if equality holds), but always leaves at least one optimal solution if one exists.
Notice that the value [r — 1] is exactly » — 1 if r is integer, and |r| otherwise.

In addition, we used probing techniques to set further bounds on variables [28].

3 Cutting planes

Backed by theoretical results of polyhedral combinatorics, cutting plane procedures have been
proven to be a feasible approach to improve the performance of mixed integer programming solvers
for many single-layer network design problems. In this section we show how an appropriate
selection of these inequalities can be adapted to our problem setting. Their separation and some
computational results are given in Sections [4] and [5, respectively.

3.1 Cutting planes on the logical layer

On the logical layer, we consider cutset inequalities and flow-cutset inequalities. These cutting
planes have, for instance, been studied in [2,7,10,19,26] for a variety of network settings (e.g.,
directed, undirected, and bidirected link models, single or multiple capacity modules, etc.) and
have been successfully used within branch-and-cut algorithms for capacitated single-layer network
design problems [6,7,13,25].

To be precise, the inequalities on the logical layer are valid for the polyhedron P defined by
the multi-commodity flow constraints (2) and the capacity constraints (3). That is,

P :=conv {(f,y) € R* x Z}* | (f,y) satisfies (2), (3)},

where ny := 2|K||L| and ng := ), [M¢|. As P is a relaxation of the model discussed in Section 2}
the inequalities are also valid for that model.
We introduce the following notation. For any subset () = S C V of the nodes V, let

Ls:={teL|leLy,ieS jeV\S}

be the set of logical links having exactly one end-node in S. Furthermore, define df, := dics d¥ >0
to be the total demand value to be routed over the cut Lg for commodity & € K. By reversing the
direction of demands and exchanging the corresponding flow variables, we may w.l.0.g. assume
that d’g >0 for all k € K (i.e., the commodity is directed from S to V' \ S, or the end-nodes of k
are either all in S or all in V'\ S). This reduction is done implicitly in our code. More generally, let
dg = ZkeQ d% denote the total demand value to be routed over the cut Lg for all commodities

keq.

Mixed-integer rounding (MIR) In order to derive strong valid inequalities on the logical
layer we aggregate model inequalities and apply a strengthening of the resulting base inequalities
that is known as mized-integer rounding (MIR). Tt exploits the integrality of the capacity variables.
Further details on mixed-integer rounding can be found in [20], for instance.

Let a,c,d € R with ¢ > 0 and g ¢ 7 and define a™ := max(0, a). Furthermore, let
Taei=a—c([2] =1)>0

)

be the remainder of the division of a by c if ¢ ¢ Z, and c otherwise. A function f : R — R is
called subadditive if f(a) + f(b) > f(a+b) for all a,b € R. The MIR function

Fge: R—=R: a— [%-I Tde — (Td,c — ra,c)+



is subadditive and nondecreasing with Fy .(0) = 0. If d/c ¢ Z then Fy .(a) := lims o M =at
for all a € R; otherwise Fy.(a) = a for all a € R [25]. Because of these properties, applying this
function to the coefficients of a valid inequality yields another valid inequality [21]. In particular, if
a valid inequality contains continuous flow variables and integer capacity variables then applying
Fy . to its capacity coefficients and F,Lc to its flow coefficients yields a valid inequality. More
details and explanations can be found in [25] where it is also shown that the MIR function Fy .
is integral if a, ¢, and d are integral, and that |Fy.(a)| < |a| for all a € R. Both properties are
desirable from a numerical point of view.

Cutset inequalities Let Lg be a cut in the logical network as defined above. Obviously, the
total capacity on the cut links Lg must be sufficient to accommodate the total demand over the

cut:
> Y e df. (10
t€Ls meM,
Since all coefficients are nonnegative in (10) and y;* € Zy, we can round down all coefficients
to the value of the right-hand side (if larger). For notational convenience we assume from now
on C)" < d¥ for all ¢ € Lg and m € M,. Mixed-integer rounding exploits the integrality of the
capacity variables. Setting ¢ > 0 to any of the available capacities on the cut and applying the
MIR-function Fp := Fyr . to the coefficients and the right-hand side of results in the cutset
inequality

C

S ST RO = R, (11)
teLs meM,
A crucial necessary condition for (11) to define a facet for P is that the two subgraphs defined
by the network cut are connected, which is trivially fulfilled if L contains logical links between all
node pairs.

Flow-cutset inequalities Cutset inequalities can be generalized to flow-cutset inequalities,
which have nonzero coefficients also for flow variables. Like cutset inequalities, flow-cutset in-
equalities are derived by aggregating capacity and flow-conservation constraints on a logical cut
Lg and applying a mixed-integer rounding function to the coefficients of the resulting inequality.
However, the way of aggregating the inequalities is more general. Various special cases of flow-
cutset inequalities have been discussed in [2,7,10,25,26]. Necessary and sufficient conditions for
flow-cutset inequalities to define a facet of P can be found in [26].

Consider fixed nonempty subsets S C V of nodes and Q C K of commodities. Assume that
logical link ¢ € Lg has end-nodes i € S and j € V'\ S. We will denote by ff’_ = ff,ji inflow into S
on ¢ while flff 4= féfi ; refers to outflow from S on £. We now construct a base inequality to which
a suitable mixed-integer rounding function will be applied. First, we obtain a valid inequality
from the sum of the flow conservation constraints (2) for all i € S and all commodities k € Q:

SOS b - fh) = dd
leLs ke

Given a subset L1 C Lg of cut links and its complement L, := Lg \ L1 with respect to the cut,
we can relax the above inequality by omitting the inflow variables and by replacing the flow by
the capacity on all links in Lq:

DD Ol Y D fry 2 ds. (12)
leL1 meM, (el k€EQ

Again we may assume Cj" < d¥ for all ¢ € Ly and m € M. B
Let ¢ > 0 be the capacity of a module available on the cut and define I, := F ¢ . and F, :=
S

F 49 e Applying these functions to the base inequality (12) results in the flow-cutset inequality

SN R+ >0 i = Fd?). (13)

teLy meM, teL, keQ



Notice that F.(1) = 1, so the coefficients of the flow variables remain unchanged. This inequality
can be generalized to a flow-cutset inequality also containing inflow-variables [25]. By choosing
Ly = Ls and Q = K, inequality reduces to the cutset inequality (11).

3.2 Cutting planes on the physical layer

If the fixed-charge cost values k, are zero then the corresponding variables z. can be assumed
equal to 1 in any optimal solution. If, however, this cost is positive, the variables will take up
fractional values in linear programming (LP) relaxations in order to minimize cost. By the demand
routing requirements, we know that certain pairs of nodes have to be connected not only on the
logical layer but also on the physical layer. Consequently, the variables z. have to satisfy certain
connectivity constraints. Note that information of the physical layer is combined with the demands
here, ignoring the intermediate logical layer.

Connectivity problems have been studied on several occasions, in particular in the context of
the Steiner Tree problem and fixed-charge network design, e.g., [9,24]. Let S C V be a set of
nodes and 6(S) the corresponding cut in the physical network. If some demand has to cross the

cut then the inequality
> =1 (14)

e€d(S)

ensures that at least one physical link is installed on the cut. If a protected demand has to cross
the cut, the right-hand side can even be set to 2 because the demand must be routed on at least
2 physically disjoint paths.

If the demand graph (defined by the network nodes and edges corresponding to traffic demands)
has p connected components (usually p = 1) then

Sz |V]-p (15)

eckE

is valid, because the installed physical links can consist of at most p connected components as well,
each one being at least a tree. If protected demands exist and the demand graph is connected,
inequality (15) can be strengthened by setting the right hand side to |V|. If protected demands
exist for all demand end nodes, this inequality is however dominated by the inequalities (14) for
all demand end nodes as single node subsets.

4 Separation and implementation

We used the branch-and-cut framework SCIP [1] with CPLEX 10.1 [15] as the underlying LP
solver to tackle the multi-layer problem introduced in Section [2] At every node of the search
tree, SCIP applies various primal heuristics to compute feasible solutions, as well as built-in and
application-specific separators to cut off fractional solutions. For the cutting planes described
in Section (3] three separation problems are addressed: Given a fractional point, find a cutset
inequality (11), a flow-cutset inequality (13) or one of the fixed-charge inequalities (14) and (15)
cutting off this point, or decide that no such inequality exists. After calling all of its own and all
user-defined separators, SCIP selects the best inequalities based on criteria such as the Euclidean
distance to the current fractional point and the degree of orthogonality to the objective function.
In the following we will describe the separation algorithm that we have implemented for each of
the considered inequalities.

4.1 Cutset inequalities

As explained in Section[3.1} a cutset inequality (11) is completely determined by its base inequality
(10), which in turn depends only on the choice of the cut in the logical network. Our separation
procedure works as follows:



1. Choose a subset S of nodes and compute the corresponding cut links Lg.
2. Compute the base inequality (10]) corresponding to this logical cut.

3. For all different capacity coefficients ¢ occurring in the base inequality, compute the cutset
inequality (11) using the function Fyx . and check it for violation.

(&

In this way, the task reduces to finding a suitable cut in the logical network. In general, it is
NP-hard to find a cut where the cutset inequality is maximally violated, see [6]. We apply a
heuristic shrinking procedure to the logical network, similar to what has been done in [6,13,25]
for single-layer problems. Define the link weights wy := sy + 7y where sy and 7y are the slack and
the dual value of the capacity constraint (3) for link ¢ with respect to the current LP solution. We
iteratively shrink links with the largest weight wy, aggregating parallel logical links if necessary,
until k& nodes are left. Using a value of k£ between 2 and 6, we enumerate all cuts in the shrunken
graph. The definition of w, is based on the heuristic argument that a cutset inequality is most
likely to be violated if the slack of the base inequality is small. We thus want to keep links in
the shrunken graph that have a small slack in the capacity constraints, i.e., we have to shrink
links with a large slack sy. Since many capacity constraints are usually tight in the LP solutions,
many slacks are 0. For those we use the dual values as a second sorting criterion. In addition to
the described shrinking procedure we check all cutset inequalities for violation that correspond to
single-node cuts, that is S = {i} for all i € V.

4.2 Flow-cutset inequalities

For separating a flow-cutset inequality, a suitable set S of nodes, a subset @) of commodities, a
capacity ¢, and a partition (L, L;) of the cut links Lg have to be chosen. We apply two different
separation heuristics. Both restrict the separation procedure to special subclasses of flow-cutset
inequalities. However, already with this restriction a large number of violated inequalities is found.

The first heuristic considers commodity subsets @) that consist of a single commodity k£ € K
and node-sets S consisting of one or two end-nodes of k. After fixing S and k and choosing an
available capacity ¢ > 0 on the cut, a partition of the cut links that maximizes the violation for
flow-cutset inequalities is obtained by setting

Li=qtleLs| Y FCMa <> ff. ¢, (16)

meM, keQ

where (f,7) are flow and capacity values on the logical graph in the current LP solution, see
Atamtiirk [2]. The calculation of L; is done in linear time.

The second, more time-consuming heuristic finds a most violated flow-cutset inequality for a
fixed single commodity & € K and a fixed capacity ¢, see [2]. The crucial observation is that
once k and ¢ are fixed, the two values compared in (16) are known, and thus the partition of
the potential cut links into L; and L;. The only remaining question is which links are part of
the cut. This question can be answered in polynomial time by defining the logical link weights
we :=min{), <y Fe(CF)YF, ff } and searching for a minimum-weighted cut between the end-
nodes of the commodity with respect to these weights (introducing artificial super-source and
super-target nodes if necessary).

4.3 Physical layer cutset inequalities

The single tree inequality (15) can simply be added to the initial MIP formulation. The number
of components of the demand graph is determined using depth-first search.

The physical cutset inequalities (14) can be separated using a min-cut algorithm. The weight
of a physical link e is set to its capacity value Z, in the current LP solution, which is exactly its
contribution to the left-hand side of the inequality if the link is part of the cut. Then a minimum



instance V| |E| |L] |H| | M| C}, C2,C3 physical cost?

Germany17 17 26 674 121 16 1,4, 16 no
Germany17-fc 17 26 564 121 16 1,4, 16 yes
Ringl5 15 16 184 78 5 16, 64, 256 no
Ring? 7 8 32 10 5 16, 64, 256 no

Table 1: Network instances used for testing cutting planes

cut with respect to these weights is searched between every pair of nodes, and the corresponding
cutset inequality is tested for violation. Assuming all demands are either protected or unprotected,
the right-hand side of the inequality does not depend on the cut, and thus this procedure is exact,
i.e., a violated inequality exists if and only if this algorithm finds it. In addition, we test all cuts
defined by single nodes ¢ € V' in each iteration, as these cuts turned out to be quite important.

5 Computational results

5.1 Test instances and settings

For our computational experiments we used the network instances summarized in Table [1. In
addition to the number of nodes, physical, and logical links, the number |H| of communication
demands is given from which the commodities were constructed (|K| = |[V| — 1 if all demands
are unprotected and |K| = |H| if all demands are protected). Further we report the number
|M;| of node modules installable at each node and the size of the installable logical link modules.
Eventually, Table [1] indicates whether the instance has physical link cost or not. The first three
instances are realistic scenarios provided by Nokia Siemens Networks, whereas the small ring
network Ring7 has been constructed out of the larger instance Ringl5 in order to study the effect
of the cutting planes on the number of branch-and-cut nodes needed to prove optimality.

Germany17 and Germanyl7-fc are based on a physical 17-node German network available at
SNDIib [23]. In both networks, the set of admissible logical links consists of three to five short
paths in the physical network between each pair of nodes. Ringl5 consists of a physical ring with
a chord, representing a regional subnetwork connected to a larger national network. The set of
logical links consists basically of the two possible logical links for each node pair, one in each
physical direction of the ring. Ring7 has been constructed from Ringlh by successively removing
nodes with the smallest emanating demand value. Because in our ring instances, every node is a
demand end-node and the demand graph is connected, we assume that the whole physical ring
structure will be used anyway, and do not consider ring variants with physical link cost. In all
networks, up to three capacity modules corresponding to 2.5, 10, and 40 Gbit/s can be installed
on each logical link, depending on its physical path length.

All computations were done on a Linux-operated machine with a 2 x 3 GHz Intel P4 processor
and 2 GB of memory. In a first series of test runs, we assumed unprotected demands with physical
fibers supporting B = 40 wavelengths. In a second series, we made all demands 1+1-protected,
assuming B = 80 wavelengths in order to allow for feasible solutions with the doubled demand
values. Unless otherwise stated, we have used the preprocessing steps described in Section[2.2/and
extended versions of the MIP-based heuristics from [22] in all tests.

5.2 Unprotected demands

As cutting planes are primarily thought to increase the lower bound of the LP-relaxation, we first
consider the effect of the different types of cutting planes on the lower bound at the branch-and-
bound root node. We separated each of the classes cutset inequalities, flow-cutset inequalities
and fixed-charge inequalities on its own as well as all together. Figure [1] shows the improvement
over time of the lower bound in the root node of the search tree for all test instances. The solid
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Figure 1: Unprotected demands: dual bound at the root node

red line at the top marks the value of the best known solution, which cannot be exceeded by the
dual bound curves. The line ,no cutting planes® refers to the dual bound with SCIP’s built-in
general-purpose cutting planes only.

It can be seen that in the two Germany17 instances and on the small ring network, our cutting
planes reduce the gap between the lower bound and the best known solution at the root node
by 50-75%. In all three problem instances, flow-cutset inequalities performed better than cutset
inequalities, which is in contrast to the results presented by Raack et al. [25] for a single-layer
problem. There might be several reasons for this effect. A good candidate is the structural
difference between single-layer networks and the logical layer in multi-layer problems: the logical
layer graph (V, L) contains edges between almost all node pairs, whereas only a few links cross a
cut in single layer graphs. Further, we have implemented our cutting planes as callbacks in SCIP,
whereas in [25], CPLEX was used as the underlying branch-and-cut framework, which implies
the use of different general-purpose cutting planes.

For the problem Germany17-fc with physical cost, most of the optimality gap comes from the z,
variables whose values are highly fractional and close to zero in the solution of the LP-relaxation.
A major part of this gap is closed by the fixed-charge inequalities that operate on the physical
layer. Of course, the contribution of these inequalities changes with the ratio of the cost of the
physical fiber links on the one hand and the logical wavelength links and the node hardware on
the other hand.

In contrast to these three instances, the problem-specific cutting planes have only a marginal
effect on the dual bound for Ringl5 compared to SCIP’s built-in general-purpose cuts. This
is probably due to the fact that already in SCIP’s default settings, the dual bound at the end
of the root node is within 0.4 % of the optimal solution value, so there is not much room for
improvement at all. We also observed that on this instance, our cuts seem to interfere with the
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# cuts unprotected # cuts protected

instance cutset flow-cutset fixed-charge cutset flow-cutset fixed-charge
Germany17 37 1521 - 4 940 -
Germany17-fc 34 1046 35 7 844 20
Ringlh 66 652 - 26 489 -
Ring7 41 98 - 15 24 -

Table 2: Number of violated cutset inequalities (11), flow-cutset inequalities (13), and fixed-charge
inequalities (14) found in root of branch-and-bound tree without separation of SCIP built-in cuts

c-mir and Gomory cuts separated by SCIP. Both classes are based on a mixed-integer rounding
procedure similar to the one described in Section With these two classes of cuts disabled in
SCIP, our inequalities could reduce the relative distance between the root dual bound and the
best known solution from 3.8 % to 0.4 %, thus achieving the same dual value as SCIP’s cutting
planes. The number of violated cutting planes found in this setting is reported in Table[2 for all
instances.
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Figure 2: Unprotected demands: dual bound during 3h test runs

In a second study, we have investigated the lasting effect of the cutting planes on the dual
bound in longer computations. Figure [2 shows the development of the dual bound with and
without all cutting planes from Section 3] during a computation with a time limit of 3 hours for
all four test instances, compared to the best known solution. Similarly to most of SCIP’s own
cutting planes, we separated our inequalities only at the root node of the branch-and-cut tree.

By applying all separators we could solve the problem Ring7 to optimality within 10 minutes,
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whereas without our cutting planes the computation was aborted after nearly one hour with
a nonzero optimality gap due to the memory limit of 2 GB. The size of search tree was 1.2
million unexplored nodes at this point (and 4 million explored nodes). On the network instances
Germanyl7 and Germanyl7-fc, the relative gap between the dual bound and the best known
solution (defined as (bestsol — dual)/dual, overestimating the relative distance of the dual bound
to the optimal solution value) could be reduced by factor 10 on Germany17 and by factor 2.5 on
Germany17-fc by raising the lower bound only, as shown by Figure 2] The figure shows that the
dual bounds obtained with our cutting planes are very close to their maximum possible value.
Since also the upper bound improved in both cases, the relative gap between the dual bound and
the best solution found in that specific run (as opposed to the best solution known at all) could be
improved from 4 % to 0.36 % and from 12.4 % to 3.1 %, respectively. For Ring15 the improvement
of the dual bound by the cutting planes was much smaller than for the other instances, probably
for the reasons discussed above.

5.3 Protected demands
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Figure 3: Protected demands: lower bound in 3h test runs

In the case of protected demands, we first of all would like to point out that the problem
size drastically increases compared to the unprotected case. Instead of [V| — 1 commodities, |H |
commodities have to be routed, increasing the number of variables and constraints considerably.
Consequently, solving the initial LP relaxation, as well as reoptimizing the LP after adding a
cutting plane or a branching constraint, takes more time than with protection than withou.

With 141 protected demands, the cutting planes have only a marginal effect of the dual bound.
Figure[3 shows the increase of the dual bound in a three hour test run with and without cutting
planes (again, the solid red line at the top indicates the best known solution value). Investigations
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have shown that this is mainly due to the strength of the general-purpose c-mir and Gomory cuts
generated by SCIP. As experiments where these cuts were turned off showed, our inequalities still
contribute significantly to closing the optimality gap at the root node. Table[2/shows the number
of violated inequalities found at the root node in this setting. Only slightly lower numbers of
violated inequalities are found with c-mir and Gomory cuts turned on, but their impact on the
dual bound is limited in such a case, cf. Figure 3l

The strength of the general-purpose cuts originates from the potential to include all inequalities
from the original formulation, as well as cutting planes added later in the solution process. In
contrast, our cutting planes only take capacity and flow conservation constraints into account. The
inclusion of survivability requirements into the generation of cutset and flow-cutset inequalities
might accelerate the increase of the lower bound compared to SCIP. For this, the polyhedral
studies of Bienstock and Muratore [8] and of Balakrishnan et al. [4] for single layer survivability
network design could be a good starting point. We suspect that cuts that make use of such problem-
specific information will outperform the general-purpose cuts of SCIP, as in the unprotected case.
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Figure 4: Number of unexplored branch-and-cut nodes on the protected Ring7 network

Nevertheless, the cutset inequalities and flow-cutset inequalities seem to have a lasting effect on
the performance of the branch-and-bound algorithm as can be shown for the small ring network
Ring7. This instance could be solved to optimality in both cases. But as Figure [4 shows, the
maximum number of unexplored nodes in the search tree was roughly halved by our cutting
planes, even though they were added only in the root node. A separate run without cutting
planes and without the preprocessing steps described in Section [2.2]is shown in the third curve
at the top of Figurel4. It can be seen that also the preprocessing significantly helped to reduce
the size of the search tree. Without preprocessing and cutting planes, the time needed to solve
this instance to optimality was 1428 seconds, compared to 135 seconds with preprocessing and
119 seconds with additional cutting planes. In these three settings, it took 40, 22, and 13 seconds,
respectively, until the optimal solution was found. Summarizing, both preprocessing and cutting
planes significantly reduced the time and memory needed to solve this instance to optimality.

6 Conclusions

In this work, we have presented a mixed-integer programming model for a two-layer SDH/WDM
network design scenario. The model includes many practically relevant side constraints like many
parallel logical links, various bitrates, node capacities, and survivability with respect to physical
node and link failures. To accelerate the solving of this planning task, we have applied problem-
specific preprocessing and a variety of network design specific cutting planes that are known to
be strong in single-layer network design to either of the two layers, namely cutset inequalities
and flow-cutset inequalities on the logical layer and fixed-charge inequalities on the physical one.
These cutting planes have been used as callbacks within the branch-and-cut framework SCIP and
tested on several realistic planning scenarios provided by Nokia Siemens Networks.
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With unprotected demands, our cutting planes significantly raised the lower bounds until close
to the optimal solution value. With 141 protection against physical failures, they also helped to
improve the dual bounds, but less than in the unprotected case. This is partly due to the fact
that with protection, many of our cutting planes were already found by SCIP alone, and partly
due to the impact of the survivability constraints on the structure of the polyhedron. We expect
that adapting previous results for survivable single-layer network design to the multi-layer setting
could further raise the lower bound in these cases. Moreover, new classes of specific multi-layer
cuts have to be found for multi-layer problems with protected demands.
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