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1 Introduction

In recent years, there has been growing interest in the mechanisms of spatio-
temporal activity in neural tissue. In this line, applications of various exper-
imental techniques [28, 15, 30, 32] revealed formations of different spatial
patterns, traveling waves and pulses[19, 34, 39], standing pulses (e.g. [12]) or
irregular spatial patterns [2, 31]. Since neural tissue exhibits multi-scale prop-
erties in space and time, the analysis of such activity represents a challenging
task. However, reduced biological models at fixed scales in time and space
simplify the analysis and allows for analytical treatments (see e.g. [4, 8, 33]
for review). In this context, a well-known approach is to focus on neuronal
ensembles [37, 38, 20], which allows for the succesful reconstruction of em-
pirical data measured on a macroscopic scale [17, 21, 26, 25, 18].

On a small spatial level (∼ 50µm), model neurons may consists of two
compartments: synapses, which convert incoming action potentials to post-
synaptic potentials, and a trigger zone, where these potentials sum up and are
re-converted to outgoing action potentials. Due to the large spatial density
of neurons (∼ 104 neurons/mm3), one might consider ensemble activity on a
larger spatial scale (> 1mm), obtaining a coarse-grained description in space
and time [37]. Consequently, macroscopic state variables of neuronal ensem-
bles are mean pulse rates P (x, t) and mean postsynaptic potentials Ψ(x, t).
In the following, all measures are meant to represent means of microscopic
measures.

Since the link between the microscopic description and the level of neural
ensembles has been established in several previous works (e.g. [37, 29, 4, 3]),
we only briefly outline the basic mechanisms of activity conversion in neu-
ronal fields. At chemical passive synapses, incoming pulse activity J(x, t) is
converted to postsynaptic potentials by convolution with an impulse response
function h(t), yielding

Ψ(x, t) =

∫ t

−∞

h(t− τ )J(x, τ )dτ.

Since neuronal fields exhibit non-local interactions via axonal connections
between synapses, incoming pulse activity obeys

J(x, t) = β

∫

Ω

K(x, y)P (y, t− ∆(x, y))dy + E(x, t),

where Ω is an appropriate spatial domain, K(x, y) is the connectivity kernel,
β > 0 is a scaling factor and E is an additional external input. In the case of
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undamped axonal pulse propagation with finite velocity v and no additional
constant delay, we get ∆(x, y) = |x − y|/v. Essentially, the chain of activity
conversion closes by the conversion of postsynaptic potentials to pulse rates

P (x, t) = S[Ψ(x, t)],

where S is called the transfer function. Considering all conversions, we obtain
the integral equation

Ψ(x, t) =

∫ t

−∞

dτ

∫

Ω

dy h(t − τ )K(x, y)S[Ψ(y, τ − |x− y|/v)] + E(x, τ ).

Finally, we recast the impulse response function as a Green’s function and
thus stipulate

L̂h(t) = δ(t)

introducing a temporal differential operator L̂. Hence, the final equation
reads

L(∂/∂t)V (x, t) = β

∫

Ω

K(x − y)S(V (y, t − |x− y|/v)) dy + E(x, t). (1)

Here L is a polynomial and L(∂/∂t) denotes a temporal differentiation oper-
ator with constant coefficients. It is assumed that L is a stable polynomial,
i.e., all its roots have negative real parts. We shall refer to (1) as an n-th
order system where n ≥ 1 is the order of L. The kernel K : R → R is
continuous, integrable, and even, that is, K(−z) = K(z) for all z ∈ R. The
transfer function S : R → R is assumed to be differentiable and monotone
increasing; in most works it is taken to have a sigmoidal shape.

The model (1) has been treated in the literature in several contexts and
with different choices for L. In most studies the effect of transmission speed
has been neglected by letting v = ∞ in the model, the justification being that
the signal propagation is sufficiently fast or the spatial scales of the problem
are small [23]. Some recent works [4, 10, 13, 22, 16, 6] have addressed the case
of finite v by numerical investigations for particular choices of the kernel K.
Our aim is to give an analytical treatment of the effects of finite transmission
speeds for general K and L.
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2 Stability of equilibrium solutions

It is often convenient to normalize the time and space in (1). For instance, if
l and τ are some characteristic length and time of the physical problem, then
one can define t̄ = t/τ , x̄ = x/l, V̄ (x̄, t̄) = V (lx̄, τ t̄), Ē(x̄, t̄) = E(lx̄, τ t̄),
L̄(∂/∂t̄) = τnL(τ−1∂/∂t̄), K̄(z̄) = K(lz̄), and v̄ = τv/l so that (1) becomes

L̄(∂/∂t̄)V̄ (x̄, t̄) = lτnβ

∫

Ω

K̄(x̄ − ȳ)S(V̄ (ȳ, t̄ − |x̄ − ȳ|/v̄)) dȳ + Ē(x̄, t̄)

which has the same form as (1). A common choice for characteristic time
is τn = 1/L(0), in which case L̄(0) = 1. Thus without loss of generality we
consider (1) with the assumption that L(0) = 1. Most studies of neuronal
fields assume first or second order time derivatives in (1). To address these
models in a unified manner we shall often refer to the following specific form

L(λ) = ηλ2 + γλ + 1, η = 0 or 1, γ > 0 (2)

although certain results will be stated for arbitrary order stable polynomials
L. For the spatial domain we assume Ω = R; but all the results remain valid
virtually without modification when Ω is a circle.

For a constant input E(x, t) ≡ E∗, an equilibrium solution V (x, t) ≡ V ∗

satisfies

V ∗ = β

∫

∞

−∞

K(x − y)S(V ∗) dy + E∗. (3)

Let

κ =

∫

∞

−∞

K(z) dz = 2

∫

∞

0

K(z) dz. (4)

Then (3) can be written as

f(V ∗)
def
= V ∗ − κβS(V ∗) = E∗. (5)

If S is bounded then f : R → R is surjective; thus (5) has a solution V ∗

for any E∗ ∈ R. The uniqueness of V ∗ depends on the sign of κ and the
shape of S. If S is positive and increasing on R, such as a sigmoid function,
and if κ ≤ 0, then f is increasing and hence also injective, in which case the
solution V ∗ is unique. On the other hand if κ > 0 then there may be multiple
equilibria, as (5) can have more than one solution V ∗ for a given E∗.

4



The stability of the equilibrium solution V ∗ is determined by the linear
variational equation

L(∂/∂t)u(x, t) = α

∫

∞

−∞

K(x − y)u(y, t− |x− y|/v) dy (6)

where u(x, t) = V (x, t) − V ∗ and α = βS ′(V ∗) > 0. We shall use α as a
bifurcation parameter in the following sections. Using the ansatz u(x, t) =
eλtϕ(x) in (6) one obtains

L(λ)ϕ(x) = α

∫

∞

−∞

K(x − y) exp(−λ|x − y|/v)ϕ(y) dy. (7)

Thus ϕ is an eigenfunction of an integral operator. Due to the difference
kernel the eigenfunctions have the form ϕ(x) = eikx for some k ∈ R, and
substituting into (7) followed by a change of variables z = x − y in the
integral gives

L(λ) = α

∫

∞

−∞

K(z) exp(−λ|z|/v) exp(−ikz) dz. (8)

The integral above is the Fourier transform of the function Kλ(z) = K(z) exp(−λ|z|/v)
(up to a multiplicative factor depending on which definition one uses), which
is also equal to its cosine transform since Kλ(z) is an even function of z.
The dispersion relation (8) between the temporal and spatial modes λ and
k is in general difficult to solve explicitly. A notable exception is the case of
instantaneous information transmission, since when v = ∞ the right hand
side of (8) is independent of λ. In this paper we shall be interested in finite
transmission speeds.

The solutions (λ, k) of (8) correspond to the perturbations u(x, t) =
eλteikx about the equilibrium solution, which grow or decay in time depend-
ing on whether Re λ is positive or negative, respectively, thus determining
the stability of V ∗. We give sufficient conditions for asymptotic stability.

Theorem 1 Let c = α
∫

∞

−∞
|K(z)| dz. If

c < min
ω

|L(iω)| (9)

then V ∗ is asymptotically stable. In particular, if L(λ) = λ + 1 then the
condition

c < 1 (10)
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is sufficient for the asymptotic stability of V ∗. If L(γ) = λ2 + γλ + 1 with
γ > 0, then V ∗ is asymptotically stable provided that the condition

γ2

2
> 1 −

√
1 − c2 (11)

holds in addition to (10).

The following lemma will be useful in the proof of the theorem.

Lemma 1 Let L(λ) be a polynomial whose roots have nonpositive real parts.
Then

|L(σ + iω)| ≥ |L(iω)|
for all σ ≥ 0 and ω ∈ R.

Proof. If λk denote the roots of L, then L(λ) = (λ−λ1)(λ−λ2) · · · (λ−
λn), where n is the order of L. Thus

|L(σ + iω)| =

n
∏

k=1

|σ + iω − λk|

=

n
∏

k=1

(

(σ − Re[λk])
2 + (ω − Im[λk])

2
)1/2

.

By assumption, σ ≥ 0 and Re[λk] ≤ 0 for all k, so

|L(σ + iω)| ≥
n
∏

k=1

(

(−Re[λk])
2 + (ω − Im[λk])

2
)1/2

=
n
∏

k=1

|iω − λk|

= |L(iω)|.

Proof of Theorem 1. In the ansatz u(x, t) = eλteikx let λ = σ + iω where
σ and ω are real numbers. We will prove that σ < 0 if (9) holds. Suppose by
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way of contradiction that (9) holds but σ ≥ 0. ¿From the dispersion relation
(8) it follows that

|L(σ + iω)| = α

∣

∣

∣

∣

∫

∞

−∞

K(z) exp(−(σ + iω)|z|/v) exp(−ikz) dz

∣

∣

∣

∣

≤ α

∫

∞

−∞

|K(z)| | exp(−(σ + iω)|z|/v)| dz

≤ α

∫

∞

−∞

|K(z)|dz = c. (12)

On the other hand, by Lemma 1,

|L(iω)| ≤ |L(σ + iω)|,

which together with (12) implies

|L(iω)| ≤ c

for some ω ∈ R. This, however, contradicts (9). Thus σ < 0, and the
equilibrium solution is asymptotically stable. This proves the first statement
of the theorem. In the specific case when L is given by L(λ) = λ + 1, one
has |L(iω)|2 = 1 + ω2. Hence if (10) is satisfied, then

c2 < 1 ≤ 1 + ω2 = |L(iω)|2 for all ω ∈ R

which is a sufficient condition for stability by (9). Similarly, suppose L has
the form L(λ) = λ2 + γλ + 1 and suppose that (10) and (11) are satisfied.
Then

|L(iω)|2 = (1 − ω2)2 + (γω)2.

Consider now the function

g(ω)
def
= |L(iω)|2 − c2

= ω4 + (γ2 − 2)ω2 + (1 − c2). (13)

If γ2 ≥ 2 then g(ω) is positive for all ω by (10). On the other hand if γ2 < 2,
then by (11)

0 < 2 − γ2 < 2
√

1 − c2

implying that the discriminant (γ2 − 2)2 − 4(1 − c2) is negative; so g has no
real roots. Thus in either case g(ω) is positive, or equivalently c < |L(iω)|,
for all ω, and stability again follows by the first statement of the theorem.
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3 Bifurcations

When α = 0, the eigenvalues λ are simply given by the roots of L, so that
Re λ < 0 by the assumption that L is a stable polynomial, and the equi-
librium point is asymptotically stable. As α is increased, stability may be
lost if an eigenvalue λ crosses the imaginary axis, and a dynamically dif-
ferent behavior may result in the original nonlinear equation (1). At the
critical transition there is an eigenvalue of the form λ = iω, ω ∈ R, and the
dispersion relation (8) becomes

L(iω) = α

∫

∞

−∞

K(z) exp(−i(kz + ω|z|/v)) dz. (14)

The possibilities for the resulting behavior when α is near such a critical
value can then be qualitatively classified as follows:

I. Stationary bifurcations

(a) ω = 0 and k = 0 : bifurcation to a spatially and temporally con-
stant solution.

(b) ω = 0 and k 6= 0 : bifurcation to a spatially periodic solution which
is constant in time, leading to spatial patterns (Turing modes).

II. Non-stationary bifurcations

(a) ω 6= 0 and k = 0 : Hopf bifurcation to periodic oscillations of a
spatially uniform solution.

(b) ω 6= 0 and k 6= 0 : bifurcation to traveling waves, with wave speed
equal to ω/k.

The conditions for stationary bifurcations are easily characterized by the
relation (14) recalling the assumption that L(0) = 1. Thus for Case Ia one
has

1 = α

∫

∞

−∞

K(z) dz = ακ (15)

with κ as defined in (4). This is only possible if κ > 0, and is the mecha-
nism for appearance of multiple equilibrium solutions of (3). Similarly, the
condition (8) for Case Ib is

1 = α

∫

∞

−∞

K(z) exp(ikz) dz = αK̂(k), k 6= 0, (16)
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where K̂ denotes the Fourier transform of K. As α is increased from zero,
the first mode that becomes unstable in the linearized equation is expected to
give an indication of what would be observed in the full nonlinear system (1).
Hence, spatial patterns are typically observed as bifurcations from equilibria
if a nonzero k is the first mode that loses stability. From (16) it follows
that a necessary condition for this is that the maximum value of the Fourier
transform of K is positive and occurs at a nonzero frequency k.

It is clear from (15) and (16) that stationary bifurcations are independent
of the order of the temporal differentiation operator L or the transmission
speed v. Their analysis only involves the properties of the Fourier transform
of the kernel function. On the other hand, L and v turn out to be crucial in
non-stationary bifurcations, which will be our main focus in the remainder of
the paper. Indeed, our next result shows that a sufficiently small transmission
speed is actually a necessary condition for non-stationary bifurcations in first
and second order systems.

Proposition 2 Suppose L(λ) = ηλ2 + γλ + 1 with γ > 0 (η may possibly be
zero). If

v >
α

|γ|

∫

∞

−∞

|zK(z)| dz (17)

then (6) has no solutions of the form u(x, t) = exp i(ωt+kx) with ω real and
nonzero.

Proof. ¿From the dispersion relation (8),

L(λ) = α

∫

∞

−∞

K(z) exp(−λ|z|/v)(cos kz − i sin kz) dz

= α

∫

∞

−∞

K(z) exp(−λ|z|/v) cos kz dz

since the function K(z) exp(−λ|z|/v) is even in z. Separating the real and
imaginary parts of the above expression at the bifurcation value λ = iω gives

Re L(iω) = α

∫

∞

−∞

K(z) cos(ωz/v) cos(kz) dz (18)

ImL(iω) = −α

∫

∞

−∞

K(z) sin(ω|z|/v) cos(kz) dz (19)
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Suppose L(λ) = ηλ2 + γλ + 1. Then Im L(iω) = γω, and (19) implies

|γω| = α

∣

∣

∣

∣

∫

∞

−∞

K(z) sin(ω|z|/v) cos(kz) dz

∣

∣

∣

∣

≤ α

∫

∞

−∞

|K(z) sin(ωz/v)| dz

≤ α

∫

∞

−∞

|K(z)ωz/v| dz

where we have used the estimate | sin(x)| ≤ |x| for all x ∈ R. If ω 6= 0, then
|ω| may be cancelled in the last inequality to yield

|γ| ≤ α

v

∫

∞

−∞

|zK(z)| dz.

This, however, contradicts the assumption (17). Hence ω = 0, which proves
the proposition.

We note that in third and higher order systems bifurcation values λ =
iω 6= 0 may occur even with v = ∞.

In systems of all orders, it is possible to put a priori bounds on the
possible values of ω in terms of the kernel function, as given by the next
result.

Proposition 3 Let c be as defined in Theorem 1. Then there exists B > 0,
depending only on L and c, such that

|ω| ≤ B (20)

whenever u(x, t) = exp i(ωt + kx) is a solution of (6). Furthermore, if c < 1
then there exists A > 0, depending only on L and c, such that

0 < A ≤ |ω|. (21)

In particular, if L(λ) = λ + 1 then

ω2 ≤ c2 − 1, (22)

and if L(λ) = λ2 + γλ + 1 then

(1 − 1
2
γ2) − δ ≤ ω2 ≤ (1 − 1

2
γ2) + δ if 0 ≤ c < 1,

0 ≤ ω2 ≤ (1 − 1
2
γ2) + δ if c ≥ 1

(23)

where δ =
√

(1 − 1
2
γ2)2 − 1 + c2.
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Remark. The existence of a solution of the form u(x, t) = exp i(ωt + kx)
implies that the equilibrium point is not asymptotically stable. It is
then a consequence of Theorem 1 that the right sides of the inequalities
in (22) and (23) are nonnegative.

Proof of Proposition 3. . If λ = iω satisfies the dispersion relation
(8) for some k, then

|L(iω)| ≤ α

∫

∞

−∞

|K(z)| dz = c. (24)

Since |L(iω)| → ∞ as ω → ±∞ for any nonconstant polynomial L, the
above inequality implies an upper bound B on |ω|, which proves (20). For
the particular case when L(λ) = λ + 1, (24) gives

|L(iω)|2 = ω2 + 1 ≤ c2,

proving (22). Similarly, for L(λ) = λ2 + γλ + 1, (24) yields

|L(iω)|2 = ω4 + (γ2 − 2)ω2 + 1 ≤ c2. (25)

If we let u = ω2, then the inequality above is equivalent to saying that
possible values of u ≥ 0 are those which render the function

h(u)
def
= u2 + (γ2 − 2)u + (1 − c2)

negative or zero. This is only possible if h has at least one root in the interval
[0,∞), implying that the discriminant (γ2 − 2)2 − 4(1 − c2) is nonnegative.

Letting δ =
√

(1 − 1
2
γ2)2 − 1 + c2, the roots of h can be written as (1 −

1
2
γ2) ± δ. Thus h(ω2) ≤ 0 for ω2 satisfying

(1 − 1
2
γ2) − δ ≤ ω2 ≤ (1 − 1

2
γ2) + δ. (26)

It remains to ensure that the interval above is a subset of [0,∞). If c < 1,
then both roots of h are nonnegative. For if the smaller root is negative, we
have

0 > (1 − 1
2
γ2) − δ > (1 − 1

2
γ2) − |1 − 1

2
γ2|,

so (1 − 1
2
γ2) < 0. But then both the conditions (10) and (11) are satisfied,

and by Theorem 1 λ = iω cannot be a solution to (8). On the other hand, if
c ≥ 1, then

(1 − 1
2
γ2) − δ ≤ (1 − 1

2
γ2) − |1 − 1

2
γ2| ≤ 0
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and
(1 − 1

2
γ2) + δ ≥ (1 − 1

2
γ2) + |1 − 1

2
γ2| ≥ 0.

So, in this case the lower bound on ω2 in (26) can be replaced by zero. This
establishes (23). Finally, to prove (21) for arbitrary L assume that c < 1.
Then 1 = L(0) > c. By the continuity of L there exists A > 0 such that
|L(iω)| > c whenever |ω| ≤ A. Since (24) is not satisfied, (6) does not have a
solution of the form exp i(ωt + kx) with |ω| ≤ A, which completes the proof.

4 Perturbative analysis

In order to study the type of bifurcations that may arise in a give situation,
the dispersion relation (14) needs to be solved for ω and k. However, explicit
solutions are difficult to obtain for general kernel functions. The results of
the previous sections imply that in the absence of delays one has a simpler
case, where non-stationary bifurcations do not exist in first and second order
systems. It follows that the role of delays can be systematically examined by
following the changes in the bifurcation structure as the value of the trans-
mission speed is decreased from infinity. Hence we introduce the parameter
ε = 1/v, and consider the change in dynamics as ε is increased from zero.
This leads to an approximation scheme that provides valuable insight into
the effects of axonal delays in the dynamics of the system. Consider the
power series estimate

exp(−λ|z|/v) =
m=N
∑

m=0

(−λ|z|/v)m

m!
+ O(v−(N+1)).

Substitution in the dispersion relation (8) at the bifurcation value λ = iω
gives a finite series in powers of ε = 1/v,

L(iω) = α

∫

∞

−∞

K(z) exp(−ikz)

[

m=N
∑

m=0

(−iεω|z|)m

m!
+ O(εN+1)

]

dz

= α
m=N
∑

m=0

(−iεω)m

m!
K̂m(k) + O(εN+1) (27)
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where the K̂m denote the transforms of the moments of K:

K̂m(k) =

∫

∞

−∞

|z|mK(z) exp(−ikz) dz = 2

∫

∞

0

zmK(z) cos(kz) dz. (28)

and the integrals are assumed to exist. Separating the real and imaginary
parts of (27) then yields

α−1 Re L(iω) = K̂0(k) − ε2

2
ω2K̂2(k) +

ε4

24
ω4K̂4(k) − . . . (29)

α−1 Im L(iω) = −εωK̂1(k) +
ε3

6
ω3K̂3(k) − ε5

120
ω5K̂5(k) + . . . (30)

The number of terms needed for the above series to be useful depends on the
value of ε as well as the shape of the kernel K. If K is highly concentrated
near the origin then a few terms are sufficient. To make this precise, suppose
that K is of exponential order, which is the case in most practical situations.
In other words, suppose there exist positive numbers κ1 and κ2 such that

|K(z)| ≤ κ1 exp(−κ2|z|) for all z ∈ R.

It then follows from (28) that
∣

∣

∣
K̂m(k)

∣

∣

∣
≤
∫

∞

−∞

|z|mκ1 exp(−κ2|z|) dz = 2κ1

∫

∞

0

zm exp(−κ2z) dz

= 2κ1κ
−(m+1)
2 Γ (m + 1) = 2κ1κ

−(m+1)
2 m!

so the m-th term in the series (27) is bounded in absolute value by

2
κ1

κ2

(

ε|ω|
κ2

)m

≤ 2
κ1

κ2

(

B

κ2
ε

)m

where we have used Proposition 3 to bound the values of ω. Hence, in case of
small ε (large transmission speed) or B (e.g. small α or S ′), or a large value
of κ2 (fast decay of K away from the origin), the finite series has increased
accuracy. We assume that at least one of these conditions is satisfied so that
a small number of terms suffices to determine the general behavior.

In order to observe the qualitative effects of finite transmission speed, we
thus neglect third and higher order terms in ε in the series (27). Then, for
L given by (2), equations (29)-(30) become

α−1(1 − ηω2) = K̂(k) − 1
2
ε2ω2K̂2(k) (31)

α−1γω = −εωK̂1(k) (32)
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where we have substituted the more conventional notation K̂ for the Fourier
transform K̂0 of the kernel. For stationary bifurcations (ω = 0) one obtains
from the first equation that

K̂(k) = 1/α (33)

which is the same as the conditions (15)-(16) given by exact calculation. For
a non-stationary bifurcation ω 6= 0, so (32) implies that

K̂1(k
∗) = −γ/εα. (34)

Since K̂1 is continuous and K̂1(k) → 0 as k → ±∞, it has a minimum at
some value of k, which corresponds to the first mode that loses stability as ε
or α is increased. Thus, let

k∗ = min
k

K̂1(k) = min
k

∫

∞

−∞

|z|K(z) exp(−ikz) dz, (35)

and provided K̂1(k
∗) < 0, k∗ will be the sought solution of (34). Substituting

k∗ into (31) gives

ω2 =
αK̂(k∗) − 1

1
2
αε2K̂2(k∗) − η

(36)

which has a solution for ω whenever the right-hand side is nonnegative. This
gives a simple procedure to calculate the pairs (ω, k) satisfying the dispersion
relation and corresponding to the bifurcating solution exp(ωt + kx).

It remains to determine what type of bifurcation actually occurs. This
depends on the mode by which the equilibrium solution, which is stable for
α = 0, loses its stability as the bifurcation parameter α is increased. The
procedure described in the above paragraph gives a simple graphical method.
Thus if one plots the curves K̂(k) and −K̂1(k)/γv in the same graph, and
thinks of 1/α as a horizontal line being lowered from +∞, then the first in-
tersection point specifies the bifurcation type. If the horizontal line touches
the graph of K̂(k) first, then (33) is satisfied and a stationary bifurcation
occurs. If, on the other hand, it touches −K̂1(k)/γv first, then (34) is satis-
fied and a non-stationary bifurcation occurs. Furthermore, the value of k at
the intersection point being zero or nonzero specifies whether the bifurcating
solution is spatially constant or not, respectively. It is worthwhile to note
that the the type of bifurcations that can occur depends only the extremal
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values of K̂ and K̂1 and not on the exact shapes of their graphs. This ob-
servation has two important consequences. Firstly, the bifurcation structure
depends on some general qualities of the kernel and not on its precise shape.
And secondly, although our analysis is based on an approximation scheme,
the qualitative conclusions regarding the type of bifurcations are generally
robust, except for some degenerate cases such as when the maximum values
of K̂(k) and −K̂1(k)/γv are equal.

An example for the investigation of possible bifurcations is illustrated
in Figure 1 for some typical kernel functions representing the possibilities
for different types of inhibitory and excitatory interaction within the field.
For each kernel type in the first column of the figure, the corresponding
graphs of K̂(k) and −K̂1(k)/γv are plotted in the second column. By the
argument outlined above, the possible bifurcations for each type of kernel can
be directly read off from the graphs in the second column. The actual graphs
in the figure are calculated from Gaussian distributions; however, it is clear
that small variations in the graphs do not change the bifurcation types. In
this way, it is possible to draw some general conclusions concerning different
interaction kernels.

The analysis of presented in this section is useful for having a better un-
derstanding about the relationship between the interactions within the field
and the resulting dynamical behavior. The Fourier transforms K̂ and K̂1/γv
are seen to be crucial in this regard, the former instrumental for station-
ary bifurcations and the latter the non-stationary ones, for the parameter
ranges where the approximation scheme is justified. Outside of this range,
e.g. for very low transmission speeds, the higher moments of the kernel are
also expected to make contributions to the results. In this case, more terms
need to be considered in the series (27), together with a numerical solution
of the system (29)-(30). Nevertheless, already in the term K̂1/γv one can see
the ingredients that come into play in creating non-stationary bifurcations,
namely the operator L (through γ) representing the local temporal behavior,
the kernel (through K̂1) representing spatial interaction, and the transmis-
sion speed connecting the two aspects of the dynamics. Figure 1 gives a
summary of the bifurcations resulting from the interplay of these elements.
In the next section we present numerical simulations for the corresponding
dynamical behavior in the nonlinear system (1), obtained on the basis of the
foregoing analysis.
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Figure 1: Typical interaction kernels and possible bifurcation types. The
first column shows the kernels, with the corresponding Fourier transforms in
the second column. The maxima of K̂ and −K̂1/γv, respectively, determine
the stationary and oscillatory bifurcations, the largest peak giving the actual
bifurcation taking place as α is increased. Hence, depending on the value
of γv, some typical cases are (a) an excitatory field, possible bifurcations Ia
and IIb; (b) an inhibitory field, possible bifurcation IIa; (c) local inhibition
and lateral excitation, possible bifurcations Ia and IIb; (d) local excitation
and lateral inhibition, possible bifurcations Ib and IIa or IIb. In the last
subfigure two distinct possibilities for −K̂1/γv are shown with dashed and
dotted lines. 16



5 Applications

We now examine the previous results numerically for a particular model. To
this end, we set the differential operator to

L(
∂

∂t
) =

∂2

∂t2
+ γ

∂

∂t
+ 1, (37)

and further specify the connectivity kernel. Since a neuronal field might
exhibit excitatory and inhibitory connections, the kernel K contains both
excitatory and inhibitory distributions over space. In case of a homogeneous
and isotropic neuronal field, a choice of K is

K(z) =
1√
π

(aee
−z2 − aire

−r2z2

), (38)

where ae, ai denote excitatory and inhibitory weights and r = σe/σi gives the
relation of excitatory and inhibitory spatial connectivity ranges σe,i, respec-
tively. In this formulation, the terms in (38) represent probability distribu-
tions of excitatory and inhibitory connections, respectively. Thus a purely
excitatory connection (Fig. 1a) is obtained when ai = 0 and ae > 0, whereas
the choice ae = 0 and ai > 0 gives an inhibitory connection (Fig. 1b). Sim-
ilarly, for ae > ai > 0, local inhibition and lateral excitation (Fig. 1c) or
local excitation and lateral inhibition (Fig. 1d) can be obtained by choos-
ing r > ae/ai or r < 1, respectively. We shall mostly focus on these last
two cases. Finally, β = 1 and the transfer function in (1) is chosen to be
S(y) = 1/(1 + exp(−1.8(y − 3))) according to previous works [37, 27].

The subsequent temporal integration procedure applies a fourth-order
Runge-Kutta algorithm, while the spatial integration algorithm discretizes
the field into N intervals and applies

∫ L

0

f(z)dz ≈
N
∑

i=1

1

2
(f(zi) + f(zi+1))∆x (39)

for any function f , with L the field length and ∆x = L/N . Further, for
periodic boundary conditions, the integration obeys the circular rule

∫

∞

−∞

K(|x − y|)f(y)dy ≈
∫ L

0

K(L/2 − |L/2 − |x− y||)f(y)dy. (40)
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Figure 2: Stationary constant fields V ∗ plotted with respect to the external
input E∗ for various parameters κ. Up to three solutions A, B, C may exist
for a given input level.

In subsequent applications we take N = 400 and L = 40. For integration in
space and time initial values

V 0(x, t) = V ∗ + ξ(x, t), −τm ≤ t ≤ 0

are chosen randomly with the stationary constant state V ∗ and deviations
ξ(x, t) ∈ [−0.1; 0.1] subject to a uniform distribution. The parameter τm =
L/v denotes the maximum temporal delay.

5.1 Stability of V ∗

The equilibria V ∗ are found from (5). Figure 2 shows solutions V ∗ of (5) with
respect to the external input for various values of κ. In case κ > 2.2, there
exist up to three solutions A, B, C subject to the external input, whereas
there is only a single solution for κ ≤ 2.2. Theorem 1 gives a sufficient
condition for the stability of these equilibria. Note that for γ >

√
2 (11)

is automatically satisfied, so c < 1 is a sufficient condition for asymptotic
stability by Theorem 1. From (38) we have

c = α|2aeΦ(x0) − 2aiΦ(x0r) − (ae − ai)|, x0 =

√

1

1 − r2
ln(

ae

air
) (41)
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Figure 3: Parameter c from Theorem 1 plotted with respect to the external
input E∗ for various parameters ae, ai and r = 0.5, γ >

√
2. The characters

A, B and C denote stationary solutions (see Fig. 2) and solutions in the
region below the dashed line fulfills the sufficient condition of asymptotic
stability. It turns out, that stationary solutions C are asymptotically stable
for all external inputs in case of ae = 18, ai = 10 and ae = 60, ai = 55.

where Φ is the Gaussian error function, and 0 < r < 1 or r > ae/ai. The
spatial distance x0 marks the change of sign of the kernel function and thus
separates inhibitory from excitatory connections. The external input E∗

affects c through α = S ′(V ∗). In Fig. 3, c is plotted with respect to the input
E∗ for r = 0.5 and various parameter values of ae, ai at the different equilibria
V ∗. Stability is guaranteed by Theorem 1 at least in the region c < 1. In this
line, Fig. 4 shows a space-time plot of field activity that relaxes to a lower
solution A for c = 0.85 (cf. Fig. 2). On the other hand, at sufficiently high
values of α (and thus of c) stability is lost since when

α =
1

κ
(42)

the condition (15) for a type Ia bifurcation is satisfied. This bifurcaton point
is also indicated in Fig. 3. Therefore, the constant solutions denoted B in
Figs. 2-3 are unstable. Interestingly, this general result shows accordance to
findings in previous works for special connectivity kernels [27, 16]. Finally,
in the region c > 1 and α < 1/κ additional bifurcations might occur yielding
loss of stability. These are discussed in the following.
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Figure 4: Space-time plot of an asymptotically stable field for the Gaussian
connectivity kernel and parameters E∗ = 0.5, r = 0.5, γ = 2, ae = 60,
ai = 55, v = 100.0. The grey scale encodes the smooth deviations from the
stationary solution, while non-smooth activity results solely from the applied
thresholded illustration.
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5.2 Bifurcations

Recall that the external input defines the set of constant fields V ∗, which
subsequently determine the value of α. Hence, α is an appropriate bifurca-
tion parameter. For bifurcations to periodic patterns (Turing case Ib), the
threshold condition from Eq. (16) reads

αthr = 1/
(

aee
−k2

0
/4 − aie

−k2

0
/4r2

)

, k2
0 =

4r2

r2 − 1
ln

aer
2

ai

, (43)

where k0 = arg maxk K̂(k). As α > 0, we obtain directly from (43) that
r < 1, i.e. there is no Turing instability for r > 1. Figure 6 displays
thresholds αthr with respect to parameters r, confirming this finding.

Figure 5 displays a space-time plot of the corresponding Turing instability
with r = 0.5.

Next, we consider oscillatory phenomena. From Proposition 2, a neces-
sary condition for oscillatory behaviour is

v < vthr =
α

|γ|√π

[ai

r
− ae + 2

(

aee
−x2

0 − ai

r
e−r2x2

0

)]

, (44)

with x0 taken from Eq. (41). Figure 7 shows plots of thresholds vthr with
respect to the parameter r for two parameter couples of ae, ai. It turns out
that condition (44) is fulfilled and oscillations are expected for a wide range
of r > 1, whereas r < 1 allows only for a small parameter regime.

Further, Section 4 gives conditions for an oscillatory bifurcation in case
of large propagation velocity. To obtain oscillating activity constant in space
(case IIa), Fig. 1(d) illustrates the conditions r < 1 and −K̂1(0)/(γv) >
maxk K̂(k), implying

ae − ai/r

γv
√

π
> aee

−k2

0
/4 − aie

−k2

0
/4r2

, (45)

where k0 is taken from Eq. (43). Figure 8 displays the corresponding spatio-
temporal activity for appropriate parameters.

On the other hand, for traveling waves (case IIb) k 6= 0 and Fig. 1(c)
gives the conditions r > ae/ai and maxk −K̂1(k)/(γv) > K̂(0). Using a
series expansion for K̂1 [14] we obtain the condition

ae − ai < max
k

− 1

γv
√

π

(

ae −
ai

r
+

∞
∑

l=1

(

air
−2l−1 + ae

) (−1)l+1l!

(2l)!
k2l

)

. (46)

21



space

tim
e

0 20 30 4010

0

60

15

45

30

Figure 5: Space-time plot of the Turing instability for the Gaussian connec-
tivity kernel and parameters E∗ = 0.74, r = 0.5, γ = 2, ae = 60, ai = 55,
v = 100.0. The grey scale encodes the smooth deviations from the sta-
tionary solution, while non-smooth activity results solely from the applied
thresholded illustration.
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Figure 6: Thresholds of stationary Turing bifurcations αthr plotted for two
parameters sets ae, ai. The regime of the Turing instability obeys α > αthr,
i.e. the right hand side of each curve.
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Figure 7: Thresholds of oscillatory phenomena vthr for two parameters sets
ae, ai. The sufficient condition for oscillations is fulfilled for v < vthr, i.e. the
left hand side of each curve.
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Figure 8: Space-time plot of the Hopf instability for the Gaussian connectiv-
ity kernel and parameters E∗ = 0.85, r = 0.145, γ = 0.2, ae = 18, ai = 10,
v = 8.0. The grey scale encodes the smooth deviations from the stationary
solution, while occuring non-smooth activity results solely from the thresh-
olded illustration.
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Figure 9: Space-time plot of the wave instability for the Gaussian connec-
tivity kernel and parameters E∗ = 1.29, r = 3.0, γ = 2.0, ae = 60, ai = 55,
v = 1.0. The grey scale encodes smooth the deviations from the stationary
solution, while non-smooth activity results solely from the applied thresh-
olded illustration.

Figure 9 shows the space-time plot of wave instability for appropriate pa-
rameters.

Finally, we examine how the phase velocity of traveling waves depend on
the propagation velocity v in the system. From (36) the phase velocity reads

vph =
ω

k∗
=

v

k∗

√

αK̂(k∗) − 1
1
2
αK̂2(k∗) − v2

, (47)

where k∗ solves Eq. (34). In Fig. 10, vph is plotted and exhibits a slightly
nonlinear dependence on the propagation velocity for the applied parameters.
We point to the small ratio of phase velocity to propagation velocity in
accordance to previous findings [23, 16].
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Figure 10: The wave velocity of traveling waves with respect to axonal prop-
agation velocity. Parameters are γ = 0.2, 0.03 ≤ α ≤ 0.11 and ω/v ≈ 0.7
(left, for v ≈ 2) and ω/v ≈ 0.3 (right, for v ≈ 7), respectively.

27



6 Conclusion

We have presented an analysis of the stability of equilibrium solutions for
a general class of neural field equations. The details of bifurcations arising
from loss of stability provide important information concerning a variety
of dynamical behavior that is of neuroscientific interest, including spatial
patterns and traveling waves. The stationary bifurcations and the resulting
spatial patterns depend only on the connectivity kernel, and are completely
determined by its Fourier transform K̂(k). On the other hand, the axonal
delays are shown to have significant effects on the non-stationary bifurcations.
By a perturbation approach we have characterized these effects in terms of
the Fourier transforms of the moments of the kernel function. For high signal
transmission speeds, only the first kernel moment needs to be considered to
draw qualitative conclusions. This leads to a simple method for determining
the possible bifurcation types by comparing the Fourier transforms K̂(k)
and −K̂1(k)/vγ. Furthermore, the bifurcations depend only on the extremal
values of the transforms, rather than the precise shapes of the kernels.

The analysis presented here, being applicable to a broad range of connec-
tivity and synaptic properties and transfer functions, suggests some general
conclusions on the types of nonlinear dynamics that can be observed in a
fairly wide class of systems. For instance, one generally expects to see oscil-
latory behavior whenever the signal transmission speed is sufficiently small.
In fact, for completely general kernels the peaks of K̂(k) and −K̂1(k) are more
likely to occur at some nonzero k rather than at the precise value k = 0. This
suggests that the prevalent behavior arising from bifurcations of equilibria
will be either spatial patterns or traveling waves, depending on whether the
transmission speed is large or small, respectively. Nevertheless, more spe-
cific kernel types may dictate different dynamical behavior depending on the
application.

Our work is mostly motivated by experimental findings (e.g. [20, 35,
11]). In this line, the presented study aims to generalize the analysis of
synaptically-coupled neuronal fields in order to gain a classification scheme
for observed spatio-temporal patterns. Here, we would like to mention the
important generalization of Amari [1] in lateral-inhibition type fields without
axonal delay. Since neurophysiological properties of observed neural tissue
are not accessible precisely, a classification scheme might link model func-
tionals with observed phenomena. For example, observed traveling waves ne-
cessitate an axonal propagation velocity below a certain threshold defined by

28



synaptic kernel properties and synaptic response properties (Proposition 2),
and furthermore, their frequencies are confined to a bounded band (Propo-
sition 3). In addition, this classification might be important for estimating
interaction parameters from multi-site neuronal data (e.g. [9]). Due to the
large number of different activity phenomena, further studies in this area
could incorporate additional mechanisms like standing and traveling pulse
fronts as in [23, 24], boundary effects in local neuronal areas (e.g. [5]), or the
influence of external inputs [36, 7] local in space and time.
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