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Abstract

In the MINIMUM STRICTLY FUNDAMENTAL CYCLE BAsis (MSFCB) prob-
lem one is looking for a spanning tree such that the sum oftingths of its induced
fundamental circuits is minimum.

We identify square planar grid graphs as being very chaltentgstbeds for
the MSFCB. The best lower and upper bounds for this problendae to Alon,
Karp, Peleg, and West (1995) and to Amaldi et al. (2004).

We improve significantly their bounds, both empirically aa&y/mptotically.
Ideally, these new benchmarks will serve as a referencéégoérformance of any
new heuristic for the MSFCB problem which will be designediyan the future.

1 Introduction

Consider the following problem. Given tinex N
square planar grid grapBy n. Find a spanning 1 | [
treeT such that the sum of the lengths of its in-
duced fundamental circuits is as small as possi-
ble. In Figure 1 we provide a very good solution
for Ggg. Is this optimal?

At first sight, this might appear being a kind I e
of “toy problem.” Indeed, at the occasion Gfgure 1: A very good SFCB ofGgg. It
its annual web-based Christmas quizvv. mat hecosts 266. Can you give a cheaper one?
kal ender . de), on December 18, 2006 the
DFG Research Center MHEON essentially asked the above question to more than
9000 registered users (pupils, teachers, scientists, treis). Typically, each day
about 1500 users post their answers, and more than 60% efaimssvers are correct.
In contrast, on Dec. 18, less than everghthanswer has been correct—a first indicator
for the trickiness of this particular problem.

The fundamental circuits with respect to some spanningitreee general graph
form a strictly fundamental cycle basis, where we refer tcti®a 2 for any formal def-
inition. We refer to the problem of finding a spanning tree sénfundamental circuits




sum to a minimum value as the IMIMUM STRICTLY FUNDAMENTAL CYCLE BA-
SIS (MSFCB) Problem. As a generalization, in theNmum CycLE BASIS (MCB)
Problem one seeks for a general cycle basis of minimum length

Applications. The MCB problem has many applications. These include biokoyl
chemistry ([11]), traffic light planning ([15]), periodiailway timetabling ([17]), and
electrical engineering ([6]). Typically, cycle bases aoenputed as a kind of prepro-
cessing. Then, throughout the actual computations ongenthat a certain problem-
specific property is true for the elements of the cycle basthé graph of interest. By
this, one can conclude that this property is actually trueftycycle in the graph, right
as it is required by the practical application. In many caesshorter the used cycle
basis, the shorter the time for the actual computations.

For some of these applications, due to structural reasonalhoycle bases are
of use (e.g. traffic light planning and periodic railway ti@eling), but strictly funda-
mental cycle bases—being the most specialized ones—alaraysin other applica-
tions, such as electrical engineering, it is at least mucherfevorable to use strictly
fundamental cycle bases, because of the numerical syatifilihe subsequent calcula-
tions ([3]). The practical relevance of the MSFCB probleral&o reflected by numer-
ous computational studies by different groups working imbmatorial optimization
([2,7,8,9, 12, 16, 20]). We shortly overview these works tralr findings.

Theory. As early as 1982, Deo et al. ([7]) proved the MSFCB problem&d\t-
hard for general unweighted graphs. Yet, the many appbicatiequire solutions to
be generated anyway. Hence, many heuristics were propose@sted. However, for
none of these heuristics neither any non-trivial approfiomaratio nor any non-trivial
bound on the absolute length of the resulting bases was pedpd he only statement
into that direction is that Deo et al. ([7]) conjecture MSFCE unweighted graphs to
have lengtiO(n?).

The design of most of these heuristics has been led by theniolgy observation:
“A BFS produces spanning trees of short diameters. ThusB#&® method on the
average generates fundamental cycles of shorter totahiédogmpared to some other
approaches).” ([7]). In particular, these heuristics mlakal decisions that are mainly
based on the degrees of the vertices, eith& or in some residual graph.

But also there can be applied totally different techniqéegually, Elkin et al. ([10])
consider some average-stretch tree spanner problem.ifydfitm the Unified Nota-
tion for Tree Spanner problems (UNTS, [19]) one can easiytkat in the case of un-
weighted graphs their results apply immediately to the MB@blem. In particular,
their recursive algorithm computes a SFCB of asymptotigtie®(m-log? nloglogn).
Let us emphasize that this is the first non-trivial theogdtgriarantee on the quality of
a solution to the SFCB problem, and it is obtained by a recergpproach. Moreover,
for graphs with E| € O(|V|?~#), this result proves Deo’s conjecture.

Why Planar Grids? In the absence of theoretical bounds for the many degresdbas
heuristics, their authors used empirical calculationssgeas their quality. But to com-
pare different heuristics empirically, these must be ruthanvery same input graphs.



But what aregoodsuch testbeds?

Liberti et al. ([16]) consider square planar grid graphsbeithe most difficult
testbeds for the MSFCB problem, both for heuristic and eraethods, due to the
huge quantity of configurations having the same SFCB costfadt, also from a the-
oretical perspective this can be motivated in three wayst,Rhese graphs are almost
regular because more than- 4,/n vertices have degree four—a nightmare for any
degree-based heuristic. Second, within a fixed distaneesubgraphs around almost
each vertex are isomorphic. Hence, any heuristic that hssdecisions on local con-
figurations risks to perform poorly. Third, @ was a tree, then in the MSFCB problem
no decisions are to be made and the problem clearly becoivies. tAn appropriate
measure for the tree-alikeness of a graph is its tree-wid{h. (And with respect to
that measure, grid graphs—havi@gn) edges and tree-widtlyn—are prominent ex-
amples of being far away from being a tree ([22]). Thus the @BRproblem is likely
to keep its hardness. In addition, in several applicatietsvant instances are planar
graphs, sometimes even grids (e.g. electrical enginegdrafjc light scheduling).

Focusing on grid graphs could appear narrow. But it is conynbalieved that
these hold the key to better algorithms. Indeed, for squkmeap grid graphs Alon,
Karp, Peleg, and West ([1]) design spanning trees of Ier§grl|bgzn+ O(n) ([14]).
They prove these trees to be asymptotically optimal. Mageabhey conjecture their
trees are “essentially optimal.” This asymptotical uppauid lets us demonstrate how
degree-based heuristics may fail. The degree-basedler heuristic can be imple-
mented to compute “Machete’-trees (cf. [5], and Figure lafoexample). These trees
do not only minimize the diameter of trees in grids, but alemaximum stretch. At
first sight these two parameters of a tree could appear biginthytrelated to its asso-
ciated SFCB cost. Itis again the UNTS ([19]) which makesahsparent that even for
unweighted graphs no two of these three measures do acteatlygide. As Machete-

trees yield MSFCB objective values @‘(n%), on grid graphs degree-based heuristics
risk to fail drastically. This underlines grids being a kelet testbed.

As a matter of fact, Liberti et al. ([16]) select grid graplssame of their testbeds.
On the 50x 50 grid they observe that their negvorder heuristic attains an objective
value of 46452, compared to 48254 of the NT heuristic. Unfaately, from this iso-
lated comparison it has to remain unclear whether theseomeapjective values at all.
In fact, Amaldi et al. ([2]) also consider grid graphs in th@mputations. And they re-
port a solution of objective value 23026, that was obtaingtbbal search techniques.
This motivates the need for clear benchmark values for th&®Esproblem for the
particularly challenging case of planar grid graphs—atsuotlie future evaluation of
new heuristics.

Of course, relevant benchmarks also include dual boundseS$jeneral cycle bases
are a superset of strictly fundamental cycle bases, the\aflan MCB clearly serves
as a lower bound for the value of an MSFCB. On grid graphsyibiss a lower bound
of 4- (/n—1)2. But exploiting the particular structure of grid graphs @a@ achieve
asymptotically better lower bounds for the MSFCB problerhe Tirst was given in [1]

and it has valueliZnlog, n— O(n).



Contribution. The above discussion motivates a need for a collection aftmaark
values for the MSFCB problem on square planar grid graphs.pkeide two new
families of lower bounds and two new families of upper bounds

In Section 3 we sketch a proof offler et al. ([14]) on how a new approach raises
the asymptotical lower bound by Alon, Karp, Peleg, and WES) (o liznlogzn—
O(n), i.e. by a factor of more than 245. In addition, we identify-620,/n+ 22 as a
new lower bound. FoN € {3,...,61} this constitutes the best known lower bound. It
is a fact thatll the primal solutions (upper bounds) that so far have beeposexd in
the literature are grids which fall within this range.

Finally, in Section 4 we introduce a new scheme for congingatery short strictly
fundamental cycle bases—both empirically and asymptibticdVe prove an upper
bound on the length of their SFCB of9Tnlog, n+ O(n), hereby improving the ob-
jective valueénlogzn+0(n) of the spanning trees due to Alon, Karp, Peleg, and
West ([1]), which they assumed being essentially optintabur experiments we also
compare their lengths to spanning trees that were obtaipedibg local search tech-
niques ([2]). It turns out that our new trees improve the Be&itions known so far for
all N > 20. Interestingly, foN = 10,15,...,55 they even constitute local optima with
respect to the 2-neighborhood.

2 Preliminaries

We consider cycle bases of a 2-connected simple undireateeeighted graphG =
(V,E). Definen= |V|, m= |E|, andv = m—n+1, wherev is thecyclomatic number
of G. LetC be a circuit (cf. [23, Ch. 3]) inG and denote by its {0,1}-incidence
vector. Thecycle space” of G is the following vector subspace over &,

¢ = span{yc|Ccircuitin G}).

A cycle basis Bf G is a set ol circuits of G whose incidence vectors are a basig of

Thelength®(B) of a cycle basis of an unweighted graph is define®é) = 5 c.g|C|.

A minimum cycle basi@MCB) of a graphG is a cycle basis o of minimum length.
A set of circuits{Cy, ...,Cy} such that

Ci\(C]_U---UCi_l)#Q Vi=2...,v

is clearly a cycle basis. We call such a bassakly fundamentalNotice that these
were already considered by Whitney ([24]) in 1935.

Let T be some spanning tree & Depending on the context, we either regard
as a subgraph d@ or as a set of edgés C E. Forec E\ T, we denote byt (e)—or
C. for short—thefundamental circuithate induces with respect td, i.e. the unique
circuitin TU{e}. ToT there are associatedfundamental circuits. These form a cycle
basis which is calledtrictly fundamentalHere, we may writab(T) instead of®d(B).

A minimum strictly fundamental cycle bagdSFCB) has minimum length among the

10f course, minimum cycle basis problems are also investibir weighted graphs. But as we aim
to contribute to the particularly challenging case of ptamaweighted grid graphs, we omit edge weights
throughout our presentation.



set of strictly fundamental cycle bases. In the context cal@earch, for an arbitrary
spanning tred” we define its 2neighborhoodhs the set of spanning tre€ssuch that
[TNT|>|T|-2.

In general, strictly fundamental cycle bases are a propesetwof weakly funda-
mental cycle bases, which in turn are a proper subset of geogrle bases of undi-
rected graphs. Moreover, in general no two of the three spmeding minimization
problems coincide ([18]).

With N € N, the planagrid graph Gy n isthe graph oV = {1,... N} x {1,...,N}
with

E={G0).0510} =+ =1 =1} ={{uv} : [Ju-vlhL=1}.

In a graphical representation, e.g. in an embeddingZitche first index of a vertex
represents itg-coordinate, the second index {toordinate. The grapBy n hasn =
N2 vertices and contaima=2-N- (N — 1) edges. Its cyclomatic numbeiis (N — 1)2.

We denote the dual of an embedded planar gi@phy G*. The graph(Gnn)*
is again the graph of a squafld — 1) x (N — 1) grid plus a further verte¥*, which
corresponds to the outer face of the initial embedded plgregh. Recall from [23,
Ch. 3] that the edge set & can be identified with the edge set®f.

Now, consider a spanning trédeof Gy n and its dual counterpart, that we denote by
T*. Infact, T* can be understood as the complemerit adis it contains the counterpart
in G* of each edge it (Gnn) \ T. The graphl* is a spanning tree @&*, although it
is not necessarily connected when restricte@tq {F*}.

3 New Lower Bounds

Trivial lower bounds for the MSFCB problem are the length ahmimum weakly

fundamental cycle basis, or even of an MCB ([24, 18]). Whetba former is in gen-
eral APX-hard to find ([21]), for the latter there are knowryp@mial-time algorithms

(e.g. [13]). However, as a consequence of a result due to Alaa. ([1]) one can
conclude that these lower bounds risk to miss the optimunneval the MSFCB prob-
lem by a logarithmic-factor. And this is in particular theseafor square planar grid
graphsGy n. Here, the trivial lower bound is only-4./n— 1)? whereas Alon et al.
proved®d(T) > 2|8—28n — O(n) for all spanning trees.

An alternative way to obtain lower bounds is to consider MdRrfulations of the
MSFCB problem (Liberti et al., [16]). Later, in [2] there wakentified an improved
MIP formulation, which turns out to be more efficient in thempirical computations.
With this MIP formulation, we effected some spot tests onasgplanar grid graphs.
Unfortunately, we had to observe that it is alreadyyhard for standard MIP solvers—
such as CPLEX 10.1—to get beyond the trivial lower bound. This is why, irt68.1
we identified several classes of valid inequalities for ¢hieBPs, some of them being
defined even for general graphs. Indeed, these helped MIBrsab detect better lower
bounds.

Yet, in Corollary 6 we identify 6 —20,/n+ 22 being a lower bound for the MS-
FCB problem on a square planar grid, using purely combiretarguments. And



then again, it got completely unpractical for the MIP—ewveur refined version—to
improve on this lower bound.

Of course, there exists some dimenshinsuch that our lower bound gets domi-
nated by the asymptotically better lower bound by Alon ef([dl]). But in the case
of N = 2K+ 2, k € N we also present one further lower bound function with

D(T) > %znlogzn—O(n), 1)

which is due to Khler et al. ([14]). Clearly, it dominates Alon et al.’s loxeound.
And it illustrates the predominance of the-6 20,/n+ 22 bound over the trivial lower
bound: The function that interpolates the asymptoticadigtlower bound (1) intersects
with the trivial lower bound as early a$; ~ 8.1. But &n— 20,/n—+ 22 intersects (1)
only atN, =~ 61.6, i.e. in the case of more than 7300 edges.

3.1 A MIP Formulation

In this section we goute the MIP formulation by Amaldi et gR]) for the MSFCB
problem on general graphs. Moreover, we make it more effikigridentifying the
first classes of valid inequalities. In particular, for @agrids two of these classes are
even able to cut ofdnyof the huge number of optimum solutions of the LP relaxation,
hereby improving the lower bound of the root node in the Braand-Bound tree.
LetG = (V,E) be a 2-connected graph with non-negative castsn an edge c E.
To ensure a spanning trdeto be computed, we resort on the following characteriza-
tion: |T| = |V|—1, andT is connected. We exploit the fact thitis connected, if and
only if for each non-tree edge= {i, j} € E\ T there exists a path i betweer and]j.
Amaldi et al. introduce a binary variatig for each edgdi, j} € E, wherez; =1
iff ec T. Of course, the correct cardinality ©fis easy to state. Then, they are going to
ensure the non-tree edge connectivity by introducing regative variableg, which
are chosen to be well-suited to state the objective funciidine MSFCB problem. The
variablesx can be understood as a multi-commodity flon@nonly using edges of .
For each edge = {k, ¢} € E, its endpoints are regarded as source and sink of a com-
modity for which one unit of flow is to be sent. As this flow maylyose tree edges,
the commodities irE \ T guaranteel being connected. To state flow conservation,
a directed graplD is derived fromG, whose arc set consists of a pair of antiparallel
arcs for each edge iB(G), and the cost;j of an arc(i, j) is set equal to the cost of
the edge{i, j}. Then, the variablex}‘f encodes the directed flow through &rcj) for
commodity{k, ¢}.



min z 2 Winh-Z -+ z (1—22”')Wij (2&)

{KITEE(i.]]eA {i.j}eE

X —x) = 1 Wk(eE (2b)

jeo(k)
X —x{) = 0  V{keEViev\{k} (2c)

jea(i)
X< z; vk eE Vi j}eE (2d)
X< z; vk} eE Vi j}€E (2e)
zj = n-1 (2f)

{i,j}eE

X >0 v{k ¢} € E,Y(i,]j) €A (29)
z; € {0,1} v{i,j} €E. (2h)

In any integer feasible solution, within the first term of titgective function (2a) we
find that
z wax§ > dr(e), forallecE, (3)
acA
where in any optimum solution equality holds.

Although the MIP formulation (2) has been observed to belmateer than other
formulations ([16]), still there are some major shortcogsin First, the number of
variables and constraints is large. For instance, ther@ aré x-variables—in other
words ©(N#). Already with this simple observation one might not expect much
for the solvability with, sayN > 20. But the second drawback is even worse. The
LP relaxation has several trivial optimum solutions. Fatamce, take = %Jr % This
particular choice admits thevariables to sum up to 4N — 1)?, being the optimum
value of the minimum weakly fundamental cycle basis probamGy n. We will
provide another set of optimum solutions of the LP relaxatioExample 2. Of course
one can check this to be the optimum value of the LP relaxdfiohaving a look at
the dual problem. We conclude, adding valid inequalitie§2fowill be key for its
solvability.

Thus, in the remainder of this chapter we provide three elagebvalid inequalities:
two which are valid for general graphs and which are defindteein z-variables or
in x-variables, and one class that exploits the particulaccgtra of grid graphs and
hereby can combine andz-variables.

Lemma 1.Consider the grapts = (V,E) and an arbitrary proper subdétof E. De-
note byV (H) the vertices incident to edgesth If V(H) C V, then

2> VH)- S 3z (@)
{i.iye(V(H).V(H) {i.j}eH
{i,j}¢H.i,jeV(H)

are valid for every integer feasible solution of the MIP.



Proof. In an integer feasible solution the edges with= 1 form a spanning tre@

of G. Therefore, the right-hand side (RHS) of (4) equals the remadb connected
components of the graph with vertex ¥¢H ) and edge sdi. As we assum¥ \V(H)

to be nonempty, each component ®(H),H) must be reachable from the former
vertex set. Hence, to ensure the connectivityGofia edges for whiclg; = 1, there
must be at least as many such edgegVdsl),H) has connected components. [

On the one hand, we are aware of graphs in which there existidral vec-
tors(x,z), which are feasible for the LP relaxation and whose objectalue is strictly
smaller than that of an integer optimum solution. Hencesehimequalities could ap-
pear to be reasonable candidates to add to the LP-relaxctidiP (2).

On the other hand, it may happen that in an iterative cuttlaggogeneration, one
could only profit from inequalities of that type at ratheeld@erations.

Example 2.Consider the grid grapnn. In Figures 2(a) and 2(b) we sketch two
spanning tree$; andT, of Gy n. Denote the corresponding solutions of the MIP (2)
by (x1,21) and(xz, z2), respectively.

@Tn (b) T2 ©Ts

Figure 2: The Figures 2(a) and 2(b) depict theectors of the MIP solutions of two
spanning tree$; andT, (in bold) for Ggg. Figure 2(c) shows their convex combina-
tionzz = 1z + 1z

3 24T 542

Now, consider the convex combination 0f,z;) and (X2, z2) which results in the
following fractional vector(x,z) := %(xl,zl) + %(xz,zz). Clearly, (x,z) is a feasible
solution for the LP relaxation of MIP (2). But observe thatri exists a vectqix’, z)
which is feasible for the LP, too, but in which

> X/ikf _{ ;’ gtﬁ(érv_viieand ()
{k,}€E(i,])€A ’

In particular, the objective value ¢k ,z) equals 4 (N — 1)2. But this is just the op-
timum value of the LP relaxation of MIP (2). Asis the convex combination of two
integer feasible points, any inequality that does not maleeafi anyx-component, will
never cut off(x, z), thus never increasing the LP value.

From the above example we conclude that for planar grids had iveequality hav-
ing non-zero coefficientsnly in z-components whatsoever, will ever be able to cut



off one particular optimum solution of the LP relaxationrédiey never increasing the
optimum value of any so refined LP.

This is why in the sequel we investigate valid inequalitidscl are either defined
purely in terms ofk-variables, or as a combinationfandz-variables.

Lemma 3.Let G = (V,E) be a 2-connected graph with a spanning fesnd consider
a simple circuiC in G. Then,

;dT(e) >2-(IC|-1). (6)
ec!

Proof. Let T denote an arbitrary but fixed spanning tre&ofin the following we will
prove the claim by induction ove€\ T|. Notice first thatC\ T| = 0 would imply

C C T, which contradict§ being cycle-free.

Therefore, we seledC\ T| = 1 as the inductive base. In this case, the distadeés
in the tree are one for th€| — 1 tree edges, an| — 1 for the unique non-tree edge.
Hence, the claim holds.

In the inductive step, take a circitfor which |C\ T| =k > 2. We will identify
two circuitsCy andCy, each with 1< |G\ T| < k, i = 1,2. Then, from (6) being true
for C; andC, we argue that the claim is true fGx

Consider two verticea andv within C which are connected through a p&tc T
such tha¥/(P) NV(C) = {u,v}, butE(P) NE(C) = 0. Such a path exists because of
|C\ T| > 2, otherwiseT would not be connected. Denoting By andP, the two paths
betweeru andv defined byC, C; = P, UP andC, = P, UP are simple circuits ir.

Now, asT is cycle-free, botiP; andP, must include at least one non-tree edge,
sayep, andep,. OtherwiseT would have contained a cycle. But théh, contains at
least one non-tree edge less than the cirCyibecause it omit#,, thusep,, and the
pathP contains only tree-edges. The very same hold€or

We may thus apply the inductive assumptiorCioandC,. Summing up (6) for
these two circuits yields

dr(e)+ dr(e) > 2 (|C|+|Co| —2).

ecCq ecCy
By the construction of; andC; it holds that|C| = |C1| + |Cz| — 2+ |C1 N Cy|, and thus
zch(e)+2. ; dr(e) >2-(|C|—1)+4-|CiNCy| —2. ©)
ec ecC1NCy

But sinceC;NCy = P C T we have thatlr (e) = 1 for all e € C; NC, and Equation (7)
simplifies to
;dT(e)22'(|C|—1)+2'|C1QC2|—2- 8
ec

Finally, because ofC; NCy| > 1, and thus 2|C; NCy| — 2 > 0, Equation (8) implies
(6) for the circuitC. O

Corollary 4. Let G = (V,E) be a 2-connected graph and consider a simple ciCuit

in G. Then,
ECZ X§>2-(IC|-1) (©)
ec €A

is a valid inequality for every integer feasible solutiortioé MIP (2).



Note that the above corollary holds for general graphs. Wetare interested most
in investigating its effect on grid graphs.

3.2 Small Grids

Let C be some circuit irGy . We denote by diam(C) the horizontal diametenf C,
i.e. the difference between minimum and maximuooordinates inZ? of vertices
in C. Similarly, we denote theertical diameterof C by diam, (C). In particular,

IC| > 2. (diamy (C) + diam, (C)). (10)

Fore¢ T, we use diam(e) := diamy (Cr(e)) as a short hand. .

LetC be a circuit inGy n and consider its enclosed finite regi@nin C we collect
all the edges irE(Gn ) that are incident with two faces @nn that have empty
intersection withR? \ R. In other wordsg refers to the edgesside C

Proposition 5. Let Gy n be theM x N planar grid,T be a spanning tree in it, aftibe
a simple circuit inGy n. Then

Cr(e)| > 4-[C\T|+6:[C\T|. (12)
ec(CUC)\T

Proof. Using (10) it suffices to establish that

S 2-(diamy(e) +diamy (e)) > 4:[C\T|+6:[C\T|. (12)
ec(CUC\T

We derive a lower bound fo{ee(cué)\T diamy (e) + diamy (e) by defining a func-
tion d(e) such that

diamy (e) +diamy (e) > d(e), forallee (CUé)\T. (13)
We define the functiod(e) as follows. Bye ¢ T we already know that
diamy(e)>1 and diam(e) > 1. (14)

To increasel(e) beyond two, consider the spanning tieein the dual grapt{Gn n)*
that corresponds tB(Gnn) \ T. TakeF® as the root off *. Consider the two faces
of Gy ,n that are incident witke. We refer to the one with the larger distance fréif
in T* asF(e).

For each edgé < (F(e)\ (Cu{e}), denote byF (f) # F(e) the other face that
is incident with. Observe th&t(f) # F® because of ¢ C. By the grid structure, each
of these face$ (f) is in a different direction with respect #©(e), i.e. either north,
east, south, or west. Now, ff ¢ T, we know thatCr (e) also must havé (f) in its
enclosed bounded region. This way, such an efdgéF (e) \ (CUT U{e})) serves as
a certificate that any lower bound on either digi®) or diamy (e), respectively, can be
incremented. In total, we set

diamy (e) +diamy(e) > 2+ |F(e)\ (CUT U{e})| =:d(e), (15)

10



which guarantees (13) still to be true.

When summing over all edges: cuc, we may rearrange the summation. To this
end, observe that each edfje C\T has precisely one dual paremimong(CUC) \T.
Hence, it increments the lower bound on digf®) + diamy (e) for precisely this one
edgee. In other words, each edgee C\ T counts three times: according to (14)
it countsd(f) = 2 for its proper fundamental circu@r (f), plus one increment for
precisely its unique parent edge (CUC)\ T. To summarize,

die) 2.1\ T| + 3.1\ T|. (16)
ec(CUC)\T

Finally, we conclude that

Crie) = Y 2:(diamu(e)+diamy(e))
ec(CUC)\T ec(CUC)\T

(16) °
2-d(e) > 4-|IC\T|+ 6-|C\T|.
ec(CUC)\T

O

Corollary 6. LetN > 3 andGy n be theN x N planar grid withn = N2 vertices. Then
for each spanning treé C E

= 2\ ICr(e)| > 6-n—20y/n+22 (17)
ecE\T

Proof. Simply takeC as the circuit that contains precisely the edges that ardent
with F*. Because of = CUC we apply Proposition 5 t€. There, we minimize
the RHS in (11) by maximizingC\ T|. Now consider the four vertices which are not
incident to any edg€. In any treeT, these must be incident with one edge T.
As N > 3, we conclude thafCNT| > 4, thus|C\ T| < 4/n—8. Finally, a simple
calculation yields (17). O

Observe that®— 20,/n+ 22> 4.n—8,/n+4, for allN > 3 andn = N2.

As a special case, consider a spanning Tree which for each edgec E\ T its
distance inT* from F® is at most two. Then, in particular in (15) equality holds. In
the end, one can then argue that in (17) we will find equality, As forN € {3,4,5}
there exist such spanning trees, we conclude that in thesendions the bound in
Corollary (6) is nothing but the optimum value of the MSFCBlgem.

3.3 Large Grids

In this section we sketch that the strictly fundamental eyzdsisB of any spanning
tree T in the squareN x N grid with n = N2 = (2K 4 2)? vertices satisfie(T) >

%znlogzn— O(n). Hereby, our direct approach substantially improves thetdound
that has been obtained by Alon, Karp, Peleg, and West in [ih. Bh6]—Dby a factor of
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more than 243. Due to space limitations, unfortunately we cannot preseyiod our
new proofs here. But we refer to [14] for the complete analysi
In contrast to [1] we decided to tackle

the lower bound problem from the perspec-

tive of the planar dual grapts*. In par- + Te— . j o
ticular, we exploit that for each spanning | = | = Ll
tree T, there is a one-to-one correspon- —_——— i L
dence between its induced fundamental cir- —— ——" ¢ { ! —
cuits inG, and its induced fundamental cuts ® I | I
in G*. More precisely, if an edgec E\ T D I R [ T

induces a circuit irG, then its dual counter- =——— | — —  om —
part induces a cut iG*—and both contain — Ll I 1 l |
the very same edges. d e i I

To detect sufficiently long circuits, ac- 7 RGBS
cording to Inequality (10) we resort on Cikigyre 3: The dual treel™ of a spanning tre& in
cuits that have large horizontal and/or vertiigis. In our lower bound fod(T) we only sum
cal diameters. To obtain the claimed lowyver bounds on the fundamental circuits that are
bound, it even turns out to be sufficient to diduced by the black edges
ther consider only the horizontal diameter djg(@) or its vertical diameter diap(C)
of a circuitC.

We find circuits having large horizontal or vertical dianrdig considering partic-
ular faces ofGy v, or vertices of(Gyn)*, respectively. The vertices that we use are
the ones that are highlighted in Figure 3. In more detail, wmoize these vertices
in what we will call levels. We also assign a box to each suatexe In a dual grid
with (N —1)2 = (24 1) - (2€+ 1) vertices we establisk different levels of vertices
as follows. Thdevel konly contains the unique grid’s center vertex. Its corresjing
box equald/(Gnn). The four quarters of the grid—which overlap on their bosder
become the boxes of levkl- 1. By the particular choice df,, their center vertices are
well-defined, and these constitute the vertices of levell. Recursively, each of these
four quarters is again subdivided into four new quarterdcivibecome the boxes of
the next level, and their centers are the correspondind-levréces. For a verten of
level¢ = 1,...,kwe call the se{v: dyy = 2"} theborderof its box B,.

For each such vertex we consider the subpathof T* that connects it with>.
But we only follow this path until the first edgethat is incident with the border d,.
Assume w.l.o.g. that the edgds “north” of v. In the primal grid, in faceis a hor-
izontal edge. Then we only consider the subsequence otakddged?, (all being
horizontal edges iy y) of P C T* such that each edge is by one closee tbhan its
predecessor iR, . In [14] we call this subpath the verticaseudo-pattof P. Then, for
a vertexv of one particular level, ¢ € {1,...,k}, we know that the 2 edges oR; in-
duce fundamental circuits with respecttof vertical diameters at leastd, ..., 21,

Now, we aim at summing the lower bounds on the diameters ofuthéamental
circuits for each occurrence of an edge on some pseudodp&tla. simple observation
that only pseudo-paths of different levels could share, fgzizontal edge of Gy n,
and thus potentially cause some double-counting (Lem. 341 [ But one can further

2|et us mention that the authors of [1] state explicitly tHeeyt were not trying to “optimize constants.”
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observe that the lower bound on dia(e) is always larger for the pseudo-path that
we defined for the vertex with the higher level index. Henoeprevent us from any
double-counting, for such an edgeve count as lower bound d€+ (e)| only the bound
on diany (e) that we identify on the highest level. Doing so yields

Theorem 7([14]). Let Gy n be the planar grid graph with= N? = (2¢+2)? vertices.
For every spanning tree of Gy n there holds

D(T) > %anogzn—O(n). (18)

4 New Upper Bounds

Alon et al. ([1]) provided spanning tre@g, Whose induced strictly fundamental cy-
cle bases they showed to be bounded from aboventtyg2n + o(nlog, n). An exact
counting ([14]) revealed even that

4
P (Tuew) < =nlog,n+ O(n), (29)

whereN = \/n, andN = 2X for somek € N. Although Alon, Karp, Peleg, and West ([1])
think of their trees as being essentially optimal, we are éblconstruct trees with an
asymptotic coefficient for thalog, n term being strictly smaller than one. Moreover,
we present trees which empirically perform very well algeadsmall dimensions.
Fortunately, we are able to introduce a class of recursilelined trees that accom-
modatesothgoals. These spanning trees are the union of spanning treestangu-
lar subgraphs oGy n;, their building blocks. The trees differ in how their reagaiar
subgraphs—all respecting some arbitrary but fixed aspéict ma> 1—partition the
faces ofGyn. Hence, it remains to specify how to construct a spannirg srébject
to a given parameter for some gridGy N havingaspect ratiomax %, % ~ d. This
is done recursively. Assume w.l.o.g. thdt> N. At the top-level of the recursion,
we add toTy (Gum n) the edges of the two longer borders@fi n (here the horizontal
ones), plus of one of its two other borders (cf. Figure 4).tRerrecursion, we partition

sub-sub-block
sub-block

T
/

Figure 4: The shape of a block (left) and with a sketched ioteecursively filled with
smaller blocks (right), always keeping the aspect ratio.

the faces of5y n into almost equally-sized rectangular subgraphs of aspéotagain
being close tax; only the faces of one horizontal path (@w n)*, located almost in
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the middle of its two horizontal borders, are not contairmredny of these rectangular
subgraphs.

These trees are related to other families of trees as follawsGy n, choosing
a> % : 1 there exists a partition of the grid such that we end witlthde-trees ([5],
cf. Figure 1). Moreover, an aspect ratioof= 1 : 1 yields trees which can be obtained
alternatively by a construction that is much similar to tine éor Takpw-

According to the requirement—asymptotical or empiricahlify—we will again
subdivide our presentation into a part considering largesgand into a second part
dealing with small grids. For both types of grids we will imtluce trees with a block
structure either having an aspect ratio of approximately 8r.an aspect ratio of 2 : 1,
respectively. In addition, the trees differ in how the blseke actually used to define a
tree. Whereas on large grids it is sufficienttaverthe grid with three (almost) equally-
sized 3 : 1 blocks, for small dimensions the grids el with many 2 : 1 blocks of
many different sizes.

4.1 Large Grids

To achieve a good asymptotical upper bound we decided tdrcahsrees out of the
above described blocks with an aspect ratio of 3 : 1. Unfeately, it turns out to be
tricky to subdivide or tile a square grid of arbitrary dimemswith these particular
blocks. Thus, we construct our trees bottom-up like. Thaamseve take an atomic
block of size 6x 14 and arrange 32 copies of such a block to a new one havin§&ize
14. This procedure is then iterated providing spanningtfeedimensions

1248 15\ /419 30
1248 oyg2 15 (419 Hppp 30
( 206 32+ 31> X (496 3207+ 31> (20)

with k chosen integral and even. Finally, three copies of sucteactre be put onto each
other and cover the entire square grid. Now, a detailed ghetiger of the construction
of the tree and a precise analysis of it follows.

Construction of the tree. Whereas in Sec.4 we gave a brief top-down description of
the tree that we consider we now introduce them bottom-ue lilereby having more
control on the dimensions and, thus, by-passing roundidigjositions.

For everyk € N™ we construct recur-

sively spanning trees as follows. Fkr _6
equal to 1 consider the spanning trée

as sketched in Figure 5. This tree is de- en
fined on a 6x 14 grid and it has itexit 1

on the lower horizontal border. The next

tree, T, is constructed by arranging 32

copies ofT;. First, 16 copies are glued

with this particular orientation side byigure 5: The spanning tre& out of which all the
side. Second, we mirror the other 16 copf€§sTk are constructedl; has dimension 6 14, or
of Ty horizontally and place them such thifie-lengths 513, respectively.

their exits are opposite to the first 16 copies. At last, onécad edge, which we will

14



call er, is added to connect the two so-constructed connected camfzn

The general rule here is to take the left vertical edge aseximy edge for the con-
struction of the tredy with k even and the upper horizontal edge for the construction
of the Ty with k odd. See Figure 5 for an example. By this construction, theT is
of dimension 81x 28. In general, the tre& is constructed out of 32 copies &f 1
and an additional connecting edge the very same way.

In order to finally state a spanning tree for a square grid angrépare the

analysis of the trees we introduce four sequences foxk tredy length, w.r.t. edges,
of Ty in dependence df. As T, is a 6x 14 grid tree we haveg; = 5 andy; = 13. By
construction, we get the following sequences taking théypaf k into account:

Xoi = 16- X1 Y2 =2-Yoi1+1 (21)
for treesTy with k = 2i even. For odd = 2i + 1 the tre€l has dimension
Xoi11=2-%i-1+1 Yait1 = 16ysi1. (22)

In the following we will only consider the spanning tregsfor k even. Simple
calculations transform (21) and the start valuges- 80 andy, = 27, respectively, into
the explicit sequence of the IengthsTfoor evenk:

419
8 302 Y o g— 23
31 31 Y= 296 31 (23)

If we now take a closer look al, k even, we see that the ratio of its lengths is
almost 3x 1. In fact, the exact ratigy to yy is always greater than@6 and converges
to 1248~ 2.978.

Hence, if we take three copies@f and put them one upon another, then the result-

ing spanning tree, let us denote it 1q§7 covers a grid of dimension

1248 1257
/2 4 /2,
( 496 3% 31> < 496 3% 31)
We now claim that three times the sizeTpfis an upper bound on the sizeﬁf
restricted to the square grid with dimension

1248 1248
/2, 2,
(496 32 ) (496 32 31)

So, how do we restricte'q(3 to a square of the above size? Due to space limitations
we will only give an idea of the procedure. Let us considerlibendary linel. of G
that, in a sense, cuts through the down-most cppf Tk3, cf. Figure 6. ThisTg
consists of several subtre®s 1, Tx_3,..., T1. Thoseodd subtrees can have their exit
pointing downwards| Tj, or upwards,denoted byT;. Iffora j =1,3,... . k—3,k—1
the boundary lind. cuts through a subtrgeT; we leave this part of tree unchanged and
simply cut away what overhangs In the other case where the boundary lineuts
through a subtre¢ T; we cut away the overhanging parts as well, but—since we loose
connectivity—we add an edge foT; exactly where formerly the exit had been. If we
dosoforallj=13,... k—3 k-1 we finally come up with a tree with less chords
inducing lower length fundamental cycles than this dowrstwopyTy of Tk3 before.

15



Tk—2 ... 16 copies -

A
4“7
fo fo fo

b Tk-1

I

4{}7

— p—— = f
T Tk

L /

Figure 6: A schematic illustration of the trég for an evenk € N*. Due to the
construction ruledy consists 0f322 = 1024 copies of,_» and different slots, i.e. one
main slotfy, dark-gray, and 32 subslofs, light-gray.

Analysis of the tree. So, for everyk € N+ let us denote witf the spanning tree of
the

1248 15 1248 15

O gok/2 =2 ZET0 gok/2y -

(496 32 +31) . ( io6 32 +31)
grid as described above. We are interested in an upper bouthe strictly fundamen-
tal cycle basis induced bi. As foreshadowed above we have
®(T) < 3- (). (24)

In the following we develop a recursive formula f©(Ty). Because of the tree’s special
construction the following recursive formula holds,

P(Tk) = 1024 D(Ty2) + f(Tk), (25)

wheref (Ty) denotes the size of the fundamental cycles induced by ellgedd not lie
entirely within a copy of the smalléeF_, tree. We call those areas slots. Théfily)
can be canonically subdivided into one main-slot and séweitaslots, cf. Figure 6.
Obviously,

f(Tk) = f2(Tk) +32- f2(Tk) (26)

holds. Then, with the help of the sequences defining the tsnat the trees (Equa-
tions (21) and (22)) we straight-forward exprdsand f, as
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Ly
32

w‘H
s

Zk (20+ 29+ 21), (27)

X+ 15 > Xk
1(T) < 2. 2 +— +2i)
k) < Zi ;1 (Z Vi Xk I)

and

f;QYk 1+1 f;zyk 1+1 2J
ZL 2+ ZZ Zl (2% 1+16yk 1+2i) (28)

?ZYk—1+1

+ Z (21 + 2Yk-1+2), (29)
B (30)

respectively. Further, plugging (27) and (28) into (26) &meh (26) into (25) we yield
the recursion:
20,323535332k

W + 0(32() (31)

D(T) <1024 d(Tk—2) +

Hereby, we omit the value for the recursion stBrbecause it is of no importance for
the coefficient of then- log, n term.
After resolving (31) and applying the result to (24) one gets

~ 60,970,059
(W) € —sza715a

1,968128

Finally, making use of the special dimension, i.e.

.32 k+0(32€ k).

f—— 322 31

one can state the following upper bound:

~ 6,774,451

T) < Z—"~F—
® (M) = 6,922 240

We summarize the section on upper bounds on large grids tiggsthe following
lemma:

-n-log,n+o(n-log,n).

Lemma 8.Let Gy n denote theN x N square planar grid witm = N2 vertices and

with N = 28. 3X/2 4 1 £ for some even integee. Then the size of a minimum strictly

fundamental cycle bases @Gy n can be bounded from above by
0.978-n-log, n+O(n).

Once again remember that hereby the previously best asyinghtapper bound by
Alon et al. ([1]) is enhanced by a factor of more than fourdhir

17



4.2 Small Grids

Unfortunately, the 3 : Zblock structured trees, as described in the above sectien, a
not perfectly suited for smaller dimensions. This is dudofact that, although asymp-
totically 3 : 1 turned out to be a very good aspect ratio fortitoeks, it is not possible
to decompose a square grid into such blocks without losinghnaid their advantage
because of rounding “errors.”

Therefore, for small grids, we chose a different block-sited graph. This time
we demand a fix aspect ratio of 2 : 1. Moreover, the 2blbcks, in a sense, do not
cover, but rather tile the square grid. The tiling procedorgghly goes as follows:

At first, two opposite 2 : £blocks are putin the middle of the grid. See for example
the bold line bordered vertical blocks with side lengthg 85 in Figure 7. Then,
horizontal 2 : 2-blocks are added centrally aside such that rectangularisishig the
four corners remain. Now in such a corner we always direchth block such that
its depth can be chosen as small as possible, always stayinpse as possible to
the target ratio 2 : 1. During this procedure we do not paynéitia to any rounding
inaccuracies. In Figure 7 an example 2-Hlock structured tree for dimensidh= 31
is shown.

EAESE

Figure 7: Notice the parquet-like structure of the tree Wiis having height-width
ratio of 2 with small errors due to roundings. Inside, thecklkothemselves are recur-
sively filled with smaller blocks still maintaining the 2 : atio.

5 Experimental Results

In this section we compare different spanning trees witpagesto the length of the
strictly fundamental cycle basis they induce. In additionthe degree-based tree-
growing heuristics that we already referred to in the Inaicithn, local search tech-
nigues have also been considered. The most natural nelgidsbthat one can think
of in the context of spanning trees, is the 2-neighborho@dsction 2).

Amaldi et al. ([2]) reported the performance of severaltefyees for searching this
type of neighborhood. In what they denote by local search), (it entire neighbor-
hood is examined and they move to the tree with the best inepnewnt. In a sec-
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ond deterministic strategy (ES), only those neighbors estetl, having a fixed ratio
of branches according to a predefined order. To prevent L®rtoinate too early
in a too bad local optimum, Amaldi et al. ([2]) run metahetics such as variable-
neighborhood search (VNS) and a tabu search (TS) on top dhLshy of their com-
putations, an adapted version of the tree-growing heaiiis{i20] is used as the initial
solution.

In our computations, we use the 2-=hlock-structured tree as initial solution.
To improve them, in contrast to (LS) we do not examine therertineighborhood.
Rather, whenever we identify a neighbor that improves tiheeatisolution, we greedily
move to that neighbor. Of course, this method depends onrter the edges in the
tree are checked. Empirical studies showed, however, lieanfluence of the edge-
order is neglectable. For our computational studies weehasndom order of edges
and ran our greedy-like approach—denoted by (GS)—ten tiowssidering best and
average values of both length of the cycle basis and themgrtme of (GS).

Results. In Table 1 we compare the constructive heuristics, i.e.ghbat build up
a tree without doing any subsequent local improvements.ebl@r, we complement
these values with information on lower bounds, once obthmeCorollary 6 and the
trivial ones by a minimum weakly fundamental cycle basis (M®B). Notice that the
latter were also used in the recent study of Amaldi et al.)([2h addition to these
lower bound values, let us mention that fdr= 130—being the dimension closest
to 100 for which our asymptotic bound is defined exactly—tbhera that we derived
in Corollary 6 is only by about.5% weaker.

In our tables thétalic numbers highlight the best known upper and lower bounds.
ForN =5, these coincide, and we mark thishioldface Observe that for any dimen-
sionN > 10, the new trees that we propose in Section 4 yield small@BS¥ralues
than any of the other constructive heuristics.

In Table 2 we compare the different local-search-type Iséins. For our greedy
search (GS) we used a 3.2GHz Intel P4 computer (“A1”), rugiimux and using
LEDA®. Amaldi et al. used for their local search heuristics (LS) é8S) also an Intel
P4 computer running Linux, but with 2.66GHz (“A2”). Accongjly, the times stated
in Table 2 refer to the particular architecture. The valwgstiie metaheuristics (TS)
and (VNS)—also quoted from [2]—each refer to 10 minute runghe A2 environ-
ment. Much similar as in the purely constructive context, mew solutions improve
the best known upper bounds for all dimensidhs 20.

As already mentioned before we ran our local search (GS)avi#tndom order. In
Table 2 the first column presents the value and running timéhfobest run out of 10
samples, and the deviations are very small. However, itthvag tannotated that only
for dimensions\ € {60,80,90, 100} the start tree hadotalready been locally optimal.

6 Conclusions

Any serious summary of this paper has to remain a bit twof@d.the one hand, on
square planar grid graphs—being a particularly challemd@amily of graphs for the
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N| “2:1” AKPW Machete C-Order Deo’s N[ICorollary 6 MWFCB
(1] 5] [16] [8, 16]

5 76 78 72 72 78 72 64
10 468 524 492 492 518 422 324
15/ 1300 1554 1512 1512 1588 1072 784
20| 2550 3030 3382 3382 3636 2022 1444
25| 4368 5410 6352 6352 6452 3272 2304
30| 6656 8408 10672 10672 11638 4822 3364
35| 9592 11694 16592 16592 16776 6672 4624
40| 13162 16078 24362 24362 28100 8822 6 084
45| 17236 21784 34232 34232 35744 11272 7744
50| 21920 27912 46452 46452 482%4 14022 9604
55| 27356 35124 61272 61272 62026 17072 11664
60| 33406 42790 78942 78942 92978 20422 13924
70| 47 300 59244 123832 — — 28022 19044

80| 63964 80678 183122 — — 36822 24964
90| 83412 108012 258 812 — — 46 822 31684
100({106 090 137 390 352902 — — 58 022 39204

Table 1: Comparison of the cost of some selected trees hieclehgth of the accord-
ing strictly fundamental cycle bases. The rightmost colipresents the previously
best lower bound for small dimensions, obtained just b§Ne— 1)2. The penultimate

column now states the consistently better lower boundsa@®tollary 6.

MSFCB Problem—we we have improved significantly the lowed apper bounds
that were previously known for the MSFCB Problem.

On the other hand, just reconsider the rows Wth- 10 in Tables 1 and 2. For this
relatively small dimension, we simply believe the optimaljap that we are leaving
here (about 10%) should better not the that big. Even wonsé&fe 8: Indeed, in
Figure 8 we provide a spanning tree with smaller SFCB valaa the one on the first
page—and which only evergighth participant of MATHEON’s 2006 christmas quiz
has been aware of. Yet, we are not aware of any concise cotabalgroof for its
optimality. Hence, further efforts are to be made.

Nevertheless, columns 4-6 of Table 1 illustrate impre$gsiteawhat extent degree-
based heuristics for the MSFCB problem are inferior to apglyecursive approaches.
In other words, for any heuristic for the MSFCB problem whiciti be designed only
in the future, we strongly recommend to evaluate it also amg square grid graphs
(in contrast to what has been done in some studies in the @gst,7, 8]), and there
compare its performance to titalic values that we provide in Tables 1 and 2.
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N (GS) (LS) (ES) (VNS) (TS)
cost time cost time cost time cost  cost

5 72 0:00:00 72 0:00:00 74 0:00:00 72 72
10 468 0:00:00 474 0:00:00 524 0:00:00 466 466
15 1300 0:00:00 1318 0:00:00 1430 0:00:00 1280276
20 2550 0:00:00 2608 0:00:03 3186 0:00:00 2572 2590
25 4368 0:00:00 4592 0:00:16 5152 0:00:02 4464 4430
30 6656 0:00:01 6956 0:00:47 8488 0:00:03 6900 6882
35 9592 0:00:02 10012 0:02:19 11662 0:00:08 9982 9964
40 13162 0:00:07 13548 0:06:34 15924 0:00:26 13524 13534
45 17 236 0:00:06 18100 0:14:22 22602 0:01:00 18 100 18100
50 21920 0:00:09 23026 0:31:04 33274 0:01:10 23026 23552
60 33374 0:01:01 — — — — - —
80 63810 0:07:24 - - — — - -
90 83222 0:07:48 — — — — — —
100 105766 0:14:01 — — — — — —

Table 2: An overview of the quality of five local search apmiues. Missing values are

marked with an =" and running times are measuredhimmss The columns (LS)—
(VNS) are cited from [2].
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