
FAKULTÄT II

MATHEMATIK UND

NATURWISSENSCHAFTEN

Institut für Mathematik

New Length Bounds for Cycle

Bases
by

Michael Elkin

Ben-Gurion Univ. of the Negev, Dept. Computer Science, Israel

Christian Liebchen

TU Berlin, Institut für Mathematik, Germany

Romeo Rizzi

Università di Udine, DIMI, Italy

romeo.rizzi@dimi.uniud.it

No. 2007/22

New Length Bounds for Cycle Bases∗

Michael Elkin
Ben-Gurion Univ. of the Negev, Dept. Computer Science, Israel

Christian Liebchen
TU Berlin, Institut für Mathematik, Germany

Romeo Rizzi
Università di Udine, DIMI, Italy

romeo.rizzi@dimi.uniud.it

29th May 2007

Abstract

Based on a recent work by Abraham, Bartal and Neiman (2007), we
construct a strictly fundamental cycle basis of length O(n2) for any un-
weighted graph, whence proving the conjecture of Deo et al. (1982).

For weighted graphs, we construct cycle bases of length O(W ·log n log log n),
where W denotes the sum of the weights of the edges. This improves the
upper bound that follows from the result of Elkin et al. (2005) by a log-
arithmic factor and, for comparison from below, some natural classes of
large girth graphs are known to exhibit minimum cycle bases of length
Ω(W · log n).

We achieve this bound for weighted graphs by not restricting ourselves
to strictly fundamental cycle bases—as it is inherent to the approach of
Elkin et al.—but rather also considering weakly fundamental cycle bases
in our construction. This way we profit from some nice properties of Hi-
erarchically Well-Separated Trees that were introduced by Bartal (1998).

1 Introduction

We consider a simple undirected 2-connected graph G = (V, E) with n nodes and
m edges. A non-negative weight function w may be defined over the edge set E.
Otherwise we are in the unweighted case, and w ≡ 1 is implicitly assumed. In
the weighted case we denote by W the sum of the weights of all the edges. In
the unweighted case W = m. A circuit C of G is a connected subgraph of G,
in which each vertex has either degree two or zero. Sometimes, we may refer
to C only through its edge set. The incidence vector γC ∈ {0, 1}E of a circuit C

∗Supported by the DFG Research Center Matheon in Berlin and by the Israeli Academy
of Science, grant 483/06.

1

is the characteristic vector of its edge set. The weight w(C) of a circuit C is
defined as the sum of the weights of its edges.

Cycle Bases. The cycle space C(G) of G is the linear vector subspace of GF(2)E

which is spanned by the incidence vectors of the circuits of G. It is well known
that ν := dim(C(G)) = m− n + 1.

A cycle basis B of G is a set of ν circuits of G which span C(G). The
weight w(B) of a cycle basis B is defined as w(B) =

∑

C∈B w(C). In the Min-
imum Cycle Basis (MCB) Problem, we seek a cycle basis of minimum weight.
These turn useful in many applications, see [Hor87] and references therein.

Given a spanning tree T of G, and a non-tree edge e ∈ E \ T , the unique
circuit in T∪{e} is denoted by CT (e) and called the fundamental circuit induced
by e with respect to T . It is well known that the set of all the fundamental
circuits w.r.t. a spanning tree T is a cycle basis; these cycle bases have special
and often desirable properties, and are called strictly fundamental. A cycle basis
is called weakly fundamental if its circuits can be labeled as C1, C2, . . . , Cν such
that

Ci \ (C1 ∪ · · · ∪ Ci−1) 6= ∅, for all i = 2, . . . , ν. (1)

Let ei ∈ Ci \ (C1 ∪ · · · ∪ Ci−1). Notice that {e1, . . . , eν} are the co-tree arcs
with respect to some spanning tree T of G. In particular, the circuit Cν is a
fundamental circuit with respect to that spanning tree T .

Metrics. The metric dG over V that is associated with a weighted connected
graph (G, w) is defined by the shortest-path distances in G with respect to w.
The diameter diam(G) of (G, w) is defined as

diam(G) := max{dG(u, v) : u, v ∈ V }. (2)

Let V ′ ⊂ V and consider the induced subgraph G[V ′] of G. The strong in-
ternal diameter of V ′ is diam(G[V ′]). In contrast, the weak diameter of V ′ is
the maximum distance in the original graph G between two vertices in V ′. A
metric d on a set of elements V is said to dominate another metric d′ on V if for
all u, v ∈ V we have d′(u, v) ≤ d(u, v). In particular, given a family V1, . . . , Vk

of connected subsets of V , a metric d dominates the strong internal diameters
of V1, . . . , Vk over (G, w), if for every subset Vi, i = 1, . . . , k, and pair of vertices
u, v ∈ Vi,

d(u, v) ≥ diam(G[Vi]) . (3)

Related Work. Deo et al. ([DKP82]) conjecture that every unweighted graph
has a strictly fundamental cycle basis of length O(n2). Since strictly fundamen-
tal cycle bases specialize general cycle bases, their conjecture may also serve
as the first estimate on the length of an MCB. For unweighted graphs, Hor-
ton ([Hor87]) introduced a heuristic for computing a cycle basis of length O(n2).
The running time of Horton’s algorithm is O(m3n). Later, it was shown in
[Lie03] that the resulting cycle basis is always weakly fundamental. As this

2

basis is not strictly fundamental in general, these results provide only a partial
answer to Deo et al.’s conjecture.

Alon et al. ([AKPW95]) gave a more direct answer to Deo et al.’s conjecture.
They prove that every weighted graph has a strictly fundamental cycle basis of
length O(W · exp(O(

√
log n log log n))), hereby proving Deo’s conjecture in the

case of graphs that are not too dense. Recently, this was improved by Elkin et
al. ([EEST05]) to O(W · log2 n log log n). It is known that there exist graphs
with large girth such that the length of their MCB is Ω(W · log n), see [Bol78].
Hence, for general graphs the bound of Elkin et al. is asymptotically tight up
to a factor of Θ(log n log log n).

Bartal ([Bar98]) showed that any metric can be approximated by a tree met-
ric, which is defined on an auxiliary graph, called Hierarchically Well-Separated
Tree (HST). More precisely, the resulting tree metric dominates the initial met-
ric and over-estimates it—in the deterministic case on average—by a factor of
at most α(n) ∈ O(log n log log n). Later, by introducing further techniques, this
bound was improved to the tight O(log n) ([FRT03]).

In parallel, MCB algorithms that improve the running time of Horton’s al-
gorithm [Hor87] (O(m3n)) were developed. The presently fastest known MCB
algorithm has running time O(m2n/ log n+n2m) [MM07]. Also constant-factor
approximation algorithms had been proposed [KMMP04, KMM07, MM07], e.g. a
2-approximation can be constructed in time Õ(m3/2n3/2) + O(mω), where ω <
2.376 is the matrix multiplication exponent. However, the worst-case running
time of these algorithms is at least Ω(n3), even for sparse graphs. Faster al-
gorithms are only known for special graph classes. In particular, an O(n2 ·
log n) time algorithm for planar graphs was devised by Hartvigsen and Mar-
don [HM94]). The algorithm of [EEST05] can be used as an O(log2 n log log n)-
approximation for the MCB problem, and its running time is O(m log n +
n log2 n +

∑

Q∈B |Q|), where {Q | Q ∈ B} is the cycle basis returned by the
algorithm.

Contribution. We develop a way to profit from Bartal’s techniques in the
context of the Minimum Cycle Basis Problem. More precisely, using HSTs [Bar98]
we construct a weakly fundamental cycle basis of length O(W ·log n log log n) for
any weighted 2-connected undirected graph. Hereby, we improve the previously
known best upper bound on the length of general minimum cycle bases by a
factor of log n. Also, due to the lower bound of Ω(W · log n), we conclude that
our construction is tight up to a factor Θ(log log n).

Furthermore, based on a recent work by Abraham, Bartal and Neiman [ABN07],
we construct a strictly fundamental cycle basis of length O(n2) for any un-
weighted graph, whence proving the conjecture of Deo et al. [DKP82].

We also note that our construction of the weakly fundamental cycle basis
can be seen as an efficient O(log n log log n)-approximation algorithm for com-
puting MCB. Specifically, the running time of our algorithm is O(n2 · logc+1 n+
∑

Q∈B |Q|), where {Q | Q ∈ B} is the cycle basis constructed by our algorithm,
and c = O(1) is the universal constant that is implicit in the result of Cohen

3

and Zwick [CZ01]. (See Section 4.) In particular, in the important case of
sparse graphs, among the class of algorithms with computation time o(n3) we
obtain the best known approximation guarantee. Moreover, we also present a
randomized variant of our algorithm that, for an integer parameter k > 2, has
expected running time O(log n ·max{n2, k ·m · n1/k}+

∑

Q∈B |Q|) and returns
an O(k · log n log log n)-approximate MCB. The latter variant employs a recent
result of Baswana and Kavitha [BK06] for computing almost shortest paths.

This paper is organized as follows. In Section 2 we overview the key prop-
erties of HSTs. Based on HSTs, in Section 3 we present the algorithm for
computing a weakly fundamental cycle basis of length O(W · log n log log n).
In Section 4 we analyze the running time of our algorithm. The proof of the
conjecture of Deo et al. [DKP82] is given in Section 5.

The bound of O(W · log n log log n) could be obtained using the construction
of HSTs due to Bartal [Bar98], based on [Sey95]. However, it is not clear
whether this construction can be implemented using a nearly linear running
time. We present a new construction of HSTs with distortion O(log n log log n)
that can be implemented in a nearly linear time. This construction is based
on the construction of [EEST05] of low stretch spanning trees, and could be of
independent interest.

We remark that for our construction to work it is crucial that the HST that
it uses provides bounds with respect to strong diameters. (See Section 2 for the
definition.) To our knowledge the construction of HSTs due to Fakcharoenphol
et al. [FRT03] that achieves the optimal O(log n) bound provides this bound
with respect to weak diameters. So far we were not able to strengthen it so that
the same bound will apply to strong diameters as well. Strengthening the result
of [FRT03] in this way will immediately imply the tight O(W log n) bound for
the MCB.

2 Techniques and Main Idea

In following the presentation of our algorithm, the reader should keep in mind
the following simple—though useful—property of weakly fundamental cycle
bases.

Remark 1 One way to construct a weakly fundamental cycle basis B is to de-
fine some spanning tree F and provide an order of the co-tree edges E \ F ,
say e1, . . . , eν , where F = eν+1, . . . , em. Then, the basic circuit C that we asso-
ciate with a co-tree edge ei ∈ E \F has to contain ei and may use some edges of
the tree F and some of the co-tree edges e1, . . . , ei−1. But C must not contain
any of the edges ei+1, . . . , eν .

The key to our algorithm for constructing a short weakly fundamental cycle
basis will thus be the order in which we process the edges of G. And this order
will be dictated by a decomposition of G, the HST. This object was introduced
by Bartal ([Bar96]).

4

Consider a nested—or laminar—family S of connected subgraphs of G. We
only consider such families in which the maximal element is the entire vertex
set V , and all the singletons in V appear as minimal elements in S. For U ∈ S
we denote by G[U] its induced subgraph, and call it cluster.

We resort to the standard way of representing such a laminar family S by
a rooted tree T : the nodes of T are the sets in S, and there is an arc (U, U ′)
between two sets U and U ′ in S iff U ′ ⊆ U and U ′ ⊆ U ′′ ⊆ U holds for no U ′′ in
S. Notice that V is the root of T and the leaves of T are in 1,1-correspondence
with the nodes in V . More generally, each node of T is the disjoint union of
its children. Such a tree is called a V -tree. In a V -tree T , the least common
ancestor Λ(u, v) of a pair of vertices u 6= v is the vertex in the unique uv-path
in T that is closest to the root of T . Its associated cluster in G is just G[Λ(u, v)].

Definition 2 A hierarchically well-separated tree (HST) of a weighted con-
nected graph (G, w) is a V -tree T with weights c on the arcs, with the following
properties:

1. c(U, U1) = c(U, U2) for any two arcs of T with a common tail;

2. c(U ′, U ′′) ≤ 1
2c(U, U ′) for any two subsequent arcs (U, U ′) and (U ′, U ′′) in

T ;

3. for each node U of T , the induced graph G[U] is connected.

An HST (T, c) induces a tree metric dHST over V , where dHST (u, v) is the
distance between u and v in (T, c), i.e. dHST (u, v) := c(Pu,v), with Pu,v being
the unique u, v-path in T . We only consider HSTs in which dHST dominates
dG,w. Whenever this is the case we say that the HST dominates the metric
of (G, w) with respect to weak diameters. A stronger condition is to require
that for every cluster U of the HST, the metric dG[U],w of the induced graph
(G[U], w) of the cluster U is dominated by the metric dHST . Whenever this is
the case we say that the HST dominates the metric of (G, w) with respect to
strong diameters.

We are interested in HSTs of low average stretch, that is, we need a bound
on
∑

{u,v}∈E dHST(u, v).

Theorem 3 (stated in [Bar98] for weak diameters) There exists a func-
tion α(n) ∈ Θ(log n log log n) such that for every weighted graph (G, w) there
exists a polynomial-time algorithm to construct an HST T with metric dHST

that dominates the metric of (G, w) with respect to strong diameters that satis-
fies

∑

{u,v}∈E

dHST(u, v) ≤ α(n) ·W. (4)

We provide a sketch of an explicit proof of this theorem in Appendix A.
This sketch is based on the construction of low stretch spanning trees due to
[EEST05].

5

In the algorithm for computing a short weakly fundamental cycle basis that
we are about to present in the next section, we will process the clusters of T
bottom-up, i.e. we will only start working in a cluster when we finished working
in all of its descendents.

3 Computing a Short Weakly Fundamental Cy-

cle Basis

Now we present our Algorithm 1 that for a given weighted graph (G, w) of total
weight W constructs a weakly fundamental cycle basis of objective value at most

(16 · α(n) + 1) ·W, α ∈ O(log n log log n), (5)

where α refers to Bartal’s function in Theorem 3.
The first line of Algorithm 1 is a call to Procedure Make-HST, providing

a hierarchically Well-Separated Tree T that dominates the strong internal di-
ameters of its corresponding clusters of(G, w), and satisfies the length-bound
in (4) (Theorem 3). In principle, it was shown in [Bar98] how this could be per-
formed in polynomial time. However, in Section 4 and Appendix A we provide
a more efficient algorithm.

Algorithm 1 resorts on a further external procedure: we assume that if
(G, w) is a weighted graph and u is a node of G, then Dijkstra((G, w), u)
computes the u-rooted shortest path tree S = e1, e2, . . . , en−1 in (G, w); it is
assumed that the edges of S are given in the same order as they would be
put into S by the classical Dijkstra’s algorithm ([Dij59]). In other words, the
sequence e1, e2, . . . , es satisfies the following property. Consider a pair of edges
e = (v, w), e′ = (v′, w′) in the sequence with v (respectively, v′) being closer
to the root u of S than w (resp., w′). Suppose that e belongs to the path
connecting the root u of the tree S with the endpoint v′ of e′ = (v′, w′). For
every pair of edges e, e′ as above it is required that the edge e appears in the
sequence before e′.

After the hierarchically well-separated tree T and the corresponding met-
ric dHST have been obtained, the actual iterative construction of the circuits to
be put in the basis B can start. As anticipated in Remark 1, we will accompany
the construction of B by also computing a spanning tree F of G plus an ordering
of the non-tree edges E(G) \ F of G. Thus, in our iterative process we start
with B := F := Z := ∅, and collect in the set Z all the edges that were already
processed according to the ordering that we are about to define. Observe that
Z will contain tree edges and non-tree edges. When we process an edge e (and
thus add e to Z), this has one of the two possible results: Either F ∪ {e} is
acyclic, then we add e to F . Or F ∪{e} contains some cycle, then we add to B a
circuit through e which only uses edges in Z, and which is sufficiently short. For
simplicity, you may think of a shortest circuit through e that only uses edges
in Z.

We now give a description of the order in which we are going to process
the edges of G. Processing the edges will be grouped according to the clusters

6

of T . We will color a node U ∈ V (T) green, if all the edges of its corresponding
cluster G[U] have been processed, i.e. E(G[U]) ⊆ Z. Otherwise, U will have
to remain colored red. At the start of the algorithm we may thus color in
green all the leaves of T , and the algorithm terminates when the root of T
finally becomes green. The order by which we pass through the clusters of the
HST will be bottom-up, i.e. we may only work in a node U ∈ V (T), if all its
descendents are colored green. Hence, when we start working in G[U], some
edges of G[U] may have already been processed while working in clusters that
correspond to descendents of U in T . The other edges, i.e. E(G[U]) \ Z, are
called U-proper. We process all the U -proper edges in a specific order which we
specify in the very next paragraph. After doing so, we may color U green.

The order in which we process the U -proper edges of a cluster G[U] is as
follows. We first compute Dijkstra’s shortest path tree S ⊆ E(G[U]) in this
cluster, rooted at some arbitrary vertex u of U . During this procedure, whenever
a U -proper edge e gets added to S, we process this edge. Second, after all the
edges of S have been processed, i.e. S ⊆ Z, we process—in arbitrary order—all
the U -proper edges in E(G[U]) \ S.

In practice, we suggest to compute the basic circuits which we add in Step 24
of Algorithm 1 as the shortest circuits through e in Z∪{e}. In general, this would
lead to shorter bases. However, our asymptotic analysis would not improve.

For a cluster G[U], let

∆(U) := diamHST(G[U]) := max{dHST(u, v), u, v ∈ U}.

By Theorem 3, dHST dominates the metric with respect to strong diameters.
Hence

∆(U) ≥ diam(G[U]). (6)

Moreover, for any two vertices v1, v2 ∈ V (G) for which Λ(v1, v2) = U , we may
bound ∆(U) as follows,

∆(U) ≤ 2 ·
(

1

2
dHST(v1, v2)

∞
∑

k=0

1

2k

)

≤ 2 · dHST(v1, v2), (7)

where inside the brackets we are considering one path in the HST from U to
one of its leaves, and use Property (2) of Definition 2.

Lemma 4 Let U be the cluster that is currently processed by Algorithm 1. Each
circuit C that we add to the basis B in Step 18 as the shortest circuit through
ei = {v1, v2} ∈ S in Z has weight w(C) at most

w(C) ≤ 5 · dHST(v1, v2). (8)

Proof. Here, ei /∈ Z, and thus Λ(v1, v2) = U . Hence we will first identify a
bound on w(C) in terms of ∆(U), and finally apply (7). The bound on w(C)
is obtained by identifying a (possibly different) cycle C ′ in Z and with ei ∈ C ′,
and establishing w(C ′) ≤ 5 ·∆(U). The cycle C ′ will be constructed out of two
subpaths of S plus a shortest path within a subcluster of U .

7

Algorithm 1 wfcb

Require: A weighted input graph (G, w).
Ensure: A weakly fundamental cycle basis B of G with w(B) = O(W ·

log n log log n).
1: (T, dHST) := Make-HST(G, w); // see appendix
2: B := ∅;
3: F := ∅; // becomes a spanning tree of G related to B as in Remark 1
4: Z := ∅; // the set of edges already considered. In particular, F ⊆ Z and

each edge in Z \ F belongs to some circuit in B.
5: Color with green all the leaves of T , and with red all other nodes;
6: while some node of T is red do
7: Let U be any red node of T whose children are all green;
8: Color U with green;
9: Let u be an arbitrary vertex of G[U];

10: S = {e1, . . . , es} := Dijkstra((G[U], w), u); // Recall that G[U] is
connected.

11: for i = 1 to s do
12: if ei ∈ Z then
13: // void — ei already processed in a subcluster of U .
14: else if F ∪ {ei} is acyclic then
15: F := F ∪ {ei}, Z := Z ∪ {ei};
16: else
17: // ei 6∈ Z, and F ∪ {ei} contains some cycle
18: Add to B the shortest circuit through the edge ei that only uses edges

in Z;
19: Z := Z ∪ {ei};
20: end if
21: end for
22: // By now we have S ⊆ Z.
23: for all e ∈ E(G[U]) \ Z do
24: Add to B the unique circuit in S ∪ {e};
25: Z := Z ∪ {e};
26: end for
27: // Here we have E(G[U]) ⊆ Z.
28: end while

8

We assume without loss of generality that v1 is closer to the root u of the
shortest-path tree S in G[U] than v2. Denote by U2 the child of U in T that
contains v2.

We are in the situation where F ∪{ei} contains some circuit Q with ei ∈ Q.
Consider the cut X ⊂ E(G[U]) that corresponds to (U2, U \ U2). Observe
that ei ∈ X. As every cycle has even intersection with any cut, and since
∅ 6= {ei} ∈ Q ∩X, we know that |Q ∩X| ≥ 2, and in particular |F ∩X| ≥ 1.1

But since edges in X have precisely one endpoint in U2, they cannot be
contained in any subcluster of U and thus are processed during U ’s iteration
of the while-loop. Hence, each element of F ∩ X is part of the shortest-path
tree S in U .

We compose the not necessarily simple cycle C ′ out of the following three
parts: First, the unique path Puei

⊂ S from u to ei. Second, one path Puf ⊂ S
from u to some edge f such that Puf ∩ X = {f} 6= {ei}, see Figure 1 for the
location of e, f , u, and U2. As both these paths are subpaths of the shortest-

eee

f f f

uuu

U2U2U2

UUU

Figure 1: Comparing for some cluster U (on the left) the u-rooted shortest-path
tree S (in the middle) to the growing spanning tree F of the input graph (on
the right).

path tree S in G[U], for P ∈ {Puei
, Puf} we know that w(P) ≤ diam(G[U])

(6)

≤
∆(U)...

The third and last part of the cycle C ′ is selected as a shortest path Peif

in G[U2] between the corresponding endpoints of ei and f . Such a path exists
because any cluster is connected, and Peif only uses edges in Z because it stays
within the cluster U2 all of whose edges were already processed, cf. the comment
in Line 27 of Algorithm 1.

To bound the length of Peif , recall the second property of an HST and
consider the subgraph G[U2] of G: Our bound ∆(U2) on the strong internal
diameter of G[U2] is by (at least) a factor of k smaller than the correspond-
ing bound ∆(U) on the strong internal diameter of G[U]. Hence, we finally

1One could even show by induction that in fact |F ∩ X| = 1.

9

obtain w(Peif) ≤ diam(G[U2]) ≤ ∆(U2) ≤ ∆(U)
2 . Overall we obtain

w(C) ≤ w(C ′) ≤ w(Puei
) + w(Puf) + w(Peif)

≤ 2 ·∆(U) +
∆(U)

2
=

5

2
·∆(U)

(7)

≤ 5 · dHST(v1, v2).

�

Lemma 5 Let U be the cluster that is currently processed by Algorithm 1. Each
circuit C that we add to the basis B in Step 24 for some non-tree edge e =
{v1, v2} ∈ E(G[U]) \ S has weight w(C) at most

w(C) ≤ 4 · dHST(v1, v2) + w(e). (9)

Proof. We identify a cycle C ′ that respects the length-bound in (9), but which
is already a superset of the circuit C that we add to the basis in Step 24. Again,
from e = {v1, v2} 6∈ Z we conclude that U = Λ(v1, v2). Let P1 be the unique
uv1-path in S (thus being a shortest path), and P2 be the unique uv2-path in S.
By defining C ′ := P1 ∪ P2 ∪ {e}, we obtain

w(C) ≤ w(C ′) ≤ w(P1) + w(P2) + w(e)
(6)

≤ 2 ·∆(U) + w(e)

(7)

≤ 4 · dHST(v1, v2) + w(e).

�

Theorem 6 Every weighted graph (G, w) with total edge weight W admits a
weakly fundamental cycle basis of length at most W · O(log n log log n). Such a
basis can be computed in polynomial time.

Proof. We apply Algorithm 1 to construct a weakly fundamental cycle basis B.
The length w(B) of B is the sum of the weights of all the basic circuits which we
add in Steps 18 and 24 of the algorithm. For every non-tree edge e = {v1, v2} ∈
E(G)\F according to Lemma 4 and Lemma 5, the length w(C) of the circuit C
that is added while processing e is bounded by

w(C) ≤ w(e) + 5 · dHST(v1, v2).

By summing this bound over all edges—although only non-tree edges with re-
spect to F actually count—we bound w(B) from above with

∑

{u,v}∈E

w(e) + 5 · dHST(u, v)
Thm.3
≤ (5 · α(n) + 1) ·W, (10)

where α(n) ∈ O(log n log log n) refers to Bartal’s coefficient in Theorem 3. �

We remark that no effort was made to optimize constant factors in this proof.

10

4 The Running Time

In this section we show that a variant of our algorithm can be implemented very
efficiently.

The algorithm starts constructing an HST T for G by means of Algorithm 4
(described in Appendix A). By Theorem 12, this step requires O(m log n +
n log2 n) time. In addition to the HST, Algorithm 4 can be made to provide
a shortest-paths tree (henceforth, SPT) SU for every cluster U of the HST.
Morever, these spanning trees are constructed within the same running time
O(m log n + n log2 n). Indeed, these trees get essentially constructed as a side
product of the other computations, and, in any case, one can construct them
from scratch starting from the HST, and within the same time.

Also, more below we will exploit more than once the following fact: in a
rooted tree S, given a pair of vertices u, v in S, the least common ancestor
(henceforth, LCA) of u and v, denoted ΛS(u, v), can be found in O(|S[u, v]|)
time, where S[u, v] denotes the unique u, v-path in S. Indeed, when computing
the LCA of nodes u and v we simply go up the tree from the two nodes u and
v in parallel and rise towards the root of the tree meanwhile marking the nodes
encountered as visited, until finding an already visited node. This process clearly
takes O(|S[u, v]|) time since, proceeding in parallel, we visit at most 2 |S[u, v]|
nodes.

Next, the algorithm invokes a routine for all-pairs-almost-shortest-paths
(henceforth, APASP) computation in each cluster U of the HST. To this end we
employ the algorithm of Cohen and Zwick [CZ01] that produces paths of lengths
at most 3 times greater than the corresponding shortest paths. The running
time of this algorithm in a cluster U is O(|U |2 · logc |U |), where c = O(1) is the
universal constant introduced in [CZ01].

After the preprocessing is finished, the algorithm proceeds to performing
steps 2-9, 11-28 of the Algorithm 1. (All steps except for the step 1 that con-
structs an HST, and for the step 10 that constructs SPTs.) Details on the
implementation of these steps are provided below.

The edge set Z can be maintained using a balanced search tree. We need
to support O(m) insert and search queries for it, and altogether this requires
O(m log n) time. (We denote m = |E|.)

The algorithm also needs to maintain a forest F , and given an edge e to test
whether F ∪{e} is acyclic. If this is the case, the edge e is inserted into F . Such
incremental maintaining of a forest can be implemented in a standard way in
O(m · γ(n)) time, where γ(n) is the inverse-Ackermann function [Tar75]. (See
also [CLRS01], Chapters 21 and 23.)

Also, when an edge e = (v1, v2) is added to F , we associate this edge with
the edge (U ′, U) of the HST such that v1, v2 ∈ U , v1 ∈ U ′, v2 ∈ U \ U ′. Note
that edges are inserted into F only during the first for-loop (lines 11-21 of the
Algorithm 1), and all edges e processed in this loop belong to a cut between
a child cluster U ′ of the processed cluster U and U \ U ′. To implement this
association, for every edge (U ′, U) of the HST T we maintain a list of edges
e = (v1, v2) ∈ F with v1 ∈ U ′, v2 ∈ U \ U ′. When an edge e is inserted into F ,

11

it is also added to the list associated with the appropriate edge of the HST T .
Locating the appropriate edge of the HST T requires O(log n) time, and thus
the overall running time for maintaining the forest F becomes O(m log n).

Perhaps the most significant modification to the Algorithm 1 that we intro-
duce is on step 18. This step adds the shortest circuit through ei that uses only
edges of Z, and a straightforward implementation of this step requires O(|Z|)
time. To speed up this step we form a circuit as described in the proof of Lemma
4.

Specifically, consider an edge ei = (v1, v2) for which the step 18 needs to
construct a circuit. This edge satisfies that ei 6∈ Z, and F ∪ {ei} contains a
cycle. Let u be the root of the SPT S for the cluster U = Λ(v1, v2), and U ′

be the child of U in the HST T that contains the vertex v2. As in the proof
of Lemma 4, the vertex v2 is the endpoint of ei that is farther from the root u
of S. Assume without loss of generality that u ∈ U \ U ′. Then v1 ∈ U \ U ′,
v2 ∈ U ′.

Let X denote the cut between U ′ and U \ U ′, and let f ∈ F ∩ X, f 6= ei,
be some other edge in this cut. Such an edge exists and belongs to S, as was
shown in the proof of Lemma 4. Moreover, this edge can be found within
O(log n) time using the data structures of our algorithm. Let f = (w1, w2), and
assume without loss of generality that w1 ∈ U \ U ′, w2 ∈ U ′.

Let x = ΛS(v1, w1) be the LCA of v1 and w1 in S. As we have already
mentioned, in S, the paths Pv1,x and Px,w1

among these nodes can be computed
within O(|Pv1,x|+ |Px,w1

|) time.
The approximate shortest path Pv2,w2

in U ′ between v2 and w2 can be com-
puted within O(|Pv2,w2

|) time using the APASP data structure constructed
during the preprocessing. Recall that the circuit Q(ei) associated with the edge
ei ∈ S is constructed by concatenation of the three paths Pv1,x, Px,w1

, and
Pv2,w2

, along with the edges ei and f . Hence constructing the circuit Q(ei)
requires O(|Q(ei)|+ log n) time.

Finally, consider the second for-loop (lines 23-26). In this loop, for every
edge e = (v1, v2) ∈ E(G[U]) \Z, the unique circuit Q in S ∪ {e} is constructed.
To implement this efficiently, the algorithm finds x = ΛS(v1, v2), and computes
the two paths Pv1,x and Px,v2

. This computation requires O(|Q(e)|) time.
The overall running time of the algorithm is

O(n2 logc+1 n) +
∑

e∈E\F

(|Q(e)|+ O(log n)) = O(n2 logc+1 n) +
∑

e∈E\F

|Q(e)| ,

where {Q(e) | e ∈ E \F} is the circuit basis returned by the algorithm. Observe
that the second term

∑

e∈E\F |Q(e)| is the size of the output. As shown in

Section 3, this circuit basis is an O(log n log log n)-approximation for the MCB.
(The fact that we use 3-approximate shortest paths between v2 and w2 instead
of exact shortest paths between them may increase the constant factor hidden
in the O-notation by a factor of at most 3.) In the special case of unweighted
graphs, since the MCB has length O(n2) by Theorem 9, then

∑

e∈E\F |Q(e)| =
O(n2 · log n log log n).

12

We summarize the analysis of the running time with the following theorem.

Theorem 7 Consider a graph G = (V, E, ω) with W =
∑

e∈E ω(e). The vari-
ant of the Algorithm 1 that was described in this section computes a circuit basis
{Q(e) | e ∈ E\F}, for some spanning tree F of G, of length O(W ·log n log log n)
in time O(n2 · logc+1 n +

∑

e∈E\F |Q(e)|). Moreover, if G is unweighted, then

the running time is O(n2 logc+1 n), where c is the universal constant from the
result of [CZ01].

Finally, if randomization is allowed, then the recent results of Baswana and
Kavitha [BK06] can be used instead of those of Cohen and Zwick [CZ01] to im-
prove the running time of our algorithm further. Specifically, for an integer pa-
rameter k > 2, an algorithm with expected running time O(min{n2, k ·m·n1/k})
that constructs (2k − 1)-approximate distance oracles is described in [BK06].
These oracles answer distance queries in O(k) time.

Consider the following modification of our algorithm. During the prepro-
cessing, instead of performing the APASP computation in each cluster U , the
algorithm will construct the oracles of [BK06] in each cluster. The running time
of this step is O(log n ·min{n2, k ·m ·n1/k}). When the algorithm needs a path
Pv2,w2

between v2 and w2 in U ′, it invokes the distance oracles. Since it does
so at most once for each edge e ∈ E \ F , there are altogether O(m) invocations
of distance oracles in the algorithm. Hence, altogether they require O(k · m)
time. Hence, overall the randomized variant of our algorithm requires O(log n ·
min{n2, k ·m ·n1/k}+

∑

e∈E\F |Q(e)|) expected time. Since the oracles provide

a (2k − 1)-approximation of the actual distances, the length of the constructed
circuit basis may also have length at most O(k) times greater than in the de-
terministic variant. (In the deterministic variant we use 3-approximation.) In
other words, the produced circuit basis is an O(k log n log log n)-approximation
of the MCB.

5 Strictly Fundamental Circuits

In this section we show that for every unweighted undirected graph there exists
a strictly fundamental cycle basis of size O(n2). Our proof is based on a recent
result of Abraham et al. ([ABN07]) that is described below.

Given a spanning tree T and a pair of vertices x, y ∈ V as above, the
distortion of the pair x, y with respect to T , denoted distortT (x, y), is defined as
the ratio between the distance between x and y in T and the distance between
x and y in G, i.e.,

distortT (x, y) =
dT (x, y)

dG(x, y)
.

The ℓ1-distortion of a tree T is defined as the expectation of the value of
distortT (x, y), where the pair of vertices {x, y} is drawn uniformly at random
from the set of all (non-ordered) pairs of vertices

(

V
2

)

. In other words,

distort(T) = IEU (distortT (x, y)) ,

13

where U stands for the uniform distribution over
(

V
2

)

.
We will use the following result of Abraham et al. ([ABN07]). (Theorem 2).

Theorem 8 (Thm. 2 in [ABN07]) Any weighted graph G with n vertices
contains a spanning tree T with distort(T) = O(1).

Note that

IEU (distortT (x, y)) =
1
(

n
2

) ·
∑

{x,y}∈(V
2)

dT (x, y)

dG(x, y)
,

and thus,
∑

{x,y}∈(V
2)

dT (x, y)

dG(x, y)
= O(n2) .

¿From this point on we consider only unweighted graphs G = (V, E). For every
edge e = {u, v} ∈ E, dG(u, v) = 1. Hence

X

e={u,v}∈E\E(T)

dT (u, v) =
X

e={u,v}∈E\E(T)

dT (u, v)

dG(u, v)
≤

X

{x,y}∈(V
2)

dT (x, y)

dG(x, y)

= O(n2) .

Let e1 = {u1, v1}, e2 = {u2, v2}, . . . , eν = {uν , vν} be the edges of E \ E(T),
ordered arbitrarily. Let C1, C2, . . . , Cν be the fundamental cycle basis with
respect to T , with Ci being the fundamental cycle of T induced by the edge ei,
for i ∈ {1, 2, . . . , ν}. Then

ν
∑

i=1

|Ci| =
ν
∑

i=1

(dT (ui, vi) + 1) = ν +
ν
∑

i=1

dT (ui, vi) = O(n2) .

Theorem 9 For any n-vertex graph there exists a cycle basis of length O(n2).

6 Conclusions

After upper bounds of O(n2) (for unweighted graphs) and O(W · log2 n log log n)
on the weights of Minimum Cycle Bases (MCB), we offer a polynomial-time
algorithm that computes a weakly fundamental cycle basis of weight O(W ·
log n log log n). Given the fact that there exist classes of graphs of large girth
whose MCB has length Ω(W · log n), we consider our general bound fairly close
to being asymptotically tight. At present we are working at upper bounds of
O(W · log n) for strictly fundamental cycle basis.

A strong form of what is now known as Deo’s conjecture was also proposed
by Deo et al. in [DKP82]:

Every unweighted graph has a strictly fundamental cycle basis of
length at most 3

2n2.

Our approach and techniques seem inadequate to prove this statement.

14

Acknowledgment

We thank Kurt Mehlhorn for his feedback on an earlier version of the manuscript,
and Alan Bertossi for making our collaboration possible.

References

[ABN07] Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding metrics
into ultrametrics and graphs into spanning trees with constant av-
erage distortion. In Proc. of the Symp. on Discrete Algorithms, to
appear, 2007.

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West.
A graph-theoretic game and its application to the k-server problem.
SIAM J. Comput., 24(1):78–100, 1995.

[Awe85] Baruch Awerbuch. Complexity of network synchronization. J.
ACM, 32(4):804–823, 1985.

[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its
algorithmic applications. In Proceedings of the 37th IEEE FOCS,
pages 184–193, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics.
In STOC, pages 161–168, 1998.

[BK06] S. Baswana and T. Kavitha. Faster algorithms for approximate
distance oracles and all-pairs small stretch paths. In International
Symposium on Foundations of Computer Science, pages 591–602,
2006.

[Bol78] Béla Bollobás. Extremal Graph Theory. Academic Press, 1978.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms: Second Edition. The MIT Press, 2001.

[CZ01] E. Cohen and U. Zwick. All-pairs small-stretch paths. J. Algo-
rithms, 38(2):335–353, 2001.

[Dij59] E.W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[DKP82] Narsingh Deo, M.S. Krishnomoorthy, and G.M. Prabhu. Algorithms
for generating fundamental cycles in a graph. ACM Transactions
on Mathematical Software, 8(1):26–42, 1982.

[EEST05] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua
Teng. Lower-stretch spanning trees. In Harold N. Gabow and
Ronald Fagin, editors, STOC, pages 494–503. ACM, 2005.

15

[FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight
bound on approximating arbitrary metrics by tree metrics. In
STOC, pages 448–455. ACM, 2003.

[HM94] D. Hartvigsen and R. Mardon. The all-pairs min cut problem and
the minimum cycle basis problem on planar graphs. Journal of
Discrete Mathematics, 7(3):403–418, 1994.

[Hor87] Joseph Douglas Horton. A polynomial-time algorithm to find the
shortest cycle basis of a graph. SIAM Journal on Computing,
16(2):358–366, 1987.

[KMM07] Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail. New
approximation algorithms for minimum cycle bases of graphs. In
Wolfgang Thomas and Pascal Weil, editors, STACS 2007, vol-
ume 4393 of Lecture Notes in Computer Science, pages 512–523.
Springer, 2007.

[KMMP04] Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and
Katarzyna E. Paluch. A faster algorithm for minimum cycle ba-
sis of graphs. In Josep Diaz, Juhani Karhumäki, Arto Lepistö, and
Donald Sanella, editors, ICALP, volume 3142 of Lecture Notes in
Computer Science, pages 846–857. Springer, 2004.

[Lie03] Christian Liebchen. Finding short integral cycle bases for cyclic
timetabling. In Giuseppe Di Battista and Uri Zwick, editors, ESA,
volume 2832 of Lecture Notes in Computer Science, pages 715–726.
Springer, 2003.

[MM07] Kurt Mehlhorn and Dimitrios Michail. Minimum cycle bases: Faster
and simpler. Kurt Mehlhorn’s List of Publications 196, Max-Planck-
Institute Saarbrücken, 2007.

[Sey95] P. D. Seymour. Packing directed cycles fractionally. Combinatorica,
15(2):281–288, 1995.

[Tar75] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
J. of ACM, 22(2):215–225, 1975.

16

A A Construction of HST

In this appendix we provide a sketch of an explicit proof of Theorem 3, and argue
that for an m-edge n-vertex weighted graph (G, ω) the HST with the desired
properties can be constructed in O(m · log n + n · log2 n) time. Our argument
is based on a variant of the construction of [EEST05]. The latter construction
provides a spanning tree with an average stretch O(log2 n log log n), and its
running time is O(m · log n + n · log2 n). We show that one can use it to obtain
an HST with an average stretch (in the sense of Theorem 3) O(log n log log n),
while maintaining the running time of the construction of [EEST05].

Another crucial property of our construction is that the obtained HST
guarantees an O(log n log log n) bound with respect to strong internal diame-
ters. More specifically, let diam(G[U]) = max{dG[U](u, v) | u, v ∈ U}, and
diamG(U) = max{dG(u, v) | u, v ∈ U}. Consider a cluster U of the HST, an
edge e = (u, v) in a cut between two sub-clusters W1, W2 ⊆ U . (The clusters
W1, W2 are children of U in the HST T .) Then our construction guarantees
that dHST (u, v) ≥ diam(G[U]). This is in contrast to a relaxed requirement
that dHST (u, v) ≥ diamG(U) guaranteed by the construction in [FRT03]. This
relaxed requirement is not sufficient for our purposes.

The main procedure in our approach is the recursive Algorithm 4 HST. First,
it invokes Algorithm 3 Decomp in order to obtain a partition of the vertices
of its input graph, the clusters. After the recursion is completed, the HST is
constructed by creating a new artificial node in the HST, which represents the
input graph of this call to HST, and linking this root node to the root nodes of
the subclusters, for which HST was called recursively. In Algorithm 3 Decomp the
decomposition itself is computed by the repetitive growing technique. In par-
ticular, each cluster is the result of a call to Algorithm 2 BallCut, which keeps
growing a ball around a given input core cluster until its boundary becomes
sufficiently sparse.

We first need to introduce some definitions and notation from [EEST05].

The boundary of a vertex set S ⊆ V , denoted ∂ (S), is the set of edges with
exactly one endpoint in S.

The volume of a set F of edges, denoted vol (F), is the size of the set |F |.

The cost of a set F of edges, denoted cost (F), is the sum of the reciprocals of
the weights of the edges in F .

The volume of a set S of vertices, denoted vol (S), is the number of edges with
at least one endpoint in S.

The ball of radius r around a vertex set S, denoted B(S, r), is the set of vertices
of distance at most r from S.

We next describe the Procedure BallCut that enables to partition a graph
into clusters with small diameters and small-cost boundaries. This procedure
employs the standard ball-growing technique introduced by Awerbuch [Awe85].

17

Taken as input a graph G, a core cluster C0, and a radius ρ, Procedure BallCut
returns a cluster C that contains C0, and such that Rad(C, C0) = max{dG(C)(u, w) |
u ∈ C, w ∈ C0} ≤ ρ. Moreover, the boundary of the cluster C has a small cost.
The fulfilment of all these requirements is possible borrowing from the spirit and
the main ingredients of the Procedure ConeCut of [EEST05]. The pseudo-code
of Procedure BallCut is here below.

Algorithm 2 BallCut

Require: A weighted input graph (G, w), a connected cluster C0 ⊆ V , and a
positive parameter ρ.

Ensure: A connected cluster C s.t. C0 ⊆ C, Rad(C, C0) ≤ ρ, and cost (∂ (C))
is small.

1: if vol (E(C0)) = 0 then
2: µ← (vol (C0) + 1) · log(m + 1);
3: else
4: µ← vol (C0) · log

(

m
vol(E(C0))

)

;

5: end if
6: r ← 0;
7: while cost (∂ (B(C0, r))) > µ/ρ do
8: let w 6∈ B(C0, r) be the closest vertex to B(C0, r);
9: r ← r + dG(B(C0, r), w);

10: end while
11: return B(C0, r).

The properties of Procedure BallCut are summarized in the following lemma.

Lemma 10 Let G = (V, E, ω) be a connected weighted graph, let C0 ⊆ V be
a connected vertex set, and let ρ be a number, 0 < ρ ≤ RadG(C0). Then
BallCut(G, C0, ρ) returns a connected set C of vertices, C0 ⊆ C, such that
RadG(C, C0) ≤ ρ, and

cost (∂ (C)) ≤ vol (C) + τ

ρ
·max

{

log
m + τ

vol (E(C0)) + τ

}

with m = |E|, and

τ =

{

1, if vol (E(C0)) = 0
0, otherwise.

This lemma follows directly from Lemma 4.2 (Concentric System Cutting)
of [EEST05], and from the fact that the collection of balls is a concentric system.
(See [EEST05] for the definition of concentric systems.)

We next describe Procedure Decomp. This procedure is used to form a parti-
tion V1, . . . , Vk, for some positive integer k, of a given cluster G′ = (U, G(U), ω).
The procedure accepts as input the graph G′. In addition, it accepts as input
the parameter ∆ which determines the maximum radii of the resulting clusters
V1, . . . , Vk. It also accepts as input two auxiliary parameters. One of them is

18

m̂, which is the number of edges in the original graph G = (V, E, ω). (The HST
is constructed for G, and m̂ = |E(G)|. We also denote n̂ = |V |.) The other
parameter is t, and it controls the number of levels of the repetitive growing.
(See below and [EEST05].) This parameter will be set as log log m̂ to optimize
the resulting bound on the

∑

e∈E dHST (e).
Each iteration of the external while-loop corresponds to construction of a

single cluster Vj . Once a cluster is constructed, it is removed from the graph,
and the next iteration starts. The loop continues as long as the residual graph
is not empty.

The inner while-loop constructs one single cluster, and it employs the repet-
itive growing technique. It runs for at most t iterations. On each iteration it
attempts to grow the cluster to an additional radius of ∆/t, and thus overall,
the radius of the resulting cluster Vj with respect to its core vertex xj is at most
∆. On each iteration the algorithm tests whether the volume of the edge set
of the cluster is sufficiently small, and leaves the loop if this is the case. Re-
call that Procedure BallCut guarantees that the boundary of the constructed
cluster has low cost. Note also that the larger is the core input set K = C0

to Procedure BallCut, the smaller is the bound provided by Lemma 10 on the
cost of the boundary. This observation plays a key role in the analysis of the
repetitive growing technique.

The pseudo-code of Procedure Decomp is given below. This procedure is
based on the Procedure ImpConeDecomp of [EEST05].

Algorithm 3 Decomp

Require: A cluster G′, a number ∆ > 0, t = 1, 2, . . ., and the number of edges
m̂ of the original graph G.

Ensure: A partition {V1, . . . , Vk}, for some k = 1, 2, . . . of G′ with clusters of
diameter at most ∆ and low-cost set of inter-cluster edges.

1: j ← 0; U ← V ′; G0 ← G;
2: while U 6= ∅ do
3: j ← j + 1; p← t− 1;
4: Let xj be a vertex of Gj−1;

K ← {xj};
5: while p > 0 do
6: C ← BallCut(Gj−1, K, ∆/t);
7: if vol (E(C)) ≤ m

2logp/t m̂
then

8: exit the loop;
9: else

10: p← p− 1; K ← C;
11: end if
12: end while
13: Vj ← C; Gj ← G(V \⋃j

i=1 Vi);
14: end while
15: return {V1, . . . , Vj}.

19

The properties of the partition constructed by Procedure Decomp are sum-
marized in the following lemma.

Lemma 11 For an n-vertex m-edge graph G, the invocation {V1, . . . , Vk} =
Decomp(G, ∆, t, m̂), in time O(m + n · log n), returns a partition that satisfies
that for every index j ∈ {1, 2, . . . , k} there exists p = p(j) ∈ {0, 1, . . . , t − 1}
such that

cost
(

E
(

Vj , V − ∪j
i=0Vi

))

≤ t · 2 vol (Vj) log(p+1)/t(m̂ + 1)

∆
, (11)

and unless p = 0,

vol (E(Vj)) ≤
m

2logp/t m̂
. (12)

The proof of this lemma is analogous to that of Lemma 5.1 (Improved Low-
Cost Star Decomposition) of [EEST05].

Finally, we use Procedure Decomp to construct the HST with the desired
properties. Procedure HST accepts as input a connected graph G = (V, E, ω),
and returns the HST T , rooted at a node x, denoted by (T, x), for short. Notice
that the node x does not belong to the vertex set V . The termination condition
of the recursion is the case in which the input set consists of at most two vertices.
If it consists of just one single vertex, then this vertex is returned as the resulting
HST. If it consists of two vertices v, w then, since G is connected, it contains
an edge e = (v, w) between these vertices. Then the algorithm returns a tree
rooted at x with two edges (x, v), (x, w), both of weight ω(e)/2.

The algorithm invokes Procedure Decomp to form a partition {Ṽ1, . . . , Ṽk} of
the graph G. It then recurses in each of the clusters of this partition to form
HSTs (T1, x1), . . . , (Tk, xk) for these clusters. Finally, it connects x to each
root xi of Ti, i = 1, 2, . . . , k, via edges of weight diam(G)/4. (This description
ignores the issue of contracting short edges. This issue is handled exactly like
in [EEST05].)

The pseudo-code of Procedure HST is given below. It is based on the Proce-
dure LowStretchTree from [EEST05].

The following theorem summarizes the properties of Procedure HST.

Theorem 12 Let G = (V, E, ω) be a connected weighted graph with W =
∑

e∈E ω(e). Then (T, x) = HST(G), in time O(m̂ · log n̂ + n̂ · log2 n̂), returns

a spanning tree of G that satisfies
∑

e∈E
dHST (e)

ω(e) = O(log n log log n · m̂).

The proof of this theorem follows the lines of the proof of Theorem 5.2
(Lower-Stretch Spanning Tree) of [EEST05].

Finally, we derive the inequality
∑

e∈E dHST (e) = O(log n log log n ·W) in
the following way.

Given a graph G = (V, E, ω), construct a multi-graph Ǧ = (V, Ě, ω) in which
each edge e ∈ E is replicated ω(e) times with the same weight. (The argument
above applies to multi-graphs in which edges are allowed to admit fractional

20

Algorithm 4 HST

Require: A weighted graph G = (V, E, ω).
Ensure: An HST (T, x) of G with an average stretch O(log n log log n).
1: if V = {v} then
2: return(v);
3: else if V = {v, w} then
4: return((x, v), (x, w) of weight diam(G)/2 each);
5: end if
6: ρ← diam(G);

7: Let G̃ = ((̃V), (̃E)) be the graph obtained by contracting all edges in G of
length less than ρ/n̂;

8: {Ṽ1, . . . , Ṽk} ← Decomp(G̃, diam(G̃)/4, t = log log n̂, m̂);
9: For each i, let Vi be the preimage under the contraction of step 7 of vertices

in Ṽi;
10: for 1 ≤ i ≤ k do
11: (Ti, xi)← HST((Vi, E(Vi), ω));
12: end for
13: Assign weight ρ/2 to each edge (x, xi), i ∈ [k];

14: T ← ⋃k
i=1 Ti ∪ {(x, xi) | i ∈ [k]};

15: return (T, x).

multiplicity. Alternatively, one can scale and round all weights while incurring
only a constant overhead in the stretch bounds.)

Apply the construction below and Theorem 12 to the multi-graph Ǧ. Inspec-
tion of the algorithm reveals that the multiplicities do not affect the running
time, and thus, in time O(|E| · log |V |+ |V | · log2 |V |), the algorithm returns an
HST for Ǧ that satisfies

∑

e∈E

dHST (e)

ω(e)
· ω(e) = O

(

log n log log n
∑

e∈E

ω(e)

)

= O(log n log log n ·W) ,

proving the desired inequality.

21

Reports from the group

“Combinatorial Optimization and Graph
Algorithms”

of the Department of Mathematics, TU Berlin

2007/22 Michael Elkin and Christian Liebchen and Romeo Rizzi: New Length
Bounds for Cycle Bases

2007/19 Nadine Baumann and Sebastian Stiller: The Price of Anarchy of a Network
Creation Game with Exponential Payoff

2007/17 Christian Liebchen and Michael Schachtebeck and Anita Schöbel and Sebas-

tian Stiller and André Prigge: Computing Delay Resistant Railway Timetables

2007/03 Christian Liebchen and Gregor Wünsch and Ekkehard Köhler and Alexander

Reich and Romeo Rizzi: Benchmarks for Strictly Fundamental Cycle Bases

2006/32 Romeo Rizzi and Christian Liebchen: A New Bound on the Length of Min-
imum Cycle Bases

2006/24 Christian Liebchen and Sebastian Stiller: Delay Resistant Timetabling

2006/08 Nicole Megow and Tjark Vredeveld: Approximation Results for Preemptive
Stochastic Online Scheduling

2006/07 Ekkehard Köhler and Christian Liebchen and Romeo Rizzi and Gregor

Wünsch: Reducing the Optimality Gap of Strictly Fundamental Cycle Bases
in Planar Grids

2006/05 Georg Baier and Thomas Erlebach and Alexander Hall and Ekkehard Köhler

and Heiko Schilling: Length-Bounded Cuts and Flows

2005/30 Ronald Koch and Martin Skutella and Ines Spenke : Maximum k-Splittable
Flows

2005/29 Ronald Koch and Ines Spenke : Complexity and Approximability of k-
Splittable Flows

2005/28 Stefan Heinz and Sven O. Krumke and Nicole Megow and Jörg Rambau and

Andreas Tuchscherer and Tjark Vredeveld: The Online Target Date Assignment
Problem

2005/18 Christian Liebchen and Romeo Rizzi: Classes of Cycle Bases

2005/11 Rolf H. Möhring and Heiko Schilling and Birk Schütz and Dorothea Wagner

and Thomas Willhalm: Partitioning Graphs to Speed Up Dijkstra’s Algorithm.

2005/07 Gabriele Di Stefano and Stefan Krause and Marco E. Lübbecke and Uwe

T.Zimmermann: On Minimum Monotone and Unimodal Partitions of Permu-
tations

2005/06 Christian Liebchen: A Cut-based Heuristic to Produce Almost Feasible Pe-
riodic Railway Timetables

2005/03 Nicole Megow, Marc Uetz, and Tjark Vredeveld: Models and Algorithms for
Stochastic Online Scheduling

2004/37 Laura Heinrich-Litan and Marco E. Lübbecke: Rectangle Covers Revisited
Computationally

2004/35 Alex Hall and Heiko Schilling: Flows over Time: Towards a more Realistic
and Computationally Tractable Model

2004/31 Christian Liebchen and Romeo Rizzi: A Greedy Approach to Compute a
Minimum Cycle Bases of a Directed Graph

2004/27 Ekkehard Köhler and Rolf H. Möhring and Gregor Wünsch: Minimizing
Total Delay in Fixed-Time Controlled Traffic Networks

2004/26 Rolf H. Möhring and Ekkehard Köhler and Ewgenij Gawrilow and Björn

Stenzel: Conflict-free Real-time AGV Routing

2004/21 Christian Liebchen and Mark Proksch and Frank H. Wagner: Performance
of Algorithms for Periodic Timetable Optimization

2004/20 Christian Liebchen and Rolf H. Möhring: The Modeling Power of the Peri-
odic Event Scheduling Problem: Railway Timetables — and Beyond

2004/19 Ronald Koch and Ines Spenke: Complexity and Approximability of k-
splittable flow problems

2004/18 Nicole Megow, Marc Uetz, and Tjark Vredeveld: Stochastic Online Schedul-
ing on Parallel Machines

2004/09 Marco E. Lübbecke and Uwe T. Zimmermann: Shunting Minimal Rail Car
Allocation

2004/08 Marco E. Lübbecke and Jacques Desrosiers: Selected Topics in Column Gen-
eration

2003/050 Berit Johannes: On the Complexity of Scheduling Unit-Time Jobs with
OR-Precedence Constraints

2003/49 Christian Liebchen and Rolf H. Möhring: Information on MIPLIB’s
timetab-instances

2003/48 Jacques Desrosiers and Marco E. Lübbecke: A Primer in Column Generation

2003/47 Thomas Erlebach, Vanessa Kääb, and Rolf H. Möhring: Scheduling
AND/OR-Networks on Identical Parallel Machines

2003/43 Michael R. Bussieck, Thomas Lindner, and Marco E. Lübbecke: A Fast
Algorithm for Near Cost Optimal Line Plans

2003/42 Marco E. Lübbecke: Dual Variable Based Fathoming in Dynamic Programs
for Column Generation

2003/37 Sándor P. Fekete, Marco E. Lübbecke, and Henk Meijer: Minimizing the
Stabbing Number of Matchings, Trees, and Triangulations

2003/25 Daniel Villeneuve, Jacques Desrosiers, Marco E. Lübbecke, and François

Soumis: On Compact Formulations for Integer Programs Solved by Column
Generation

2003/24 Alex Hall, Katharina Langkau, and Martin Skutella: An FPTAS for Quick-
est Multicommodity Flows with Inflow-Dependent Transit Times

2003/23 Sven O. Krumke, Nicole Megow, and Tjark Vredeveld: How to Whack Moles

2003/22 Nicole Megow and Andreas S. Schulz: Scheduling to Minimize Average Com-
pletion Time Revisited: Deterministic On-Line Algorithms

2003/16 Christian Liebchen: Symmetry for Periodic Railway Timetables

2003/12 Christian Liebchen: Finding Short Integral Cycle Bases for Cyclic Timetabling

Reports may be requested from: Sekretariat MA 6–1
Fakultt II – Institut fr Mathematik
TU Berlin
Straße des 17. Juni 136
D-10623 Berlin – Germany

e-mail: klink@math.TU-Berlin.DE

Reports are also available in various formats from

http://www.math.tu-berlin.de/coga/publications/techreports/

and via anonymous ftp as

ftp://ftp.math.tu-berlin.de/pub/Preprints/combi/Report-number-year.ps

