
Context Sensitivity in Logical Modeling with
Time Delays

Heike Siebert and Alexander Bockmayr

DFG Research Center Matheon,
Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany

siebert@mi.fu-berlin.de, bockmayr@mi.fu-berlin.de

Abstract. For modeling and analyzing regulatory networks based on
qualitative information and possibly additional temporal constraints, ap-
proaches using hybrid automata can be very helpful. The formalism fo-
cussed on in this paper starts from the logical description developed by
R. Thomas to capture network structure and qualitative behavior of a
system. Using the framework of timed automata, the analysis of the dy-
namics can be refined by adding a continuous time evolution. This allows
for the incorporation of data on time delays associated with specific pro-
cesses. In general, structural aspects such as character and strength of
interactions as well as time delays are context sensitive in the sense that
they depend on the current state of the system. We propose an enhance-
ment of the approach described above, integrating both structural and
temporal context sensitivity.

1 Introduction

Logical modeling of bioregulatory networks started more than thirty years ago
with the work of Sugita, Kauffman, Glass, and Thomas [11, 5, 4, 13]. R. Thomas
[13] introduced a logical formalism in the 1970s, which, over the years, has been
further developed and successfully applied to different biological problems (see
[14], [15] and references therein). Network components are modeled as discrete
variables, the values of which correspond to the different expression levels of the
component. In the simplest case, there are only two expression levels, 0 and 1,
representing for instance whether or not a substance has surpassed some thresh-
old concentration associated with a network interaction. A directed graph is
used to represent interactions between the network components. Edges are la-
beled with signs corresponding to the character of the interaction, i. e., activating
or inhibiting, and information on the thresholds associated with the interaction.
In order to derive the dynamics of the system, parameters are introduced that
take discrete values and determine for each network state the influence of en-
abled interactions on the system’s behavior. To obtain a deterministic behavior,
one would need sufficient data on the time delays associated with the different
changes of expression level for all network components. In the classical Thomas
formalism, the only assumption made is that all those time delays are different,
resulting in a non-deterministic, asynchronous description of the dynamics. If

more temporal data, e. g. in the form of time constraints, is available, we need a
refined modelling approach allowing for the incorporation of such data. In [9] we
proposed such a formalism based on the theory of timed automata. Here, each
component is equipped with a clock used to evaluate conditions imposed on the
time delays of this component during the evolution of the system.

In both approaches described so far the assumption is made that the infor-
mation used for modeling is valid regardless of the state of the system. This
assumption is often not met in reality. We have to deal with context sensitivity
in the sense that characteristics of network interactions as well as time delays
associated with changes in expression level may depend on the current state of
the system. Whether some substance has an activating or inhibiting influence on
the transcription of a gene, for example, may very well depend on the concen-
tration of that substance. This is an example for structural context sensitivity.
Moreover, the time delay for some component a to reach expression level 1 from
0 may be significantly shorter if the expression level change follows from acti-
vation by component b rather than from some influence exerted by component
c, indicating temporal context sensitivity. Both kinds of phenomena may be of
crucial importance for the system’s functional purpose. Changes in the model-
ing formalism pertaining to both the logical modeling of the network structure
and the parameter definition as well as the construction of the timed automaton
model are necessary to capture the behavior of such context sensitive systems.

Specification of a model comprises three levels, allowing for a stepwise exten-
sion of the model in accordance with the available data. All the structural and
discrete dynamical information about the network can be expressed in a context
sensitive logical modeling framework based on the classical Thomas formalism.
We develop this framework in Section 2. In a second step, discussed in Section 4,
we show the translation of the context sensitive Thomas model into the frame-
work of timed automata. At this stage we are able to incorporate information
on time delays, using the properties of timed automata we introduced in Sec-
tion 3. The resulting modeling approach constitutes a generalization of the one
presented in [9]. As a final contribution we present a way to integrate context
sensitive time delays in Section 5. We illustrate our methodology by examples,
in particular the analysis of a regulatory network of bacteriophage λ, which we
have implemented using the verification tool UPPAAL. We end the paper by
discussing problems and perspectives of our approach

2 Context Sensitive Thomas Formalism

In this section we give a formal definition of a regulatory network based on the
modeling approach of R. Thomas (see for example [14] and [15]). In contrast
to Thomas’ original approach our formalism allows for a rigorous description of
a context sensitive system. The product of the cI gene in bacteriophage λ, for
example, activates the cI gene by positive autoregulation. However, as the prod-
uct concentration increases, the influence on its gene becomes inhibiting, thus
preventing overexpression. In the classical Thomas formalism the interaction of

cI with itself is represented by a signed edge in the network graph, the sign char-
acterizing the interaction as activating or inhibiting. In the described situation
neither choice of sign reflects reality. It is still possible to choose the parameter
values governing the system’s dynamics to accommodate both activating and in-
hibiting effects, but that renders the edge sign meaningless. Since the edge signs
play an important role in formulating general mathematical relations between
motifs in the network graph and possible dynamical behavior, it seems impor-
tant to keep them in the model of the network structure. Thus, we represent
interactions capable of displaying activating as well as inhibiting effects by two
edges, one negative, the other positive. In other words, while Thomas uses a
directed graph to capture the structure of a network, we use a directed multi-
graph allowing for parallel edges. Consequently, we also need to alter Thomas’
method of determining the system’s dynamics from the graph. Multigraphs have
already been used in [3] in a similar way. Also, multigraphs are used in [7] and
[8], however, those graphs are derived from given discrete functions describing
the system’s behavior.

Definition 1. An interaction (multi-)graph (or bioregulatory (multi-)graph) I
is a labeled directed multigraph with

– vertex set V := {α1, . . . , αn}, n ∈ IN, and
– edge (multi-)set E ⊆ V × V . Let T (αj) be the set of all edges whose tail is

αj, and H(αi) the set of edges whose head is αi. Each edge e from αj to αi

is labeled with a sign εe ∈ {+,−} and a set Me ⊆ {1, . . . , dj}, dj ∈ IN. For
each sign ε ∈ {+,−} there is at most one edge αj → αi labeled with ε.

Let pj be the maximal value of the union of all sets Me with e ∈ T (αj). We call
{0, . . . , pj} the range of αj. For each i ∈ {1, . . . , n} we denote by Pred(αi) the
set of vertices αj such that αj → αi is an edge in E.

The vertices of this graph represent the components of the regulatory network,
e. g. genes, the range of a vertex the different expression levels of the corre-
sponding component affecting the behavior of the network. For example, if we
only consider a component to be active or inactive, its range is {0, 1}. Thus, the
vertices can be interpreted as variables that take values in the corresponding
range. An edge e from αj to αi signifies that αj influences αi in a positive or
negative way, depending on εe and provided that the current expression level
of αj is in Me. If there is more than one edge leading from αj to αi, then the
character of the interaction depends on the context. Figure 1 (a) shows a simple
interaction graph comprising two vertices. The two different edges leading from
α2 to α1 signify that α2 has an inhibiting influence on α1 if its expression level
is 1. However, on the higher expression level 2 the influence becomes activating.
Furthermore, there are two edges, e3 and e4, from α2 to itself. The correspond-
ing sets Me3 and Me4 intersect. It is not clear from the interaction graph alone,
whether α2 with expression level 1 inhibits or activates itself. The outcome de-
pends on the interplay between the influence from α2 on itself and the influence
of α1 on α2. Thus, in order to determine the dynamical behavior of the system
we need further information.

α1 α2

−

0 1

0 0

1 1

1 0

1 20 2

+

{1}

{1}
{1, 2}

{2}
{1}

{1}

+
−

−−

e1 := (α1, α1,−, {1}),
e2 := (α1, α2,−, {1}),
e3 := (α2, α2,+, {1, 2}),
e4 := (α2, α2,−, {1}),
e5 := (α2, α1,−, {1}),
e6 = (α2, α1,+, {2})

α1 α2 α′
1 α′

2 α′
1 α′

2

0 0 K1,{e1,e5} K2,{e2,e4} 1 1
1 0 K1,{e5} K2,{e4} 0 0
0 1 K1,{e1} K2,{e2,e3} 0 2
1 1 K1,∅ K2,{e3} 0 0
0 2 K1,{e1,e5,e6} K2,{e2,e3,e4} 1 2
1 2 K1,{e5,e6} K2,{e3,e4} 1 1

(a)

(b)

Fig. 1. In (a), interaction graph of a regulatory system comprising two components
and six interactions. In (b), state table for general parameters with specific values, and
the resulting state transition graph.

Definition 2. Let I be an interaction graph. A state of the system described by
I is a tuple s ∈ Sn := {0, . . . , p1} × · · · × {0, . . . , pn}. The set of resource edges
Ri(s) of αi in state s is the set

{e ∈ H(αi) | (εe = + ∧ sj ∈ Me) ∨ (εe = − ∧ sj /∈ Me)}.

Finally, given a set

K(I) := {Ki,Ri(s) | i ∈ {1, . . . , n}, s ∈ Sn}

of (logical) parameters Ki,Ri(s), which take values in the range of αi, we call the
pair (I,K(I)) a bioregulatory network.

In a given state s only the edges e with stail(e) ∈ Me represent active influences.
The set of edge resources Ri(s) contains all active positive edges and all inactive
negative edges reaching αi. That is, we interpret the absence of an inhibiting
influence as activating influence. The value of the parameter Ki,Ri(s) then indi-
cates how the expression level of αi will evolve. It will increase (resp. decrease) if
the parameter value is greater (resp. smaller) than si. The expression level stays
the same if both values are equal.

Typically, the set of resources Ri(s), and with it the logical parameters, is
defined as the set of predecessors of αi (instead of edges reaching αi) having
an activating influence on αi (see [2]). Since we allow for context sensitivity,
knowledge of the current expression level of a predecessor of αi is not enough
to determine the character of the corresponding interaction. In the table given
in Figure 1(b) we see in the second column the logical parameters determining

the state s′ the system will evolve to from the state s given in the first column.
The third column provides a specification of the parameter values. The resulting
network behavior cannot be described in the classical Thomas formalism, since
it is highly context sensitive. For example, we see that if α2 has expression level
1, it activates itself in the absence of α1, since K2,{e2,e3} = 2. If α1 is present,
resulting in an effective inhibiting edge e2, then α2 inhibits itself, as indicated
by the parameter choice K2,{e3} = 0. For an interaction graph without parallel
edges, the notion of edge resources and vertex resources are equivalent.

The signs on the edges together with the sets Me determine whether a com-
ponent is an activator or an inhibitor of some other component in a given state.
An activating influence, i. e., an effective activator or a non-effective inhibitor,
cannot induce a decrease in expression level of the target component. This is
reflected in the following parameter constraint:

ω ⊆ ω′ ⊆ H(αi) ⇒ Ki,ω ≤ Ki,ω′ (1)

for all i ∈ {1, . . . , n}. In the following we will always assume that this constraint
is satisfied.

To conclude this section, we describe the dynamics of the system by means
of a state transition graph.

Definition 3. The state transition graph SN corresponding to the bioregulatory
network N = (I,K(I)) is a directed graph with vertex set Sn. There is an edge
s → s′ if there is i ∈ {1, . . . , n} such that s′i = si + sgn(Ki,Ri(s) − si) 6= si and
sj = s′j for all j ∈ {1, . . . , n} \ {i}.

To describe the dynamics of the system we use the so-called asynchronous up-
date, i. e., a state differs from a successor state in one component only. If s is
a state such that an evolution in more than one component is indicated, then
there will be more than one successor of s. Note that s is a steady state if s has
no outgoing edge. In Figure 1(b) we see the state transition graph corresponding
to the state table also given in the figure.

3 Timed Automata

In this section we formally introduce timed automata. We mainly use the defini-
tions and notations given in [1]. To introduce the concept of time in our system,
we consider a set C := {c1, . . . , cn} of real variables that behave according to
the differential equations ċi = 1. These variables are called clocks. They progress
synchronously and can be reset to zero under certain conditions. We define the
set Φ(C) of clock constraints ϕ by the grammar

ϕ ::= c ≤ q | c ≥ q | c < q | c > q |ϕ1 ∧ ϕ2 ,

where c ∈ C and q is a rational constant.
A clock interpretation is a function u : C → IR≥0 from the set of clocks to

the non-negative reals. For δ ∈ IR≥0, we denote by u+ δ the clock interpretation

that maps each c ∈ C to u(c)+ δ. For Y ⊆ C, we indicate by u[Y := 0] the clock
interpretation that maps c ∈ Y to zero and agrees with u over C \ Y . A clock
interpretation u satisfies a clock constraint ϕ if ϕ(u) = true. The set of all clock
interpretations is denoted by IRC

≥0.

Definition 4. A timed automaton is a tuple (L, L0, Σ,C, I, E), where

– L is a finite set of locations,
– L0 ⊆ L is the set of initial locations,
– Σ is a finite set of events (or labels),
– C is a finite set of clocks,
– I : L → Φ(C) is a mapping that labels each location with some clock con-

straint called the invariant of the location,
– E ⊆ L×Σ × Φ(C)× 2C × L is a set of switches.

A timed automaton can be represented as a directed graph with vertex set L.
The vertices are labelled with the corresponding invariants and are marked as
initial locations if they belong to L0. The edges of the graph correspond to the
switches and are labelled with an event, a clock constraint called guard specifying
when the switch is enabled, and a subset of C comprising the clocks that are
reset to zero with this switch. While switches are instantaneous, time may elapse
in a location. To describe the dynamics of such an automaton formally, we use
the notion of a transition system.

Definition 5. Let A be a timed automaton. The (labelled) transition system TA

associated with A is a tuple (Q,Q0, Γ,→), where Q is the set of states (l, u) ∈
L×IRC

≥0 such that u satisfies the invariant I(l), Q0 comprises the states (l, u) ∈ Q
where l ∈ L0 and u ascribes the value zero to each clock, and Γ := Σ ∪ IR≥0.
Moreover, →⊆ Q× Γ ×Q is defined as the set comprising

– transitions (l, u) δ−→ (l, u + δ) for δ ∈ IR≥0 such that for all 0 ≤ δ′ ≤ δ the
clock interpretation u + δ′ satisfies the invariant I(l), and

– transitions (l, u) a−→ (l′, u[R := 0]) for a ∈ Σ such that there is a switch
(l, a, ϕ,R, l′) in E, u satisfies ϕ, and u[R := 0] satisfies I(l′).

The elements of → are called transitions.

The first kind of transition is a state change due to elapse of time, while the sec-
ond one is due to a location-switch and is called discrete. Again we can visualize
the object TA as a directed graph with vertex set Q and edges corresponding
to the transitions given by →. Note, that by definition the set of states may
be infinite and that the transition system is in general nondeterministic, i. e., a
state may have more than one successor. Moreover, it is possible that a state is
the source for edges labelled with a real value as well as for edges labelled with
events. However, although every discrete transition corresponds to a switch in
A, there may be switches in A that do not lead to a transition in TA. That is
due to the additional conditions placed on the clock interpretations.

Finally, we obtain a modified transition system by considering only the lo-
cation vectors as states, dropping all transitions labelled with real values, but
keeping every discrete transition of TA. We call this the discrete (or symbolic)
transition system of A.

4 Augmenting the Context Sensitive Thomas Formalism
with Time Delays

We now present a generalization of the modeling approach using timed automata
introduced in [9] suitable for regulatory networks displaying structural context
sensitivity. Basically, we model each component of the system individually as
a timed automaton, and then present a procedure to combine those elements
to a timed automaton capturing the dynamical behavior of the system. This
is done much in the same way a product automaton is derived from n timed
automata (see [1]) and has been explained in detail in [9] and [10]. We illustrate
the procedure and in particular the differences occurring due to the incorporation
of context sensitivity using the example in Figure 1. Rigorous definitions will of
course also be given for the alterations necessary in this more general approach.

4.1 Modeling the Components

We start modeling the components α1 and α2 of the system given in Figure 1
as timed automata A1 and A2.

Clocks. We use a single clock ci for each component in order to measure
the time needed for changes in expression level of that component. Even when
introducing context sensitive time delays later on, we do not need more than
one clock.

Locations. For each Ai we need a set of locations Li. We introduce locations
αk

i for k in the range of αi representing a situation where αi maintains expression
level k. They are called regular locations. Since we want to measure time delays
corresponding to the increase or decrease of expression level, we furthermore
define locations αk+

i (resp. αk−
i) for k ∈ {0, . . . , pi − 1} (resp. k ∈ {1, . . . , pi})

indicating that the expression level is still k but is in the process of increasing
(resp. decreasing). We call them intermediate locations. Lastly, we define L0

i :=
{αk

i ; k ∈ {0, . . . , pi}}. In Figure 2 the four locations of A1 and the seven locations
of A2 are drawn as ellipses.

Invariants. The invariants of regular and intermediate locations are funda-
mentally different. Whether or not the component remains in a regular location
does not depend on how much time has passed since it entered that location. In
that sense regular locations are stable. This is reflected by assigning the invari-
ant ci ≥ 0, which is true for every clock value, to every location αk

i . In contrast,
the intermediate locations are of transient character. The component will leave
an intermediate location when the time needed for the corresponding expres-
sion level change has passed. We assign the location αkε

i the invariant ci ≤ T kε
i ,

ε ∈ {+,−}, where T kε
i ∈ Q≥0 denotes the maximal time delay of the correspond-

ing expression level change. In Figure 2 the invariant of each location is given in
the line beneath the location name.

Switches and events. In the same way we use the invariants in the interme-
diate locations to include maximal time delays, we use the guards of the switches
in Ei to introduce the minimal time delay tkε

i ∈ Q≥0 needed for an expression

level change. For all k ∈ {0, . . . , pi−1}, we have (αk+
i , ak+

i , ϕk+
i , {ci}, αk+1

i) ∈ Ei,
with ϕk+

i = (ci ≥ t
k+)
i), representing increase of expression level. Furthermore,

for l ∈ {1, . . . , pi}, the switch (αl−
i , al−

i , ϕl−
i , {ci}, αl−1

i) with ϕl−
i = (ci ≥ tl−i)

belongs to Ei and represents expression level decrease. Every switch entails a
reset of the component clock. The events akε

i ∈ Σi will be used later to identify
location changes due to elapse of time, and thus correspond to the switches in
Ei. We set Σi := {ak+

i , am−
i ; k ∈ {0, . . . , pi − 1},m ∈ {1, . . . , pi}}.

The automaton A1 has only two switches, A2 only four, as can be seen in
Figure 2. Thus it is clear that the dynamics of the system given in Figure 1 is
not yet captured by the automata A1 and A2. This does not surprise since we
have not incorporated the way both components interact with each other. In a
next step we translate the information inherent in the interaction graph and the
parameter values of the system in Figure 1 into conditions determining when
a location change, independent of clock values, should occur in Ai. We call the
resulting conditions switch conditions. Note that they can only be evaluated in
the network context since they generally depend on the expression level of more
than one component.

Switch conditions. The definition of the switch conditions deviates from
the one given in [9] and [10], despite appearing similar due to notation similar
to that in the earlier papers. However, we have to keep in mind that we use the
context sensitive version of the Thomas formalism resulting in basic conceptual
differences. Here, we give the new definition for the general situation of a network
comprising n components, i. e., n automata Ai = (Li, L

0
i , Σi, Ci, Ii, Ei) defined

as above.
To formulate the switch conditions, we need to know how to obtain from

a location the expression level of the corresponding component. We use the
function ι :

⋃
j∈{1,...,n} Lj → IN0 that maps the locations αk

j , αk+
j and αk−

j to k.
Let k ∈ {1, . . . , pi − 1} and consider a location of Ai that represents expression
level k. First we determine the resource edges (see Def. 2) that influence the
behavior of Ai in this location. For every edge e ∈ H(αi) with tail αj and lj a
location of Aj let

λe
i (lj) :=

{
ι(lj) ∈ Me , εij = +
ι(lj) /∈ Me , εij = − , λ

e

i (lj) :=
{

ι(lj) /∈ Me , εij = +
ι(lj) ∈ Me , εij = − .

Thus, if λe
i (lj) evaluates to true, then e is a resource edge if the system is in

location lj of Aj (and thus αj has expression level k). If the negation is true, e
is no resource edge in location lj . We are now interested in the sets of resource
edges that effect a change in the expression level, and thus the location, of
Ai. This information lies in the parameter values. Let ω1, . . . , ωm1

i
, υ1, . . . , υm2

i

be the subsets of H(αi) such that the parameter inequalities Ki,ωh
> k for all

h ∈ {1, . . . ,m1
i } as well as Ki,υh

< k for all h ∈ {1, . . . ,m2
i } hold. In our example,

if we choose location α1
2, i. e., k = 1, we can derive from the table in Figure 1(b)

that ω1 = {e2, e3} and ω2 = {e2, e3, e4}, and υ1 = {e3} and υ2 = {e4}.
Now we formulate conditions that check whether the system is in a state that

provides the sets of resource edges necessary for an expression level change. Let

α0
1

c1 ≥ 0
ι(l2) /∈ {1}

α0+
1

c1 ≤ T 0+
1

ι(l2) ∈ {1}

c1 ≥ t0+1

a0+
1

{c1}

c1 ≥ t1−1

a1−
1

{c1}

α0
2

c2 ≥ 0
ι(l1) /∈ {1}

c2 ≥ t0+2

a0+
2

{c2}

c2 ≥ t1−2

a1−
2

{c2}

α1−
2

c2 ≤ T 1−
2

ι(l1) /∈ {1}

α0+
2

c2 ≤ T 0+
2

ι(l1) ∈ {1}
A1

A2

c2 ≥ t1+2

a1+
2

{c2}

c2 ≥ t2−2

a2−
2

{c2}

α1
2

c2 ≥ 0
ι(l1) /∈ {1};

ι(l1) ∈ {1}
α1+

2

c2 ≤ T 1+
2

ι(l1) ∈ {1}

α2
2

c2 ≥ 0
ι(l1) ∈ {1}

α2−
2

c2 ≤ T 2−
2

ι(l1) /∈ {1}

α1
1

c1 ≥ 0
ι(l2) ∈ {1}∨ι(l2) /∈ {2}

α1−
1

c1 ≤ T 1−
1

ι(l2) /∈ {1}∧ι(l2) ∈ {2}

Fig. 2. Components A1 and A2 representing α1 and α2 in Figure 1.

l ∈ L1 × · · · × Ln, where li is the chosen location in Ai. Denote for each edge e
by t(e) the index of the tail of e, i. e., the tail of e is αt(e). Then we define

λωh
i (l) :=

∧
e∈ωh

λe
i (lt(e)) and λυh

i (l) :=
∧

e∈H(αi)\υh

λ
e

i (lt(e)).

If λωh
i (l) is true for some ωh, then an increase of expression level of gene αi

is indicated. If λυh
i (l) is satisfied for some υh, then the component will start the

process of expression level decrease. In our example in location α1
2 we obtain for

ω1 and υ1 as determined above the conditions λω1
2 (l) = (ι(l1) /∈ {1}) ∧ (ι(l2) ∈

{1, 2}) and λυ1
2 (l) = (ι(l1) ∈ {1}) ∧ (ι(l2) ∈ {1}).

In order to induce a corresponding change in expression level, it is sufficient
if the condition λωh

i (l) resp. λυh
i (l) holds for some ωh resp. υh. Due to this

observation we set

Λk+
i (l) :=

∨
h∈{1,...,m1

i }

λωh
i and Λk−

i (l) :=
∨

h∈{1,...,m2
i }

λυh
i .

We define Λ0+
i and Λpi−

i accordingly.
Now, we assign all locations αk

i , k ∈ {1, . . . , pi − 1} the conditions Λk+
i and

Λk−
i . The location α0

i resp. αpi

i is labelled with Λ0+
i resp. Λpi−

i only, since the lo-
cation represents the lowest resp. highest expression level possible. Furthermore,
we want to check in an intermediate location whether the condition that led to
the process of changing the expression level is still valid. If that is not the case,
the system should not remain in that location. Thus, we associate with location
αk+

i the condition ¬Λk+
i for all k ∈ {0, . . . , pi−1}, and allot to location αk−

i the
condition ¬Λk−

i for all k ∈ {1, . . . , pi}.

All the above considerations on how the switch conditions should influence
the behavior of the system will be realized in the definition of the timed automa-
ton representing the network dynamics.

Although the switch conditions look quite complicated, they often can be
considerably simplified. Since condition (1) holds we can make the following
observation. Whenever ωh1 ⊆ ωh2 for sets ωh, then λ

ωh1
i (l) is true if λ

ωh2
i (l)

is true. Since condition (1) implies that Ki,ωh2
≥ Ki,ωh1

> k, we can delete
condition λ

ωh2
i (l) from the expression Λk+

i (l). Analogously, if υh1 ⊆ υh2 , we
can delete the condition λ

υh1
i (l) from the expression Λk−

i (l). Furthermore, any
inequality λe

i (li) concerning the expression level ι(li) of the component Ai the
inequality is associated with can be evaluated immediately. So, in the example we
considered above, we have ω1 ⊆ ω2 and we can eliminate the condition λω2

2 (l)
from Λ1+

2 (l) = λω1
2 ∨ λω2

2 , i. e., Λ1+
2 (l) = ι(l1) /∈ {1}. For Λ1−

2 (l) we have to
consider both λυ1

2 (l) and λυ2
2 (l). However, we know that ι(l2) = ι(α1

2) = 1, and
thus we can simplify λυ1

2 (l) = (ι(l1) ∈ {1}) ∧ (ι(l2) ∈ {1}) = ι(l1) ∈ {1}. The
same reasoning shows that λυ2

2 (l) = (ι(l1) ∈ {1})∧ (ι(l2) /∈ {1, 2}) is always false
in location α1

2. Thus we can eliminate the second condition from Λ1−
2 and obtain

Λ1−
2 = ι(l1) ∈ {1}. In Figure 2 the switch conditions for each location are listed

below the invariant of the location.

4.2 Capturing the Network Dynamics

To obtain an automaton A from which we can derive the dynamics of the net-
work, we have to combine the automata representing the individual components
of the network. Again, we omit the details, which can be found in [10] and, with
slightly different notation, in [9].

Locations, invariants and clocks. The set of locations of A is the product
space of the location sets of the components Ai. Each location carries the con-
junction of invariants of its components. A part of the timed automaton derived
from the components A1 and A2 of our running example can be seen in Fig-
ure 3(a). Again, locations are shown as ellipses labeled with the location name
and the corresponding invariant. The automaton A is equipped with the set of
all component clocks.

Switches and events. Switches from the component automata persist, rep-
resenting location changes that only affect the corresponding component of the
location vector of A. Those edges are labeled with the events in Σi and depend
only on the respective time delays. In our example automaton in Figure 3 two
such edges leave the location (α0+

1 , α0+
2). The one labeled with a0+

1 is inherited
from A1, the other one from A2.

Furthermore, given a location l of A, we can evaluate all the switch conditions
belonging to the component locations li. We define switches in A starting in l
leading to a location l′ differing from l in all those components li with true
switch conditions. More precisely, if li = αk

i is a regular location with true
switch condition Λkε

i with expression level k and ε ∈ {+,−}, then l′i = αkε
i .

This corresponds to the interpretation of a true switch condition as a set of

α0+
1 α0+

2

c1 ≤ T 0+
1 ∧ c2 ≤ T 0+

2

α0
1α1

2

c1 ≥ 0 ∧ c2 ≥ 0

α1
1α1

2

c1 ≥ 0 ∧ c2 ≥ 0

α0
1α0

2

c1 ≥ 0 ∧ c2 ≥ 0

α1−
1 α0

2

c1 ≤ T 1−
1 ∧ c2 ≥ 0

α0+
1 α1

2

c1 ≤ T 0+
1 ∧ c2 ≥ 0

α0
1α1−

2

c1 ≥ 0 ∧ c2 ≤ T 1−
2

α1
1α0+

2

c1 ≥ 0 ∧ c2 ≤ T 0+
2

α1−
1 α1−

2

c1 ≤ T 1−
1 ∧ c2 ≥ T 1−

1

c1 ≥ t1−1

a1−
1

{c1}

a0+
1

a

a

{c1}

{c1}

{c1}

c1 ≥ t0+1

true

true

true
a

true

a

c2 ≥ t0+2

a0+
2

{c2}

true

a

{c2}

c2 ≥ t1−2
a1−
2

{c2}
{c1, c2}

c1 ≥ t1−1a1−
1

c2 ≥ t0+2

a0+
2

{c2}

a0+
1

c1 ≥ t0+1

{c2}
{c1, c2}

c2 ≥ t1−2

a1−
2

α0
1α1+

2

c1 ≥ 0 ∧ c2 ≤ T 1+
2

α0
1α2

2

c1 ≥ 0 ∧ c2 ≥ 0

α0+
1 α2

2

c1 ≤ T 0+
1 ∧ c2 ≥ 0

α1
1α

2
2

c1 ≥ 0 ∧ c2 ≥ 0

α1
1α2−

2

c1 ≥ 0 ∧ c2 ≤ T 2−
2

{c1, c2}

{c1, c2}

a1+
2

{c2}
c2 ≥ t1+2

a

true

{c2}

a

true {c1}
a0+
1

{c1}c1 ≥ t0+1

atrue

{c2}

a2−
2{c2}

c2 ≥ t2−2

α0
1α

0
2

α0+
1 α0+

2

α0+
1 α1

2

α0
1α

1+
2

α0
1α

2
2 α0+

1 α2
2 α1

1α
2
2

α1
1α

2−
2

α1
1α

1
2

α1−
1 α1−

2α0
1α

1−
2

α0
1α

1
2

T 0+
2 < t0+1 , T 1−

1 < t1−2

(b)(a)

Fig. 3. In (a), part of the product automaton A derived from the components A1 and
A2 given in Fig. 2. In (b), a path in the symbolic transition system respecting the time
constraints given in the figure.

resource edges effecting a process of expression level change. If li = αkε
i is an

intermediate location with true switch condition, then l′i = αk
i , since the true

switch condition signifies that the current state of the system does not support
the process of expression level change of αi any longer. The switches resulting
from the evaluation of the switch conditions are labeled with the event a and
have no guard, or rather they are labeled with the guard true. When executing
such a switch all the clocks of the components undergoing a location change
are reset. In our example we can see such a switch starting in (α0

1, α
0
2) leading

to (α0+
1 , α0+

2), since the switch conditions of both locations of the respective
component automata given in Figure 2 are true.

Transition system. The graph representing the automaton A does not rep-
resent the possible dynamical behavior of the system, since we have not yet
evaluated the time constraints on switches and locations. Thus we have to de-
rive the corresponding transition system. Basically, we follow the paths along
the discrete location and switches in the graph representing A, if there exist
clock values consistent with the time constraints we encounter along the way.
That is, time may pass in locations as long as the maximal time delays in the
invariants are not exceeded. Switches can be activated when the clock values

are larger than the minimal time delays in the guards. Of course, every switch
with the guard true can be executed regardless of the clock values. Executing
switches is instantaneous and the reset commands have to be obeyed. We refine
the resulting transition system in one aspect. Whenever the system is in a state
allowing for the execution of a switch resulting from the evaluation of the switch
conditions, i. e., a switch labeled with a, time is not allowed to elapse further in
the corresponding location of A. Thus we ensure that the network interactions
primarily determine the behavior of the system. For details see [9].

However, additional information about the time delays may lead to consid-
erable refinement of the analysis of the system’s dynamics. The state transition
graph of our running example is strongly connected (see Figure 1(b)), prohibit-
ing precise predictions of the system’s behavior. This is also illustrated by Fig-
ure 3(a), which shows all the locations of the automaton A reachable from the
location (α0

1, α
0
2). However, given the additional information that the expression

level increase from 0 to 1 is always faster for α2, signifying for instance a higher
production rate of a gene, and that the expression level decrease from 1 to 0 is
always faster for α1, representing for instance a high decay rate of some sub-
stance, we can obtain a much stronger understanding of the dynamics. Under
those assumptions the system will reach, starting from (α0

1, α
0
2), a cycle, that is

a sustained oscillation, as shown in Figure 3(b).

5 Context Sensitivity of Time Delays

The current state of the system may not only influence the character of the
network interactions but also the time delays associated with an expression level
change. In this section we motivate why and illustrate how to incorporate context
sensitivity of time delays into our modeling approach by considering the genetic
switch of bacteriophage λ.

Phage λ is a virus that can act in two different ways upon infection of a
bacterium. If they display the lytic response, the virus multiplies and lyses the
cell. In other cases the viral DNA integrates into the bacterial chromosome,
rendering the viral genome harmless for the so-called lysogenic bacterium. In
[12] the authors propose a logical model of the genetic network underlying the
behavior described above. It comprises the genes cI, cro, cII and N , the choice
of parameter values and thresholds is based on experimental data. The resulting
model is given in Figure 4. Here the inhibiting influence of cI on itself mentioned
in Section 2 is not incorporated since it only takes place under conditions not of
interest for the analysis of the behavioral switch (see again [12]). The lytic and
lysogenic behavior can be identified in the state transition graph. The former is
represented by the steady state (2, 0, 0, 0) and the latter by a cycle comprising
the states (0, 2, 0, 0) and (0, 3, 0, 0).

We have modeled this system as a timed automaton and implemented it in
UPPAAL (see http://www.uppaal.com), a software that allows for verification
and analysis via a model checking engine. In our model we exploited available
temporal data to refine the results concerning the dynamical behavior (see [10]

α1 α2

K1,{e21} = 2
K1,{e31} = 2
K1,{e11,e21} = 2
K1,{e11,e31} = 2
K1,{e21,e31} = 2
K1,{e11,e21,e31} = 2

K2,{e12} = 2
K2,{e12,e22} = 3

K3,{e13,e23,e43} = 1

K4,{e14,e24} = 1

α4α3

(cI) (cro)

(cII) (N)

−+

{1}

{2}
{3}

{1, 2}

{1, 2, 3}

{2, 3}

− {2}

−

−
− −

{3}
+

+{1}

−

{2}

Fig. 4. Model of the phage λ network. Edges are denoted by eij with αi the tail and
αj the head of the edge. Only non-zero parameter values are given.

for details). However, certain aspects of the system are not correctly captured in
the model as we will explain in the following. While genes cI and cro define the
lysogenic and lytic states respectively, studies have shown the importance of cII
in the switching process. The time delay values associated with accumulation
and decay of the product of cII can be linked to environmental conditions such
as richness of the medium (see [6]). Furthermore, it has been shown that the
influence of cII leads to rapid synthesis of the cI product. When considering the
parameter values given in Figure 4 we see that both the presence of cII and the
absence of cro product are sufficient for cI to obtain its highest expression level.
We lack the means to express the different time delays associated with the cI
expression level change with respect to cII activity. However, since our modeling
approach is highly suited for context sensitive systems, we can easily extend the
model to capture the addressed properties.

Enhancing the framework

The process of changing the expression level is represented by the intermediate
location of the component automaton. If we want to associate different time
delays with such a process we simply introduce two (or more) intermediate loca-
tions for the same process. We indicate the difference in the location name, e. g.
with ε ∈ {+,−} we denote by αkε,s

i (resp. αkε,f
i) the slow (resp. fast) process of

expression level change. For each location we choose a maximal time delay T kε,s
i

(resp. T kε,f
i) for the invariant. Each location is connected to the location αl

i,
with l = k ± 1 depending on ε, via an edge labeled with the guard representing
the corresponding minimal time delay tkε,s

i (resp. tkε,f
i), an event akε,s

i (resp.
akε,f

i), and a reset for the component clock. In Figure 5 we see a part of the
timed automaton representing cI with two intermediate locations representing
the expression level change from 0 to 1.

In the context of the automaton representing the network, we decide via
evaluation of the switch conditions if a system component executes a location
change ending in an intermediate location. Now we have to classify the switch

c1 ≥ t0+,s
1

a0+,s
1

{c1}

c1 ≥ t1−1

a1−
1

{c1}

α0
1

c1 ≥ 0
s : ι(l2) /∈ {1, 2, 3} ∧ ι(l3) /∈ {1}

f : ι(l3) ∈ {1}

α0+,s
1

c1 ≤ T 0+,s
1

ι(l2) ∈ {1, 2, 3} ∨ ι(l3) ∈ {1}

α0+,f
1

c1 ≤ T 0+,f
1

ι(l3) /∈ {1}

α1
1

c1 ≥ 0
s : ι(l2) /∈ {1, 2, 3} ∧ ι(l3) /∈ {1}

f : ι(l3) ∈ {1};
ι(l2) ∈ {1, 2, 3} ∧ ι(l3) /∈ {1}

α1−
1

c1 ≤ T 1−
1

ι(l2) /∈ {1, 2, 3} ∨ ι(l3) ∈ {1}
c1 ≥ t0+,f

1

a0+,f
1

{c1}

Fig. 5. Part of the timed automaton representing cI. Dashed arrows signify location
changes due to evaluation of switch conditions.

conditions such that we can distinguish between switches leading to different
locations that represent the same process of expression level change. To do so
we consider again the locations αkε,s

i and αkε,f
i . If ε = +, we need to classify

the switch conditions in location αk
i . As a first step to formulating the switch

conditions we determine the sets of resource edges ω1, . . . , ωm1
i
⊂ H(αi) that

lead to the process of increasing the expression level k (see Section 4). Now we
group the sets ωh that lead to a fast change of expression level in a set Ωf and
the others in a set Ωs. Then we derive a switch condition for the sets in Ωf just
as described in Section 4. If the system is in a state that the condition is true
the component changes to the location αk+,f

i . We derive the switch condition for
Ωs also as described in Section 4, but additionally we demand that the switch
condition of Ωf is false. If this condition is met, then the component executes a
location change to αk+,s

i . The switch conditions for both intermediate locations
are, as usual, the negation of the switch conditions leading to the corresponding
switch. If ε = −, we proceed analogously using the sets υ1, . . . , υm2

i
.

In order to model the more rapid expression level increase of cI in the pres-
ence of cII product, we first consider the sets of resource edges leading to the
increase from 0 to 1. They are given in the left column of parameter values
in Figure 4. A fast change is effected whenever e31 is a resource edge. Thus,
we have {e31}, {e11, e31}, {e21, e31} and {e11, e21, e31} in the set Ωf . After
the simplification of the switch condition as introduced in Section 4, we ob-
tain ι(l3) ∈ {1} as switch condition leading to fast expression level change. The
switch condition for Ωs is ι(l2) /∈ {1, 2, 3}, and thus satisfying the condition
(ι(l2) /∈ {1, 2, 3, }) ∧ (ι(l3) /∈ {1}) leads to the intermediate location α0+,s

1 . The
same considerations can be applied for the expression level change from 1 to

2. Part of the automaton is given in Figure 5. Here dashed arrows signify the
location changes governed by the switch conditions in the network context.

Again we have implemented the model in UPPAAL and analyzed the be-
havior of the system. In a model with basically the same time delays for all
location changes, we find that both the steady state representing the lysogenic
behavior and the cycle representing lysis are reachable in the non-deterministic
transition system. However, a faster expression level increase from 0 to 1 and a
slower decrease from 1 to 0 of cII (both can be effected by a slower degradation
rate) renders the cycle representing lysogeny unreachable. Thus, the system will
always display lytic behavior. In contrast, smaller time delays for the expression
level decrease and slower expression level increase of cII ensure that the system
displays lysogenic behavior.

Regardless of the satisfactory result in the example considered above, the
modeling of the context sensitive time delays may still be improved. Given the
situation that the process of expression level change is nearly completed in the
slow intermediate location, a change in the system’s state that satisfies the con-
ditions for a fast expression level change would lead to a repetition of the process
of expression level change. All the progress made in the slow location would be
lost. Although we could introduce switches leading directly from the slow to the
fast intermediate location, we still have to decide which value to assign the clock
upon execution of such a switch. The framework of timed automata only allows
for two possibilities. Either the clock keeps its current value or it is reset to some
constant. Obviously both choices do not reflect the desired behavior.

6 Perspectives

In this paper, we introduced a rigorous framework for the logical modeling of
context sensitive systems. It extends our work on a hybrid formalism based on
the classical Thomas approach and the theory of timed automata (see [9], [10])
in two directions. We are now not only able to model systems displaying context
sensitivity regarding network interactions as described in Section 2, but can also
deal with the context sensitivity of time delays, cf. Section 5. In many cases
this allows for a more realistic representation of biological systems and a refined
analysis of the resulting dynamics.

Generally, many interesting questions regarding modeling and dynamical
analysis in this framework remain to be considered. For example, concepts like
stability should now be phrased in a hybrid way, taking into account the time
constraints associated with a certain behavior. This would allow for a more pre-
cise evaluation of asymptotical behavior, thus leading to more reliable predictions
in case of system simulation as well as a better basis for model comparison.

In the current framework progress achieved in an intermediate location to-
wards an expression level change, e. g. an increase in some substance concen-
tration nearly up to the threshold, is completely negated if a location change
signifying the abortion of the expression level change occurs. A more realistic
representation should allow for a time delay, depending on how much time has

passed in the intermediate location, associated with the loss of the progress made.
This difficulty was already addressed at the end of the preceding section. It has
to be considered whether the use of a more general class of hybrid automata
would resolve this problem. However, powerful results concerning analysis and
verification of models by means of model checking techniques exist in the theory
of timed automata. Since effective methods to analyze large transition systems
are needed in the context of biological systems, we should ensure that we do not
loose advantages in that area. Rather, suitability and possibilities of applying
model checking techniques for analyzing the behavior of biological networks need
to be studied further.

References

1. R. Alur. Timed Automata. In Proceedings of the 11th International Conference on
Computer Aided Verification, volume 1633 of LNCS, pages 8–22. Springer, 1999.

2. G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application of formal meth-
ods to biological regulatory networks: extending Thomas’ asynchronous logical
approach with temporal logic. J. Theor. Biol., 229:339–347, 2004.

3. C. Chaouiya, É. Remy, B. Mossé, and D. Thieffry. Qualitative analysis of reg-
ulatory graphs: a computational tool based on a discrete formal framework. In
First Multidisciplinary International Symposium on Positive Systems: Theory and
Applications, POSTA 2003, volume 294 of LNCIS, pages 119–126. Springer, 2003.

4. L. Glass and S. A. Kauffman. The logical analysis of continuous, non-linear bio-
chemical control networks. J. Theor. Biol., 39:103–129, 1973.

5. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol., 22:437–467, 1969.

6. A. Oppenheim, O. Kobiler, J. Stavans, D. Court, and S. Adhya. Switches in
bacteriophage lambda development. Annu. Rev. Genet., 39:409–429, 2005.

7. É. Remy, P. Ruet, and D. Thieffry. Graphic requirements for multistability and
attractive cycles in a boolean dynamical framework. Prépublication, 2005.

8. A. Richard and J.-P. Comet. Necessary conditions for multistationarity in discrete
dynamical systems. Rapport de Recherche 123, 2005.

9. H. Siebert and A. Bockmayr. Incorporating time delays into the logical analysis of
gene regulatory networks. In Computational Methods in Systems Biology, CMSB
2006, Trento, Italy, volume 4210 of LNCS, pages 169–183. Springer, 2006.

10. H. Siebert and A. Bockmayr. Temporal constraints in the logical analysis of regu-
latory networks. Matheon Preprint 385, 2007.

11. M. Sugita. Functional analysis of chemical systems in vivo using a logical circuit
equivalent. J. Theor. Biol., 1:415–430, 1961.

12. D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks
- II. Immunity control in bacteriophage lambda. Bull. Math. Biol., 57:277–297,
1995.

13. R. Thomas. Boolean formalisation of genetic control circuits. J. Theor. Biol.,
42:565–583, 1973.

14. R. Thomas and R. d’Ari. Biological Feedback. CRC Press, 1990.
15. R. Thomas and M. Kaufman. Multistationarity, the basis of cell differentiation and

memory. II. Logical analysis of regulatory networks in terms of feedback circuits.
Chaos, 11:180–195, 2001.

