
On M-stationary points for a stohasti equilibriumproblem under equilibrium onstraints in eletriityspot market modeling∗R. HenrionWeierstrass Institute Berlin W. RömishHumboldt University BerlinJuly 1, 2007AbstratModeling several ompetitive leaders and followers ating in an eletriity marketleads to oupled systems of mathematial programs with equilibrium onstraints,alled equilibrium problems with equilibrium onstraints (EPECs). We onsider asimpli�ed model for ompetition in eletriity markets under unertainty of demandin an eletriity network as a (stohasti) multi-leader-follower game. First orderneessary onditions are developed for the orresponding stohasti EPEC based ona result of Outrata [17℄. For applying the general result an expliit representation ofthe o-derivative of the normal one mapping to a polyhedron is derived (Proposition3.2). Later the o-derivative formula is used for verifying onstraint quali�ationsand for identifying M -stationary solutions of the stohasti EPEC if the demand isrepresented by a �nite number of senarios.Keywords: Eletriity markets, bidding, nonooperative games, equilibrium onstraint,EPEC, optimality ondition, o-derivative, random demand.1 IntrodutionIn [17℄, J. Outrata formulated �rst order neessary onditions for the following equilibriumproblem with equilibrium onstraints (EPEC):
min

{

fi

(

xi, z
)

|0 ∈ F (x, z) + NU(z)
}

(i = 1, . . . , N) (EPEC)Here, the xi ∈ Rn refer to deisions taken by N players (e.g., market ompetitors), whoseobjetive funtions fi do not only depend on their own deisions xi but also on some
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parameter z whih might represent an exterior deision (e.g., in a leader-follower system).All deisions together are linked by a generalized equation 0 ∈ F (x, z)+NU(z) whih ouldmodel some equilibrium onstraint or the solution of a parameter-dependent optimizationproblem. It is assumed, that U is some losed onvex set and NU refers to its normal one.In priniple, (EPEC) is nothing else but a oupled system of mathematial programs withequilibrium onstraints (MPECs), where eah single MPEC desribes the optimizationproblem solved by the individual players given the deision of the other players. Thevetor (x̄1, . . . , x̄N , z̄
) is delared to be a solution to (EPEC), if for i = 1, . . . , N thevetors (x̄i, z̄) are solutions to the MPEC

min
{

fi (y, z)
∣

∣0 ∈ F (x̄1, . . . , x̄i−1, y, x̄i+1x̄N , z̄) + NU(z̄)
}

,i.e., non of the players an improve his deision given the deisions of his ompetitors.As pointed out in [17℄, these MPECs are typially nononvex even under onvexity as-sumptions on the data fi, F, U . Therefore it makes sense to identify possible solutionsby means of �rst order neessary onditions. In [17℄, it was proposed to do so by usingMordukhovih's o-derivative D∗ of multifuntions (see [15℄) as a basi tool. For reentextensions of these ideas (e.g., to stability issues in the ontext of quasi-variational in-equalities), we refer to [16℄ (see also [15℄). We ite the following Theorem from [17℄,slightly adapted to the purposes of our paper:Theorem 1.1 Let (x̄, z̄) be a solution to (EPEC). If, for all i = 1, . . . , N , the multifun-tions
u 7→

{(

xi, z
) ∣

∣u ∈ F (x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄N , z) + NU(z)
}are polyhedral or satisfy the onstraint quali�ation

0 = (∇xiF (x̄, z̄))T
v

0 ∈ (∇zF (x̄, z̄))T
v + D∗NU(z̄,−F (x̄, z̄))(v)

}

=⇒ v = 0,then, for all i = 1, . . . , N , there exist v̄i suh that
0 = ∇xifi (x̄, z̄) + (∇xiF (x̄, z̄))T

v̄i (1)
0 ∈ ∇zfi (x̄, z̄) + (∇zF (x̄, z̄))T

v̄i + D∗NU(z̄,−F (x̄, z̄))(v̄i). (2)We shall adopt from [17℄ the nameM (ordukhovih)- stationary point for any (x̄, z̄) satisfy-ing (1) and (2). The main di�ulty in the veri�ation of both the onstraint quali�ationand the optimality onditions (1) and (2) is the omputation of the o-derivative D∗NUto the normal one mapping assoiated with U . Expliit formulae ready to use an befound in [2℄ and [18℄ for the ases of U being a nonnegative orthant or a retangle. Onthe other hand, many pratial appliations like eletriity spot market modeling leadto sets U whih are general polyhedra. The purpose of this note is threefold: �rst, it isintended to apply the ideas presented so far to a simpli�ed model of eletriity markets2



under an independent system operator regime similar to [4℄ and [11℄. Seond, and sub-ordinate to this aim, an expliit formula for D∗NU is derived for general polyhedra U .Third, the whole problem is put into a stohasti framework whih is of muh interestdue to unertainties in eletriity demands. For disrete distributions, a haraterizingsystem of relations for identifying M-stationary solutions is provided and suh solutionsare expliitly alulated for a simple example.Sine eletriity prodution and trading deisions of smaller power �rms (followers) donot in�uene market pries, eletriity portfolio optimization models for suh �rms may bedeveloped without regarding their market interations. Inputs of portfolio optimizationmodels are stohasti prie and demand proesses in the relevant time horizon (see, e.g.,[3℄). To extend stohasti portfolio optimization models to �rms having market power(leaders), the use of modi�ed market pries is suggested, e.g., in [1℄.To investigate the behavior of power �rms in deregulated eletriity markets, game-theoreti models are employed (see, e.g., [7, 8, 28℄). Suh models have to inorporatethe spei� features of eletriity markets, namely, the transmission network and thebidding of prie-quantity pairs of eah generator in the network. When modeling single-leader-follower games one arrives at mathematial programs with equilibrium onstraints(MPECs). Presently, theory and numerial methods for MPECs is well developed. Werefer to the monographs [14, 19, 5℄, the survey [12℄ and to [25, 6℄. Extensions to stohastiMPECs (SMPECs) an be found in [26, 27℄ and appliations to eletriity markets aredisussed, e.g., in [9, 21℄.The modeling of multi-leader-follower games leads to oupled systems of MPECs orequilibrium problems with equilibrium onstraints (EPECs). In reent years, muh e�orthas been direted to the theory of suh games [20℄ and to numerial methods [13℄ basedon nonlinear programming and nonlinear omplementarity (re)formulations. Furthermore,EPEC models for eletriity markets with generators and ustomers loated on a networkhave been developed and analyzed in [11, 10, 22℄. A stohasti EPEC (SEPEC) modelingan eletriity market under demand unertainty is studied in [4℄.2 A simpli�ed model for ompetition in eletriity spotmarketsIn the following, we onsider a model for ompetition in eletriity spot markets whih isa simpli�ed for the purpose of our analysis version of models presented in [4℄ and [11℄. Weassume that some eletriity network is represented by an oriented graph, whose m edgesorrespond to transmission lines and whose N nodes refer to plaes at whih a demandfor eletriity is observed and at whih eletriity is generated. Negleting, for the sakeof simpliity, transmission losses, the satisfation of demand may be modeled as
q + By ≥ d. (3)Here, d ∈ RN refers to the vetor of demands at eah node, q ∈ RN is the vetor ofeletriity generated at the same nodes and y ∈ Rm represents the oriented �ow vetor3



of eletriity along the edges of the graph. B is the inidene matrix of the eletriitynetwork. Typially, q and y are simply bounded by
0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ,where the inequality signs are to be understood omponent-wise. Generators bid a ostfuntion to an independent system operator (ISO):

ci(qi) = αiqi + βiq
2
i (i = 1, . . . N).These may di�er from the true ost funtions

Ci(qi) = γiqi + δiq
2
i (i = 1, . . . N).Throughout the paper, we shall assume that βi > 0 for i = 1, . . . , N , thus aepting theidea that ost funtions are typially onvex and leaving aside the purely linear ase. Moregeneral ost funtions were allowed in [4℄. Here, we restrit ourselves to the quadratiase as onsidered in [11℄. The ISO determines a vetor of generated eletriity satisfyingthe onstraints above and minimizing the overall osts:

min
q,y

{

N
∑

i=1

ci(qi) |(q, y) ∈ G

}

, (4)where
G :=

{

(q, y) ∈ RN+m
∣

∣ q + By ≥ d, 0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ
}

.Note that, by onvexity, an optimal solution q∗ of (4) is haraterized as a solution to thegeneralized equation
0 ∈

(

α + 2 [diag β] q
0

)

+ NG(q, y). (5)Here, [diag β] denotes the diagonal matrix omposed of diagonal entries βi. With q∗being an optimal solution to (4), the learing prie harged by generator i amounts to thederivative of its bid ost funtion at q∗i (see [11℄):
πi = αi + 2βiq

∗
i .Thus, generator i's pro�t alulates as

(αi − γi) q∗i + (2βi − δi) (q∗i )
2
.Therefore, given some �xed bid oe�ients (ᾱj, β̄j

) of the remaining ompetitors j 6=
i, generator i solves the following mathematial program with equilibrium onstraints(MPEC):

max
αi,βi,q,y

{

(αi − γi) qi + (2βi − δi) q2
i

∣

∣

∣

∣

0 ∈

(

θ(αi, βi, q)
0

)

+ NG(q, y)

}

, (6)4



where
θ(αi, βi, q) := (ᾱ1, . . . , ᾱi−1, αi, ᾱi+1, . . . , ᾱN) + 2

[

diag
(

β̄1, . . . , β̄i−1, βi, β̄i+1, . . . , β̄N

)]

q(ompare (5)). Sine all ompetitors solve a similar MPEC given the deisions of theremaining ones, the oupled system of MPECs
min

αi,βi,q,y

{

(γi − αi) qi + (δi − 2βi) q2
i

∣

∣

∣

∣

0 ∈

(

α + 2 [diag β] q
0

)

+ NG(q, y)

} (7)
(i = 1, . . . , N)is alled an EPEC (equilibrium problem with equilibrium onstraints). This EPEC fallsinto the general lass of type (EPEC) presented in the introdution. Indeed, in our spei�model, one has to put xi := (αi, βi), z := (q, y), U := G as well as

fi (αi, βi, q, y) = (γi − αi) qi + (δi − 2βi) q2
i

F (α, β, q, y) =

(

α + 2 [diag β] q
0

)

. (8)Speializing Theorem 1.1 from the introdution to our setting, we obtain:Theorem 2.1 Let (ᾱ, β̄, q̄, ȳ
) be a solution to (7). If, for all i = 1, . . . , N , the multi-funtions

u 7→
{

(αi, βi, q, y)
∣

∣u ∈ F (ᾱ1, β̄1, . . . , ᾱi−1, β̄i−1, αi, βi, ᾱi+1, β̄i+1, . . . , ᾱN , β̄N , q, y)

+NG(q, y)} (9)are polyhedral or satisfy the onstraint quali�ation
0 =

(

∇(αi,βi)F
(

ᾱ, β̄, q̄, ȳ
))T

v

0 ∈
(

∇(q,y)F
(

ᾱ, β̄, q̄, ȳ
))T

v + D∗NG((q̄, ȳ) ,−F
(

ᾱ, β̄, q̄, ȳ
)

)(v)

}

=⇒ v = 0, (10)then, for all i = 1, . . . , N , there exist v̄i suh that
0 = ∇(αi,βi)fi

(

ᾱ, β̄, q̄, ȳ
)

+
(

∇(αi,βi)F
(

ᾱ, β̄, q̄, ȳ
))T

v̄i (11)
0 ∈ ∇(αi,βi)fi

(

ᾱ, β̄, q̄, ȳ
)

+
(

∇(αi,βi)F
(

ᾱ, β̄, q̄, ȳ
))T

v̄i (12)
+D∗NG(q̄, ȳ,−F

(

ᾱ, β̄, q̄, ȳ
)

)(v̄i).One observes that the di�ult part both in the veri�ation of the onstraint quali�ationand in the appliation of the �rst order neessary ondition onsists in alulating theo-derivative D∗NG. This is the aim of the following setion.5



3 On the o-derivative of the normal one mapping toa polyhedronThis setion is devoted to the derivation of an expliit formula for the o-derivative ofthe normal one mapping to a polyhedron. Before addressing this topi, we reall thede�nition of the Mordukhovih normal one (also alled limiting normal one) and thethe indued o-derivative (see [15℄):De�nition 3.1 Let S ⊆ Rn be an arbitrary set and x̄ ∈ cl S. Then, the Mordukhovihnormal one to S at x̄ is de�ned by
NS (x̄) := Limsupx→x̄,x∈S [TS (x)]∗ ,where [TS (x)]∗ refers to the negative polar of the ontingent one TS (x) to S at x and'Limsup' denotes the upper limit in the sense of Kuratowski-Painlevé onvergene.For a multifuntion Φ : Rn

⇉ Rp, onsider a point of its graph: (x, y) ∈ gph Φ. TheMordukhovih normal one indues the following o-derivative D∗Φ (x, y) : Rp
⇉ Rn of Φat (x, y):

D∗Φ (x, y) (y∗) = {x∗ ∈ Rn| (x∗,−y∗) ∈ Ngph Φ (x, y)} ∀y∗ ∈ Rp.Now, we onsider a polyhedron C := {x ∈ Rn|Ax ≤ b}, where b ∈ Rm and A is a matrix oforder (m, n). Let (x0, v0) ∈ gph NC . As C is onvex, the Mordukhovih normal one NCredues to the normal one in the sense of onvex analysis here. In partiular x0 ∈ C and
v0 ∈ NC (x0). With ai and bi referring to the rows of A and omponents of b, respetively,let

I := {i ∈ {1, . . . , m}|
〈

ai, x
0
〉

= bi}be the set of ative indies at x0. Sine v0 ∈ NC (x0), there exits λi ≥ 0 for i ∈ I, suhthat
v0 =

∑

i∈I

λiai. (13)We introdue the following subset of I:
J := {i ∈ I|λi > 0}.Finally, for eah index subset I ′ ⊆ I, we introdue the losed one

FI′ = {h ∈ Rn| 〈ai, h〉 ≤ 0 (i ∈ I\I ′)}, 〈ai, h〉 = 0 (i ∈ I ′)} (14)as well as the harateristi index set
χ(I ′) := {j ∈ I| 〈aj , h〉 = 0 ∀h ∈ FI′}. (15)6



Proposition 3.2 With the notation introdued above, one has that
Ngph NC

(

x0, v0
)

=
⋃

J⊆I1⊆I2⊆I

PI1,I2 × QI1,I2,where
PI1,I2 = con {ai|i ∈ χ (I2) \I1} + span {ai|i ∈ I1}

QI1,I2 = {h ∈ Rn| 〈ai, h〉 = 0 (i ∈ I1) , 〈ai, h〉 ≤ 0 (i ∈ χ (I2) \I1)}.Here, con and span refer to the onvex oni and linear hull, respetively.Proof. First note, that the set gph NC is no longer onvex although the polyhedron
C is so. As a onsequene, the Mordukhovih normal one Ngph NC

(x0, v0) to this setevaluated at the point (x0, v0) needs not be onvex either. Aording to a well-knownresult by Donthev and Rokafellar ([2, Proof of Theorem 2℄), one has that
Ngph NC

(

x0, v0
)

=
⋃

Fj⊆Fi

(Fi − Fj)
∗ × (Fi − Fj) , (16)where the Fi are the losed faes of the one

K0 := TC

(

x0
)

∩ {v0}⊥and TC denotes the tangent one to C in the sense of onvex analysis. As in De�nition3.1, we use an asterisk for denoting the negative polar (or dual) one. Combining thewell-known representation
TC

(

x0
)

= {h ∈ Rn| 〈ai, h〉 ≤ 0 (i ∈ I)},with (13) and the de�nition of the index set J , one immediately derives that
K0 = {h ∈ Rn| 〈ai, h〉 ≤ 0 (i ∈ I\J) , 〈ai, h〉 = 0 (i ∈ J)}.Now, any losed fae of K0 is given by a one FI′ as introdued in (14) and with I ′ beingan arbitrary index set with J ⊆ I ′ ⊆ I. Clearly, the impliation

I1 ⊆ I2 =⇒ FI2 ⊆ FI1holds true for all index sets I1, I2 suh that J ⊆ I1, I2 ⊆ I. While the reverse impliationannot be derived in general, one may easily show the following for the same index sets:
FI2 ⊆ FI1 =⇒ FI2 = FI1∪I2.In other words, there exists an index set I3, suh that FI2 = FI3 ⊆ FI1 and I1 ⊆ I3.Summarizing, any pair of index sets I1, I2 with J ⊆ I1 ⊆ I2 ⊆ I indues a pair of losedfaes of K0 suh that one is a subset of the other, and, onversely, any suh pair of losed7



faes of K0 an be represented by a pair of index sets I1, I2 with J ⊆ I1 ⊆ I2 ⊆ I.Consequently, we may rewrite (16) as
Ngph NC

(

x0, v0
)

=
⋃

J⊆I1⊆I2⊆I

(FI1 − FI2)
∗ × (FI1 − FI2) . (17)We laim that

FI1 − FI2 = QI1,I2 ∀I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I, (18)where QI1,I2 is de�ned in the statement of the proposition. Reall that, by the veryde�nition of χ in (15), one always has that I2 ⊆ χ (I2) ⊆ I. Now, given any h ∈ FI1 −FI2,one has h = h1 − h2 for some h1 ∈ FI1 and h2 ∈ FI2. The inlusion I1 ⊆ I2 along with(14) then implies that
〈ai, h1〉 = 〈ai, h2〉 = 0 (i ∈ I1) ; 〈ai, h1〉 ≤ 0 (i ∈ I\I1) 〈ai, h2〉 = 0 (i ∈ I2) .By (15), we have that 〈ai, h2〉 = 0 for all i ∈ χ (I2). Moreover, 〈ai, h1〉 ≤ 0 for all

i ∈ χ (I2) \I1. Altogether, this establishes the inlusion '⊆' of (18).For the reverse inlusion, let h ∈ QI1,I2 be arbitrary. In ase that χ (I2) = I, it followsform the de�nition of QI1,I2 that h ∈ FI1 ⊆ FI1 − FI2 (due to 0 ∈ FI2). Hene, we mayassume now that χ (I2) $ I. By (15), we have
χ (I2) = {j ∈ I| 〈aj, h

′〉 = 0 ∀h′ ∈ FI2}.As a onsequene, for all j ∈ I\χ (I2) there exists some hj ∈ FI2 suh that 〈aj, hj〉 < 0.We put
h∗ :=

∑

j∈I\χ(I2)

hj .Note that h∗ is well-de�ned by I\χ (I2) 6= ∅. Clearly, h∗ ∈ FI2 and
〈ai, h

∗〉 = 〈ai, hi〉 +
∑

j∈I\χ(I2)
j 6=i

〈ai, hj〉 < 0by de�nition of hi and by 〈ai, hj〉 ≤ 0 for all j ∈ I\χ (I2) (reall that hj ∈ FI2). Thisallows to de�ne
t := max

{

0, max
i∈I\χ(I2)

{

−
〈ai, h〉

〈ai, h∗〉

}}

≥ 0.Finally, put h̄ := h + th∗. Due to h ∈ QI1,I2 and h∗ ∈ FI2 , we have that
〈ai, h〉 = 0 (i ∈ I1) ; 〈ai, h

∗〉 = 0 (i ∈ χ (I2)) ; 〈ai, h〉 ≤ 0 (i ∈ χ (I2) \I1) .8



Consequently, realling that I1 ⊆ I2 ⊆ χ (I2), it follows that 〈ai, h̄
〉

= 0 for all i ∈ I1 and
〈

ai, h̄
〉

≤ 0 for all i ∈ χ (I2) \I1. We laim that
〈

ai, h̄
〉

= 〈ai, h〉 + t 〈ai, h
∗〉 ≤ 0 ∀i ∈ I\χ (I2) .Indeed, the inequality is obvious if 〈ai, h〉 ≤ 0, beause of t ≥ 0 and 〈ai, h

∗〉 < 0. If
〈ai, h〉 > 0, then the same inequality follows from

t ≥ −
〈ai, h〉

〈ai, h∗〉by de�nition of t. Summarizing the previous relations, one arrives at h̄ ∈ FI1. Therefore,
h = h̄ − th∗ ∈ FI1 − FI2, where we used that th∗ ∈ FI2 due to t ≥ 0. This �nishes theproof of (18).Evidently, PI1,I2 = Q∗

I1,I2
for PI1,I2 as de�ned in the statement of the proposition.Consequently, the proposition is proved upon referring to (18) and (17).Remark 3.3 If, the vetors {ai |i ∈ I } happen to be linearly independent, then χ(I ′) = I ′for all I ′ ⊆ I and the de�nitions of PI1,I2 and QI1,I2 in Proposition 3.2 simplify aordingly.Corollary 3.4 In the setting of Proposition 3.2, one has the following:

D∗NC

(

x0, v0
)

(s) ⊆ con {ai|i ∈ χ
(

Ia(s) ∪ Ib(s)
)

\Ia(s)} + span {ai|i ∈ Ia(s)}if 〈ai, s〉 = 0 ∀i ∈ J and 〈ai, s〉 ≥ 0 ∀i ∈ χ(J)\Jand
D∗NC

(

x0, v0
)

(s) = ∅ otherwise.Here,
Ia(s) := {i ∈ I| 〈ai, s〉 = 0}, Ib(s) := {i ∈ I| 〈ai, s〉 > 0}.Proof. From the de�nition of the o-derivative and from Proposition 3.2, it follows that

D∗NC

(

x0, v0
)

(s) = {r| (r,−s) ∈ Ngph NC

(

x0, v0
)

}

= {r|∃I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I, r ∈ PI1,I2,−s ∈ QI1,I2}. (19)Sine QI1,I2 ⊆ QJ,J for all I1, I2 with J ⊆ I1 ⊆ I2 ⊆ I, it follows that D∗NC (x0, v0) (s)is non-empty only if −s ∈ QJ,J whih means, by de�nition, that 〈ai, s〉 = 0 for all i ∈ Jand 〈ai, s〉 ≥ 0 for all i ∈ χ(J)\J . This proves the seond statement of the orollary. Weshow that
QIa(s),Ia(s)∪Ib(s) ⊆ QI1,I2 ∀I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I ∀s : −s ∈ QI1,I2. (20)Indeed, the de�nitions of the respetive index sets yield that I1 ⊆ Ia(s) and

χ(I2) ⊆ Ia(s) ∪ Ib(s) ⊆ χ(Ia(s) ∪ Ib(s)).9



Now, if h ∈ QIa(s),Ia(s)∪Ib(s), then
〈ai, h〉 = 0 ∀i ∈ Ia(s), 〈ai, h〉 ≤ 0 ∀i ∈ χ

(

Ia(s) ∪ Ib(s)
)

\Ia(s).It follows that
〈ai, h〉 = 0 ∀i ∈ I1, 〈ai, h〉 ≤ 0 ∀i ∈ χ(I2)\I

a(s).Due to
χ(I2)\I1 ⊆ (χ(I2)\I

a(s)) ∪ (Ia(s)\I1) ,one arrives that 〈ai, h〉 ≤ 0 ∀i ∈ χ(I2)\I1, whene h ∈ QI1,I2. This establishes (20).Realling that PI1,I2 = Q∗
I1,I2

, it results from (20) that
PI1,I2 = Q∗

I1,I2
⊆ Q∗

Ia(s),Ia(s)∪Ib(s) = PIa(s),Ia(s)∪Ib(s).Now, we may ontinue (19) as
D∗NC

(

x0, v0
)

(s) ⊆ PIa(s),Ia(s)∪Ib(s),whih proves the �rst statement of the orollary.The following simpli�ation of Corollary 3.4 is possible under the assumption of linearindependene:Corollary 3.5 If the {ai |i ∈ I } are linearly independent, then Corollary 3.4 simpli�esto
D∗NC

(

x0, v0
)

(s) = con {ai|i ∈ Ib(s)} + span {ai|i ∈ Ia(s)}if 〈ai, s〉 = 0 ∀i ∈ J,and
D∗NC

(

x0, v0
)

(s) = ∅ otherwise.Proof. In view of Remark 3.3, we have that χ(J) = J and, by Ia(s) ∩ Ib(s) = ∅, that
χ
(

Ia(s) ∪ Ib(s)
)

\Ia(s) =
(

Ia(s) ∪ Ib(s)
)

\Ia(s) = Ib(s). (21)Then, Corollary 3.4 yields the assertion of the proposition with the �rst identity replaedby an inlusion. To prove the reverse inlusion, let
r ∈ con {ai|i ∈ Ib(s)} + span {ai|i ∈ Ia(s)}be arbitrary. Then, by de�nition and due to (21), r ∈ PIa(s),Ia(s)∪Ib(s). Exploiting (21) onemore, the de�nitions of Ia(s) and Ib(s) provide that −s ∈ QIa(s),Ia(s)∪Ib(s). Consequently,

r ∈ D∗NC (x0, v0) (s) by de�nition of D∗NC . This �nishes the proof.Another simpli�ation of Corollary 3.4 an be obtained without linear independene, butunder the assumption of strit omplementarity (i.e., λi > 0 for all i ∈ I in (13)):10



Corollary 3.6 If J = I, then
D∗NC

(

x0, v0
)

(s) =

{

span {ai|i ∈ I} if 〈ai, s〉 = 0 ∀i ∈ I

∅ otherwise .Proof. The seond ase follows immediately from Corollary 3.4 and from J = I. Now,in the �rst ase, one has 〈ai, s〉 = 0 for all i ∈ J , hene J ⊆ Ia(s) ⊆ I. Consequently,
Ia(s) = I and Ib(s) = ∅. Then,

D∗NC

(

x0, v0
)

(s) ⊆ span {ai|i ∈ I}by virtue of Corollary 3.4. For the reverse inlusion, let r ∈ span {ai|i ∈ I} be arbitrary.Observing that χ(I) = I, one has r ∈ PI,I and −s ∈ QI,I . Therefore, r ∈ D∗NC (x0, v0) (s)by de�nition of D∗NC and by Proposition 3.2.Corollary 3.6 shows that the oni part in the representation of the o-derivative omesinto play only if strit omplementarity is violated. For later purpose, we give a slightlymore handy formulation of Corollary 3.6:Corollary 3.7 If J = I, then
r ∈ D∗NC

(

x0, v0
)

(s) ⇐⇒ s ∈ ker AI and r ∈ im AT
I .Here, AI refers to the matrix whose row vetors are the ai for i ∈ I.

4 Appliation to the eletriity market modelIn this setion, we illustrate the results of the previous setion by applying them to speialinstanes of the eletriity market model. We onsider the EPEC (7). For the simpliityof the presentation, we restrit our onsiderations to so-alled interior solutions. By thiswe mean a solution (ᾱ, β̄, q̄, ȳ
) of (7) satisfying

ᾱi, β̄i > 0, 0 < q̄i < q̂i, −ŷi < ȳi < ŷi (i = 1, . . . , N) . (22)Reall that (ᾱ, β̄, q̄, ȳ
) being a solution of (EPEC) impliitly entails that (q̄, ȳ) ∈ G. Thepositivity of the bidding oe�ients ᾱi, β̄i is a very natural assumption. The remainingrelations haraterize a solution, where no generator and no �ow of eletriity reahes itssimple lower and upper bounds.

11



4.1 Veri�ation of the onstraint quali�ationAs one an see from the onrete shape of F in (8), this mapping is bilinear in the ouple
(β, q) of variables. Thus, it fails to be polyhedral and, in order to apply the �rst orderneessary onditions of Theorem 2.1, one �rst has to verify the onstraint quali�ation ofthat same theorem.Lemma 4.1 If the inidene matrix B of the eletriity network has rank m (i.e., thenetwork is ayli), then any interior solution to (6) satis�es the onstraint quali�ationof Theorem 2.1.Proof. We ignore the equation in (10) and observe that, using the partition v = (va, vb),the inlusion in (10) may be written as

−

(

2 [diag β] va

0

)

∈ D∗NG((q̄, ȳ) ,−F
(

ᾱ, β̄, q̄, ȳ
)

)(v). (23)Now, (q̄, ȳ) ∈ G implies that q̄ +Bȳ ≥ d. If any inequality in this system were strit, thenone ould stritly derease the ost funtion ci(qi) in (4). This is beause ᾱi, β̄i > 0 (see(22)) and so ci is stritly inreasing. Then, however, (q̄, ȳ) ould not be a solution of (4).Consequently, q̄ + Bȳ = d and so I = {1, . . . , N} for the set of ative indies de�ned inSetion 3 (note that the other inequalities de�ning G are non-binding due to assumption(22)). It follows that for some λ ∈ RN
+ , (5) may be transformed into

(

ᾱ + 2
[

diag β̄
]

q̄

0

)

=

(

λ

BT λ

)

. (24)By (22), omparison of the �rst omponents yields that λi > 0 for all i ∈ {1, . . . , N}.Hene, J = I for the index set introdued below (13). This allows to apply Corollary 3.7.We note that the matrix AI ouring in this orollary oinides in our onrete settingwith the matrix − (I |B ) desribing the inequality system q̄ + Bȳ ≥ d whih was atuallyshown to be ative in eah of its omponents. The minus-sign is due to the fat thatthe polyhedron C in setion 3 is desribed by means of '≤'- inequalities. Applying nowCorollary 3.7 to (23) one obtains the relations
va + Bvb = 0;

(

2
[

diag β̄
]

va

0

)

=

(

µ

BT µ

) (25)for a ertain multiplier vetor µ ∈ RN . Combination of the two omponents in the seondequation provides
BT
[

diag β̄
]

Bvb = 0.Sine β̄i > 0 for all i = 1, . . . , N aording to (22) and B has rank m by assumption,it follows that the (m, m)- matrix BT
[

diag β̄
]

B has rank m too. Hene, vb = 0 and,referring to the �rst equation of (25), va = 0, and so v = 0, as was to be shown.12



We do not ontinue here to derive the �rst order neessary onditions from Theorem 2.1beause it turns out that these do not uniquely identify a stationary solution. Rather aontinuum of suh solutions is obtained. This is onsistent with a orresponding observa-tion in [11℄ related to simultaneous bidding of linear and quadrati ost oe�ients. Weshall rather follow the idea in [11℄ to onsider partial bidding of say linear ost oe�ientsin order to identify solutions. Before doing so, we generalize our setting by allowing thedemands di in (3) to be random.4.2 Formulation of a stohasti equilibrium problem under equi-librium onstraints (SEPEC)Sine every player i ∈ {1, . . . , N} does not know the demands dj at least for j 6= i, buthopefully has aess to historial data, it is natural to assume that d is a random vetor onsome probability spae (Ω,F , P) whose probability distribution is known (approximately).This assumption leads to a polyhedral-valued multifuntion G de�ned on Ω with valuesin RN+m given by
G(ω) :=

{

(q, y) ∈ RN+m
∣

∣ q + By ≥ d(ω), 0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ
}

.Hene, the pair (q, y) of generation and �ow has to be onsidered as a RN+m-valuedrandom vetor on (Ω,F , P) and the ISO has to minimize the expeted overall osts, i.e.,
min
q,y

{

E

(

N
∑

i=1

ci(qi(ω))

)∣

∣

∣

∣

∣

(q(ω), y(ω)) ∈ G(ω), P-a.s.} . (26)Furthermore, the EPEC (7) now beomes the following stohasti equilibrium problemwith equilibrium onstraints (SEPEC)
min

αi,βi,q(·),y(·)

{

E
(

(γi − αi) qi(ω) + (δi − 2βi) q2
i (ω)

)

∣

∣

∣

∣

0 ∈

(

α + 2 [diag β] q(ω)
0

) (27)
+NG(ω)(q(ω), y(ω)), P-a.s.} (i = 1, . . . , N),where the pairs (αi, βi), i = 1, . . . , N , are deterministi and have to be determined beforethe realization of the demand, and the pairs (qi(·), yi(·)) i = 1, . . . , N , are stohasti. Inthe terminology of two-stage stohasti programming with reourse, the ost oe�ients

(αi, βi) are �rst-stage deisions, while (qi(·), yi(·)) are seond-stage or reourse deisions.Notie that the stohasti EPEC (27) is well de�ned if G(ω) 6= ∅ holds P-a.s. Thisfat is a onsequene of the measurability of the set-valued mapping G (e.g., [23, Theorem14.36℄). Due to measurable seletion theorems (see, e.g., [23, Corollary 14.6℄) there existsa measurable funtion (q(·), y(·)) : Ω → RN+m suh that (q(ω), y(ω)) ∈ G(ω), P-a.s. Theexpetations exist sine q is bounded by q̂. 13



The stohasti EPEC (27) orresponds to a oupled system of (spei�) stohastiMPECs. Theoretial aspets of stohasti MPECs and their solution by sampling methodsare studied in [26, 27℄. Existene and stability results for solutions and numerial methodsfor stohasti EPECs are widely open.4.3 Identi�ation of M-stationary solutions for disrete randomdemands and partial bidding of linear oe�ientsAssume that the probability distribution of d is disrete with �nite support and denoteby d(1), . . . , d(K) ∈ RN the K di�erent senarios of d. The senarios indue K di�erentpolyhedra of senario-dependent generation and transmission onstraints
Gk :=

{

(q, y) ∈ RN+m
∣

∣q + By ≥ d(k), 0 ≤ q ≤ q̂, −ŷ ≤ y ≤ ŷ
}

(k = 1, . . . , K).Aording to the remarks at the end of Setion 4.1, we suppose now the quadrati bidoe�ients to be known, hene, β = δ, and only the linear bid oe�ients to be subjetof optimization. The generalized equation (5) now has to be established for eah senario
k as follows:

0 ∈

(

α + 2 [diag δ] q(k)

0

)

+ NGk
(q(k), y(k)) k = 1, . . . , K. (28)Aordingly, generator i's pro�t under senario k equals

(αi − γi) q
(k)∗
i + δi

(

q
(k)∗
i

)2

,where q(k)∗ is a solution of (28). Then, in order that every generator maximizes itsexpeted pro�t, the underlying SEPEC beomes
min

{

fi (αi, q, y)
∣

∣0 ∈ F (k)(α, q, y) + NGk
(q(k), y(k)) (k = 1, . . . , K)

}

(i = 1, . . . , N), (SEPEC)where q =
(

q(1), . . . , q(K)
), y =

(

y(1), . . . , y(K)
) and

fi (αi, q, y) =
K
∑

k=1

pk

[

(γi − αi) q
(k)
i − δi

(

q
(k)
i

)2
]

(i = 1, . . . , N),

F (k) (α, q, y) =

(

α + 2 [diag δ] q(k)

0

)

(k = 1, . . . , K).Here, the pk are the probabilities for the demand senarios d(k), so in partiular they ful�llthe relations
K
∑

k=1

pk = 1, pk ≥ 0 (k = 1, . . . , K).14



In order to apply Theorem 2.1, we rewrite (SEPEC) as a usual EPEC. To this aim weput
F :=

(

F (1), . . . , F (K)
)

, G := G1 × · · · × GK .Owing to the alulus rule
NG (q, y) = NG1(q

(1), y(1)) × · · · × NGK
(q(K), y(K)),(SEPEC) boils down to (EPEC) as presented in Setion 2. Sine F is a linear mapping,the multifuntion (9) is polyhedral and we may diretly apply the neessary optimalityonditions of Theorem 2.1 without heking the onstraint quali�ation.As in Setion 4.1, we shall be interested in so-alled interior solutions for the ease ofpresentations. Owing to the senario harater of parts of the solution, we have to makethis onept more preise: A solution (ᾱ, q̄, ȳ) of (7) with the data spei�ed above is alledan interior solution, if it satis�es

ᾱi > 0, 0 < q̄
(k)
i < q̂i, −ŷi < ȳ

(k)
i < ŷi (i = 1, . . . , N ; k = 1, . . . , K) . (29)Realling, that partial derivative just with respet to αi rather than with respet to (αi, βi)have to be onsidered now, we deal with

∇αi
fi (αi, q, y) = −

K
∑

k=1

pkq
(k)
i

[∇αi
F (α, q, y)]T =

((

eT
i , 0
)

|. . . |
(

eT
i , 0
))

,where ei denotes the i-th standard unit vetor in RN . Then, writing the i-th multiplierin the neessary optimality onditions as
v̄i =

(

v̄
(1)
i , . . . , v̄

(K)
i

)

,the �rst equation (11) beomes
K
∑

k=1

pkq̄
(k)
i =

K
∑

k=1

v̄
(k)
ii . (30)Next, repeating (senario-wise) the same argumentation as the one leading to (24), andtaking into aount that β = δ, one veri�es the existene of λ(k) ∈ RN

+ , suh that
(

ᾱ + 2 [diag δ] q̄(k)

0

)

=

(

λ(k)

BT λ(k)

)

(k = 1, . . . , K).This may be ondensed to the relations
BT (ᾱ + 2 [diag δ] q̄(k)) = 0 (k = 1, . . . , K). (31)15



When desribing the polyhedron G introdued above as an inequality system of the type
Ax ≤ b as required in Setion 3, one would have to put

A :=







Ã 0. . .
0 Ã






, Ã :=













−I −B

−I 0
I 0
0 −I

0 I













,

x :=
(

q(1), y(1), · · · , q(K), y(K)
)T

, b :=
(

−d(1), 0, q̂,−ŷ, ŷ, · · · ,−d(K), 0, q̂,−ŷ, ŷ
)TOn the other hand, looking for interior solutions aording to (29), only the inequalitiesof the type q(k) + By(k) ≥ d(k) are binding (ompare disussion in the beginning of theproof of Lemma 4.1). Hene,

q(k) + By(k) = d(k) (k = 1, . . . , K) (32)and the matrix AI introdued in Corollary 3.7 has the shape
AI =







(−I |−B ) 0. . .
0 (−I |−B )






.Then, with the partition v̄

(k)
i = ([v̄

(k)
i ]a, [v̄

(k)
i ]b), the �rst statement of Corollary 3.7 allowsto extrat the following two onditions from the inlusion (12):

[v̄
(k)
i ]a + B[v̄

(k)
i ]b = 0 (i = 1, . . . , N ; k = 1, . . . , K). (33)Moreover,

∇yfi = 0

∇qfi = (∇q(1)fi, . . . ,∇q(K)fi) (i = 1, . . . , N), where
∇q(k)fi(αi, q, y) = (0, . . . , 0, pk[γi − αi − 2δiq

(k)
i ], 0, . . . , 0)and

∇yF = 0

∇qF (α, q, y)T v̄i =





2[diag δ][v̄
(1)
i ]a

. . .

2[diag δ][v̄
(K)
i ]a



 (i = 1, . . . , N).Thus, the seond statement of Corollary 3.7 together with the inlusion (12) yields theexistene of multipliers µ(k) ∈ Rn suh that
(

w
(k)
i

0

)

=

(

µ(k)

BT µ(k)

)

(k = 1, . . . , K; i = 1, . . . , N), where
w

(k)
i := (2δ1v̄

(k)
i1 , . . . , 2δi−1v̄

(k)
i,i−1, 2δiv̄

(k)
ii + pk[γi − ᾱi − 2δiq̄

(k)
i ],

2δi+1v̄
(k)
i,i+1, . . . , 2δN v̄

(k)
iN )T .16



In brief,
BT w

(k)
i = 0 (k = 1, . . . , K; i = 1, . . . , N) (34)Summarizing, M-stationary solutions of (SEPEC) are haraterized by the relations (30),(31), (32), (33) and (34).4.4 Expliit alulation of M-stationary solutions for a small ex-ampleFinally, we want to illustrate the results of the previous setion by expliitly alulatingthe solution of (SEPEC) for the smallest meaningful example, namely a network onsistingof N = 2 nodes whih are linked by one single ar (m = 1). In this ase, the inidenematrix simply beomes

B =

(

1
−1

)

.First, (30) may be shortly written as
Eq̄i =

K
∑

k=1

v̄
(k)
ii (i = 1, 2), (35)where 'E' refers to the expeted value. With the onrete shape of B, (31) takes the form

ᾱ1 + 2δ1q̄
(k)
1 = ᾱ2 + 2δ2q̄

(k)
2 (k = 1, . . . , K). (36)Summing up all these equations upon multiplying them by the probabilities pk, one arrivesat

ᾱ1 + 2δ1Eq̄1 = ᾱ2 + 2δ2Eq̄2. (37)Next, we derive from (34) the equations
2δ1v̄

(k)
11 + pk[γ1 − ᾱ1 − 2δ1q̄

(k)
1 ] = 2δ2v̄

(k)
12

2δ2v̄
(k)
22 + pk[γ2 − ᾱ2 − 2δ2q̄

(k)
2 ] = 2δ1v̄

(k)
21

}

(k = 1, . . . , K). (38)Summing up over k the upper equations, we get
2δ1

K
∑

k=1

v̄
(k)
11 + γ1 − ᾱ1 − 2δ1Eq̄1 = 2δ2

K
∑

k=1

v̄
(k)
12 .Taking into aount (35), this redues to

γ1 − ᾱ1 = 2δ2

K
∑

k=1

v̄
(k)
12 . (39)17



Furthermore, (33) yields
v̄

(k)
11 = −v̄

(k)
12 , v̄

(k)
21 = −v̄

(k)
22 (k = 1, . . . , K). (40)Combining the �rst of these relations with (39) and (35), we obtain

γ1 − ᾱ1 + 2δ2Eq̄1 = 0. (41)Similarly, the orresponding seond relations in (38) and (40) allow to derive that
γ2 − ᾱ2 + 2δ1Eq̄2 = 0. (42)Finally, reading the omponents of (32) with the onrete shape of B gives

q̄
(k)
1 + ȳ(k) = d

(k)
1 ; q̄

(k)
2 − ȳ(k) = d

(k)
2 (k = 1, . . . , K) (43)Adding both equations leads to

q̄
(k)
1 + q̄

(k)
2 = d

(k)
1 + d

(k)
2 (k = 1, . . . , K). (44)Summation over k entails that Eq̄1 +Eq̄2 = Ed1 +Ed2. Now, this last equation along with(37), (41) and (42) onstitutes a system of four linear equations in the four unknowns ᾱ1,

ᾱ2, Eq̄1 and Eq̄2, whih is easily resolved for its solution
ᾱ1 = γ1 + δ2

(

Ed1 + Ed2 +
γ2 − γ1

2 (δ1 + δ2)

)

ᾱ2 = γ2 + δ1

(

Ed1 + Ed2 +
γ1 − γ2

2 (δ1 + δ2)

)

Eq̄1 =
1

2
(Ed1 + Ed2) +

γ2 − γ1

4 (δ1 + δ2)

Eq̄2 =
1

2
(Ed1 + Ed2) +

γ1 − γ2

4 (δ1 + δ2)
.With these ᾱ1 and ᾱ2 one may ombine (44) and (36) in order to identify the senario-dependent amounts of eletriity generation of both ompetitors:

q̄
(k)
1 =

1
2
(γ2 − γ1) + (δ1 − δ2) (Ed1 + Ed2) + 2δ2

(

d
(k)
1 + d

(k)
2

)

2 (δ1 + δ2)
(k = 1, . . . , K)

q̄
(k)
2 =

1
2
(γ1 − γ2) + (δ2 − δ1) (Ed1 + Ed2) + 2δ1

(

d
(k)
1 + d

(k)
2

)

2 (δ1 + δ2)
(k = 1, . . . , K) .Next, using either of the two equations in (43), we may resolve for the senario-dependentamount of eletriity sent from node 2 to node 1:

ȳ(k) =
1

2
(γ1 − γ2) + (δ2 − δ1) (Ed1 + Ed2) + 2δ1d

(k)
1 − 2δ2d

(k)
2 (k = 1, . . . , K) .18



The expeted value of this �ow alulates as
Eȳ =

1

2
(γ1 − γ2) + (δ1 + δ2) (Ed1 − Ed2) .Finally, we determine the expeted pro�ts Eπi of both ompeting generators:

Eπ1 =

K
∑

k=1

pk

[

(ᾱ1 − γ1) q̄
(k)
1 + δ1

(

q̄
(k)
1

)2
]

= (ᾱ1 − γ1) Eq̄1 + δ1E (q̄1)
2

Eπ2 = (ᾱ2 − γ2) Eq̄2 + δ2E (q̄2)
2
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