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Abstract

The heat exchanger in a heat pump can be modelled by the zero Mach-number limit
of the Euler equations of compressible fluid flow. This system turns out to be a coupled
hyperbolic/parabolic equation with coupled, time-dependent boundary conditions. Using the
theory of abstract differential-algebraic equations it is shown that the frozen coefficient system
has ADAE index 1. Moreover, the much stronger result is proven that the system has time-
perturbation index one and space-perturbation index two even in the case of time-dependent
boundary conditions. The results are stated in terms of the original physical variables. The
estimates agree well with numerical experiments.
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1 Introduction

A heat pump is basically an air conditioner which can switch between acting as cooler and heater.
Heat pumps have been around for a long time and traditionally the green house gas freon has
been used as the refrigerant sunstance. Lately, concern for the environment has led engineers to
experiment with other refrigerant substances, one of them being carbon dioxide. The mathematical
and numerical modelling of heat pumps using carbon dioxide is a rather complex problem. In
principle, the state of each component making up the complete device must be described by
the full system of the Euler equations of compressible flow. For the routine task of modelling a
heat pump in a system simulation environment, this description is much too hard to be feasible.
Simplified descriptions are necessary.

In a recent paper [11], a reduced model for the heat exchangers appearing in a heat pump has
been developed. It consists essentially of the zero-Mach number limit of the compressible Euler
equations. This degenerated hyperbolic system turns out to be a coupled hyperbolic/parabolic
equation. In the cited paper, energy estimates for a (simplified) frozen coefficient system trans-
formed to a certain normal form are derived. In fact, the system is weakly ill-posed. In terms of
the perturbation index (cf. [4]), the time index is 1, while the space index is 2. This statement
depends essentially on the fact that time-independent boundary conditions are used exclusively.
This is an unrealistic assumption for practical simulations. In case of time-dependent boundary
conditions, the time index is known not to exceed 3 [21]. Numerical experiments in [21] indicate
that this is an overestimate of the time index.
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Here, we will consider the frozen coefficient system, too. The aim of this paper is however
two-fold:

• We will derive all estimates immediately in terms of the original, that is physical, variables
without any simplifications, e.g., by neglecting terms.

• We will show that the perturbation index is 1 with respect to time and 2 with respect to
space even for time-dependent boundary condtions.

The main tool is the theory of abstract differential-algebraic equations (ADAEs) [17, 18, 19]. The
ADAE decoupling procedure leads to a boundary control system for a coupled hyperbolic/parabolic
sytem of partial differential equations subject to Dirichlet and Robin boundary controls.
This work is organized as follows: In the remaining part of this section, we arrange the notation and
introduce some basic facts concerning function spaces. In section 2 we provide the mathematical
model of the heat exchanger. Section 3 contains a short review of the tools needed for the ADAE
analysis. This theory is applied to the heat exchanger model in section 4. Theorem 4.1 and
its conclusions are the main results of the paper. In section 5 we prove stability estimates for
coupled hyperbolic/parabolic systems. Their application completes the proof of Theorem 4.1.
Some numerial experiments with the complete nonlinear heat exchanger model supporting our
theory are given in section 6.
We will use the following notation in this work. R+ is the set of non-negative real numbers while
for ω ∈ R, the set C+

ω consists of the complex numbers whose real part exceeds ω.
For an Hilbert space X we denote the associated inner product by 〈·, ·〉X and the norm by ‖ · ‖X

or simply by 〈·, ·〉 and respectively ‖ · ‖ if it is clear from the context. For a further Hilbert space
Y , the product space X × Y is a Hilbert space with the inner product 〈(x1, y1), (x2, y2)〉X×Y =
〈x1, x2〉X + 〈y1, y2〉Y . The space of bounded linear operators mapping X to Y by B(X, Y ) and
we moreover set B(X) = B(X, X). An operator Q ∈ B(X) with the property Q2 = Q is called
projector. For a closed operator A : D(A) ⊂ X → Y , the space D(A) is called domain of A and it
is provided with the graph norm ‖ · ‖D(A) defined by the relation ‖x‖2D(A) = ‖x‖2X + ‖Ax‖2Y . For
a linear operator A, kerA and im A denote its nullspace and range, respectively.
Now we arrange the required facts concerning spaces of functions taking values in some Hilberts
space X. Note that if we neglect the argument X, it is just meant X = R. If I ⊂ R is an
interval, the symbols L2(I, X) and C(I,X) stand for the Lebesgue space of classes of square
integrable functions and, respectively, the space of continuous functions f : I → X. We define
〈f, g〉L2(I,X) :=

∫
I
〈f(y), g(y)〉X dy and ‖f‖C(I,X) := maxy∈I ‖f(y)‖X .

For a further interval Ĩ ⊂ I, we abbreviate the restriction of f : I → X to Ĩ by f |Ĩ . For k ∈ N,
the k-th distributional derivative is denoted by f (k). Further, the Sobolev space Hk(I,X) is given
by

Hk(I, X) := {f : I → X, f (j) ∈ L2(I,X) for j = 0, . . . , k}.

In the case where 0 ∈ I, we provide this space with the inner product

〈f, g〉Hk(I,X) :=
k−1∑
j=0

〈
f (j)(0), g(j)(0)

〉
X

+
〈
f (k), g(k)

〉
L2(I,X)

.

The spatial indeterminate will usually denoted by ξ while t and τ are time variables. Further, for
L, T > 0 we use the abbreviations ΩL = [0, L] for a spatial and ST = [0, T ] for a time interval.
The derivative of a function f with respect to space is denoted by ∂f := ∂

∂ξ f and for derivatives
with respect to time, we use ḟ := ∂

∂tf . Furthermore, for α ∈ ΩL we introduce the evaluation
operator Cα : H1(ΩL, X) → X by Cαf := f(α).
The Laplace transform of f ∈ L2,ω(X) is denoted by Lf or simply by f̂ . We introduce the
Hardy space H∞(C+

ω , X, Y ) consisting of all bounded analytical functions G : C+
ω → B(X, Y )

provided with the norm ‖G‖H∞(C+
ω ,X,Y ) := sups∈C+

ω
‖G(s)‖B(X,Y ) < ∞. As a result from [24],

for all T ∈ R+, a G ∈ H∞(C+
ω , X, Y ) well-defines an operator G ∈ B(L2(ST , X), L2(ST , Y )) via
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Gf := L−1
(
G(s)f̂(s)

)
with

‖G‖(L2(ST ,X),L2(ST ,Y ) ≤ max{1, eωT } · ‖G‖H∞(C+
ω ,X,Y ).

Another Hardy space H2(C+
ω , X) consists of analytical functions g : C+

ω → X with

‖g‖H2(C+
ω ,X) = sup

γ>ω
‖g(γ + i·)‖L2(R,X) < ∞.

For some function f : R+ → X with e−ω·f(·) ∈ L2(R+, X), Parseval’s identity yields that
‖e−ω·f(·)‖L2(R,X) = ‖f̂‖H2(C+

ω ,X).

2 The heat exchanger model

The heat exchanger is considered to be a long and narrow pipe with length L and cross section A.
The state of the refrigerant substance is described by the system of incompressible Euler equations,

∂
∂t (Aρ) + ∂

∂ξ (Aρu) = 0,

∂
∂t (Aρu) + ∂

∂ξ (A(ρu2 + p)) = R,

∂
∂t (AEtot) + ∂

∂ξ (A(Etot + p)u) = Q.

Here, ρ is the density, u the velocity, p the pressure, and Etot the total energy per unit volume. R
models the momentum loss due to friction in the pipe, while Q models the energy exchange with
the surrounding air. Let ξ = 0 be the inflow boundary and ξ = L the outflow boundary (hence,
u > 0). The Euler equations are accompanied by constitutive relationships which relate pressure
p, mass specific enthalpy h, density ρ, and temperature T ,

ρ = f(p, h), T = g(p, h).

Since carbon dioxide is a mono-component medium, the choice of (p, h) as primary thermodynamic
variables is advantageous. The more common choice of (p, T ) is not suitable since p depends on
T alone in the two-phase region of the phase space. As a third variable it is convenient to use the
mass flow rate F = Aρu.

Assuming that the flow in the heat exchanger is characterized by very low Mach numbers a
reduced model, the so-called zero-Mach number limit [12], can be used. Using the constitutive
relations this leaves us with the system

A∂f
∂p

∂p
∂t + A∂f

∂h
∂h
∂t + ∂F

∂ξ = 0,

A∂p
∂ξ = R,

−A∂p
∂t + Af ∂h

∂t + F ∂h
∂ξ = Q.

The friction and energy exchange models are given by

R = −LfF |u| = −Lf
F 2

Af(p,h) sign(F ),

Q = Aexchα(Tair − T ) = Aexchα(Tair − g(p, h)).

In this paper, we will consider the linearized version of the zero-Mach number limit with frozen
coefficients,

A∂u
∂t + B ∂u

∂ξ + Cu = g for all (t, ξ) ∈ ST × ΩL (1)

and

u(t, ξ)=

 F (t, ξ)
p(t, ξ)
h(t, ξ)

, A=

 0 a12 a13

0 0 0
0 a32 a33

, B =

 1 0 0
0 b22 0
0 0 b33

, C =

 0 c12 c13

c21 c22 c23

c31 c32 c33

.
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We can assume that all indicated coefficients are non-zero and

d = det
[

a12 a13

a32 a33

]
6= 0. (2)

So what about the boundary conditions? The energy estimates (and numerical experiments)
in [11] suggest that the following two sets of boundary conditions are admissible:

(a) specific enthalpy h and mass flow rate F at inflow, pressure p at outflow;

(b) specific enthalpy h and pressure p at inflow, mass flow rate F at outflow.

According to the results of [11], the choice of the set of conditions depends on the magnitude of
c33 and c22: If c33 > c22, then (a) gives a weakly ill-posed problem while, for c33 < c22, (b) yields
weak ill-posedness. In our numerical tests, both combinations were admissible independently of
the relation between c33 and c22 with a slightly more stable behavior of (a). In fact, the distinction
between these two cases is an artifact of the method of proof in the paper cited. The results of
the present paper will show that the weak ill-posedness is independent of that relation even for
the linearized frozen coefficient case.

In what follows, we will exclusively consider case (a). The boundary conditions can be formu-
lated as follows: [

1 0 0
0 0 1

]
u(t, 0) =

[
f1(t)
f2(t)

]
,
[

0 1 0
]
u(t, L) = f3(t) (3)

3 Abstract Differential-Algebraic Models

The heat exchanger model is now rewritten as an abstract differential-algebraic equation (ADAE).
First, we will briefly revisit the solvability, decoupling and index theory of ADAEs from [19, 18,
17]). Let Hilbert spaces X, Z and an ADAE

E ẋ(t) = Ax(t) + q(t)
x(0) = x0

(4)

with bounded E : X → Z and closed, denslely defined A : D(A) ⊂ X → Z. As in the finite
dimensional case [3], solvability questions lead to additional smoothness claims on the inhomo-
geneity q(·) and the initial value has to be consistent meaning that it has to fulfill some further
constraints coming from algebraic relations which are contained in the differential-algebraic equa-
tion. A further question arising is the so-called perturbation analysis where one is interested in the
continuous dependence of the solution trajectory x(·) upon certain norms of the inhomogeneity
and the initial value. The above mentioned notion will be concretized in the following.

Definition 3.1 A function x(·) : J → R is called weak solution of (4), if it is continuous and for
all z∗ ∈ D(A∗), the scalar function 〈x(·), E∗z∗〉 is weakly differentiable and for almost all t ∈ J
holds

d
dt 〈x(t), E∗z∗〉X = 〈x(t), A∗z∗〉X + 〈q(t), z∗〉Z , (5)

where the adjoint operator A∗ : D(A∗) ⊂ Z → X defined on

D(A∗) := {y∗ ∈ Y : ∃ x∗ ∈ X : such that 〈y∗, Ax〉 = 〈x∗, x〉 for all x ∈ D(A)}

is well-defined via the relation 〈A∗z, x〉 = 〈z,Ax〉 for all x ∈ D(A).
We call the initial value x0 ∈ X consistent with q if (4) possesses a weak solution.
The perturbation index of (4) is the smallest ν ∈ N for which a dense subspace Xν ⊂ X with
norm ‖ · ‖Xν and a constant c ∈ R+ exists such that for all initial values x0 ∈ Xν being consistent
with q ∈ Hν(ST , Z) it holds for all t ∈ ST that

‖x(t)‖X ≤ c
(
‖x0‖Xν + ‖q(·)‖Hν(ST ,Z)

)
. (6)
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In the finite-dimensional linear and constant-coefficient case, the questions of solvability, consis-
tent initialization and perturbation index can be answered by making use of the Kronecker normal
form, i.e. the decoupling of differential and algebraic parts. Indeed, the perturbation index co-
incides with the Kronecker index of the associated matrix pencil and further, the spaces X and
Xν in the above definition coincide since there is no proper and dense subspace of Rn. However,
the situation becomes more difficult in infinite dimensions, since a possibly stronger norm of the
initial values has to be chosen if one wants to have an estimate of the present state upon inhomo-
geneity and initial value. For instance, in [18], electrical circuits with transmission lines have been
considered and some Sobolev instead of Lebesgue norms of the initial voltages and currents on the
transmission lines have to be taken. This leads to the other concept of spatial perturbation index
that - roughly speaking - measures the smallest integer νp such that ‖ ·‖Xν involves the norm Hνp .
For general ADAEs, such a concept is not formulable and one has to restrict the consideration to
systems whose state space is some cartesian product of Rn and some function spaces. However,
we will see in the present case study that such a concept makes sense.
A useful tool for the above motivated tasks is the generalization of the Kronecker normal form
considered in [19] with applications to consistent initialization and perturbation analysis pre-
sented in [17]. The decoupling form is constructed with projectors Qi ∈ B(X) ∩ B(D(A)) for
i = 0, 1, 2, . . . , ν − 1 fulfilling

E0 := E , A0 := A,

imQi = ker Ei,
∑i−1

j=0 ker Ej ⊂ kerQi,

Ei+1 = Ei −AiQi, D(Ei+1) = D(Ei) ∩ (D(Ai) + kerQi),
Ai+1 = Ai(I −Qi), D(Ai+1) = D(Ai) + imQi.

such that Eν is injective and has a bounded left inverse E−ν . We assume that ν is chosen to be
minimal with this property, i.e., Qν−1 6= 0. The number ν with this property is called ADAE
index. For i = 0, . . . , ν − 1, i = 0, . . . , ν − 2, k = j + 1, . . . , ν − 1, we denote Pi = I −Qi and

xi(t) = QiPi+1 · · · Pν−1x(t), qi(t) = QiPi+1 · · · Pν−1E−ν q(t),

xν(t) = P0 · · · Pν−1x(t), qν(t) = Pi · · · Pν−1E−ν q(t),

qν+1(t) = (I − EνE−ν )q(t), Njk = QjPj+1 · · · Pk−1Qk,

Ki = −QiPi+1 · · · Pν−1E−ν Aν , U = P0 · · · Pν−1E−ν Aν ,

P = (I − EνE−ν )Aν ,

then (4) is equivalent to an ADAE in decoupling form

0 N01 · · · N0 ν−1 0
...

. . . . . .
...

...
...

. . . Nν−2 ν−1

...
0 · · · · · · 0 0
0 · · · · · · 0 I
0 · · · · · · 0 0





ẋ0(t)
...
...

ẋν−1(t)
ẋν(t)

=


I 0 · · · 0 K0

0
. . . . . .

...
...

...
. . . 0

...
0 · · · 0 I Kν−1

0 · · · · · · 0 U

0 · · · · · · 0 P





x0(t)
...
...

xν−1(t)
xν(t)

+


q0(t)
...
...

qν−1(t)
qν(t)

qν+1(t)


. (7)

The variable xν fulfills the abstract boundary control system

ẋν(t) = Uxν(t) + qν(t),
0 = Pxν(t) + qν+1(t),

xν(0) = xν,0.

(8)
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The other components are then recursively determined by the algebraic and hidden algebraic
constraints

xν−1(t) = −Kν−1xν(t)− qν−1(t),
xν−2(t) = Nν−2 ν−1ẋν−1(t)−Kν−2xν(t)− qν−1(t),

...

x0(t) =
∑ν−1

j=1N0 j ẋj(t)−K0xν(t)− q0(t).

By solving these expressions for x0(t), . . . , xν−1(t), we obtain that xi(t) depends on the first j
derivatives of Kν−1−jxν(t) and qν−1−j(t) for j = 0, . . . , i. Thus, for the existence of a continuous
solution, both qi(·) and Kixν(·) have to be i-times continuously differentiable. The smoothness
claims on Kixν(·) in general leads to further conditions on the initial value xν(0), qν(·) and qν+1(·),
the so-called (hidden) boundary constraints.
Assuming that there exists c̄ > 0 such that an estimate∥∥∥∥∥∥

ν−1∑
j=0

di

dti
Kixν(t)

∥∥∥∥∥∥
X1

≤ c̄
(
‖xν(0)‖Xν + ‖qν(·)‖Zν + ‖qν+1(·)‖Zν+1

)
(9)

holds for all qν(·), qν+1(·) and some function spaces Zν ⊂ L2(ST , imP0 · · · Pν−1) and Zν+1 ⊂
L2(ST , imP0 · · · Pν−1), respectively, and consistent initial values xν(0) in some subspace Xν ⊂
imP0 · · · Pν−1, we get the existence of c ∈ R+ such that a uniform perturbation result holds∥∥∥∥∥∥∥∥∥∥∥∥



x0(T )
...
...

xν−1(T )
xν(T )



∥∥∥∥∥∥∥∥∥∥∥∥
Xν+1

≤ c

(
‖xν(0)‖Xν + ‖qν(·)‖Zν + ‖qν+1(·)‖Zν+1 +

ν−1∑
i=0

‖qi(·)‖Ci(ST ,imQi)

)
. (10)

For the class of ADAEs for which the system (8) is well-posed - meaning that x(t) continuously
depends on the L2-norms of qν(·) and qν+1(·), an explicit characterization of the consistency of an
initial value is given in [17] by the existence of the chain xν,j := q

(j−1)
ν (0) + Uxν,j−1 which satisfies

xν,j ∈ D(U) und Pxν,j = −q
(j)
ν+1(0) for j = 1, . . . , l−1 for an l fulfilling N lK = 0 where N = [Njk]

and K = [Kj ]. As we will see later, the system that is analyzed in this work does not satisfy this
well-posedness condition. Nevertheless, the ADAE approach will lead to a certain estimate of the
state upon some norms of the inhomogeneity q(·) and the initial value x0.

4 The heat exchanger as an ADAE

We now consider the model (1) with boundary conditions (3). Defining the spaces X = L2(ΩL)3,
Z = L2(ΩL)×H1(ΩL)× L2(ΩL)× R3 and

x(t) = u(t, ·) =

F (t, ·)
p(t, ·)
h(t, ·)

 ∈ X, q(t) =


g1(t, ·)
g2(t, ·)
g3(t, ·)
f1(t)
f2(t)
f3(t)

 ∈ Z (11)
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the system is equivalent to the ADAE (4) with

E =


0 a12I a13I
0 0 0
0 a32I a33I
0 0 0
0 0 0
0 0 0

 , A = −


∂ 0 0
0 b22∂ 0
0 0 b33∂
0 0 0
0 0 0
0 0 0

−


0 c12I c13I
c21I c22I c23I
c31I c32I c33I
C0 0 0
0 0 C0

0 CL 0

 . (12)

Recall that ∂ = ∂/∂ξ and Cαu = u(α). The domain of A is given by

D(A) = H1(ΩL)×H2(ΩL)×H1(ΩL)

Now we compute the projectors for the decoupling of the ADAE. The operator chain leads to
E0 = E , A0 = A, ker E0 = H1(ΩL) × {0} × {0} and projectors Q0,P0 ∈ B(X) ∩ B(D(A)) with
Q0 = diag(I, 0, 0), P0 = diag(0, I, I) and

E1 = E0 −A0Q0 =


∂ a12I a13I

c21I 0 0
c31I a32I a33I
C0 0 0
0 0 0
0 0 0


with D(E1) = H1(ΩL)×L2(ΩL)×L2(ΩL). Due to (2), we now have have that E1 is injective, i.e.
the system is of ADAE index 1. A left inverse of E1 is given by

E−1 =

 0 1
c21

I 0 0 0 0
a33
d I − a33

c21d∂ + a13c31
c21d I −a13

d I 0 0 0
−a32

d I a32
c21d∂ − a12c31

c21d I a12
d I 0 0 0

∈B(L2(ΩL)×H1(ΩL)× L2(ΩL)× R3, L2(ΩL)3).

A decoupling form is now given by (7) with

K0 =

 0 b22
c21

∂ + c22
c21

I c23
c21

I

0 0 0
0 0 0

 , P =



0 0 0
0 0 0
0 0 0
0 − b22

c21
C0∂ − c22

c21
C0 − c23

c21
C0

0 0 −C0

0 −CL 0

 , U =

 0 0 0
0 u22 u23

0 u32 u33

,

(13)
where

u22 = −a33c2
12−a13c31c22+a13c32c21

c21d I + c22a33−a13c31b22
c21d ∂ + a33b22

c21d ∂2,

u23 = −a33c13c21−c23a13c31+a13c21c33
dc21

I + c23a33+b33a13c21
dc21

∂,

u32 = a32c2
12−a12c31c22−a12c32c21

c21d I + −c22a32+a12c31b22
c21d ∂ − a32b22

c21d ∂2,

u33 = a32c13c21+c23a12c31−a12c21c33
dc21

I − c23a32+a12b33c21
dc21

∂.

Specific components of state and inhomogeneity are given by

x0(t) =

F (t, ·)
0
0

 , x1(t) =

 0
p(t, ·)
h(t, ·)

 , q0(t) =

 1
c21

g2(t, ·)
0
0

 ,

q1(t) =

 0
a33
d g1(t, ·)− a33

c21d∂g2(t, ·) + a13c31
c21d g2(t, ·)− a13

d g3(t, ·)
−a32

d g1(t, ·) + a32
c21d∂g2(t, ·)− a12c31

c21d g2(t, ·)− a12
d g3(t, ·)

 , q2(t) =


0
0
0

f1(t)− 1
c21

g2(t, 0)
f2(t)
f3(t)

 .

(14)
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Now taking a look at the operators P and U, we can see that the inherent boundary control system
is in general not well-posed. This is due to the appearance of the Dirichlet boundary condition
for p that satisfies an heat equation with some additional inhomogeneity. It is shown in [8] that
this class of systems does not have the well-posedness property if one chooses a Lebesgue space as
state space. However, strengthening the smoothness claims on the boundary leads to an estimate.
The main result about the consistent initialization and perturbation analysis is now presented.

Theorem 4.1 The ADAE (4) with operators, state and inhomogeneity as in (12) possesses a
continuous solution x(·) : ST → X for all q(·), x(0) in the spaces

g1, g3 ∈ H1(ST , L2(ΩL)), g2 ∈ H1(ST ,H1(ΩL)),

f1, f2, f3 ∈ H1(ST ), F (0, ·), p(0, ·), h(0, ·) ∈ H1(ΩL)
(15)

that satisfy the conditions

p(0, L) = f3(0), h(0, 0) = f2(0), 0 = c21F (0, ·) + b22∂p(0, ·) + c22p(0, ·) + c23h(0, ·) + g2(0, ·).
(16)

Moreover, there exists a constant c > 0 such that for all t ∈ ST and all initial states and inhomo-
geneities satisfying (15) and (16), the solution of (4) satisfies the estimate

‖F (t, ·)‖L2(ΩL) + ‖p(t, ·)‖H1(ΩL) + ‖h(t, ·)‖H1(ΩL)

≤c
(
‖p(0, ·)‖H1(ΩL) + ‖h(0, ·)‖H1(ΩL) + ‖g1‖H1(ST ,L2(ΩL)) + ‖g2‖H1(ST ,H1(ΩL))

+‖g3‖H1(ST ,L2(ΩL)) + ‖f1‖H1(ST ) + ‖f2‖H1(ST ) + ‖f3‖H1(ST )

)
.

(17)

A weaker version of the above result is that with x(·) and q(·) defined in (11) and for X1 :=
L2(ΩL)×H1(ΩL)2 we have an estimate

‖x(t)‖X ≤ c
(
‖x(0)‖X1 + ‖q‖H1(ST ,Z)

)
.

This means that - according to Definition 3.1 - we have perturbation index one. Furthermore, the
first spatial derivatives of the initial value and some components of the inhomogenity are involved.
This leads to the fact that it is spoken about spatial perturbation index 2.

Having a look at (17) we see that the mass flow rate plays the rôle of an index two variable
which depends on spatial derivatives of the pressure.

5 Stability estimates for a mixed parabolic/hyperbolic bound-
ary control system

The boundary control system (8) corresponding to the heat exchanger can be read off from the
decoupled system (14). Setting x1 = p and x2 = p+ a32

a33
h we obtain by using suitable abbreviations,[

ẋ1(t, ξ)
ẋ2(t, ξ)

]
=
[
κ1∂

2 + κ2∂ + κ3 κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

] [
x1(t, ξ)
x2(t, ξ)

]
+
[
ḡ1(t, ξ)
ḡ2(t, ξ)

]
(18)

subject to the boundary conditions

∂
∂ξ x1(t, 0) + κ10x1(t, 0) = f̄1(t), (19a)

κ11x1(t, 0) + x2(t, 0) = f̄2(t), (19b)
x1(t, L) = f̄3(t) (19c)

and the initial condition [
x1(0, ξ)
x2(0, ξ)

]
=
[
x10(ξ)
x20(ξ)

]
. (20)
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Note that the first boundary condition (19a) has been slighly reformulated by using (19b). The
critical point in this system is the presence of the Dirichlet boundary control (19c) for the parabolic
component. Correspondingly, we will split the proof into two steps: In the first step we assume
that f̄3(t) ≡ 0, while in the second part, all inhomogenities in the partial differential equations
and the boundary conditions are set to 0 with the exception of f̄3(t).

Assumption 5.1 It holds κ1 > 0 and κ8 < 0.

In the present application, these conditions are always fulfilled. It holds κ8 = −u where u denotes
the speed of the fluid. The value of κ1 depends only on the constitutive relations. κ1 > 0 holds
for ideal gases, and it has been numerically verified also for carbon dioxide.

First we present an auxiliary result concerning the existence of solutions.

Lemma 5.2 Let Assumption 5.1be valid. If f̄i ∈ C2(ST ) for i = 1, 2, 3 and ḡi ∈ C1(ST , L2(ΩL))
for i = 1, 2, and initial values x10 ∈ H2(ΩL), x20 ∈ H1(ΩL) with ∂

∂ξ x10(0) + κ10x10(0) = f̄1(0),
κ11x10(0) + x20(0) = f̄2(0), x10(L) = f̄3(0), the system (18) with boundary condition (19) and
initial data (20) possesses a unique solution [x1, x2]T ∈ C(ST ,H2(ΩT )×H1(ΩT )).

Proof:
For [

x̄1(t, ξ)
x̄2(t, ξ)

]
:=

[
x1(t, ξ)− ξ(L−ξ)

L f̄1(t)− ξ2

L2
f̄3(t)

x2(t, ξ)− f̄2(t)

]
,

the given equation is equivalent to[
˙̄x1(t, ξ)
˙̄x2(t, ξ)

]
=
[
κ1∂

2 + κ2∂ + κ3 κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

] [
x̄1(t, ξ)
x̄2(t, ξ)

]
+
[
ḡ1(t, ξ)
ḡ2(t, ξ)

]
+

[
− ξ(L−ξ)

L
˙̄f1(t) + ξ2

L2

˙̄f3(t)
− ˙̄f2(t)

]

+
[
κ1∂

2 + κ2∂ + κ3 κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

][
ξ(L−ξ)

L f̄1(t) + ξ2

L2
f̄3(t)

f̄2(t)

]
.

(21)
with homogeneous boundary conditions, i.e.,

∂
∂ξ x̄1(t, 0) + κ10x̄1(t, 0) = κ11x̄1(t, 0) + x̄2(t, 0) = x̄1(t, L) = 0

and the initial condition [
x̄1(0, ξ)
x̄2(0, ξ)

]
=

[
x10 − ξ(L−ξ)

L f̄1(0)− ξ2

L2
f̄3(0)

x20 − f̄2(0)

]
.

Now consider the operator

A :=
[
κ1∂

2 + κ2∂ + κ3 κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

]
with domain D(A) given by the space{

(x1, x2) ∈ H2(ΩL)×H1(ΩL) : ∂
∂ξ x10(0) + κ10x10(0) = κ11x10(0) + x20(0) = x10(L) = 0

}
.

If we now show that A generates a strongly continuous semigroup T (·) on X = L2(ΩL)2, Theorem
3.1.3 of [6] implies that there exists a unique solution[

x̄1(·, ·)
x̄2(·, ·)

]
∈ C(ST ,H2(ΩL)×H2(ΩL)).

In the following, the semigroup property is shown with the Lumer-Philips Theorem [16] stating
that A generates a strongly continuous semigroup T (·) with ‖T (t)‖ ≤ eγt for some γ ∈ R if
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there exists a λ > γ such that A − λI : D(A) → X is onto and there for all x ∈ D(A) holds
〈Ax, x〉X ≤ γ‖x‖2X . Let us assume that κ3 = κ5 = κ7 = κ9 = 0, since bounded perturbations of
an operator do not destroy its property of being the generator of a semigroup [9]. The surjectivity
of A−λI holds since the boundary value problem κ1∂

2x1(ξ)+κ2∂x1(ξ)−λx1(ξ)+κ4∂x2(ξ) = y1(ξ),
κ6∂x1(ξ) + κ8∂x2(ξ) − λx2(ξ) = y2(ξ) with ∂

∂ξ x1(0) + κ10x1(0) = κ11x1(0) + x2(0) = x1(L) = 0
is uniquely solvable for all y1, y2 ∈ L2(ΩL), if λ ∈ R is large enough. Further, by making use of
integration by parts and the boundary conditions, we compute for x = [x1, x2] ∈ D(A)

〈Ax, x〉X =κ1

∫ L

0

∂2x1(ξ)x1(ξ)dξ + κ2

∫ L

0

∂x1(ξ)x1(ξ)dξ + κ4

∫ L

0

∂x2(ξ)x1(ξ)dξ

+ κ6

∫ L

0

∂x1(ξ)x2(ξ)dξ + κ8

∫ L

0

∂x2(ξ)x2(ξ)dξ

=− κ1

∫ L

0

∂x1(ξ)∂x1(ξ)dξ + κ2

∫ L

0

∂x1(ξ)x1(ξ)dξ + (κ6 − κ4)
∫ L

0

∂x1(ξ)x2(ξ)dξ

+
(
κ1κ10 + κ4κ11 − κ8κ

2
10

)
x1(0)2 + κ8

2 x2(L)2

=− κ1

∫ L

0

∂x1(ξ)∂x1(ξ)dξ +
(
κ2 + 2κ1κ10 + 2κ4κ11 − 2κ8κ

2
10

) ∫ L

0

∂x1(ξ)x1(ξ)dξ

+ (κ6 − κ4)
∫ L

0

∂x1(ξ)x2(ξ)dξ + κ8
2 x2(L)2

≤− κ1‖∂x1‖2L2(ΩL) + |κ2 + 2κ1κ10 + 2κ4κ11 − 2κ8κ
2
10| · ε1 · ‖∂x1‖2L2(ΩL)

+ |κ2+2κ1κ10+2κ4κ11−2κ8κ2
10|

ε1
‖x1‖2L2(ΩL) + |κ6 − κ4|ε2‖∂x1‖2L2(ΩL) + |κ6−κ4|

ε2
‖x2‖2L2(ΩL)

for all ε1, ε2 ∈ R+. By choosing ε1, ε2 ∈ R+ small enough, we obtain that 〈Ax, x〉X ≤ γ‖x‖2X for
some γ ∈ R. �
The above result yields existence of a solution in the case where initial, boundary and inhomoge-
neous data are sufficiently smooth. In the following, we present several results that lead to less
smoothness claims. First, we treat the case where f̄3 ≡ 0. Later on, we generalize this result to
arbitrary f̄3 ∈ H1(ST ).
Subsequently, we need the space V2 := {v ∈ H1(ΩL)|v(L) = 0} that is normed by ‖x‖V2 :=
‖∂x‖L2(ΩL). Further, we introduce V ∗

2 as its dual space with respect to L2(ΩL). The spaces
V2 ⊂ L2(ΩL) ⊂ V ∗

2 are a so-called Gelfand tripel. We will use the notation 〈·, ·〉 in order
to denote the dual pairing between elements from V ∗

2 and V2. We further introduce the space
W (ST ) = L2(ST , V2) ∩H1(ST , V ∗

2 )} that is continuously imbedded into C(ST , L2(ΩL)), see [25,
pp. 390ff].

Lemma 5.3 Let Assumption 5.1 be valid and [x1, x2]T be a solution of the initial-boundary value
problem (18) subject to the boundary conditions (19) with f̄1, f̄2 ∈ L2(ST ), f̄3 ≡ 0 and the initial
condition (20) with x̄10, x̄20 ∈ L2(ΩL). Then for all t ∈ ST it holds

‖x1(t)‖2L2(ΩL) + ‖x2(t)‖2L2(ΩL) ≤C
(
‖x10‖2L2(ΩL) + ‖x20‖2L2(ΩL) + ‖f̄1‖2L2(ST ) + ‖f̄2‖2L2(ST )

+‖ḡ1‖2L2(ST ,L2(ΩL)) + ‖ḡ2‖2L2(ST ,L2(ΩL))

)
.

for some constant C ∈ R+ independent of the inhomogenities but which may depend on T , L, and
κi.

Proof:
The proof will be given in several steps. Let C denote a generic constant in th following. Note
that at different places, this constant may take different values.

1. For the moment, let us assume that the solution x2 of the hyperbolic equation belongs to
the space x2 ∈ L2(ST ,H1(ΩL)). Note that the smoothness with respect to t can be reduced.
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Consider the following parabolic problem: Find x1 ∈ W (ST ) such that

〈ẋ1, v〉+ a(x1, v) = l(v) for all v ∈ V2.

Here, a(·, ·) : V2 × V2 → R is a continous and coercive bilinear form, that is the existence of
M,m ∈ R+ such that for all w, v ∈ V2 holds

|a(w, v)| ≤ M‖w‖V2‖v‖V2 , a(v, v) ≥ m‖v‖2V2
− k0‖v‖L2(ΩL).

Here, k0 ≥ 0 and m,M > 0. Then, the parabolic problem subject to the initial condition
x1(0, ·) = x10(·) has a unique solution for all x10 ∈ L2(ΩL) and all l ∈ L2(ST , V ∗

2 ). Moreover,
we have the estimates

‖x1‖2L2(ST ,V2)
≤ ek0T

(
1
m‖x10‖2L2(ΩL) + 1

m2 ‖l‖2L2(ST ,V ∗2 )

)
,

‖ẋ1‖L2(ST ,V ∗2 ) ≤ ‖l‖L2(ST ,V ∗2 ) + M‖u‖L2(ST ,V2).
(22)

For a proof of this theorem see [25].

This theorem should be applied to our problem. Let us define

a(u, v) =
∫ L

0

(κ1∂u(ξ)∂v(ξ)− κ2∂u(ξ)v(ξ)− κ3u(ξ)v(ξ))dξ − (κ1κ10 + κ4κ11) u(0)v(0),

〈l(t), v〉 =
∫ L

0

(ḡ1(t, ξ)v + κ5x2(t, ξ)v − κ4x2(t, ξ)∂v(ξ))dξ − κ1f̄1(t)− κ4f̄2(t).

In order to show that this is the correct energetic prolongation of the parabolic differential
equation, assume u ∈ V2 to hold and integrate by parts,

0 =− a(u, v) + 〈l, v〉

=−
∫ L

0

(κ1∂u(ξ)∂v(ξ)− κ2∂u(ξ)v(ξ)− κ3u(ξ)v(ξ))dξ + (κ1κ10 + κ4κ11) u(0)v(0)

+
∫ L

0

(ḡ1(t)v + κ5x2(t)v(ξ)− κ4x̄2(t, ξ)∂v(ξ))dξ − κ1f̄1(t)− κ4f̄2(t)

=
∫ L

0

(κ1∂
2u(ξ) + κ2∂u(ξ)v(ξ) + κ3u(ξ))v(ξ)dξ − κ1∂u(L)v(L) + κ1∂u(0)v(0)

+ (κ1κ10 + κ4κ11) u(0)v(0) +
∫ L

0

(ḡ1(t, ξ)v(ξ) + κ5x̄2(t, ξ)v(ξ) + κ4∂x̄2(t, ξ)v(ξ))dξ

− κ4x̄2(t, L)v(L) + κ4x̄2(t, 0)v(0)− κ1f̄1(t)− κ4f̄2(t)

=
∫ L

0

(κ1∂
2u(ξ) + κ2∂u(ξ)v(ξ) + κ3u(ξ))v(ξ)dξ + κ1(κ10u(0) + ∂u(0)− f̄1(t))v(0)

+
∫ L

0

(ḡ1(t, ξ)v(ξ) + κ5x̄2(t, ξ)v(ξ) + κ4∂x2(t, ξ)v(ξ))dξ

+ κ4[(x2(t, 0) + κ11u(0)− f̄2(t))]v(0).

The integral part yields immediately the right hand side of the differential equation. In the
solution, the term in brackets disappears thus providing the Robin boundary condition for
x1.
It remains to show the boundedness of a(·, ·) and l and to show G̊arding’s inequality for
a(·, ·). Obviously, the estimate |a(w, v)| ≤ M‖w‖V2‖v‖V2 is true for all u, v ∈ V2 for some
constant M because of the continous imbedding of C(ΩL) in V2. By using integration by
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parts one can estimate

a(v, v) =
∫ L

0

(κ1∂v(ξ)∂v(ξ)− κ2∂v(ξ)v(ξ)− κ3v(ξ)v(ξ))dξ − (κ1κ10 + κ4κ11) v(0)v(0)

≥ κ1‖v‖2V2
− |κ2|‖v‖V2‖v‖L2(ΩL) − |κ3|‖v‖2L2(ΩL) −

|κ1κ10+κ4κ11|
2 ‖v‖V2‖v‖L2(ΩL)

≥ κ1‖v‖2V2
−
(
|κ2|+ |κ1κ10+κ4κ11|

4

)
(ε‖v‖2V2

+ 1
ε‖v‖

2
L2(ΩL))− |κ3|‖v‖2L2(ΩL)

=
(
κ1 − ε |κ1κ10+κ4κ11|

4

)
‖v‖2V2

−
(
|κ3|+ |κ2|+ |κ1κ10+κ4κ11|

4ε

)
‖v‖2L2(ΩL)

for all ε ∈ R+. Choosing ε sufficiently small, the desired estimate arises.

The functional l(t) can be estimated

|〈l(t), v〉| ≤ C
(
‖x2(t)‖L2(ΩL) + ‖ḡ1(t)‖L2(ΩL) + |f̄1(t)|+ |f̄2(t)|

)
‖v‖V2 .

This provides us with

‖l‖L2(ST ,V ∗2 ) ≤ C
(
‖x2‖L2(ST ,L2(ΩL)) + ‖ḡ1‖L2(ST ,L2(ΩL)) + ‖f̄1‖L2(ST ) + ‖f̄2‖L2(ST )

)
.

Using the estimate for the solution of a parabolic problem (22), we obtain the relations

‖x1‖L2(ST ,V2) ≤ C
(
‖x10‖L2(ST ) + ‖x2‖L2(ST ,L2(ΩL)) + ‖ḡ1‖L2(ST ,L2(ΩL))

+‖f̄1‖L2(ST ) + ‖f̄2‖L2(ST )

)
, (23)

‖x1(t)‖L2(ΩL) ≤ C
(
‖x10‖L2(ST ) + ‖x2‖L2(ST ,L2(ΩL)) + ‖ḡ1‖L2(ST ,L2(ΩL))

+‖f̄1‖L2(ST ) + ‖f̄2‖L2(ST )

)
. (24)

For the last inequality, we used the continuous imbedding of W (ST ) into C(ST , L2(ΩL)).

2. The hyperbolic equation reads ẋ2(t, ξ) = κ8∂x2(t, ξ) + κ6∂x1(t, ξ) + ḡ2(t, ξ) subject to the
boundary and initial conditions x2(0, ξ) = x20(ξ), x2(t, 0)) = f̄2 − κ11x1(t, 0). For the
following derivations it becomes important to note that κ8 < 0. Let H1(ΩL)∗ be the dual
space of H1(ΩL) with respect to L2(ΩL).

We require only x2 ∈ {u ∈ L2(ST ,H1(ΩL))|u′ ∈ L2(ST ,H1(ΩL)∗)}. Since x1 ∈ W (ST ) and
ḡ2 ∈ L2(ST , L2(ΩL)), it holds even x2 ∈ H1(ST ,H1(ΩL)). Then we have

1
2

d
dt‖x2(t)‖2L2(ΩL) =

〈
d
dtx2(t), x2(t)

〉
L2(ΩL)

=
∫ L

0

(κ8∂x2(t, ξ) + κ9x2(t, ξ) + κ6∂x1(t, ξ) + κ7x1(t, ξ) + ḡ2)x2(t, ξ)dξ

= κ8
2 x2

2(t, L)− κ8
2 x2

2(t, 0) +
∫ L

0

(ḡ2(t, ξ) + κ9x2(t, ξ) + κ6∂x1(t, ξ) + κ7x1(t, ξ))x2(t, ξ)dξ

≤ −κ8
2 ‖C0x2‖2L2(ST ) +

(
‖ḡ2(t)‖L2(ST ) + |κ9|‖x2(t)‖L2(ΩL) + C‖x1(t)‖V2

)
‖x2(t)‖L2(ΩL)

≤ −κ8
2 ‖f̄2 − κ11C0x1‖2L2(ST ) + |κ9|‖x2(t)‖2L2(ΩL) + (‖ḡ2(t)‖L2(ΩL) + C‖x1(t)|V2)‖x2(t)‖L2(ΩL)

≤ C
(
‖f̄2‖2L2(ST ) + ‖C0x1‖2L2(ST ) +

(
‖ḡ2(t)‖2L2(ΩL) + ‖x1(t)‖2V2

)
+ (|κ9|+ 1)‖x2(t)‖2L2(ΩL)

)
.

Sorting all expressions,

d
dt‖x2(t)‖2L2(ΩL) ≤ k1(1+ |κ9|)‖x2(t)‖2L2(ΩL)+k2

(
2‖x1(t)‖2V2

+ ‖f̄2‖2L2(ST ) + ‖ḡ2(t)‖2L2(ΩL)

)
.

Using Gronwall’s inequality we obtain the estimate

‖x2(t)‖2L2(ΩL)≤ek1t

(
‖x20‖2L2(ΩL) + k2

∫ t

0

(
2‖x1(τ)‖2V2

+ ‖f̄2‖2L2(ST ) + ‖ḡ2(τ)‖2L2(ΩL)

)
dτ

)
≤ek1t

(
‖x20‖2L2(ΩL) + k2

(
2‖x1‖2L2(ST ,V2)

+ ‖f̄2‖2L2(ST ) + ‖ḡ2‖2L2(ST ,L2(ΩL))

))
.

(25)
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Combining this estimate with (23), we obtain that there exists a constant C > 0 with

‖x2(t)‖2L2(ΩL)≤ek1tC
(
‖x20‖2L2(ΩL) + k2

(
2‖x2‖2L2(ST ,L2(ΩL)) + ‖f̄1‖2L2(ST )

+‖f̄2‖2L2(ST ) + ‖ḡ1‖2L2(ST ,L2(ΩL)) + ‖ḡ2‖2L2(ST ,L2(ΩL))

))
.

(26)

Furthermore using Gronwall’s inequality then leads to an estimate

‖x2(t)‖2L2(ΩL)≤C
(
‖x20‖2L2(ΩL) + ‖f̄1‖2L2(ST ) + ‖f̄2‖2L2(ST )

+‖ḡ1‖2L2(ST ,L2(ΩL)) + ‖ḡ2‖2L2(ST ,L2(ΩL))

)
.

(27)

3. The estimates (24) and (27) lead to

‖x1(t)‖2L2(ΩL) + ‖x2(t)‖2L2(ΩL)

≤C
(
‖x10‖2L2(ΩL) + ‖x20‖2L2(ΩL) + ‖f̄1‖2L2(ST ) + ‖f̄2‖2L2(ST )

+‖ḡ1‖2L2(ST ,L2(ΩL)) + ‖ḡ2‖2L2(ST ,L2(ΩL)) + ‖x2‖L2(ST ,L2(ΩL))

)
.

(28)

for some constant independent of t ∈ ST , and f̄1, f̄2, f̄3, ḡ1, ḡ2, x10 and x20. Thus we have
for x(t) = [x1(t), x2(t)] that

‖x(t)‖2L2(ΩL)2 ≤C
(
‖x10‖2L2(ΩL) + ‖x20‖2L2(ΩL) + ‖f̄1‖2L2(ST ) + ‖f̄2‖2L2(ST )

+‖ḡ1‖2L2(ST ,L2(ΩL)) + ‖ḡ2‖2L2(ST ,L2(ΩL)) + ‖x‖L2(ST ,L2(ΩL))2

)
.

(29)

Then, Gronwall’s inequality leads to a new constant C > 0 such that

‖x(t)‖2L2(ΩL)2 ≤C
(
‖x10‖2L2(ΩL) + ‖x20‖2L2(ΩL) + ‖f̄1‖2L2(ST ) + ‖f̄2‖2L2(ST )

+‖ḡ1‖2L2(ST ,L2(ΩL)) + ‖ḡ2‖2L2(ST ,L2(ΩL))

)
.

(30)

which is the desired result.

�

Corollary 5.4 Let [x1, x2]T be a solution of the initial-boundary value problem (18) subject to the
boundary conditions (19) with f̄1, f̄2 ∈ H1(ST ), f̄3 ≡ 0 and inhomogeneity ḡ1 ∈ H1(ST , L2(ΩL)),
ḡ2 ∈ H1(ST , L2(ΩL)) and the initial condition (20) with x10 ∈ H2(ΩL), x20 ∈ H1(ΩL) with
∂x10(0) + κ10x10(0) = f̄1(0), κ11x10(0) + x20(0) = f̄2(0) and x20(L) = 0. Then it holds

‖x1(t)‖2V2
+ ‖x2(t)‖2H1(ΩL) ≤C

(
‖x10‖2H2(ΩL) + ‖x20‖2H1(ΩL) + ‖ḡ1‖2H1(ST ,L2(ΩL))

+‖ḡ2‖2H1(ST ,L2(ΩL)) + ‖f̄1‖2L2(ST ) + ‖f̄2‖2L2(ST )

)
.

for some constant C ∈ R+ independent of the inhomogenities but which may depend on T , L and
κi.

Proof:
By differentiation of the partial differential equations and the boundary conditions it is obvious
that x̄1 = ẋ1, x̄2 = ẋ2 solve the equation[

˙̄x1(t, ξ)
˙̄x2(t, ξ)

]
=
[
κ1∂

2 + κ2∂ + κ3 κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

] [
x̄1(t, ξ)
x̄2(t, ξ)

]
+
[

˙̄g1(t, ξ)
˙̄g2(t, ξ)

]
,
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subject to the boundary conditions ∂
∂ξ x̄1(t, 0) + κ10x̄1(t, 0) = ˙̄f1(t), κ11x̄1(t, 0) + x̄2(t, 0) = ˙̄f2(t),

x̄1(t, L) = 0 and initial conditions[
x̄1(0, ξ)
x̄2(0, ξ)

]
=
[
κ1∂

2 + κ2∂ + κ3 κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

] [
x10(ξ)
x20(ξ)

]
+
[
ḡ1(0, ξ)
ḡ2(0, ξ)

]
.

Then Lemma 5.3 leads to

‖ẋ1(t)‖2L2(ΩL) + ‖ẋ2(t)‖2L2(ΩL) ≤C
(
‖x̄1(0, ·)‖2L2(ΩL) + ‖x̄2(0, ·)‖2L2(ΩL) + ‖f̄1‖2H1(ST ) + ‖f̄2‖2H1(ST )

+‖ḡ1‖2H1(ST ,L2(ΩL)) + ‖ḡ2‖2H1(ST ,L2(ΩL))

)
.

(31)
However, from the given system of differential equations, we obtain that there exists a constant
C̄ > 0 such that

‖x1(t)‖2H2(ΩL) + ‖x2(t)‖2H1(ΩL) ≤C ·
(
‖ẋ1(t)‖2L2(ΩL) + ‖ẋ2(t)‖2L2(ΩL) + ‖ḡ1(t)‖2L2(ΩL)

+‖ḡ2(t)‖2L2(ΩL) + |f̄1(t)|+ |f̄2(t)|2
)

.
(32)

Now a combination of (31) and (32) together with the continuity of evaluation in H1(ST ) leads
to the desired result. �
It is now tempting to use a homogenization technique in order to handle time-dependent Dirichlet
boundary conditions, x1(t, L) = f̄3(t). Define a new function x̂1 by x̂1(t, ξ) = x1(t, ξ) − f̄3(t). If
one replaces x1 by x̂1 one gets a system of the type considered in Lemma 5.3 with a homogeneous
Dirichlet boundary condition for x̂1. However, the right-hand side ḡ1 is now replaced by ḡ1 − ˙̄f3.
The estimate of Lemma 5.3 indicates a perturbation index of 2 with respect to time. The next
lemma shows that this is clearly an overestimate.

Lemma 5.5 Let [x1, x2]T be the solution of the initial-boundary value problem (18) with ḡ1 =
ḡ2 = 0, boundary conditions (19) with f̄1 = f̄2 = 0, f̄3 ∈ H1(ST ) and initial value (20) with
x̄10, x̄20 ∈ H1(ΩL), x̄10(L) = f̄3(0) and x̄10(0) = 0. Then there exists a T > 0 such that

‖x1(t)‖2H1(ΩL) + ‖x2(t)‖2H1(ΩL) ≤ C
(
‖x̄10‖2H1(ΩL) + ‖x̄20‖2H1(ΩL) + ‖f̄3‖H1(ST )

)
(33)

for some constant independent of f̄3 and the initial value.

Proof:
Without loss of generality, we assume that κ2 = κ3 = 0. This can be reached by a transformation
x̄i(t, ξ) = eζt+ηξxi(t, ξ) for i = 1, 2 and some suitable ζ, η ∈ R.

1. First we show an estimate

‖C0x1‖2H1(ST ) ≤ c
(
‖f̄3‖2H1(ST ) + ‖x10‖2H1(ΩL) + ‖x1‖2L2(ST ,H1(ΩL)) + ‖x2‖2L2(ST ,H1(ΩL))

)
.

(34)
Consider the first equation in frequency domain, that is

sx̂1(s, ξ)− x10(ξ) = κ1∂
2x̂1(s, ξ) + κ4∂x̂2(s, ξ) + κ5x̂2(s, ξ). (35)

with boundary condition x̂1(s, L) = ̂̄f3(s). Solving (35) for x̂1(s, ξ) and evaluating at ξ = 0,
we obtain for γ(s, ξ) :=

√
s(L−ξ)√

κ1
that

x̂1(s, 0) =
̂̄f3(s)

cosh(γ(s, 0))
− tanh(γ(s, 0))

√
κ1s

∂x̂1(s, 0)

+

∫ L

0
sinh γ(s, ξ)(κ4∂x̂2(s, ξ) + κ5x̂2(s, ξ) + x10(ξ))dξ

√
sκ1 cosh (γ(s, 0))

.
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Integrating by parts and making use of the further boundary relations ∂x̂1(s, 0) = −κ10x̂1(s, 0),
x̂2(s, 0) = −κ11x̂1(s, 0) as well as x10(L) = f̄3(0), x10(0) = 0 yields(

1−
√

sκ4κ11−
√

sκ1κ10+
√

κ1κ5κ11√
κ1s tanh(γ(s, 0))

)
sx̂1(s, 0)

=
ŝf̄3(s)− f̄3(0)
cosh(γ(s, 0))

+

∫ L

0
cosh(γ(s, ξ))(κ4sx̂2(s, ξ) + κ1κ5∂x̂2(s, ξ) + κ1∂x10(ξ))dξ

κ1 cosh(γ(s, 0))

and thus (
1−

√
sκ4κ11−

√
sκ1κ10+

√
κ1κ5κ11√

κ1s tanh(γ(s, 0))
)

sx̂1(s, 0)

=
ŝf̄3(s)− f̄3(0)
cosh(γ(s, 0))

+

∫ L

0
cosh(γ(s, ξ))(

√
κ1∂x10(ξ)− κ4

κ1
x20(ξ))dξ

cosh(γ(s, 0))

+

∫ L

0
cosh(γ(s, ξ))(κ4(sx̂2(s, ξ)− x20(ξ)) + κ5κ1∂x̂2(s, ξ))dξ

κ1 cosh(γ(s, 0))
.

We now introduce the function g(s) :=
√

sκ4κ11−
√

sκ1κ10+
√

κ1κ5κ11√
κ1s tanh(γ(s, ξ)). Then we

have g ∈ H∞(C+
ω1

, R, R) for some ω ∈ R and furthermore

lim
σ→∞
σ∈R

sup
ω∈R

|g(σ + iω)| = 0,

there exists a ω2 such that (1 + g(s))−1 ∈ H∞(C+
ω2

, R, R). Furthermore, we introduce the
functions G1 : C+

0 → R, G2 : C+
0 → B(L2(ΩL), R) and G3 : L2(ΩL) → H2(C+

0 ) with

G1(s) :=
1

cosh(γ(s, 0))
,

G2(s)x :=

∫ L

0
cosh(γ(s, ξ))x(ξ)dξ

κ1 cosh(γ(s, 0))
,

(G3x)(s) :=

∫ L

0
cosh(γ(s, ξ))x(ξ)dξ

cosh(γ(s, 0))
.

It can be seen that G1 ∈ H∞(C+
0 , R, R), G2 ∈ H∞(C+

0 , L2(ΩL), R). Moreover, the bound-
edness and well-definedness of G2 follows from the fact that y := L−1G2x is the function
satisfying ẋ(t, ξ) = κ1∂

2x(t, ξ), x(t, L) = ∂x(t, 0) = 0, x(0, ξ) = ∂x110, y(t) = x(t, 0) and
the well-posedness property of a heat equation with Dirichlet-observation [5]. Altogether,
we have

L (ẋ1) (s) = 1
1−g(s)

(
G1(s)L( ˙̄f3)(s) + G2(s) (κ4L(ẋ2)(s) + κ5L(∂x2)(s))

+G3

(
(
√

κ1∂x10 − κ4
κ1

x20

)
(s)
)

.

Parseval’s identity then leads to an estimate

‖C0x1‖2H1(ST ) ≤ c
(
‖f̄3‖2H1(ST ) + ‖x10‖2H1(ΩL) + ‖x2‖2L2(ST ,H1(ΩL)) + ‖x2‖2H1(ST ,L2(ΩL))

)
.

(36)
From the equation ẋ2(t, ξ) = κ6∂x1(t, ξ)+κ7x1(t, ξ)+κ8∂x2(t, ξ)+κ9x2(t, ξ), we can derive
an estimate

‖x2‖2H1(ST ,L2(ΩL)) ≤ C
(
‖x1‖2L2(ST ,H1(ΩL)) + ‖x2‖2L2(ST ,H1(ΩL))

)
.

A combination with (36) then leads to (34).
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2. Now we show the inequality (33). We assume to have a sufficiently smooth solution x =
[x1, x2]. Let t ∈ ST such that

max
τ∈ST

‖x(τ)‖H1(ΩL)2 = ‖x(τ)‖H1(ΩL)2 . (37)

Then for

U :=
[

κ1∂
2+ κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

]
we obtain

‖∂x(t)‖2L2(ΩL)2 =‖∂x(0)‖2L2(ΩL)2 + 2
∫ t

0

〈∂x(τ), ∂ẋ(τ)〉L2(ΩL)2 dτ

=‖∂x(0)‖2L2(ΩL)2 + 2
∫ t

0

〈∂x(τ), ∂Ux(τ)〉L2(ΩL)2 dτ.

(38)

Especially, we have

〈∂x(τ), ∂Ux(τ)〉L2(ΩL)2

=κ1

〈
∂x1(τ), ∂3x1(τ)

〉
L2(ΩL)

+ κ4

〈
∂x1(τ), ∂2x2(τ)

〉
L2(ΩL)

+ κ5 〈∂x2(τ), ∂x1(τ)〉L2(ΩL)

+ κ6

〈
∂x2(τ), ∂2x1(τ)

〉
L2(ΩL)

+ κ8

〈
∂x2(τ), ∂2x2(τ)

〉
L2(ΩL)

+ κ9 〈∂x2(τ), ∂x2(τ)〉L2(ΩL)

=− κ1

〈
∂2x1(τ), ∂2x1(τ)

〉
L2(ΩL)

+ κ1∂
2x1(τ, L)∂x1(τ, L)− κ1∂

2x1(τ, 0)∂x1(τ, 0)

− κ4

〈
∂2x1(τ), ∂x2(τ)

〉
L2(ΩL)

+ κ4∂x1(τ, L)∂x2(τ, L)− κ4∂x1(τ, 0)∂x2(τ, 0)

+ κ6

〈
∂x2(τ), ∂2x1(τ)

〉
L2(ΩL)

+ κ8
2 ∂x2(τ, L)2 − κ8

2 ∂x2(τ, L)2

+ κ5 〈∂x2(τ), ∂x1(τ)〉L2(ΩL) + κ9 〈∂x2(τ), ∂x2(τ)〉L2(ΩL) .

Now using κ1∂
2x1(τ, 0) = ẋ1(τ, 0) − κ4∂x2(τ, 0), κ1∂

2x1(τ, L) = ˙̄f3(τ) − κ4∂x2(τ, L), and
∂x1(τ, 0) = −κ10x1(τ, 0) we get

〈∂x(τ), ∂Ux(τ)〉L2(ΩL)2

=− κ1

〈
∂2x1(τ), ∂2x1(τ)

〉
L2(ΩL)

+ ˙̄f3(τ)∂x1(τ, L) + κ10ẋ1(τ, 0)x1(τ, 0)

− κ4

〈
∂2x1(τ), ∂x2(τ)

〉
L2(ΩL)

+ κ6

〈
∂x2(τ), ∂2x1(τ)

〉
L2(ΩL)

+ κ8
2 ∂x2(τ, L)2 − κ8

2 ∂x2(τ, 0)2

+ κ5 〈∂x2(τ), ∂x1(τ)〉L2(ΩL) + κ9 〈∂x2(τ), ∂x2(τ)〉L2(ΩL) .

The boundary relation κ8∂x2(τ, 0) = −κ11ẋ1(τ, 0)− κ6x1(τ, 0) then leads to

〈∂x(τ), ∂Ux(τ)〉L2(ΩL)2

≤− κ1

〈
∂2x1(τ), ∂2x1(τ)

〉
L2(ΩL)

+ ˙̄f3(τ)∂x1(τ, L) + κ10ẋ1(τ, 0)x1(τ, 0)

− κ4

〈
∂2x1(τ), ∂x2(τ)

〉
L2(ΩL)

+ κ6

〈
∂x2(τ), ∂2x1(τ)

〉
L2(ΩL)

+ κ8
2 ∂x2(τ, L)2

− κ8
2 (κ11ẋ1(τ, 0) + κ6x1(τ, 0))2 .

By using |∂x1(τ, L)| ≤ C‖x2(τ)‖H2(ΩL), |x1(τ, 0)| ≤ C‖x2(τ)‖H1(ΩL) and taking into account
that κ8 < 0, we obtain

〈∂x(τ), ∂Ux(τ)〉L2(ΩL)2 ≤ C
(
| ˙̄f3(τ)|2 + |C0ẋ1(τ)|2 + ‖x1(τ)‖2H1(ΩL) + ‖x2(τ)‖2H1(ΩL)

)
.

This can be plugged into (38), which leads to

‖x1(t)‖2H1(ΩL) + ‖x2(t)‖2H1(ΩL) ≤C
(
‖x10‖2H1(ΩL) + ‖x20‖2H1(ΩL) + ‖f̄3‖2H1(ST )

+‖C0x1‖2H1(ST ) + ‖x1‖2L2(ST ,H1(ΩL)) + ‖x2‖2L2(ST ,H1(ΩL))

)
.
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Moreover, the expression ‖C0x1‖H1(ST ) can be estimated with (34), and thus we have

‖x1(t)‖2H1(ΩL) + ‖x2(t)‖2H1(ΩL)

≤C
(
‖x10‖2H1(ΩL) + ‖x20‖2H1(ΩL) + ‖f̄3‖2H1(ST ) + ‖x2‖2L2(ST ,H1(ΩL)) + ‖x2‖2L2(ST ,H1(ΩL))

)
.

Due to (37), we have

‖x1‖2L2(ST ,H1(ΩL)) + ‖x1‖2L2(ST ,H1(ΩL)) ≤ Ct
(
‖x1(t)‖2H1(ΩL) + ‖x1(t)‖2H1(ΩL)

)
.

Thus we obtain for small enough T that

‖x1(t)‖2H1(ΩL) + ‖x2(t)‖2H1(ΩL) ≤ C
1−CT

(
‖x10‖2H1(ΩL) + ‖x20‖2H1(ΩL) + ‖f̄3‖2H1(ST )

)
.

�
Summarizing, we can now formulate the following result.

Theorem 5.6 Let Assumption 5.1be valid and let f̄i ∈ H1(ST ), ḡj ∈ C1(ST , L2(ΩL)) for i =
1, 2, 3 and j = 1, 2, and initial values x10 ∈ H1(ΩL), x20 ∈ H1(ΩL) with κ11x10(0)+x20(0) = f̄2(0),
x10(L) = f̄3(0), the system (18) with boundary condition (19) and initial data (20) possesses a
unique solution [x1, x2]T ∈ C(ST ,H1(ΩT )2). Moreover, there exists a constant C ∈ R+ such that
for all data with the above properties holds

‖x1(t)‖2H1(ΩL) + ‖x2(t)‖2H1(ΩL) ≤C
(
‖x10‖2H1(ΩL) + ‖x20‖2H1(ΩL) + ‖ḡ1‖2H1(ST ,L2(ΩL))

+‖ḡ2‖2H1(ST ,L2(ΩL)) + ‖f̄1‖2H1(ST ) + ‖f̄2‖2H1(ST ) + ‖f̄3‖2H1(ST )

)
.

(39)

Proof:
We split the problem into the following two parts

(i) [
ẋ11(t, ξ)
ẋ21(t, ξ)

]
=
[
κ1∂

2 + κ2∂ + κ3 κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

] [
x11(t, ξ)
x21(t, ξ)

]
, (40)

with boundary conditions

∂
∂ξ x1(t, 0) + κ10x1(t, 0) = κ11x11(t, 0) + x21(t, 0) = 0, x11(t, L) = f̄3(t)

and initial value[
x11(0, ξ)
x21(0, ξ)

]
=
[
x10(ξ)− L−ξ

L
(Lκ10+1)ξ+L

L x10(0)− f̄1(0)ξ L−ξ
L

x20(ξ) + κ11x10(0)− f̄2(0)

]
.

(ii) [
ẋ12(t, ξ)
ẋ22(t, ξ)

]
=
[
κ1∂

2 + κ2∂ + κ3 κ4∂ + κ5

κ6∂ + κ7 κ8∂ + κ9

] [
x12(t, ξ)
x22(t, ξ)

]
+
[
ḡ1(t, ξ)
ḡ2(t, ξ)

]
, (41)

with boundary conditions

∂
∂ξ x12(t, 0) + κ10x22(t, 0) = f̄1, κ11x12(t, 0) + x22(t, 0) = f̄2, x12(t, L) = 0

and initial value [
x12(0, ξ)
x22(0, ξ)

]
=
[

L−ξ
L

(Lκ10+1)ξ+L
L x10(0) + f̄1(0)ξ L−ξ

L
−κ11x10(0) + f̄2(0)

]
.
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By the superposition principle, the solution is given by x1 = x11 + x12 and x2 = x21 + x22. For
the system (i), holds x11(0, 0) = 0 and κ11x11(0, 0) + x21(0, 0) = 0. Hence we can apply Lemma
5.5 in order to obtain the existence of T,C1 > 0 such that for all t ∈ ST holds

‖x11(t)‖2H1(ΩL) + ‖x21(t)‖2H1(ΩL)

≤C1

(
‖f̄3‖2H1(ST ) +

∥∥∥x10 − L−ξ
L

(Lκ10+1)ξ+L
L x10(0)− f̄1(0)ξ L−ξ

L

∥∥∥2

H1(ΩL)

+‖x20 + κ11x10(0)− f̄2(0)‖2H1(ΩL)

)
≤C̄1

(
‖f̄1‖2H1 + ‖f̄2‖2H1 + ‖f̄3‖2H1 + ‖x10‖2H1(ΩL) + ‖x20‖2H1(ΩL)

)
,

(42)

where the existence of C̄1 is guaranteed by the triangular inequality and the continuity of evalua-
tion.
Considering System (ii), we have x12(0, ξ) ∈ H2(ΩL), x22(0, ξ) ∈ H1(ΩL) with ∂x12(0, 0) +
κ10x12(0, 0) = f̄1(0) and κ11x12(0, 0) + x22(0, 0) = 0 and x12(0, L) = 0. Corollary 5.4 then
implies the existence of C2 with

‖x12(t)‖2H1(ΩL) + ‖x22(t)‖2H1(ΩL)

≤C2

(
‖f̄1‖2H1 + ‖f̄2‖2H1 + ‖L−ξ

L
(Lκ10+1)ξ+L

L x10(0) + f̄1(0)ξ L−ξ
L ‖2H2(ΩL)

+‖ − κ11x10(0) + f̄2(0)‖2H1(ΩL)

)
≤C̄2

(
‖f̄1‖2H1 + ‖f̄2‖2H1 + ‖x10‖2H1(ΩL)

)
,

(43)

Now the combination of (42) with (43) leads to (39) for all t < T . In order to prove that for all
t > 0 there exists a C > 0 such that (39) holds, we can concatenate the corresponding inequalities
shown for limited time intervals. �
Now we are in the position to prove the main result in Theorem 4.1.
Proof:
By defining x1(t, ξ) = p(t, ξ), x2(t, ξ) = p(t, ξ) + a32

a33
h(t, ξ), an application of Theorem 5.6 with

suitable choice of the constants κi leads to∥∥∥∥[p(t, ·)
h(t, ·)

]∥∥∥∥
H1(ΩL)

≤C
(
‖p(0, ·)‖H1(ΩL) + ‖h(0, ·)‖H1(ΩL)

+
∥∥∥a33

d g1(t, ·)− a33
c21d∂g2(t, ·) + a13c31

c21d g2(t, ·)− a13
d g3(t, ·)

∥∥∥
H1(ST ,L2(ΩL))

+
∥∥∥−a32

d g1(t, ·) + a32
c21d∂g2(t, ·)− a12c31

c21d g2(t, ·)− a12
d g3(t, ·)

∥∥∥
H1(ST ,L2(ΩL))

+
∥∥∥f1 + 1

c21
g2(·, 0)

∥∥∥
H1(ST )

+ ‖f2‖H1(ST ) + ‖f3‖H1(ST )

)
and then the triangular inequality together with continuity of evaluation in H1 leads to∥∥∥∥[p(t, ·)

h(t, ·)

]∥∥∥∥
H1(ΩL)2

≤C
(
‖p(0, ·)‖H1(ΩL) + ‖h(0, ·)‖H1(ΩL)

+ ‖g1‖H1(ST ,L2(ΩL)) + ‖g2‖H1(ST ,H1(ΩL)) + ‖g3‖H1(ST ,L2(ΩL))

+‖f1‖H1(ST ) + ‖f2‖H1(ST ) + ‖f3‖H1(ST )

)
.

By furthermore using F (t, ξ) = c22
c21

p(t, ξ) + b22
c21

∂p(t, ξ) + c23
c21

h(t, ξ) + 1
c21

g2(t, ξ), we obtain

‖F (t)‖L2(ΩL) ≤ C
(
‖p(t)‖H1(ΩL) + ‖h(t)‖H1(ΩL) + ‖g2‖H1(ST ,H1(ΩL))

)
.

Combining this with the estimate for the components F (t) and p(t), the inequality (17) follows
immediately. �
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6 Conclusions

In this work, we continued the index analysis of the frozen coefficient version of a reduced model
of a heat exchanger appearing in a heat pump system. The model consists essentially of the
zero Mach-number limit of the compressible Euler equations. This degenerated hyperbolic system
turns out to be a coupled hyperbolic/parabolic equation subject to coupled boundary conditions.
We have shown that the system has ADAE and (time-) perturbation index 1 while the space
pertubation index is two. This is in accordance with numerical experiments.

The perturbation analysis has been done for the practical relevant case of time-dependent
boundary conditions. An approach via homogenization of boundary conditions as used for example
in [21] would have led to a higher time index. The theory of abstract differential-algebraic equations
provided immediately the form of consistent initial values. Even if the underlying boundary control
system is not well-posed, perturbation estimates have been derived.

By using the ADAE theory we obtained the estimates immediately in the original physical
variables (mass flow rate, pressure, mass speciphic enthalpy).

Numerical experiments indicate that the perturbation results hold for the nonlinear system,
too. It would be interested to know if such results can be proved strictly in the nonlinear case.
Because of the ill-posedness of the underlying systems linearization arguments will not do.
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