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1. Introduction. The seeded sublimation growth technique, which is also known as ”physi-
cal vapor transport” (PVT), is nowadays widely used for producing semiconductor single crystal.
The most common design of PVT systems is to place the polycrystalline powder source under a
low-pressure inert gas atmosphere at the bottom of a cavity inside a graphite crucible. At high tem-
peratures of 2000-3000 K and low pressure, the polycrystalline powder sublimates, and the resulting
gas diffuses to the relatively cold seed at top of the cavity. Hereafter, crystallization takes place, see
[18, 19] for further details. One of the main factors influencing the quality of the produced crystal
is the temperature distribution in the growth system. In particular, the temperature gradient close
to the surface of the growing crystal plays a significant role on the growth rate as well as on the
quality of the resulting crystal, cf. [25].

In the recent years, some efforts were made in optimizing the growth process. We only refer
to [21, 22], where the temperature gradient inside the cavity is optimized by directly controlling
the heat sources in the crucible. In [23], the corresponding model is extended by including point-
wise inequality constraints on the temperature to ensure sublimation of the source powder and
crystallization at the seed. As these additional constraints represent pointwise state constraints,
this extension significantly increases the complexity of the problem. The first- and second-order
analysis for the associated control problem is performed in [23]. Based on these results, we here
focus on the numerical treatment of the problem. To be more precise, a regularization in the spirit
of [16] is under consideration. In our framework, we consider a fairly simplified geometry: The
solid graphite crucible and the cavity inside the crucible are denoted by open bounded domains Ωg

and Ωs, respectively. The outer and interface boundaries denoted by Γ0 := ∂Ω and Γr := Ωs ∩Ωg,
respectively. An exemplary two-dimensional domain is depicted in Figure 1.1.
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Fig. 1.1. An exemplary two-dimensional domain

As in [21, 22, 23], we optimize the gradient temperature in the gas phase Ωg by controlling the
heat source u in the solid phase Ωs. The objective functional, considered here, reads as follows:

(P) minimize J(u, y) :=
1
2

∫
Ωg

|∇y − z|2 dx +
β

2

∫
Ωs

u2 dx,

where y denotes the temperature and the desired temperature gradient z ∈ L2(Ωg) is assumed to
be fixed. As it is essential to account for radiation due to the high temperature, y is given by the
solution of the stationary heat equation with radiation interface and boundary conditions on Γr

and Γ0, respectively:

(SL)



−div(κs∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

(
∂y

∂nr

)
g

− κs

(
∂y

∂nr

)
s

= qr on Γr

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0,

where n0 is the outward unit normal on Γ0, and nr is the unit normal on Γr facing outward with
respect to Ωs. Furthermore, σ represents the Boltzmann radiation constant, ε is the emissivity,
and κs, κg denote the thermal conductivities in Ωs, Ωg, respectively. Moreover, qr denotes the
additional radiative heat flux on Γr. For a detailled description of the model see [24]. In addition
to the stationary semilinear heat equation, the optimization is subject to the following pointwise
state- and control-constraints:

(1.1)
ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs,
ya(x) ≤ y(x) ≤ yb(x) a.e. in Ωg,

y(x) ≤ ymax(x) a.e. in Ωs.

Here, ua and ub reflect the minimum and maximum heating power. Furthermore, y|Ωs
has to be

bounded by ymax to avoid melting of the solid components of crucible in Ωs. Finally, as mentioned
above, the state-constraints in Ωg are required to ensure sublimation of the polycrystalline powder
and crystallization at the seed, respectively. The first- and second-order analysis for (P ) has
been carried out quite recently in [23]. In order to obtain the Karush-Kuhn-Tucker (KKT) type
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optimality conditions, the constraints, imposed on the state y in (1.1), have to be considered in
the space of continuous functions, denoted by C(Ω). In other words, we require the continuity of
the solutions to (SL) for the optimality conditions for (P ). In fact, based on maximum elliptic
regularity results (see [12, 11]), the continuity of the state y is shown in [23]. Hereafter, first-
order optimality conditions for (P ) were derived. Furthermore, second-order sufficient optimality
conditions for (P ) are presented in [23]. The corresponding arguments basically follow a recent
work of Casas et al. [8]. As demonstrated in [23], the Lagrange multipliers associated with the
state-constraints of (P ) are elements of the dual space C(Ω)∗. Consequently, they are in general
nonregular and might have measure type components, cf. also [6, 7] or Alibert and Raymond [2] for
general state-constrained problems. Therefore, direct application of semismooth Newton methods,
or equivalently primal-dual active set strategies [13, 17] to the control problem (P ) is not possible.

We overcome this obstacle by utilizing a ”Moreau-Yosida” type regularization approach that
removes the pointwise state inequality constraints of (P ) by adding a penalty term to the objective
functional of (P ). Notice that the Moreau-Yosida type regularization for state-constratined control
problems was originally introduced by Ito and Kunisch [16], see also [14, 15, 4, 5]. We investigate the
regularized problem analytically. Essentially, we show the convergence of the regularized problems
in the following sense:

If ū ∈ L2(Ωs) is a local solution of (P ) satisfying the second-order sufficient optimality con-
ditions for (P ), then there exists a sequence of local solutions of regularized problems converging
strongly in L2(Ωs) to ū, as the penalty parameter tends to infinity.

The paper is organized as follows: First, we introduce the general assumptions as well as the
notation used throughout the paper. Then, in Section 2 and 3, we recall some important results
concerning with the optimality conditions for (P ). Afterwards, a Moreau-Yosida type regularization
is introduced in Section 4. Section 5 is devoted the convergence analysis. Finally, in the last part
of the paper, some numerical results are presented.

1.1. General Assumptions and Notation. We start by introducing the general assump-
tions of the problem statement including the notation used throughout this paper. If V is a linear
normed function space, then we use the notation ‖ · ‖V for a standard norm used in V . The dual
space of V is denoted by V ∗ and for the associated duality pairing, we write < . , . >V ∗,V . If it is
obvious in which spaces the respective duality pairing is considered, then the subscript is occasion-
ally neglected. Now, given another linear normed space Y , the space of all bounded linear operators
from V to Y is defined by B(V, Y ). For an arbitrary A ∈ B(V, Y ), the associated adjoint operator
of A is denoted by A∗ ∈ B(Y ∗, V ∗), and for its inverse, if it exists, we write A−∗ := (A∗)−1. By
C(Ω), we define all continuous function on Ω. We identify the dual space C(Ω)∗ with the space of
real regular Borel measures on Ω, devoted M(Ω). Now, concerning the data specified in (P), we
impose the following assumptions:

Assumption 1.1.

(A1) The domain Ω ⊂ RN , N ∈ {2, 3}, is a bounded open domain with a Lipschitz boundary Γ0.
Moreover, Ωg ⊂ Ω is an open subset of Ω with a boundary Γr ⊂ Ω. In two-dimensional
case, Γr is assumed to be a closed Lipschitz surface and piecewise C1,δ, whereas it is of
class C1 in the three-dimensional case. The subdomain Ωs is defined by Ωs = Ω \Ωg. The
distance of Γr to Γ0 is supposed to be positive.

(A2) The desired temperature gradient z is given in L2(Ωg)N and β > 0 is a fixed constant.
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(A3) The fixed function κ ∈ L∞(Ω) in the semilinear equation (SL) is defined by

κ(x) =
{

κs(x) if x ∈ Ωs,
κg(x) if x ∈ Ωg,

where κs ∈ L∞(Ωs) and κg ∈ L∞(Ωg) representing the thermal conductivity of solid and
gas, respectively. Moreover, κ satisfies κ(x) ≥ κmin a.e. in Ω with a fixed positive real
number κmin.

(A4) By ε ∈ L∞(Γ0∪Γr), we denote the emissivity satisfying 0 < εmin ≤ ε(x) ≤ 1 a.e. on Γr∪Γ0.
The term σ represents the Boltzmann radiation and is assumed to be a positive real number.
The inhomogeneity on the boundary Γ0 is given by a fixed function y0 ∈ L∞(Γ0) satisfying
y0(x) ≥ θ a.e. on Γ0 with θ ∈ R+ \ {0}.

(A5) The bounds in the state constraints are ymax ∈ C(Ωs) and ya, yb ∈ C(Ωg) with ymax(x) ≥ θ
for all x ∈ Ωs and yb(x) > ya(x) ≥ θ for all all x ∈ Ωg. Further, ymax(x) > ya(x) for
all x ∈ Γr. For the control-constraints, we assume ua, ub ∈ L2(Ω) with 0 ≤ ua(x) < ub(x)
a.e. in Ωs.

The trace operators on Γr and Γ0 are denoted by τr and τ0, respectively. Throughout the paper,
they are considered with different domains and ranges. For simplicity, the associated operators are
always called τr and τ0 and we will mention their respective domains and ranges, if it is important.

2. Optimal control problem. Let us start by recalling some definitions regarding the non-
local radiation on Γr.

Definition 2.1. The radiative heat flux qr on Γr is defined by

qr = (I −K)(I − (1− ε)K))−1εσ|y3|y := Gσ|y3|y,

where the integral operator K is defined by

(Ky)(x) =
∫

Γr

ω(x, z)y(z) dsz,

with a symmetric kernel ω. In the case of a two-dimensional domain, the kernel ω is given by

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

2|z − x|3
, ∀x, z ∈ Γr,

and in the case of a three-dimensional domain by

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

π|z − x|4
, ∀x, z ∈ Γr.

Notice that Ξ denotes the visibility factor which is defined by

Ξ(x, z) =
{

0 if xz ∩ Ωg 6= ∅,
1 if xz ∩ Ωg = ∅.

For the properties of ω and K, we refer the reader to Tiihonen and Laitinen, [26]. The following
lemma provides some significant properties of the operator G, which will be useful for our analysis
(see [20, Lemma 8] for the proof).
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Lemma 2.1. The operator G := (I −K)(I − (1− ε)K)−1ε is linear and bounded form Lp(Γr)
to Lp(Γr) for all 1 ≤ p ≤ ∞.

In the following, we define the weak formulation of the state equation (SL) that is obtained by
formal integration of (SL) by parts over the boundaries Γr and Γ0.

Definition 2.2. Let q > N and q′ > 0 such that 1
q + 1

q′ = 1.

(i) The operator Aq : W 1,q(Ω) → W 1,q′(Ω)∗ is defined by

< Aq(y), v >:=
∫

Ω

κ∇y · ∇v dx +
∫

Γr

(Gσ|y|3y)v ds +
∫

Γ0

εσ|y|3yv ds ∀v ∈ W 1,q(Ω),

(2.1)

where we specify G : Ls(Γr) → Ls(Γr) with s ∈ R such that 1
s + 1

s′ = 1. Here, s′ = (N−1)q′

N−q′ .
(ii) The operators Eq,s : L2(Ωs) → W 1,q′(Ω)∗ and Eq,0 : L∞(Γ0) → W 1,q′(Ω)∗ are defined by

< Eq,s u, v > :=
∫

Ωs

uv dx, ∀v ∈ W 1,q′(Ω),

< Eq,0 z, v > :=
∫

Γ0

zv ds, ∀v ∈ W 1,q′(Ω).

(iii) A function y ∈ W 1,q(Ω) is called a (weak) solution of (SL), if it satisfies

Aq(y) = Eq,s u + Eq,0 εσy4
0 in W 1,q′(Ω)∗.(2.2)

Notice that for q > N , W 1,q(Ω) is continuously embedded to C(Ω) and hence y|Γr
∈ L∞(Γr) and

y|Γ0
∈ L∞(Γ0) hold true for every y ∈ W 1,q(Ω). Furthermore, it is well known that the trace

operators τr is continuous from W 1,q′(Ω) to Ls′(Γr) for s′ = (N−1)q′

N−q′ (s′ > 1 since q > N). For this
reason, (2.1) is well-defined for all y ∈ W 1,q(Ω). Further, we point out that Aq is twice-continuously
Fréchet-differentiable from W 1,q(Ω) to W 1,q′(Ω)∗ (see [23]). Its first derivative at ȳ ∈ W 1,q(Ω) is
given by

< A′
q(ȳ)y, v >=

∫
Ω

κ∇y · ∇v dx + 4
∫

Γr

(Gσ|ȳ|3y)v ds + 4
∫

Γ0

εσ|ȳ|3yv ds ∀v ∈ W 1,q′(Ω).(2.3)

The second derivative of Aq at ȳ ∈ W 1,q(Ω) in the directions y1, y2 ∈ W 1,q(Ω) is given by

< A′′
q (ȳ)[y1, y2], v >= 12

∫
Γr

(Gσ|ȳ|ȳ y1y2)v ds + 12
∫

Γ0

εσ|ȳ|ȳ y1y2 v ds ∀v ∈ W 1,q′(Ω).(2.4)

The investigation of existence and uniqueness of solutions to (2.2) has been carried out in [23,
Theorem 2.1], where it is shown there exists a q = q0 ∈ (N, 6) such that for every u ∈ L2(Ωs),
the variational equation (2.2) admits a unique solution y ∈ W 1,q(Ω). For the rest of this paper,
we fix therefore q = q0 (and hence q′ = 1 + 1

1−q = 1 + 1
1−q0

). Based on this result, we define
the control-to-state-operator by G : L2(Ωs) → W 1,q(Ω) that assigns to each u ∈ L2(Ωs) the weak
solution y ∈ W 1,q(Ω) of (SL). With this setting at hand, the optimal control problem (P ) can
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equivalently be stated as follows:

(P)


min
u∈U

f(u) := J(u,G(u))

subject to ya ≤ G(u) ≤ yb a.e. in Ωg,

G(u) ≤ ymax a.e. in Ωs,

where U := {u ∈ L2(Ωs) | ua ≤ u ≤ ub a.e. in Ωs}. Furthermore, the differentiability of G was
established in [23] by utilizing the Fredholm theorem. To demonstrate this, consider an arbitrarily
fixed ū ∈ U and set ȳ = G(ū). Let us introduce a linear operator F (ȳ) : L∞(Γr) → W 1,q′(Ω)∗ by

< F (ȳ)y, v >:= 4
∫

Γr

(Gσ|ȳ|3y)v ds ∀v ∈ W 1,q′(Ω).

Moreover, we define the operator B(ȳ) : W 1,q(Ω) → W 1,q′(Ω)∗ by

< B(ȳ)y, v >:=
∫

Ω

κ∇y · ∇v dx +
∫

Γ0

4εσ |ȳ3|yv ds, y ∈ W 1,q(Ω), v ∈ W 1,q′(Ω).

In [23, Lemma 2.1], it is shown that B(ȳ) is continuously invertible. Thus,

F(ȳ) := τrB(ȳ)−1F (ȳ)

is well defined as an operator from L∞(Γr) to L∞(Γr). Notice that τr is compact from W 1,q(Ω) to
L∞(Γr) (see [1]). Hence, F(ȳ) is compact as well.

Definition 2.3. We say that ū ∈ L2(Ωs) satisfies the ”eigenvalue restriction” if λ = −1 is not
an eigenvalue of F(ȳ).

In [23], it is shown that this assumption implies the Fréchet-differentiability of G. We summarize
the results in the following:

Theorem 2.1. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs and denote the associated state by
ȳ = G(ū).

(i) If ū satisfies the eigenvalue restriction, then the operator A′
q(ȳ) : W 1,q(Ω) → W 1,q′(Ω)∗ is

continuously invertible, i.e., A′
q(ȳ)−1 ∈ B(W 1,q′(Ω)∗,W 1,q(Ω)).

(ii) If A′
q(ȳ) : W 1,q(Ω) → W 1,q′(Ω)∗ is continuously invertible, then there exists an open neigh-

borhood B(ū) of ū in L2(Ωs) such that G : L2(Ωs) → W 1,q(Ω) is on B(ū) twice contin-
uously Fréchet-differentiable. The first derivative of G at ū is given by G′(ū)u = y where
y = A′

q(ȳ)−1Eq,su, i.e., y ∈ W 1,q(Ω) is the unique solution of∫
Ω

κ∇y∇vdx + 4
∫
Γr

(Gσ|yγ |3y)vds + 4
∫
Γ0

εσ|yγ |3yvds =
∫
Ωs

uvdx ∀v ∈ W 1,q′(Ω).

For the details, we refer the reader to [23], Theorem 3.1, Theorem 3.2. In view of the inverse
function theorem, we infer from the above theorem the following result:

Corollary 2.1. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs and let ȳ = G(ū). Furthermore,
suppose that ū satisfies the eigenvalue restriction. Then, there exists an open Neighborhood Uȳ of
ȳ in W 1,q(Ω) such that for every y ∈ Uȳ, A′

q(y) : W 1,q(Ω) → W 1,q′(Ω)∗ is continuously invertible.
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We close this section by presenting an auxiliary result that is useful for our analysis.

Theorem 2.2. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs. Further, suppose that ū satisfies the
eigenvalue restriction. Then, the solution operator G : L2(Ωs) → W 1,q(Ω) is completely continuous
at ū.

Proof. First of all, let us demonstrate that Eq,s : L2(Ωs) → W 1,q′(Ω)∗ is completely continuous.
Let {ûn}∞n=1 ⊂ L2(Ωs) be a sequence converging weakly to û ∈ L2(Ωs). Further, set Eq,sûn = ω̂n

and Eq,sû = ω̂. We now show that {ω̂n}∞n=1 converging strongly to ω̂ in W 1,q′(Ω)∗. By the definition
of Eq,s, one has for all n ∈ N :

(2.5) 0 ≤ ‖ω̂n − ω̂‖W 1,q′ (Ω)∗ = sup
‖v‖

W1,q′≤1

|
∫

Ωs

(ûn − û)v dx|.

For each n ∈ N, one can show by standard arguments the existence of vn ∈ W 1,q′(Ω) with
‖vn‖W 1,q′ ≤ 1 such that

sup
‖v‖

W1,q′≤1

|
∫

Ωs

(ûn − û)v dx| = |
∫

Ωs

(ûn − û)vn dx|.

Obviously, the resulting sequence {vn}∞n=1 is uniformly bounded in W 1,q′(Ω) and hence there exists
a subsequence of {vn}∞n=1, w.l.o.g. again denoted by {vn}∞n=1, converging weakly to a v̂ ∈ W 1,q′(Ω).
Thus, the compactness of the embedding W 1,q′(Ω) ⊂ L2(Ω) (notice that q′ = 1 + 1

q−1 > 6
5 )

implies that {vn}∞n=1 converges strongly in L2(Ω) to v̂. For this reason, we obtain due to the weak
convergence of un to û:

lim
n→∞

|
∫

Ωs

(ûn − û)vn dx| = 0.

Thus, (2.5) implies that

0 ≤ lim ‖ω̂n − ω̂‖W−1,q(Ω)∗ = lim
n→∞

|
∫

Ωs

(ûn − û)vn dx| = 0.

Hence, Eq,s : L2(Ωs) → W 1,q′(Ω)∗ is completely continuous.

Let {un}∞n=1 ⊂ L2(Ωs) be given converging weakly to ū. Moreover, for each n ∈ N, we set
yn = G(un). Our goal now to show that yn converges strongly to ȳ := G(ū) in W 1,q(Ω), as n →∞.
To this purpose, let us introduce the operator T : W 1,q(Ω)×W 1,q′(Ω)∗ → W 1,q′(Ω)∗ by

T (y, ω) = Aq(y)− ω.

We define the element ω̄ ∈ W 1,q′(Ω)∗ by ω̄ = Eq,s ū + Eq,0 εσy4
0 . Furthermore, we set ȳ = G(ū),

i.e., ȳ ∈ W 1,q(Ω) is the unique solution of

Aq(ȳ) = Eq,s ū + Eq,0 εσy4
0 .

Hence, we obtain T (ȳ, ω̄) = 0. Moreover, since ū satisfies the eigenvalue restriction, Theorem 2.1
ensures that ∂yT (ȳ, ω̄)−1 = Aq(ȳ)−1 ∈ B(W 1,q′(Ω)∗,W 1,q(Ω)). Consequently, the implicit theorem
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implies the existence of an open neighborhood Uw̄ of w̄ in W 1,q′(Ω)∗ and an open neighborhood Uȳ

of ȳ in W 1,q(Ω) such that the inverse operator

A−1
q : W 1,q′(Ω)∗ ⊃ Uw̄ → Uȳ ⊂ W 1,q(Ω)

is well-defined and continuous.

Since Eq,s : L2(Ωs) → W 1,q(Ω) is completely continuous and since un converging weakly in
L2(Ωs) to ū, we have

lim
n→∞

(Eq,s un + Eq,0 εσy4
0) = Eq,s ū + Eq,0 εσy4

0 = w̄ in W 1,q′(Ω)∗.

In particular, there exists n̄ ∈ N such that

(2.6) (Eq,s un + Eq,0 εσy4
0) ∈ Uw̄ ∀n ≥ n̄.

On the other hand, based on the definition of G, yn ∈ W 1,q(Ω) is given by the unique solution of

Aq(yn) = Eq,s un + Eq,0 εσy4
0 .

Therefore, by (2.6)

yn = A−1
q (Eq,s un + Eq,0 εσy4

0), ∀n ≥ n̄.

Therefore, utilizing the continuity of A−1
q : Uw̄ → W 1,q(Ω) and the complete continuity of Eq,s we

obtain:

lim
n→∞

yn = lim
n→∞

A−1
q (Eq,s un + Eq,0 εσy4

0) = A−1
q (Eq,s ū + Eq,0 εσy4

0) = ȳ in W 1,q(Ω).

Thus, the theorem is verified.

3. Optimality conditions for (P ). In a standard way, one shows that (P ) admits a solution
provided that there exists a feasible control u of (P ). However, due to the nonlinearity of the state
equation (SL), we cannot expect the uniqueness of the solution to (P ). Therefore, let us introduce
the notion of local solutions for (P ):

Definition 3.1. A feasible control ū of (P ) is called local solution for (P), if there exists a
positive real number ε such that f(ū) ≤ f(u) holds for all feasible controls u of (P ) with ‖u −
ū‖L2(Ωs) ≤ ε.

Thanks to the embedding W 1,q(Ω) ⊂ C(Ω), the following Slater assumption makes sense:

Definition 3.2. Let ū ∈ U satisfying the eigenvalue restriction. Then, we say that ū satisfies
the linearized Slater condition for (P), if there exists an interior point u0 ∈ U such that

ya(x) + δ ≤ G(ū)(x) + G′(ū)(u0 − ū)(x) ≤ yb(x)− δ ∀x ∈ Ωg,

G(ū)(x) + G′(ū)(u0 − ū)(x) ≤ ymax(x)− δ ∀x ∈ Ωs,

with a fixed positive real number δ.

Let us now present the first-order necessary optimality system for (P ), cf. [23, Theorem 5.2].
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Theorem 3.1 (First-order necessary optimality conditions for (P )). Let ū ∈ L2(Ωs) be
an optimal solution of (P) with associated state ȳ = G(ū) ∈ W 1,q(Ω), q > N . Suppose further that
ū satisfies the eigenvalue restriction (Definition 2.3) and the linearized Slater conditions (Definition
3.2). Then, there exist an adjoint state p ∈ W 1,q′(Ω), q′ < N

N−1 , and Lagrange multipliers µs ∈
M(Ωs), µa

g , µb
g ∈M(Ωg) satisfying

(SL)

8>>>>>>>><>>>>>>>>:

−div(κs ∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

„
∂y

∂nr

«
g

− κs

„
∂y

∂nr

«
s

= qr on Γr

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0,

(3.1)

8>>>>>>>>><>>>>>>>>>:

−div(κg∇p) = −∆ȳ + div z + (µb
g − µa

g)|Ωg in Ωg,

−div(κs∇p) = µs|Ωs in Ωs,

κg

„
∂p

∂nr

«
g

− κs

„
∂p

∂nr

«
s

− 4σ|ȳ|3G?p = − ∂ȳ

∂nr
+ z · nr

+ (µb
g − µa

g + µs)|Γr

on Γr,

κs
∂p

∂n0
+ 4εσ|ȳ|3p = µs|Γ0 on Γ0,

µs ≥ 0, µa
g ≥ 0, µb

g ≥ 0,(3.2) Z
Ωs

G(ū)− ymax dµs =

Z
Ωg

ya − G(ū) dµa
g =

Z
Ωg

G(ū)− yb dµb
g = 0,(3.3)

ū = Pad

˘
− 1

β
p(x)

¯
,(3.4)

where Pad : L2(Ωs) → L2(Ωs) denotes the pointwise projection operator on the admissible set U .

Here, the PDEs (SL) and (3.1) are considered in a variational sense, cf. Definition 2.2 and [23].
Next, we continue with second-oder sufficient optimality conditions for (P ) that was derived in [23].

Definition 3.3. Let ū ∈ U be a feasible control of (P) with the associated state G(ū) = ȳ. We
assume that there exist µa

g , µb
g ∈ M(Ωg), µs ∈ M(Ωs) and p ∈ W 1,q′(Ω), 1 ≤ q′ ≤ N/(N − 1),

satisfying (3.1)-(3.4).

(i) The convex, closed subset Hū ⊂ L2(Ωs) is given by:

Hū :=
{
h ∈ L2(Ωs) | h(x) =

{
≥ 0 if ū(x) = ua(x)
≤ 0 if ū(x) = ub(x)

}
.

(ii) The subset Cū ⊂ Hū is defined as follows:

Cū = {h ∈ Hū | h satisfies (3.5), (3.6) and (3.7)}
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h(x) = 0 if p(x) + βū(x) 6= 0(3.5)

yh(x) =


≥ 0 if ȳ(x) = ya(x), x ∈ Ωg

≤ 0 if ȳ(x) = yb(x), x ∈ Ωg

≤ 0 if ȳ(x) = ymax(x), x ∈ Ωs

(3.6)

∫
Ω̄g

yh dµa
g =

∫
Ω̄g

yh dµb
g =

∫
Ω̄s

yh dµs = 0,(3.7)

where yh = G′(ū)h.
(iii) We say that ū satisfies the second order sufficient condition (SSC) if

(SSC)
∂2L
∂u2

(ū, µ)h2 > 0

holds true for every h ∈ Cū \ {0}.
Theorem 3.2 (Second-order sufficient optimality conditions for (P )). Let ū ∈ U be a

feasible control of (P) satisfying the eigenvalue restriction (Definition 2.3). Furthermore, suppose
that there exist µa

g , µb
g ∈ M(Ωg), µs ∈ M(Ωs) and p ∈ W 1,q′(Ω), 1 ≤ q′ ≤ N/(N − 1) satisfying

(3.1)-(3.4). If ū additionally satisfies (SSC), then there exist positive real numbers ε and δ such
that

f(ū) +
δ

2
‖u− ū‖2L2(Ωs) ≤ f(u),

holds true for every feasible control u of (P) with ‖u− ū‖L2(Ωs) < ε.

We underline that the above result does not exhibit any two-norm discrepancy and thus Theorem
3.2 guarantees local optimality in ”L2-neighborhood”, cf. also [8].

4. Moreau-Yosida type regularization. As pointed out in the Introduction, the basic
concept of the Moreau-Yosida type regularization is to remove the pointwise state constraints (1.1)
and to add a corresponding Lagrangian-type penalty to the objective functional of (P ), cf. [16].
More precisely, we regularize (P ) in the following way:

(Pγ)


min

u∈L2(Ωs)
fγ(u)

over u ∈ L2(Ωs)
subject to ua ≤ u ≤ ub a.e. in Ωs.

The objective functional in (Pγ) is defined as follows:

fγ(u) := f(u) +
1

2γ1

∫
Ωg

max
(
0, γ1(G(u)− yb)

)2
dx +

1
2γ2

∫
Ωg

max
(
0, γ2(ya − G(u)

)
)2dx

+
1

2γ3

∫
Ωs

max
(
0, γ3(G(u)− ymax)

)2
dx,

(4.1)

where γ = (γ1, γ2, γ3) with γi > 0 for i = 1, 2, 3. Notice that we write γ > 0 if and only if γi > 0
for all i = 1, 2, 3. Moreover, the notation γ →∞ means that (γ1, γ2, γ3) → (∞,∞,∞).
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Hereafter, one obtains an optimal control problem (Pγ) with pure control-constraints. Since U
is not empty, it can be shown by standard arguments that (Pγ) is solvable for all γ > 0. Similarly
to (P ), the solution to (Pγ) is not necessarily unique. Therefore, in our study we concentrate on
investigating local solutions to (Pγ).

Definition 4.1. Let γ > 0. A function uγ ∈ U is called a local solution to (Pγ) if

fγ(uγ) ≤ fγ(u)

holds true for all u ∈ U satisfying ‖u− uγ‖L2(Ωs) ≤ ε, for some ε > 0.

Theorem 4.1 (First-order necessary optimality conditions for (Pγ)). Let γ > 0 and
let uγ ∈ L2(Ωs) be a local solution of (Pγ) with the associated state yγ = G(uγ). Moreover, suppose
that uγ satisfies the eigenvalue restriction (Definition 2.3). Then, there exist an adjoint state
pγ ∈ W 1,q′(Ω), Lagrange multipliers µa

g,γ , µb
g,γ ∈ L2(Ωg) and µs,γ ∈ L2(Ωs) such that

(4.2)



−div(κg∇yγ) = 0 in Ωg,

−div(κs∇yγ) = uγ in Ωs,

κg(
∂yγ

∂nr
)g − κs(

∂yγ

∂nr
)s = Gσ|yγ |3yγ on Γr,

κs
∂yγ

∂n0
+ εσ|yγ |3yγ = εσy4

0 on Γ0,

(4.3)



−div(κg∇pγ) = −∆yγ + div z + µb
g,γ − µa

g,γ in Ωg,

−div(κs∇pγ) = µs,γ in Ωs,

κg(
∂pγ

∂nr
)g − κs(

∂pγ

∂nr
)s − 4(σ|yγ |3)G∗pγ = −∂yγ

∂nr
+ z · nr on Γr,

κs
∂pγ

∂n0
+ 4εσ|yγ |3pγ = 0 on Γ0,

µb
g,γ = max

(
0, γ1(yγ |Ωg

− yb)
)
, µa

g,γ = max
(
0, γ2(ya − yγ |Ωg

)
)
,

µs,γ = max
(
0, γ3(yγ |Ωs

− ymax)
)
,

(4.4) uγ = P[ua,ub]

{
− 1

β
pγ(x)

}
hold in variational sense.

Proof. Let γ > 0 and let uγ ∈ L2(Ωs) be an optimal solution to (Pγ) satisfying the eigenvalue
restriction. The associated state of uγ is denoted by yγ = G(uγ) ∈ W 1,q(Ω) and we define:

µb
g,γ = max

(
0, γ1(yγ |Ωg

−yb)
)
, µa

g,γ = max
(
0, γ2(ya−yγ |Ωg

)
)
, µs,γ = max

(
0, γ3(yγ |Ωs

−ymax)
)
.

By integrating formally by parts over the boundaries Γr and Γ0, we obtain the weak formulation
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of (4.3), given by∫
Ω

κ∇pγ∇vdx + 4
∫
Γr

(σ|yγ |3)G∗pγvds + 4
∫
Γ0

εσ|yγ |3pγvds =
∫
Ωg

(∇yγ − z) · ∇vdx

+
∫
Ωg

(µb
g,γ − µa

g,γ)vdx +
∫
Ωs

µs,γvdx ∀v ∈ W 1,q(Ω).
(4.5)

We point out that since yγ ∈ W 1,q(Ω), µb
g,γ , µa

g,γ , z ∈ L2(Ωg) and µs,γ ∈ L2(Ωs), the right hand
side of (4.5) defines an element ξ ∈ W 1,q(Ω)∗ with

< ξ, v >:=
∫
Ωg

(∇yγ − z) · ∇vdx +
∫
Ωg

(µb
g,γ − µa

g,γ)vdx +
∫
Ωs

µs,γvdx ∀v ∈ W 1,q(Ω).

Therefore, the weak formulation (4.5) can equivalently be written as follows (see the representation
of A′

q in (2.3))

(4.6) A′
q(yγ)∗pγ = ξ in W 1,q(Ω)∗.

Since uγ satisfies the eigenvalue restriction, Theorem 2.1 implies that A′
q(yγ) is continuously in-

vertible from W 1,q(Ω) to W 1,q′(Ω)∗ and hence A′
q(yγ)∗ is continuously invertible from W 1,q′(Ω) to

W 1,q(Ω)∗. Therefore, (4.5) admits a unique solution pγ ∈ W 1,q′(Ω). It remains to show that the
solution pγ of (4.5) satisfies the projection formula in (4.4).

According to Theorem 2.1, fγ is continuously differentiable at uγ and the derivative of fγ at
uγ in the direction (u− uγ) with an arbitrary u ∈ U is given by

f ′(uγ)(u− uγ) = (∇yγ − z,∇y)
L2(Ωg)

+ β(uγ , u− uγ)
L2(Ωs)

+(µb
g,γ − µa

g,γ , y)
L2(Ωg)

+ (µs,γ , y)
L2(Ωs)

,
(4.7)

with y = G′(uγ)(u − uγ). Hence by the definition of G′(uγ) in Theorem 2.1, y ∈ W 1,q(Ω) is the
unique solution of

(4.8)
∫
Ω

κ∇y∇vdx + 4
∫
Γr

(Gσ|yγ |3y)vds + 4
∫
Γ0

εσ|yγ |3yvds =
∫
Ωs

(u− uγ)vdx ∀v ∈ W 1,q′(Ω).

Inserting v = pγ in (4.8), v = y in (4.5) and then subtracting the arising equations, we find that∫
Ωs

(u− uγ)pγdx =
∫
Ωg

(∇yγ − z) · ∇ydx +
∫
Ωg

(µb
g,γ − µa

g,γ)ydx +
∫
Ωs

µs,γydx.

Inserting this in (4.7), we infer hence that

(4.9) f ′(uγ)(u− uγ) = (pγ + βuγ , u− uγ)
L2(Ωs)

.

On the other hand, since the admissible set U = {u ∈ L2(Ωs) | ua ≤ u ≤ ub a.e. in Ωs } is convex,
it is well-known that the necessary optimality condition to the optimal solution uγ is given by the
following variational inequality:

(4.10) f ′(uγ)(u− uγ) ≥ 0 ∀u ∈ U .
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Therefore, since (4.9) holds true for all u ∈ U , we finally arrive at

(pγ + βuγ , u− uγ)
L2(Ωs)

≥ 0 ∀u ∈ U ,

which implies by standard arguments the projection formula (4.4).

Remark 4.1. We point out that if A′(yγ) is invertible, then Theorem 4.1 remains true without
the eigenvalue restriction on the optimal control uγ .

5. Convergence analysis. The goal of this section is to study the convergence behavior of
the regularized solutions of (Pγ) in the case of γ →∞. The convergence of the Moreau-Yosida type
approach was originally proven by Ito and Kunisch in [16]. However, since we consider nonlinear
control problem (P ) with a nonstandard objective functional f , the convergence result from [16] is
not directly applicable to (P ).

It is well known that the unregularized problem (P ) does not admit a unique global solution.
Moreover, optimization algorithms compute in general only local solutions. For this reason, we
focus mainly on the convergence of the regularized solutions to local solutions of unregularized
problem. Suppose that a local solution ū of (P ) is given. We aim at finding a sequence (uγ)γ of
local solutions to (Pγ) converging strongly to ū as γ → ∞. In fact, if ū satisfies the second order
optimality conditions (SSC), then the desired sequence can be found.

Assumption 5.1. Let ū ∈ U be a local solution to (P ) in L2(Ωs) satisfying the eigenvalue
restriction (Definition 2.3), the linearized Slater condition (Definition 3.2) and the second order
sufficient condition (SSC) (Definition 3.3).

Based on Assumption 5.1, Theorem 3.2 implies the existence of positive real numbers ε and δ such
that

(5.1) f(ū) +
δ

2
‖u− ū‖2L2(Ωs) ≤ f(u)

holds true for every feasible control u of (P ) with ‖u− ū‖L2(Ωs) < ε.

Let us introduce now the following auxiliary problem:

(P r
γ )

{
min fγ(u)

subject to u ∈ Ur,

with r = ε
2 and Ur = {u ∈ U | ‖u − ū‖L2(Ωs) ≤ r}. By the construction, ū is a feasible control of

(P r
γ ), for all γ > 0. Thus, (P r

γ ) admits at least one global solution and by ur
γ ∈ Ur, we denote an

arbitrary one of them. Our goal now is to show that ur
γ converges strongly to ū, as γ → ∞. It

should be underlined that the idea of considering an auxiliary problem of the form (P r
γ ) is based

on Casas and Tröltzsch [9].

Since ur
γ ∈ U for all γ > 0, the sequence (ur

γ)γ>0 is uniformly bounded in L2(Ωs). For this
reason, there exists a subsequence of (ur

γ)γ>0, w.l.o.g also denoted by (ur
γ)γ>0, converging weakly

to ũ in L2(Ω). Since Ur is weakly closed, the weak limit ũ belongs to the admissible set Ur. Our
goal now is to show that ũ is a feasible control of (P ).

Lemma 5.1. The weak limit ũ ∈ Ur defined above is feasible for (P ), i.e., the associate state
of ũ, denoted by ỹ = G(ũ), satisfies:

ya ≤ ỹ ≤ yb a.e. in Ωg and ỹ ≤ ymax a.e. in Ωs.
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Proof. Since ū is not only feasible for all (P r
γ ) but also feasible for (P ), we have

fγ(ur
γ) ≤ fγ(ū) = f(ū) ∀γ > 0.

Hence, by the definition of fγ , we find a constant c > 0 independent of γi, i = 1, 2, 3, such that

γ1

2

∫
Ωg

max(0,G(ur
γ)− yb)2dx ≤ c,

γ2

2

∫
Ωg

max(0, ya − G(ur
γ))2dx ≤ c,

γ3

2

∫
Ωs

max(0,G(ur
γ)− ymax)2dx ≤ c.

Consequently, we obtain:

lim
γ1→∞

∫
Ωg

max(0,G(ur
γ)− yb)2dx = 0,

lim
γ2→∞

∫
Ωg

max(0, ya − G(ur
γ))2dx = 0,

lim
γ3→∞

∫
Ωs

max(0,G(ur
γ)− ymax)2dx = 0.

For this reason, Fatou’s Lemma implies

lim
γ1→∞

max(0,G(ur
γ)|Ωg

− yb) = lim
γ2→∞

max(0, ya − G(ur
γ)|Ωg

) = 0,

lim
γ3→∞

max(0,G(ur
γ)|Ωs

− ymax) = 0.
(5.2)

The compactness of the embedding from W 1,q(Ω) to C(Ω) yields

(5.3) lim
γ→∞

G(ur
γ) = G(ũ) = ỹ in C(Ω)

Finally, due (5.2), (5.3) and the continuity of M : C(Ω) → C(Ω), M(z) = max(0, z), we find

max(0, ỹ|Ωg
− yb) = max(0, ya − ỹ|Ωg

) = 0,

max(0, ỹ|Ωs
− ymax) = 0,

which implies:

ya ≤ ỹ ≤ yb a.e. in Ωg and ỹ ≤ ymax a.e. in Ωs

and hence the lemma is verified.

Theorem 5.1. The sequence (ur
γ)γ>0 converges strongly in L2(Ω) to ū as γ →∞.

Proof. First, since ū is feasible for all (P r
γ ) and also feasible for (P ),

(5.4) f(ur
γ) ≤ fγ(ur

γ) ≤ fγ(ū) = f(ū)
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holds true for all γ > 0. Therefore, owing to the lower semi-continuity of f , we have by passing to
the limit γ →∞:

(5.5) f(ũ) ≤ lim inf
γ→∞

f(ur
γ) ≤ lim sup

γ→∞
f(ur

γ) ≤ f(ū).

On the one hand, due to Assumption 5.1 Theorem 3.2 implies that

(5.6) f(ū) +
δ

2
‖u− ū‖2L2(Ωs) ≤ f(u)

holds true for every feasible control u of (P ) with ‖u− ū‖L2(Ωs) < ε. Moreover, by Lemma 5.1, the
weak limit ũ is a feasible control of (P ) and it satisfies

‖ũ− ū‖L2(Ωs) ≤ r =
ε

2
.

For this reason, (5.6) is particularly satisfied for the choice u = ũ and thus (5.5) implies

f(ũ) +
δ

2
‖ũ− ū‖2L2(Ωs) ≤ f(ū) +

δ

2
‖ũ− ū‖2L2(Ωs) ≤ f(ũ).

Consequently, ũ = ū.

Now, let us show that (ur
γ)γ>0 converges strongly to ū as γ → ∞. From (5.5) and (5.6), we

infer

(5.7) ‖∇ȳ− z‖2L2(Ωg) + ‖ū‖2L2(Ωs) = f(ū) = lim
γ→∞

f(ur
γ) = lim

γ→∞
(‖∇G(ur

γ)− z‖2L2(Ωg) + ‖ur
γ‖2L2(Ωs)).

Since ur
γ converges weakly to ū and since ū satisfies the eigenvalue restriction, Theorem 2.2 implies

that G(ur
γ) converges strongly to ȳ in W 1,q(Ω) and consequently

lim
γ→∞

‖∇G(ur
γ)− z‖2L2(Ωg) = ‖∇ȳ − z‖2L2(Ωg)

Thus, (5.7) implies

lim
γ→∞

‖ur
γ‖2L2(Ωs) = ‖ū‖2L2(Ωs)

and hence due to the weak convergence of (ur
γ)γ>0 to ū as γ →∞, the theorem is verified.

We have shown the existence of a sequence (ur
γ)γ>0 of global solutions to (P r

γ ) converging strongly
to ū in L2(Ωs). In the following, we show that for all sufficiently large γ > 0, ur

γ is a local solution
of (Pγ).

Lemma 5.2. For all sufficient large γ > 0, ur
γ is a local solution of (Pγ).

Proof. Let u ∈ U with ‖u − ur
γ‖L2(Ωs) ≤ r

2 . Then, for sufficient large γ > 0, we obtain due to
the strong convergence of ur

γ to ū, as γ →∞:

(5.8) ‖u− ū‖L2(Ωs) ≤ ‖u− ur
γ‖L2(Ωs) + ‖ur

γ − ū‖L2(Ωs) ≤
r

2
+

r

2
= r.

Consequently, we have u ∈ Ur and hence since ur
γ is a global solution to (P r

γ ), we infer:

fγ(ur
γ) ≤ fγ(u).
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Alltogether, we have just shown for all sufficiently large γ > 0 :

fγ(ur
γ) ≤ fγ(u)

holds true for all u ∈ U ∩ B r
2
(ur

γ) with B r
2
(ur

γ) = {u ∈ L2(Ωs) | ‖u− ur
γ‖L2(Ωs) ≤ r

2}. Thus, ur
γ is

a local solution of (Pγ).

Collecting the results above, we finally arrive at the following theorem:

Theorem 5.2. Let ū be a local solution of (P ) satisfying Assumption 5.1. Then there exists a
sequence (uγ)γ>0 of local solutions to (Pγ) converging strongly to ū as γ → ∞. Moreover, for all
sufficiently large γ, the first-order necessary optimality conditions for (Pγ) are satisfied for uγ .

Proof. Let ū be a local solution of (P ) satisfying Assumption 5.1. By Theorem 5.1 and Lemma
5.2, we have shown the existence of a sequence (uγ)γ>0 of local solutions to (Pγ) converging strongly
to ū as γ → ∞. Further, we define yγ = G(uγ). Hence, yγ converges strongly to ȳ in W 1,q(Ω),
as γ → ∞. Consequently, since ū satisfies the eigenvalue restriction, Corollary 2.1 implies the
existence of a positive real number γ̄ such that A′

q(yγ) is continuously invertible for every γ > γ̄.
This particularly implies that for every γ > γ̄, the first-order necessary optimality conditions for
(Pγ) are satisfied for uγ , cf. Remark 4.1.

6. Numerical verification. Mainly due to the lack of sufficient regularity of the Lagrange
multipliers associated to (P ), the semismooth Newton method cannot directly be used to solve
the model problem (P ). This difficulty was already overcome by the regularization. Thanks to
the L2-regularity of the Lagrange multipliers associated to (Pγ), semismooth Newton methods are
applicable to (Pγ), for all γ ∈ R+. We point out that semismooth Newton methods for nonlinear
control-constrained control problems are basically equivalent to the primal-dual active-set strategy,
where the linearization of the optimality system is solved only one time in the inner iteration, see
Ito Kunisch [17] or [10]. In our present paper, we do not intend to study Algorithm 6.1, below,
in details, since it would go beyond the scope of our framework. We basically follow [17]. Let us
present the complete algorithm for (Pγ) in the following:

Algorithm 6.1.

(1) Initialization: Choose y0, p0 ∈ L2(Ω) and set n = 1

(2) Set

Un
a = {x ∈ Ωs | ua(x) + 1

β
pn−1(x) > 0} Un

b = {x ∈ Ωs | − 1
β
pn−1(x)− ub(x) > 0}

Aa
g,n = {x ∈ Ωg | ya(x)− yn−1(x) > 0} Ab

g,n = {x ∈ Ωg | yn−1(x)− yb(x) > 0}
As,n = {x ∈ Ωs | yn−1(x)− ymax(x) > 0}

(3) Find the solution (yn, un, pn) of the following linearized problem

−div(κg∇yn) = 0 in Ωg,

−div(κs∇yn) = un in Ωs,

κg(
∂yn

∂nr
)g − κs(

∂yn

∂nr
)s − 4Gσ|yn−1|3yn = −3Gσ|yn−1|3yn−1 on Γr,

κs
∂yn

∂n0
+ 4εσ|yn−1|3yn = 3εσ|yn−1|3yn−1 + εσy4

0 on Γ0,
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−div(κg∇pn) = −∆yn + div z + µb
g,n − µa

g,n in Ωg,

−div(κs∇pn) = µs,n in Ωs,

κg(
∂pn

∂nr
)g − κs(

∂pn

∂nr
)s − 4(σ|ȳn−1|3)G∗pn = −∂yn

∂nr
+ z · nr

− 12(σ|yn−1|yn−1)G
∗pn−1(yn − yn−1) on Γr,

κs
∂p

∂n0
+ 4εσ|ȳn−1|3pn = −12εσ|yn−1|yn−1pn−1(yn − yn−1) on Γ0.

un+1 =

8><>:
ua in Un

a

ub in Un
b ,

− 1
β

pn in Ωs \ {Un
a ∪ Un

b },

µb
g,n =

(
yn|Ωg

− yb in An
b

0 in Ωg \ An
b

µa
g,n =

(
ya − yn|Ωg

in An
a

0 in Ωg \ An
a

µs,n =

(
yn|Ωs

− ymax in An
s

0 in Ωs \ An
s

(4) Stop or set n = n + 1 and go to step (2).

The efficiency of Algorithm 6.1 for the numerical solution of problem (Pγ) is tested by two
different examples which is depicted in the following. Before we specify test settings in detail,
let us shortly describe the discretization of the PDEs in step (3) of Algorithm 6.1. Here, all
quantities are discretized by standard linear finite elements, in particular also µa

g , µb
g, and µs which

is feasible since they are not measures but proper functions due to the regularization (cf. Theorem
4.1). Concerning the discretization of the integral operators K and G, we follow the lines of [3]
and apply a summarized midpoint rule in combination with an exact integration of the kernel ω
(cf. Definition 2.1). A detailed description of this method can be found in [21]. Furthermore, the
algebraic equations in Step (3) of Algorithm 6.1 are evaluated in the nodes of the triangulation.
The arising overall linear system of equations is then solved by a direct sparse solver. For the
computational domain, we choose a square of side length 2 for Ω and a square of side length 1
for Ωg located in the middle of Ω. This domain is divided into a mesh consisting of 25061 nodes
that is refined five times around the interface Γr. In contrast to the rather academic geometry,
the material parameters are close to approximate the realistic distributions given in [24]. The
respective values are given in Table 6.1. Furthermore, the external temperature y0 is assumed to be

Table 6.1
Matrial parameters for the numerical tests

κg

(
W

mK

)
κs

(
W

mK

)
ε σ

(
W

m2K4

)
0.08 24.0 0.65 5.6696 · 10−8

constant and equal to 293.0 K. Throughout the following numerical tests, the desired temperature
gradient (in K

m ) is given by z ≡ (0,−20)T , and we took ua ≡ 0, and ub ≡ 400000 for the control
constraints (in W

m3 ). Due to the comparatively large values of the control, one has to deal with
rather small Tikhonov regularization parameters to control the influence of the cost term within
the objective functional. Hence, we choose β = 10−8. Moreover, in both test examples, the lower
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bound in the state constraints is set to ya ≡ 2000 K and we neglect the state constraints in Ωs

since, in all computations, the temperature stays by far below the melting temperature of graphite.
The two test cases differ in the value for the upper bound in the state constraints. In the first
test case we choose yb ≡ 2010 K, whereas yb is set to 2050 K in the second example. Moreover,
the penalty parameters γi, i = 1, 2, are all fixed at γ = 104. To illustrate the influence of the
regularization parameters, the second test case is later on also performed with modified values of
β and γ (see below). In the first example, the desired temperature gradient of −20 in x2-direction
is not achievable with the values for ya and yb. Note in this context that Ωg has the side length 1
such that the difference between ya and yb must be greater or equal 20 to allow for a temperature
derivative of -20 a.e. in Ωg. Therefore, we expect the state constraints to be active in the first test
case. Figures 6.1–6.6 show the computed solution for this example. We observe that the optimal
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Fig. 6.1. Control u in the first example.
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Fig. 6.2. State y in the first example.

control exhibits characteristic peaks in the corners of Ωg. This finding agrees with the results of
[22] where the purely control constrained counterpart of (P) is investigated. A possible explanation
of this observation could be the strong cooling effect of the external temperature in combination
with the comparatively high thermal conductivity in Ωs which leads to a large heat flow away from
the gas phase, in particular in the corners of Ωg where more graphite is concentrated than in the
other points on Γr. As the desired temperature gradient is fairly small, the optimal control tries
to compensate for this effect by means of the observed peaks. Since our aim is to control the
temperature gradient in the gas phase, we are naturally in particular interested in the isothermes
in Ωg which are depicted in Figure 6.4. First one observes that the isothermes are nearly horizontal
as required. In contrast to that, the desired temperature difference of 20 K between the lower
and upper edge of Γr is naturally not achieved due to the bounds on the state. Nevertheless, the
state attains the largest possible temperature difference of 10 K. Figures 6.5 and 6.6 show µa

g and
µb

g as approximations of the Lagrange multipliers associated to the state constraints. It seems
that µb

g tends to a line measure on {x ∈ Γr |x2 = 0.5}, while µa
g tends to point measures in the

upper corners of Ωg. This observation corresponds to the weak regularity of Lagrange multipliers
associated to pointwise state constraints. To illustrate the convergence behavior of Algorithm 6.1
Table 6.2 presents the different contributions to the regularized objective functional fγ , as defined
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Fig. 6.4. Isothermes in Ωg in the first example.
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g in the first example.
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Fig. 6.6. µb
g in the first example.

in (4.1), during the iteration. To be more precise, we define

f (y)
γ :=

1
2

∫
Ωg

|∇y − z|2dx , f (u)
γ :=

β

2

∫
Ωs

u2dx

f (b)
γ :=

γ

2

∫
Ωg

max(0, y − yb)2dx , f (a)
γ :=

γ

2

∫
Ωg

max(0, ya − y)2dx.

In addition, Table 6.2 shows the relative difference between two iterates of Algorithm 6.1 given by

δ :=
1
3

(‖un+1 − un‖L2(Ωs)

‖un‖L2(Ωs)
+
‖yn+1 − yn‖L2(Ω)

‖yn‖L2(Ω)
+
‖pn+1 − pn‖L2(Ω)

‖pn‖L2(Ω)

)
,

which was used for the termination criterion of Algorithm 6.1. As a semismooth Newton method,
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Table 6.2
Convergence of the objective functional in the first example

it f
(y)
γ f

(u)
γ f

(b)
γ f

(a)
γ δ

1 1.99e+02 1.15e+02 0.0 3.38e-01 5.38e+03

2 1.83e+02 2.98e+02 0.0 2.01e+01 1.78e+00

3 1.66e+02 4.10e+02 0.0 6.23e+00 2.95e-01

4 1.43e+02 4.34e+02 0.0 3.63e+00 2.69e-01

5 1.23e+02 4.39e+02 0.0 1.73e+00 2.98e-01

6 9.22e+01 4.43e+02 0.0 1.42e+00 2.96e-01

7 5.34e+01 4.49e+02 1.95e+03 1.53e+00 2.60e-01

8 7.38e+01 4.43e+02 5.69e+01 1.21e+00 5.19e-01

9 6.94e+01 4.42e+02 4.92e+00 7.26e-01 2.58e-01

10 6.49e+01 4.42e+02 1.09e+00 7.81e-01 3.03e-01

11 6.06e+01 4.42e+02 6.07e-01 8.36e-01 3.24e-01

12 5.42e+01 4.42e+02 5.30e-01 9.25e-01 2.18e-01

13 5.14e+01 4.42e+02 4.44e-01 9.46e-01 1.94e-01

14 5.16e+01 4.42e+02 3.39e-01 9.46e-01 1.18e-01

15 5.16e+01 4.42e+02 3.23e-01 9.46e-01 1.33e-02

16 5.16e+01 4.42e+02 3.23e-01 9.46e-01 1.19e-04

17 5.16e+01 4.42e+02 3.23e-01 9.46e-01 1.67e-09

Algorithm 6.1 is clearly just locally convergent, which is confirmed by the fact that a significant
speed up of convergence is observed after the 14th iteration (see Table 6.2). Moreover, in accordance
with Figures 6.5 and 6.6, f

(b)
γ and f

(a)
γ do not vanish in the optimum indicating that the state

constraints are indeed active. An interesting aspect of the convergence behavior is illustrated by
the seventh iteration step where f

(y)
γ is fairly small but f

(b)
γ = 1950. Hence, distance between the

gradient of the actual state and the desired gradient is indeed comparatively small at this stage,
but the solution is still non-feasible.

Next, let us turn to the second example. As mentioned above, it nearly coincides with the
first one, except the upper bound which is now given by yb ≡ 2050 K such that a temperature
difference of 20 K between lower and upper edge of Γr is possible. The numerical solution is shown
in Figures 6.7–6.12. Again, the optimal control possesses the characteristic peaks in the corners
of Ωg. In comparison to the first example, the x2-derivative of the state now agrees more with the
desired one as Figure 6.10 demonstrates. However, especially in the corners of Ωg, the temperature
profile still differs noticeably from the desired one and a temperature difference of 20 K is not
reached completely yet. Moreover, the lower state constraint is violated in the upper corner points
of Ωg (see also Figure 6.11). As described below, a modification of β and γ can prevent these
irregularities. Similarly to Table 6.2, Table 6.3 shows the convergence history for this example. We
observe that, in principle, the algorithm provides the same convergence behavior as in the first case
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Fig. 6.10. Isothermes in Ωg in the second example.

such that number of iteration remains at the same level. Furthermore, since the bounds ya and
yb do now not contradict the desired temperature gradient as in the first example, the values of
f

(y)
γ , f

(a)
γ , and f

(b)
γ are significantly reduced compared to the first case. According to Figure 6.12,

f
(b)
γ is zero throughout the whole iteration. However, the objective functional is dominated by the

Tikhonov regularization part f
(u)
γ . The situation changes if β is reduced to β = 10−10 as the Table

6.4 illustrates. Here, we just present values of the last iteration, as the other values contain only
little information. The results of Table 6.4 are also confirmed by Figures 6.13 and 6.14 showing the
control and the isothermes for this setting. As one can see in Figure 6.14, the difference between the
desired temperature gradient and the optimal one is significantly reduced. However, the reduction
of the Tikhonov regularization parameter β clearly causes irregularities in the control, in particular
on Γr and in the corners of Ωg (cf. Figure 6.13). Moreover, the value for f

(a)
γ in the fifth column of
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g in the second example.

Table 6.3
Convergence history in the second example

it f
(y)
γ f

(u)
γ f

(b)
γ f

(a)
γ δ

1 1.99e+02 1.15e+02 0.0 3.38e-01 5.38e+03

2 1.83e+02 2.98e+02 0.0 2.00e+01 1.78e+00

3 1.66e+02 4.10e+02 0.0 6.23e+00 2.95e-01

4 1.43e+02 4.34e+02 0.0 3.63e+00 2.69e-01

5 1.23e+02 4.39e+02 0.0 1.73e+00 2.99e-01

6 9.22e+01 4.43e+02 0.0 1.42e+00 2.96e-01

7 5.34e+01 4.49e+02 0.0 1.53e+00 2.60e-01

8 1.08e+01 4.55e+02 0.0 1.50e+00 7.27e-01

9 1.10e+01 4.55e+02 0.0 8.35e-01 2.91e-01

10 1.11e+01 4.55e+02 0.0 6.14e-01 2.72e-01

11 1.13e+01 4.55e+02 0.0 4.99e-01 1.98e-01

12 1.14e+01 4.55e+02 0.0 4.42e-01 1.11e-01

13 1.16e+01 4.55e+02 0.0 3.62e-01 1.03e-01

14 1.17e+01 4.55e+02 0.0 3.02e-01 9.37e-02

15 1.17e+01 4.55e+02 0.0 2.97e-01 2.82e-03

16 1.17e+01 4.55e+02 0.0 2.97e-01 3.89e-10

Table 6.4 indicates that the lower state constraint is still active in a few points. In this example,
this can be prevented by increasing γ. To see this, we now set γ = 106. The corresponding results
are shown in Table 6.5. Again, we just show the values of the last iteration. Furthermore, the
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Table 6.4
Convergence history in the second example with β = 10−10 and γ = 104

it f
(y)
γ f

(u)
γ f

(b)
γ f

(a)
γ δ

18 2.12e+00 5.18e+00 0.0 9.30e-04 1.13e-08
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Fig. 6.13. Control u in the second example with
β = 10−10 and γ = 104.
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Fig. 6.14. Isothermes in Ωg in the second example
with β = 10−10 and γ = 104.

plots of the solution are omitted since they contain only little additional information. We observe

Table 6.5
Convergence history in the second example with β = 10−10 and γ = 106

it f
(y)
γ f

(u)
γ f

(b)
γ f

(a)
γ δ

23 2.29e+00 5.60e+00 0.0 0.0 9.92e-09

that, with this setting, also f
(a)
γ equals zero such that the optimal state is indeed feasible. Notice

however that the impact of the penalty terms f
(a)
γ and f

(b)
γ is increased by the magnification of γ

and consequently, the results for f
(y)
γ and f

(u)
γ are slightly worsened in comparison to Table 6.4.

Furthermore, the number of iterations is increased which indicates that the condition of the problem
is worsened if γ is increased. Therefore, to avoid strong irregularities of the control and in view of
a reasonable condition of the problem, the regularization parameters β and γ should not be chosen
too small and large, respectively.
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