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Abstract. We consider a control- and state-constrained optimal control problem governed by a semilinear elliptic
equation with nonlocal interface conditions. These conditions occur during the modeling of diffuse-gray conductive-
radiative heat transfer. The nonlocal radiation interface condition and the pointwise state-constraints represent the
particular features of this problem. To deal with the state-constraints, continuity of the state is shown which allows
to derive first-order necessary conditions. Afterwards, we establish second-order sufficient conditions that account
for strongly active sets and ensure local optimality in an L2-neighborhood.
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1. Introduction. In this paper, an optimal control problem is investigated that arises from
the sublimation growth of semiconductor single crystals such as silicon carbide (SiC) or aluminum
nitrite (AlN). To be more precise, the physical vapor transport (PVT) method is considered, where
polycrystalline powder is placed under a low-pressure inert gas atmosphere at the bottom of a
cavity inside a crucible. The crucible is heated up to 2000 till 3000 K by induction. Due to the high
temperatures and the low pressure, the powder sublimates and crystallizes at a single-crystalline
seed located at the cooled top of the cavity, such that the desired single crystal grows into the
reaction chamber (see [11, 16] for more details). Here, we focus on the control of the conductive-
radiative heat transfer in the reaction chamber, which is denoted by Ωg. More precisely, we aim at
optimizing the temperature gradient in Ωg by directly controlling the heat source u in Ωs := Ω\Ωg,
where Ω denotes the domain of the entire crucible including the gas phase. Thus, the objective
functional, considered here, reads as follows:

(P) minimize J(u, y) :=
1
2

∫
Ωg

|∇y − z|2 dx +
β

2

∫
Ωs

u2 dx,

where y denotes the temperature, z is the desired temperature gradient, and β is a given positive
real number. Because of the high temperatures, it is essential to account for radiation on the
outer boundary Γ0 := ∂Ω and on the interface Γr := Ωs ∩ Ωg. Thus, y is given by the solution
of the stationary heat equation with radiation interface and boundary conditions on Γr and Γ0,
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respectively:

(SL)



−div(κs∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

(
∂y

∂nr

)
g

− κs

(
∂y

∂nr

)
s

= qr on Γr

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0,

where n0 is the outward unit normal on Γ0, and nr is the unit normal on Γr facing outward with
respect to Ωs. Furthermore, σ represents the Boltzmann radiation constant, ε is the emissivity,
and κs, κg denote the thermal conductivities in Ωs, Ωg, respectively. Moreover, qr denotes the
additional radiative heat flux on Γr which is discussed in more details in Section 1.2. In addition
to the stationary semilinear heat equation, the optimization is subject to the following pointwise
state- and control-constraints:

(1.1)
ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs,
ya(x) ≤ y(x) ≤ yb(x) a.e. in Ωg,

y(x) ≤ ymax(x) a.e. in Ωs.

Here, ua and ub reflect the minimum and maximum heating power. Furthermore, y|Ωs has to be
bounded by ymax to avoid melting of the solid components of crucible in Ωs. Finally, the state-
constraints in Ωg are required to ensure sublimation of the polycrystalline powder and crystallization
at the seed, respectively.

The pointwise inequality constraints on the state and nonlocal radiation on Γr represent the
crucial points of the problem. First, pointwise state-constraints are known to be theoretically and
numerically difficult to handle since the associated Lagrange multipliers are in general only regu-
lar Borel measures, see Casas [5, 6], Alibert and Raymond [2] and Bergounioux and Kunisch [4].
Moreover, due to nonpositivity of G, the nonlinearity in the state equation in (P) is in general not
monotone (see for instance [17]) such that standard techniques cannot be applied. The analysis of
the purely control-constrained counterpart to (P) is already comparatively comprehensive. Based
on the results of Laitinen and Tiihonen [12] for the nonlinear state equation, first-order neces-
sary conditions for this problem are derived by Meyer, Philip, and Tröltzsch in [15]. Moreover,
in [14], second-order sufficient conditions are established incorporating a generalized two-norm-
discrepancy. However, these results cannot immediately be transfered to problem (P) due to the
presence of pointwise state-constraints. Therefore, the inclusion of state-constraints represent the
genuine contribution of this paper and requires to significantly extend the analysis of the aforemen-
tioned references. First, one has to show the continuity of the solution to (SL) which is performed
in Section 2 by means of results on maximum elliptic regularity by Gröger [10] and Elschner et
al. [9]. Based on this, a duality argument allows to discuss the adjoint equation involving measures
as inhomogeneity (cf. Section 4), which leads to the derivation of first-order conditions in a stan-
dard way (see Section 5). Finally, in Section 6, second-order sufficient conditions are established
that account for strongly active sets and guarantee local optimality with L2-quadratic growth in an
L2-neighboorhood, i.e. the two-norm discrepancy can be avoided. The associated analysis follows
the lines of a very recent contribution by Casas et al. [7].

1.1. General Assumptions and Notation. We start now by introducing the general as-
sumptions of the problem statement including the notation used throughout this paper. If X is a
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linear normed function space, then we use the notation ‖·‖X for a standard norm used in X. More-
over, we set X2 := X ×X. The dual space of X is denoted by X∗, and for the associated duality
pairing, we write 〈 . , . 〉X∗,X . If it is obvious in which spaces the respective duality pairing is consid-
ered, then the subscript is occasionally neglected. Now, given another linear normed space Y , the
space of all bounded linear operators from X to Y is called B(X, Y ). For an arbitrary A ∈ B(X, Y ),
the associated adjoint operator is denoted by A∗ ∈ B(Y ∗, X∗), and for its inverse, if it exists, we
write A−∗ := (A∗)−1. If X is continuously embedded in Y , we write X ↪→ Y . The trace operators
on Γr and Γ0 are denoted by τr and τ0, respectively. Throughout the paper, they are considered
with different domains and ranges. For simplicity, the associated operators are always called τr and
τ0 and we will mention their respective domains and ranges, if it is important. Furthermore, to
improve readability, we sometimes neglect the trace operators in arguments of boundary integrals.
The function 1 ∈ L∞(Γ0) satisfies 1(x) = 1 a.e. on Γ0, while U denotes the set of admissible controls
with respect to the control constraints, i.e. U = {u ∈ L2(Ωs) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs}.
Further, A function u ∈ L2(Ωs) is called feasible for (P) if it satisfies the inequality constraints in
(1.1). Finally, by c we denote a generic positive constant which can take different values on different
occasions. Now, concerning the data specified in (P), we impose the following assumptions:

Assumption 1.1.

(A1) The domain Ω ⊂ RN , N ∈ {2, 3}, is a bounded open domain with a Lipschitz boundary Γ0.
Moreover, Ωg ⊂ Ω is an open subset of Ω with a boundary Γr ⊂ Ω. In two dimensions, Γr

is assumed to be a closed Lipschitz surface which is piecewise C1,δ, whereas it is of class C1

in the three dimensional case. The subdomain Ωs is defined by Ωs = Ω \ Ωg. The distance
of Γr to Γ0 is supposed to be positive.

(A2) The desired temperature gradient z is given in L2(Ωg)N and β > 0 is a fixed constant.
(A3) The fixed function κ ∈ L∞(Ω) in the semilinear equation (SL) is defined by

κ(x) =
{

κs(x) if x ∈ Ωs,
κg(x) if x ∈ Ωg,

where κs ∈ L∞(Ωs) and κg ∈ L∞(Ωg) representing the thermal conductivity of solid and
gas, respectively. Moreover, κ satisfies κ(x) ≥ κmin a.e. in Ω, with a fixed κmin ∈ R+ \ {0}.

(A4) By ε ∈ L∞(Γ0∪Γr), we denote the emissivity satisfying 0 < εmin ≤ ε(x) ≤ 1 a.e. on Γr∪Γ0.
The term σ represents the Boltzmann radiation and is assumed to be a positive real number.
The inhomogeneity on the boundary Γ0 is given by a fixed function y0 ∈ L∞(Γ0) satisfying
y0(x) ≥ θ > 0 a.e. on Γ0.

(A5) The bounds in the state constraints are ymax, ya, yb ∈ C(Ω) with yb(x) > ya(x) ≥ θ for
all x ∈ Ωg, ymax(x) ≥ θ for all x ∈ Ωs, and ymax(x) > ya(x) for all x ∈ Γr. For the
control-constraints, we assume ua, ub ∈ L2(Ω) with 0 ≤ ua(x) < ub(x) a.e. in Ωs.

(A6) There is a feasible point (y0, u0) ∈ C(Ω) × L2(Ωs) satisfying the state equation and the
inequality constraints in (1.1).

1.2. Some well-known results. In the following, we recall some significant results regarding
the nonlocal radiation on Γr as well as the solvability of the state equation. The results have been
discussed in details in [17], [12], and [15]. We start with the following definition.

Definition 1.1. The radiative heat flux qr on Γr is defined by

qr = (I −K)(I − (1− ε)K))−1εσ|y3|y := Gσ|y3|y,
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where the integral operator K is defined by

(Ky)(x) =
∫

Γr

ω(x, z)y(z) dsz,

with a symmetric kernel ω. In the case of two-dimensional domain, the kernel ω is formally given
by

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

2|z − x|3
, ∀x, z ∈ Γr,

and in the case of a three-dimensional domain

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

π|z − x|4
, ∀x, z ∈ Γr.

Notice that Ξ denotes the visibility factor which is defined by

Ξ(x, z) =
{

0 if xz ∩ Ωg 6= ∅,
1 if xz ∩ Ωg = ∅.

For the properties of ω and K we refer the reader to Tiihonen and Laitinen, [17]. The following
lemma (see [12, Lemma 8] for the proof) provides some significant properties of the operator G,
which will be useful for our analysis.

Lemma 1.1. The operator G := (I −K)(I − (1− ε)K)−1ε is linear and bounded form Lp(Γr)
to Lp(Γr) for all 1 ≤ p ≤ ∞.

In the following, we shortly discuss the existence of solutions of the semilinear equation (SL). To
that end, let us introduce the space

V := {v ∈ H1(Ω) | τrv ∈ L5(Γr), τ0v ∈ L5(Γ0)}.

Moreover, we define the operator associated to the left-hand side of (SL) that is formally obtained
by integration of (SL) by parts over the boundaries Γr and Γ0. .

Definition 1.2. The operator A : V → V ∗ is given by

〈A(y), v〉 :=
∫

Ω

κ∇y · ∇v dx +
∫

Γr

(Gσ|y|3y)v ds +
∫

Γ0

εσ|y|3yv ds, y, v ∈ V

with G : L5/4(Γr) → L5/4(Γr).

Notice that thanks to the definition of V , the operator A is well-defined and continuous. Further-
more, Es : L2(Ωs) → V ∗ and E0 : L5/4(Γ0) → V ∗ are defined by

〈Es u, v〉 :=
∫

Ωs

uv dx ∀v ∈ V and 〈E0 z〉 :=
∫

Γ0

zv ds ∀v ∈ V.(1.2)

Clearly, Es and E0 are linear and bounded in their respective spaces.

Definition 1.3. A function y ∈ V is said to be a (weak) solution of (SL) if y satisfies the
following operator equation

(1.3) A(y) = Esu + E0 εσy4
0 in V ∗.
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To show the existence of solutions according to this definition, the theory of monotone operators
is not applicable here, since the operator G is not positive, i.e. v(x) ≥ 0 a.e. on Γr does in general
not imply (Gv)(x) ≥ 0 a.e. on Γr, see [13] for details. However, the existence of weak solutions
can be verified by Brezis’ Theorem for pseudomonotone operators, cf. [18]. In fact, Latinen and
Tiihonen showed in [12] that A is pseudomontone giving in turn the existence of weak solutions
of (1.3). The uniqueness then follows from a comparison principle (cf. [12]). Furthermore, Meyer
et al. [15] showed the boundedness of the solution. We summarize these results in the following
theorem:

Theorem 1.1. Let Assumption 1.1 be satisfied. Then for each u ∈ L2(Ωs), there exists a
unique solution y ∈ V to (SL) in the sense of Definition 1.3. Moreover, the solution is bounded,
i.e. y ∈ L∞(Ω), and satisfies

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c(Ω)(1 + ‖u‖L2(Ωs) + ‖y0‖4L16(Γ0)
)(1.4)

with some constant c(Ω) > 0.

2. Continuous solutions. Our goal in the upcoming sections consists of providing the first-
order necessary optimality conditions for (P). To accomplish this task, we will utilize the Karush-
Kuhn-Tucker theory (see Section 5 below). Mainly, we follow the lines of [6]. However, to apply this
technique, one has to consider the state constraints in a space such that the convex set, defined by
these constraints, admits a nonempty interior. Here, we choose the space of continuous functions,
denoted by C(Ω). Therefore, it is at first necessary to show the continuity of the solutions to (SL).
The subsequent analysis follows a classical bootstrapping argument. Based on Theorem 1.1, one
shows that, (SL) admits solutions in the space W 1,q(Ω) with q > N . Afterwards the continuous
embedding W 1,q(Ω) ↪→ C(Ω), q > N , implies the desired continuity. We start with a lemma that
represents the key-point within the proof of continuity.

Lemma 2.1. There is a positive real number q̂ with N < q̂ < 6 such that the operator B(f) :
W 1,q(Ω) → W 1,q′(Ω)∗, 1/q + 1/q′ = 1, defined by

〈B(f)y, v〉 :=
∫

Ω

κ∇y · ∇v dx +
∫

Γ0

fyv ds, y ∈ W 1,q(Ω), v ∈ W 1,q′(Ω),

is continuously invertible for all q ∈ [N, q̂] and all nonnegative functions f ∈ L∞(Γ0) that are
positive on a set of measure greater than zero.

Proof. In the two-dimensional case, N = 2, the assertion is an immediate consequence of a
result of Gröger [10, Theorem 1]. In three dimensions, N = 3, we apply a result of Elschner et
al. [9]. First, the Lax-Milgram lemma implies that for every functional g ∈ H1(Ω)∗, there exists a
unique solution y ∈ H1(Ω) of

(2.1)
∫

Ω

κ∇y · ∇v dx +
∫

Γ0

fyv ds = g(v) ∀v ∈ H1(Ω).

Let g ∈ W 1,q′(Ω)∗ be arbitrarily fixed. Since q ≥ 2, the dual space W 1,q′(Ω)∗ is continuously
embedded in H1(Ω)∗. Consequently, there exists a unique solution y ∈ H1(Ω) of (2.1) with g ∈
W 1,q′(Ω)∗ in the right hand side of (2.1).
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Now, consider the following equation∫
Ω

κ∇η · ∇v dx +
∫

Ω

ηv dx = g(v)−
∫

Γ0

fyv ds +
∫

Ω

yv dx ∀ v ∈ W 1,q′(Ω).(2.2)

Due to y ∈ H1(Ω) and N = 3, it holds that y ∈ L6(Ω) and τ0 y ∈ L4(Γ0). Hence, since f ∈ L∞(Γ0),
we have fy ∈ L4/3(Γ0)∗. For this reason, since q′ ∈ [6/5, 3/2] and because of the continuity of the
trace operator from W 1,6/5(Ω) to L4/3(Γ0) for N = 3, the right hand side of (2.2) defines an element
ξ ∈ W 1,q′(Ω)∗ with

< ξ, v >W 1,q′ (Ω)∗,W 1,q′ (Ω)= g(v)−
∫

Γ0

fyv ds +
∫

Ω

yv dx ∀ v ∈ W 1,q′(Ω).

Therefore, in view of our assumptions on Ω for N = 3 (cf. Assumption 1.1) and Remark 3.18 in
[9], there exists a real number q̂ > 3 (independent of f, g) such that for all q ∈ [3, q̂], (2.2) admits a
unique solution η ∈ W 1,q(Ω). Moreover, the solution can be estimated by

‖η‖W 1,q(Ω) ≤ c‖ξ‖W 1,q′ (Ω)∗ ≤ c
(
‖g‖W 1,q′ (Ω)∗ + (1 + ‖f‖L∞(Γ0))‖y‖H1(Ω)

)
≤ c ‖g‖W 1,q′ (Ω)∗ ,(2.3)

with a constant c > 0 independent of g. Clearly, due to H1(Ω) ⊂ W 1,q′(Ω), η also solves∫
Ω

κ∇η · ∇v dx +
∫

Ω

(η − y)v dx = g(v)−
∫

Γ0

fyv ds, ∀ v ∈ H1(Ω).

Subtracting the equation (2.1) from the above equation and inserting v = y − η in the resulting
equation, we have

min{κmin, 1} ‖η − y‖2H1(Ω) ≤
∫

Ω

κ|∇(η − y)|2dx +
∫

Ω

(η − y)2dx = 0.(2.4)

Notice that we have used (A3) in Assumption 1.1 for the latter inequality. Obviously, (2.4) implies
that η(x) = y(x) a.e. in Ω and a.e. on Γr ∪ Γ0. Therefore, possibly after a modification on a set of
measure zero, we have y = η in W 1,q(Ω).

Thus, for q ∈ [3, q̂], the operator equation

B(f)y = g in W 1,q′(Ω)∗

admits a unique solution in W 1,q(Ω) for every given g ∈ W 1,q′(Ω)∗. Moreover, (2.3) yields the
continuity of B(f)−1 : W 1,q′(Ω)∗ → W 1,q(Ω).

For the rest of this paper, let us fix an arbitrary q ∈ (N, q̂). Next, let us redefine the notion of
weak solutions of (SL).

Definition 2.1. The operator Aq : W 1,q(Ω) → W 1,q′(Ω)∗ is defined by

〈Aq(y), v〉 :=
∫

Ω

κ∇y · ∇v dx +
∫

Γr

(Gσ|y|3y)v ds +
∫

Γ0

εσ|y|3yv ds

with y ∈ W 1,q(Ω), v ∈ W 1,q′(Ω), and G : L∞(Γr) → L∞(Γr). Moreover, similarly to (1.2), the
operators Eq,s : L2(Ωs) → W 1,q′(Ω)∗ and Eq,0 : L∞(Γ0) → W 1,q′(Ω)∗ are given by

〈Eq,s u, v〉 :=
∫

Ωs

uv dx, ∀v ∈ W 1,q′(Ω) and 〈Eq,0 z, v〉 :=
∫

Γ0

zv ds, ∀v ∈ W 1,q′(Ω).
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Then, analogously to Definition 1.3, a function y ∈ W 1,q(Ω) is said to be a (weak) solution of (SL),
if it fulfills the operator equation

Aq(y) = Eq,s u + Eq,0 εσy4
0 in W 1,q′(Ω)∗.(2.5)

Notice that Aq is well defined since y ∈ W 1,q(Ω), q > N , implies τry ∈ L∞(Γr) and τ0y ∈
L∞(Γ0), respectively. Moreover, Eq,s : L2(Ωs) → W 1,q′(Ω)∗ is continuous because of W 1,q′(Ω) ↪→
Ls′(Ω) with s′ = N q′

N−q′ = N q
(N−1)q−q ≥ 2 for q ≤ 6.

Theorem 2.1. For every u ∈ L2(Ωs), there exists a unique weak solution y ∈ W 1,q(Ω) of (SL)
in the sense of Definition 2.1. Moreover, the following estimate holds true

‖y‖W 1,q(Ω) ≤ c
(
1 + ‖u‖L2(Ωs) + ‖y0‖4L∞(Γ0)

+ ‖u‖4L2(Ωs) + ‖y0‖16L∞(Γ0)

)
(2.6)

with a constant c > 0 independent of u, y0.

Proof. As stated above, we apply Lemma 2.1 to the state equation (SL). First, we observe that
the solution of (1.3) for an arbitrary u ∈ L2(Ωs), again denoted by y, solves∫

Ω

κ∇y · ∇v dx +
∫

Γ0

yv ds =
∫

Ωs

uv dx−
∫

Γr

αG(y)v ds +
∫

Γ0

(εσy4
0 + α0(y))v ds ∀ v ∈ V(2.7)

with α0(y) := y − εσ|y|3y and αG(y) := Gσ|y|3y. Due to Theorem 1.1, we have α0(y) ∈ L∞(Γ0)
and αG(y) ∈ L∞(Γr). Now, let us consider the following equality

〈B(1)η, v〉 =
∫

Ωs

uv dx−
∫

Γr

αG(y)v ds +
∫

Γ0

(εσy4
0 + α0(y))v ds ∀ v ∈ W 1,q′(Ω).(2.8)

Lemma 2.1 implies that B(1)−1 ∈ B(W 1,q′(Ω)∗,W 1,q(Ω)). Moreover, the right hand side in (2.8),
denoted by ωy, defines a functional in W 1,q′(Ω)∗, which is demonstrated in the following. As
mentioned above, embedding theorems imply W 1,q′(Ω) ↪→ L2(Ω) if q ≤ 6. Moreover, the trace
operators τr and τ0 are continuous from W 1,q′(Ω) to Lr′(Γr) and Lr′(Γ0), respectively, with r′ =
(N−1)q′

N−q′ = (N−1)q
(N−1)q−N > 1. Hence, Hölder’s inequality implies

‖ωy‖W 1,q′ (Ω)∗ = sup
‖v‖

W1,q′=1

∣∣ ∫
Ωs

uv dx−
∫

Γr

αG(y)v ds +
∫

Γ0

(εσy4
0 + α0(y))v dx

∣∣
≤ sup
‖v‖

W1,q′=1

(
‖u‖L2(Ωs)‖v‖L2(Ω) + ‖αG(y)‖L∞(Γr)‖v‖L1(Γr)

+
(
‖εσy4

0‖L∞(Γ0) + ‖α0(y)‖L∞(Γ0)

)
‖v‖L1(Γ0)

)
≤ c

(
‖u‖L2(Ωs) + ‖G‖B(L∞(Γr)) ‖y‖4L∞(Γr)

+ ‖y0‖4L∞(Γ0)
+ ‖y‖L∞(Γ0) + ‖y‖4L∞(Γ0)

)
,

(2.9)

with a constant c > 0 independent of u, y0, and y. Together with (1.4), the latter inequality ensures
‖ωy‖W 1,q(Ω)∗ < ∞. Therefore, (2.8) admits a unique solution η ∈ W 1,q(Ω), satisfying

‖η‖W 1,q(Ω) ≤ ‖B(1)−1‖B(W 1,q′ (Ω)∗,W 1,q(Ω)) ‖ωy‖W 1,q′ (Ω)∗ .(2.10)
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An argument analogously to the proof of Lemma 2.1 implies that

η = y in W 1,q(Ω).

For this reason y ∈ W 1,q(Ω) is the unique solution of

(2.11) B(1)y = ωy in W 1,q′(Ω)∗.

Thanks to the definition of B(1), (2.11) is equivalent to∫
Ω

κ∇y · ∇v dx +
∫

Γ0

yv ds =
∫

Ωs

uv dx−
∫

Γr

αG(y)v ds +
∫

Γ0

(εσy4
0 + α0(y))v ds ∀ v ∈ W 1,q′(Ω),

Thus, by the definition of α0(y) and αG(y), y ∈ W 1,q(Ω) is the unique solution of∫
Ω

κ∇y · ∇v dx +
∫

Γr

(Gσ|y|3y)v ds +
∫

Γ0

εσ|y|3yv ds =
∫

Ωs

uv dx +
∫

Γ0

εσy4
0v ds ∀ v ∈ W 1,q′(Ω).

Hence, for every u ∈ L2(Ωs), (2.5) admits a unique solution y ∈ W 1,q(Ω). Finally, (2.6) follows
from (2.10) together with (2.9) and (1.4).

Remark 2.1. Thanks to W 1,q(Ω) ↪→ C(Ω), the solution of (SL) is continuous.

Based on Theorem 2.1, we define the control-to-state-operator G : L2(Ωs) → W 1,q(Ω) associated
to (P), i.e. the solution operator for (SL), that assigns to each u ∈ L2(Ωs) the weak solution
y ∈ W 1,q(Ω). With this setting at hand, the optimal control problem can equivalently be stated as
follows:

(P)


min
u∈U

f(u) := J(u,G(u))

subject to ya(x) ≤ (EcG(u))(x) ≤ yb(x) ∀x ∈ Ωg,

(EcG(u))(x) ≤ ymax(x) ∀x ∈ Ωs,

where Ec denotes the embedding operator from W 1,q(Ω) to C(Ω). Notice that f(u) is clearly well
defined since G(u) ∈ W 1,q(Ω) ⊂ H1(Ω).

3. Differentiability of the control-to-state-operator. Next, let us turn to the linearized
version of (SL). First, recall a result of Meyer, Philip, Tröltzsch [15], that is the following maximum
principle:

Lemma 3.1. Suppose that u ∈ L2(Ωs) satisfies u(x) ≥ 0 a.e. in Ωs, while y0 ∈ L∞(Γ0) fulfills
y0(x) ≥ θ > 0 a.e. on Γ0 according to Assumption 1.1. Then, the weak solution y of (SL) satisfies
y(x) ≥ θ > 0 a.e. in Ω and a.e. on Γr and Γ0.

Now, let ū ∈ L2(Ωs) with associated state ȳ ∈ W 1,q(Ω). Moreover, we assume for the rest of
this section that ū(x) ≥ 0 a.e. in Ωs such that Lemma 3.1 implies ȳ(x) > 0 a.e. on Γr and Γ0.
Next, we turn to the derivative of the operator Aq, as given in Definition 2.1, at the point ȳ. We
already mentioned that τr and τ0 are continuous from W 1,q(Ω) to L∞(Γr) and L∞(Γ0), respec-
tively. Furthermore, the Nemyzki-operator Φ(y) := |y|3y is continuously Fréchet-differentiable from
L∞(Γr∪Γ0) to L∞(Γr∪Γ0). Since all other parts of Aq are linear and continuous in their respective
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spaces, in particular G : L∞(Γr) → L∞(Γr), Aq is clearly Fréchet-differentiable from W 1,q(Ω) to
W 1,q′(Ω)∗, and its derivative at ȳ in an arbitrary direction y ∈ W 1,q(Ω) is given by

〈A′q(ȳ)y, v〉 =
∫

Ω

κ∇y · ∇v dx + 4
∫

Γr

(Gσ|ȳ|3y)v ds + 4
∫

Γ0

εσ|ȳ|3yv ds, ∀v ∈ W 1,q′(Ω).(3.1)

By the same arguments, Aq is also twice continuously Fréchet-differentiable and the second deriva-
tive at ȳ in arbitrary directions y1, y2 ∈ W 1,q(Ω) is given by

〈A′′q (ȳ)[y1, y2], v〉 = 12
∫

Γr

(Gσ|ȳ|ȳ y1y2)v ds + 12
∫

Γ0

εσ|ȳ|ȳ y1y2 v ds, ∀v ∈ W 1,q′(Ω).(3.2)

Notice that A′′q (ȳ) is clearly continuous from W 1,q(Ω)×W 1,q(Ω) to W 1,q′(Ω)∗. Now, consider the
operator equation

A′q(ȳ)y = w in W 1,q′(Ω)∗(3.3)

with a given w ∈ W 1,q′(Ω)∗. Our aim is to show the existence of a unique solution to (3.3). In
[13], an analogous equation in H1(Ω)∗ is investigated. By means of an numerical example, it is
illustrated that the Lax-Milgram lemma cannot be applied to derive existence of solutions because
of the non-positivity of G (see [13] for details). Instead of that, the Fredholm alternative is employed
to prove existence and uniqueness. Here, we argue similarly which is demonstrated in the following.
First, we introduce a linear operator F (ȳ) : L∞(Γr) → W 1,q′(Ω)∗, defined by

〈F (ȳ)y, v〉 := 4
∫

Γr

(Gσ|ȳ|3y)v ds ∀v ∈ W 1,q′(Ω).

As already stated in Section 2, the trace operator is continuous from W 1,q′(Ω) to Lr′(Γr), r′ > 1.
Hence, thanks to ȳ ∈ L∞(Γr), F (ȳ) is linear and continuous. Then, together with the Definition of
B in Lemma 2.1, (3.3) is equivalent to(

B(ᾱ0) + F (ȳ)τr

)
y = w,

where ᾱ0 is defined by ᾱ0 := 4εσ|ȳ|3 such that ᾱ0 ∈ L∞(Γ0). Moreover, here and in the following,
τr is considered as an operator from W 1,q(Ω) to L∞(Γr). Now, since ȳ(x) ≥ θ > 0 a.e. on Γr,
Lemma 2.1 is applicable such that

(3.4) y = B(ᾱ0)−1(w − F (ȳ)τry) = B(ᾱ0)−1w −B(ᾱ0)−1F (ȳ)τry.

Applying τr to (3.4), we infer further

(3.5)
(
I + τrB(ᾱ0)−1F (ȳ)

)
τry = τrB(ᾱ0)−1w.

Let us now define a linear and continuous operator F(ȳ) : L∞(Γr) → L∞(Γr) by

F(ȳ) := τrB(ᾱ0)−1F (ȳ),

and hence (3.5) is equivalent to

(3.6) (I + F(ȳ))τry = τrB(ᾱ0)−1w in L∞(Γr).
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We point out that, due to q > N , the trace operator τr is compact from W 1,q(Ω) to L∞(Γr) (see
[1]). Hence, F(ȳ) is compact as well.

Assumption 3.1. The operator F(ȳ) : L∞(Γr) → L∞(Γr) does not admit the eigenvalue
λ = −1.

Theorem 3.1. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs and denote the associated state by
ȳ = G(ū). Moreover, suppose that Assumption 3.1 holds true. Then, for every w ∈ W 1,q′(Ω)∗,
there exists a unique solution y ∈ W 1,q(Ω) to (3.3) that satisfies the following estimate

‖y‖W 1,q(Ω) ≤ c ‖w‖W 1,q′ (Ω)∗(3.7)

with a constant c > 0 independent of w. Hence, A′q(ȳ)−1 ∈ B(W 1,q′(Ω)∗,W 1,q(Ω)) holds true.

Proof. Thanks to the compactness of F(ȳ), the theory of Fredholm operators implies that,
either λ = −1 is one of countable many eigenvalues of F(ȳ), or I +F(ȳ) is continuously invertible.
Hence, Assumption 3.1 ensures that (I + F(ȳ))−1 ∈ B(L∞(Γr)) such that

τry = (I + F(ȳ))−1τrB(ᾱ0)−1w.

Inserting this in (3.4), we have

(3.8) y = B(ᾱ0)−1(I − F (ȳ)(I + F(ȳ))−1τrB(ᾱ0)−1)w.

Since Assumption 3.1 ensures that

‖(I + F(ȳ))−1‖B(L∞(Γr)) < ∞,

(3.8) immediately implies (3.7).

Theorem 3.2. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs. Furthermore, suppose that As-
sumption 3.1 is fulfilled. Then, there exists an open neighborhood U(ū) of ū in L2(Ωs) such that
G : L2(Ωs) → W 1,q(Ω) is on U(ū) twice continuously Fréchet-differentiable. Moreover, the first
derivative of G at ū in an arbitrary direction u ∈ L2(Ωs) is given by

G′(ū)u = A′q(ȳ)−1Eq,s u.(3.9)

with ȳ = G(ū). The second derivative of G at ū in arbitrary directions u1, u2 ∈ L2(Ωs) is given by

G′′(ū)[u1, u2] = A′q(ȳ)−1(−A′′q (ỹ)[y1, y2]),

where A′′q (ȳ) is defined as in (3.2) and yi = G′(ū)ui, i = 1, 2.

Proof. First of all, Let us introduce the operator T : W 1,q(Ω)× L2(Ωs) → W 1,q′(Ω)∗ given by

T (y, u) := Aq(y)− Eq,s u− Eq,0 εσy4
0 .(3.10)

Further, we set ȳ = G(u) and hence, by the definition of the solution operator G, ȳ ∈ W 1,q(Ω) is
the unique solution of

Aq(ȳ) = Eq,s ū + Eq,0 εσy4
0 in W 1,q′(Ω)∗.
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Thus, it holds that T (ȳ, ū) = 0. Moreover, Since Aq : W 1,q(Ω) → W 1,q′(Ω) is twice continu-
ously Fréchet-differentiable, T : W 1,q(Ω) × L2(Ωs) → W 1,q′(Ω)∗ is twice continuously Fréchet-
differentiable. By (3.10), ∂yT (ȳ, ū) : W 1,q(Ω) → W 1,q′(Ω)∗ is given by

∂yT (ȳ, ū) = A′(ȳ).

Therefore, Theorem 3.1 implies that ∂yT (ȳ, ū)−1 ∈ B(W 1,q′(Ω)∗,W 1,q(Ω)). Thus, taking account
of the implicit function theorem, there exists an open neighborhood U(ū) of ū in L2(Ωs) such
that the control-to-state operator G : L2(Ωs) → W 1,q(Ω) is on U(ū) twice continuously Fréchet-
differentiable. The first derivative of G at ū in an arbitrarily direction u ∈ L2(Ωs) is given by

G′(ū)u = −∂yT (ȳ, ū)−1∂uT (ȳ, ū)u = A′q(ȳ)−1Eq,s u.(3.11)

Moreover, the second derivative of G at ū in arbitrary directions u1, u2 ∈ L2(Ωs) is given by

G′′(ū)[u1, u2] = −∂yT (ȳ, ū)−1∂2
yyT (ȳ, ū)[y1, y2] = A′q(ȳ)−1(−A′′q (ȳ)[y1, y2]),

where yi = G′(ũ)ui, i = 1, 2. Notice that ∂2
yuT = ∂2

uuT = 0 and ∂2
uyT = 0 was used for the

computation of G′′.
Remark 3.1. Notice that the additional assumption ū(x) ≥ 0 a.e. in Ωs is automatically

fulfilled for all u ∈ U , since ua(x) ≥ 0 a.e. in Ωs.

In view of the definition of A′q(ȳ) in (3.1) and formal integration by parts, the equation A′q(ȳ)y =
Eq,su in (3.11) can be considered as the variational formulation of the following linear PDE:

(3.12)


−div(κs∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg (∂nry)g − κs (∂nry)s − 4 Gσ|ȳ|3y = 0 on Γr

κs∂n0y + 4 εσ|ȳ|3y = 0 on Γ0,

Similarly, A′q(ȳ)η = −A′′q (ȳ)[y1, y2] is interpreted as variational formulation of

(3.13)


−div(κs∇y) = 0 in Ωs

−div(κg ∇y) = 0 in Ωg

κg (∂nry)g − κs (∂nry)s − 4 Gσ|ȳ|3y = −12 Gσ|ȳ|ȳ y1y2 on Γr

κs∂n0y + 4 εσ|ȳ|3y = −12 εσ|ȳ|ȳ y1y2 on Γ0,

Definition 3.1. Let ū ∈ L2(Ωs), ū(x) ≥ 0 a.e. in Ωs, and ȳ = G(ū) be given. Then, a function
y ∈ W 1,q(Ω) is said to be a (weak) solution of (3.12) for u ∈ L2(Ωs) if it satisfies the following
operator equation:

A′q(ȳ)y = Eq,s u in W 1,q′(Ω)∗,

where A′q(ȳ) is as defined in (3.1). Moreover, η ∈ W 1,q(Ω) is the (weak) solution of (3.13) for
given y1, y2 ∈ W 1,q(Ω) if it fulfills

A′q(ȳ)η = −A′′q (ȳ)[y1, y2] in W 1,q′(Ω)∗.
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4. Adjoint equation involving measures. In this section, we discuss the adjoint equation
to (3.3), given by

A′q(ȳ)∗p = g in W 1,q(Ω)∗,(4.1)

where A′q(ȳ)∗ : W 1,q′(Ω) → W 1,q(Ω)∗ denotes the adjoint of A′q(ȳ) and g is a given element of
W 1,q(Ω)∗. We already know from Theorem 3.1 that, under Assumption 3.1, A′q(ȳ) is an isomorphism
from W 1,q(Ω) to W 1,q′(Ω)∗. Thus, the adjoint operator A′q(ȳ)∗ : W 1,q′(Ω) → W 1,q(Ω)∗ is in turn
continuously invertible and consequently, (4.1) admits a unique solution p ∈ W 1,q′(Ω), q′ = q

q−1 <
N

N−1 , due to q > N .

Lemma 4.1. Let ū ∈ L2(Ωs) with associated state ȳ = G(ū) satisfy ū(x) ≥ 0 a.e. in Ωs.
Furthermore, suppose that Assumption 3.1 is satisfied. Then, A′q(ȳ)−∗ ∈ B(W 1,q(Ω)∗,W 1,q′(Ω))
holds true.

The concrete form of A′q(ȳ)∗ follows from

〈A′q(ȳ)∗p, v〉(W 1,q)∗,W 1,q = 〈p, A′q(ȳ)v〉W 1,q′ ,(W 1,q′ )∗ = 〈A′q(ȳ)v, p〉(W 1,q′ )∗,W 1,q′

=
∫

Ω

κ∇p · ∇v dx + 4
∫

Γr

(Gσ|ȳ|3v)p ds + 4
∫

Γ0

εσ|ȳ|3pv ds ∀v ∈ W 1,q(Ω).

Since the embedding W 1,q(Ω) ↪→ C(Ω) is continuous and dense, one has the embedding C(Ω)∗ ↪→
W 1,q(Ω)∗ with the associated embedding operator E∗

c . Further, we define by M(Ω) the space of
all regular Borel measures on the compact set Ω. By the Riesz-Radon theorem, cf. [3], it is well
known that the dual space C(Ω)∗ can be isometrically identified with M(Ω) with respect to the
duality pairing

〈µ, ϕ〉C(Ω)∗,C(Ω) :=
∫

Ω

ϕ dµ, φ ∈ C(Ω), µ ∈M(Ω).

According to this, we are allowed to insert regular Borel measures as inhomogeneity in (4.1).
Moreover, given a µ ∈M(Ω), the operator equation

A′q(ȳ)∗p = E∗
c µ in W 1,q(Ω)∗,(4.2)

is equivalent to∫
Ω

κ∇p · ∇v dx + 4
∫

Γr

(Gσ|ȳ|3v)p ds + 4
∫

Γ0

εσ|ȳ|3pv ds

= 〈E∗
c µ, v〉W 1,q(Ω)∗,W 1,q(Ω)

= 〈µ,Ecv〉C(Ω)∗,C(Ω) =
∫

Ω

Ecv dµ ∀ v ∈ W 1,q(Ω).

(4.3)

As mentioned in Section 2, the trace operator is continuous from W 1,q′(Ω) to Lr′(Γr), r′ =
(N−1)q

(N−1)q−N > 1. Moreover, v ∈ W 1,q(Ω) clearly implies v ∈ Lr(Γr) due to the continuous em-
bedding W 1,q(Ω) ↪→ C(Ω). Hence, if we consider G as an operator from Lr(Γr) to Lr(Γr), one
obtains ∫

Γr

(Gσ|ȳ|3v)p ds =
∫

Γr

σ|ȳ|3(G∗p)v ds,
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where G∗ : Lr′(Γr) → Lr′(Γr) is the adjoint of G, i.e. G∗ = ε(I−(1−ε)K∗))−1(I−K∗) (cf. Definition
1.1). Notice in this context that K is formally self-adjoint due to the symmetry of its kernel. In
view of this and formal integration by parts, (4.2) and (4.3), respectively, can be considered as a
variational formulation of the following linear PDE with measure data on the right hand side:

(4.4)



−div(κs∇p) = µ|Ωg
in Ωs

−div(κg ∇p) = µ|Ωs
in Ωg

κg

(
∂p

∂nr

)
g

− κs

(
∂p

∂nr

)
s

− 4 σ|ȳ|3G∗p = µ|Γr
on Γr

κs∂n0p + 4 εσ|ȳ|3p = µ|Γ0 on Γ0,

where µ|Ωg
, µ|Ωs

, µ|Γr
, and µ|Γ0 denote the restrictions of µ on Ωg, Ωs, Γr, and Γ0, respectively. In

other words, µ ∈ M(Ω) is decomposed into µ = µ|Ωg
+ µ|Ωs

+ µ|Γr
+ µ|Γ0 , where µ|Ωg

, µ|Ωs
, µ|Γr

,
and µ|Γ0 are Borel measures concentrated on Ωg, Ωs, Γr, and Γ0.

Definition 4.1. Let ȳ ∈ W 1,q(Ω) be given. Then, a function p ∈ W 1,q′(Ω), q′ < N
N−1 , is said

to be a (weak) solution of (4.4) if it satisfies the operator equation (4.2).

Clearly, Lemma 4.1 implies that there is a solution of (4.4) in the sense of Definition 4.1.
Furthermore, the right-hand side in (4.2) can be estimated by

‖E∗
c µ‖W 1,q(Ω)∗ = sup

y 6=0

〈E∗
c µ, y〉W 1,q(Ω)∗,W 1,q(Ω)

‖y‖W 1,q(Ω)

≤ c sup
y 6=0

〈µ,Ecy〉C(Ω)∗,C(Ω)

‖y‖C(Ω)

= c sup
y 6=0

∫
Ω

y dµ

‖y‖C(Ω)

= c ‖µ‖M(Ω)

such that one obtains the following result:

Theorem 4.1. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs and the associated state is denoted
by ȳ = G(ū) ∈ W 1,q(Ω). Furthermore, suppose that Assumption 3.1 is satisfied. Then, Aq(ȳ)−∗ ∈
B(W 1,q(Ω)∗,W 1,q′(Ω)) and consequently, for every µ ∈ M(Ω), there exists a unique solution p ∈
W 1,q′(Ω) of (4.4) in the sense of Definition 4.1 that satisfies

‖p‖W 1,q′ (Ω) ≤ c ‖µ‖M(Ω)

with a constant c > 0 independent of µ.

5. First-order necessary optimality conditions for (P ). Before we establish Karush-
Kuhn-Tucker (KKT) type optimal conditions for (P), let us shortly address the existence of an
optimal solution. Clearly, thanks to (A6) in Assumption 1.1, standard arguments imply the exis-
tence of at least one (global) optimum (cf. also [15, Theorem 5.2]). Due to the nonlinearities in
the state equation, uniqueness of the optimal solution can certainly not be expected. Let us now
introduce the notion of local optima:

Definition 5.1. A feasible control ū of (P ) is called a local solution for (P), if there exists a
positive real number ε such that f(ū) ≤ f(u) holds for all feasible u ∈ L2(Ωs) with ‖u−ū‖L2(Ωs) ≤ ε.

Throughout this section, let ū ∈ U be a local solution of (P ), and assume that Assumption
3.1 is fulfilled at ū. Notice that everything what follows also holds for a global optimum of (P).
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To apply the KKT theory, the existence of an interior (Slater) point with respect to the state
constraints in (1.1) has to be assumed. This assumption is referred to as the so-called ”linearized
Slater condition”:

Definition 5.2. Let ū ∈ U be a local solution of (P ), and assume that Assumption 3.1 is
fulfilled at ū. We say that ū ∈ U satisfies the linearized Slater condition for (P), if there exists an
interior point u0 ∈ U such that

ya(x) + δ ≤ EcG(ū)(x) + EcG′(ū)(u0 − ū)(x) ≤ yb(x)− δ ∀x ∈ Ωg,

EcG(ū)(x) + EcG′(ū)(u0 − ū)(x) ≤ ymax(x)− δ ∀x ∈ Ωs,

with a fixed δ > 0.

Notice that ū ∈ U automatically satisfies ū(x) ≥ 0 a.e. in Ωs (cf. Remark 3.1) such that
Assumption 3.1 implies that G′(ū) : L2(Ωs) → W 1,q(Ω) is well defined.

Definition 5.3. The Lagrange functional L : U ×M(Ωs)×M(Ωg)×M(Ωg) → R for (P) is
given by

L(u, µ) = f(u) + 〈µs, EcG(u)− ymax〉s + 〈µa
g , ya − EcG(u)〉g

+ 〈µb
g, EcG(u)− yb〉g,

with 〈·, ·〉g := 〈·, ·〉C(Ωg)∗,C(Ωg), 〈·, ·〉s := 〈·, ·〉C(Ωs)∗,C(Ωs), and µ = (µs, µ
a
g , µb

g).

Since G is twice continuously Fréchet-differentiable at ū (see Corollary 3.2), it is straight forward
to see that f is twice continuously Fréchet-differentiable at ū, and its derivative at ū ∈ L2(Ωs) in
an arbitrary direction u ∈ L2(Ωs) is given by

f ′(ū)u =
∫

Ωg

(∇G(ū)− z) · ∇G′(ū)u dx + β

∫
Ωs

ū u dx.

Due to G(ū) ∈ W 1,q(Ω) and z ∈ L2(Ωg)N , the first addend defines an element of W 1,q(Ω)∗ such
that linear and continuous operator L : W 1,q(Ω) → W 1,q(Ω)∗ exists with

〈Lȳ, v〉 :=
∫

Ωg

(∇ȳ − z) · ∇v dx, v ∈ W 1,q(Ω)

where ȳ = G(ū) ∈ W 1,q(Ω). With this setting, f ′(ū)u = 〈Lȳ,G′(ū)u〉 + β(ū, u). Notice that since
f and G are continuously Fréchet-differentiable at ū, L is continuously Fréchet-differentiable at ū
such that the following definition makes sense:

Definition 5.4. let ū ∈ U be a local solution of (P ), and suppose that Assumption 3.1 is
fulfilled. Then, µs ∈ M(Ωs), µa

g ∈ M(Ωg), and µb
g ∈ M(Ωg) are said to be Lagrange multipliers

associated to the state constraints in (P), if it holds that

∂uL(ū, µ)(u− ū) ≥ 0 ∀u ∈ U ,(5.1)

µs ≥ 0, µa
g ≥ 0, µb

g ≥ 0,(5.2) ∫
Ωs

(EcG(ū)− ymax)dµs =
∫

Ωg

(ya − EcG(ū))dµa
g =

∫
Ωg

(EcG(ū)− yb)dµb
g = 0,(5.3)
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where we set µ = (µs, µ
a
g , µb

g).

Notice that if ν ∈M(Ω), then we write

ν ≥ 0 ⇔
∫

Ω

y dν ≥ 0 ∀ y ∈ {y ∈ C(Ω) | y(x) ≥ 0∀x ∈ Ω}.

The following theorem states the first-order necessary optimality conditions for (P), i.e. the existence
of Lagrange multipliers in the sense of Definition 5.4. The proof can be found for instance in [6]

Theorem 5.1. Let ū be a locally optimal solution of (P) satisfying the linearized Slater con-
dition. Furthermore, let Assumption 3.1 be satisfied. Then, there exist corresponding Lagrange
multipliers (µs, µ

a
g , µb

g) ∈ M(Ωs) ×M(Ωg) ×M(Ωg) according to Definition 5.4 such that (5.1)–
(5.3) are satisfied.

Next, let us transform (5.1)–(5.3) into the optimality system of (P) by introducing the adjoint
equation. First, by the definition of L and (3.11), (5.1) is equivalent to

〈A′q(ū)−∗
(
Lȳ + E∗

c µs − E∗
c µa

g + E∗
c µb

g

)
, Eq,s(u− ū)〉

+ (β ū , u− ū)L2(Ωs) ≥ 0 ∀u ∈ U .
(5.4)

Consider now the following operator equation

A′q(ȳ)∗p = Lȳ + E∗
c µs − E∗

c µa
g + E∗

c µb
g in W 1,q(Ω)∗(5.5)

which is equivalent to∫
Ω

κ∇p · ∇v dx + 4
∫

Γr

(Gσ|ȳ|3v)p ds + 4
∫

Γ0

εσ|ȳ|3pv ds

=
∫

Ωg

(∇ȳ − z) · ∇v dx +
∫

Ωs

Ecv dµs −
∫

Ωg

Ecv dµa
g +

∫
Ωg

Ecv dµb
g ∀ v ∈ W 1,q(Ω)

(5.6)

(cf. (4.2) and (4.3)). As in case of (4.4), (5.6) can be considered as the variational formulation of

(5.7)



−div(κg∇p) = −∆ȳ + div z + (µb
g − µa

g)|Ωg
in Ωg,

−div(κs∇p) = µs|Ωs
in Ωs,

κg

(
∂p

∂nr

)
g

− κs

(
∂p

∂nr

)
s

− 4σ|ȳ|3G?p = − ∂ȳ

∂nr
+ z · nr

+ (µb
g − µa

g + µs)|Γr

on Γr,

κs
∂p

∂n0
+ 4εσ|ȳ|3p = µs|Γ0 on Γ0.

Again, the multipliers are decomposed into their restrictions on Ωs, Ωg, Γr, and Γ0, respectively.
Analogously to Definition 4.1, we define solutions to (5.7):

Definition 5.5. A function p ∈ W 1,q′(Ω) is said to be the weak solution of (5.7) if it satisfies
(5.5).

Clearly, thanks to Lemma 4.1, there exists a unique solution of (5.7) in the sense of Definition
5.5 (cf. Theorem 4.1). Using the definition of p and (5.4), (5.1) can be transformed into

∂L
∂u

(ū, µ)(u− ū) =
∫

Ωs

(p + βū)(u− ū) dx ≥ 0 ∀u ∈ U .(5.8)
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By standard arguments, a pointwise evaluation of this equation implies

ū = Pad

{
− 1

β
p(x)

}
,(5.9)

where Pad : L2(Ωs) → L2(Ωs) denotes the pointwise projection operator on the admissible set U .
In this way, we find the following theorem that states the first-order necessary optimality conditions
for (P):

Theorem 5.2 (First-order necessary optimality conditions for (P )). Let ū ∈ L2(Ωs) be an
optimal solution of (P) with the associated state ȳ = G(ū) ∈ W 1,q(Ω), q > N . Suppose further that
ū satisfies Assumption 3.1 and the linearized Slater conditions. Then, there exist an adjoint state
p ∈ W 1,q′(Ω), q′ < N

N−1 , and Lagrange multipliers µs ∈ M(Ωs), µa
g ∈ M(Ωg), and µb

g ∈ M(Ωg)
such that the following relations are satisfied:

• the state equation (SL) in the sense of Definition 2.1
• the adjoint equation (5.7) in the sense of Definition 5.5
• the projection formula (5.9)
• the nonnegativity of the Lagrange multipliers (5.2)
• the complimentary slackness conditions (5.3).

It is straight forward to see that, if ua, ub ∈ W 1,q′(Ωs), then Pad is continuous from W 1,q′(Ωs)
to W 1,q′(Ωs) such that the following regularity result for the optimal control is obtained:

Remark 5.1. If ua, ub ∈ W 1,q′(Ωs), then the optimal control ū is a function in W 1,q′(Ωs),
q′ < N

N−1 .

6. Second-order sufficient optimality conditions for (P ). In the following, we present
second-order sufficient optimality conditions for (P) that guarantee local optimality in an L2-
neighborhood. The investigation of second-order sufficient optimality conditions for semilinear
control problems with pointwise state constraints was originally undertaken by Casas et al. in [8].
They suggested second-order optimality conditions that deal with strongly active sets. However,
owing to the presence of the two-norm discrepancy, the result only provides sufficient optimality
conditions for local solutions in L∞(Ω). Later on, Casas et al. [7] modified this result and arrived
at sufficient conditions that are in some sense less restrictive than the original one. In particular,
under certain assumptions, these conditions ensure the existence of local solutions in L2(Ω). The
result is, however, not directly applicable for (P) since we here deal with a nonmonotone operator
G and the objective functional in (P) is different from that considered in [7]. However, thanks
to Theorem 3.2, we obtain analogous second-order sufficient conditions for the existence of local
solutions to (P) in L2(Ωs). At this point, let us underline that the proof of Theorem 6.1 below
basically follows the lines of a similar technique proposed in [7]. First of all, let us define the oper-
ator S : L2(Ωs) → C(Ω) by S = EcG. Since the embedding W 1,q(Ω) ↪→ C(Ω) is compact (note that
q > N) and by the continuity of G, the operator S = EcG : L2(Ωs) → C(Ω) is as well compact.

Definition 6.1. Let ū ∈ U be a feasible control of (P) with the associated state G(ū) = ȳ.
We assume that there exist µa

g , µb
g ∈ M(Ωg), µs ∈ M(Ωs) and p ∈ W 1,q′(Ω), 1 ≤ q′ ≤ N/(N − 1),

satisfying (5.1)-(5.3) and (5.7).

(i) The convex, closed subset Hū ⊂ L2(Ωs) is given by:

Hū :=
{
h ∈ L2(Ωs) | h(x) =

{
≥ 0 if ū(x) = ua(x)
≤ 0 if ū(x) = ub(x)

}
.
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(ii) The subset Cū ⊂ Hū is defined as follows:

Cū = {h ∈ Hū | h satisfies (6.1), (6.2) and (6.3)}

h(x) = 0 if p(x) + βū(x) 6= 0(6.1)

yh(x) =


≥ 0 if ȳ(x) = ya(x), x ∈ Ωg

≤ 0 if ȳ(x) = yb(x), x ∈ Ωg

≤ 0 if ȳ(x) = ymax(x), x ∈ Ωs

(6.2)

∫
Ω̄g

yh dµa
g =

∫
Ω̄g

yh dµb
g =

∫
Ω̄s

yh dµs = 0,(6.3)

where yh = §′(ū)h.
(iii) We say that ū satisfies the second order sufficient condition (SSC) if

(SSC)
∂2L
∂u2

(ū, µ)h2 > 0

holds true for every h ∈ Cū \ {0}.
Theorem 6.1 (Second-order sufficient optimality conditions for (P )). Let ū ∈ U be a feasible

control of (P) and let Assumption 3.1 be fulfilled. Furthermore, assume that there exist µa
g , µb

g ∈
M(Ωg), µs ∈ M(Ωs) and p ∈ W 1,q′(Ω), 1 ≤ q′ ≤ N/(N − 1), satisfying (5.1)-(5.3) and (5.7). If
ū additionally satisfies (SSC), then there exist positive real numbers ε and δ such that

f(ū) +
δ

2
‖u− ū‖2L2(Ωs) ≤ f(u),

holds true for every feasible control u of (P) with ‖u− ū‖L2(Ωs) < ε. Hence, ū is a local solution of
(P ) according to Definition 5.1.

Proof. Let us assume the contrary: There exists a sequence {uk}∞k=1 ⊂ L2(Ωs) of feasible
controls of (P) such that:

(6.4) f(ū) +
1
k
‖uk − ū‖2L2(Ωs) > f(uk) ∀k ∈ N and lim

k→∞
‖uk − ū‖L2(Ωs) = 0.

We define hk := 1
ak

(uk − ū) with ak := ‖uk − ū‖L2(Ωs). Thus, ‖hk‖L2(Ωs) = 1 holds for
all k ∈ N. For this reason, there exists a subsequence denoted w.l.o.g. again by {hk}∞k=1, which
converges weakly in L2(Ωs) to some h̄ ∈ L2(Ωs), i.e., hk ⇀ h̄ as k →∞.

First, we show that ∂L
∂u (ū, µ)h̄ = 0. Since uk is feasible for all k ∈ N, the first order necessary

conditions, see (5.1), imply

0 ≤ 1
ak

∂L
∂u

(ū, µ)(uk − ū) =
∂L
∂u

(ū, µ)hk ∀k ∈ N.

Thus, since hk ⇀ h̄ as k →∞, we find

(6.5) 0 ≤ lim
k→∞

∂L
∂u

(ū, µ)hk =
∂L
∂u

(ū, µ)h̄.
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On the other hand, the feasibility of uk for (P ) implies that L(uk, µ) ≤ f(uk) and hence from (6.4)
we infer that

(6.6) L(uk, µ) ≤ f(uk) < f(ū) +
1
k
‖uk − ū‖2L2(Ωs) = L(ū, µ) +

1
k
‖uk − ū‖2L2(Ωs) ∀ k ∈ N,

where we used the complementary slackness conditions (5.3). Furthermore, Theorem 3.2 implies
the existence of an open Ball Br(ū), with radius r > 0, around ū in L2(Ωs) such that G is twice
continuously differentiable on Br(ū). Since {uk}∞k=1 converges strongly to ū as k →∞, there exists
in particular an index number k0 ∈ N such that

(6.7) uk ∈ Br(ū), ∀k ≥ k0.

Notice that we define ukū := {uk + t(ū − uk) | t ∈ [0, 1]} and hence for all k ≥ k0, ukū ⊂ Br(ū).
Consequently, for every k ≥ k0, there exists a point wk between uk and ū (i.e. wk ∈ ukū) such that

(6.8) L(uk, µ)− L(ū, µ) =
∂L
∂u

(wk, µ)(uk − ū) = ak
∂L
∂u

(wk, µ)hk ∀ k ≥ k0.

Therefore, from (6.6)-(6.8), we obtain:

(6.9)
∂L
∂u

(wk, µ)hk <
1
k
‖uk − ū‖L2(Ωs) ∀ k ≥ k0.

Due to the strong convergence of uk to ū in L2(Ωs), it holds that lim
k→∞

wk = ū in L2(Ωs) and

consequently ∂L
∂u (wk, µ) → ∂L

∂u (ū, µ) strongly in L2(Ωs)∗, as k → ∞. For this reason, the weak
convergence of hk to h̄ in L2(Ωs) implies:

lim
k→∞

∂L
∂u

(wk, µ)hk =
∂L
∂u

(ū, µ)h̄.

From the above equality and by (6.4) as well as (6.9), we infer further

∂L
∂u

(ū, µ)h̄ ≤ 0,

which implies together with (6.5)

(6.10)
∂L
∂u

(ū, µ)h̄ = 0.

Next, we show that h̄ belongs to Hū, cf. Definition 6.1. Since uk is feasible for (P) for every k ∈ N,
one finds that

hk(x) = ak(uk − ū) =
{
≥ 0 if ū(x) = ua(x)
≤ 0 if ū(x) = ub(x).

Consequently, {hk}∞k=1 ⊂ Hū. Since Hū is convex and closed, the weak limit h̄ belongs to Hū. Now
let us prove that h̄ ∈ Cū. This is shown in three steps:

(i) The weak limit h̄ ∈ Hū satisfies the condition (6.1):
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From the projection formel (5.9), we infer that

(6.11) p(x) + βū(x) =

 ≥ 0 if ū(x) = ua(x),
= 0 if ua(x) < ū(x) < ua(x),
≤ 0 if ū(x) = ub(x).

Moreover, since h̄ ∈ Hū,

(6.12) (p + βū)h̄ ≥ 0 a.e. in Ωs

On the other hand, (6.10) implies that

0 =
∂L
∂u

(ū, µ)h̄ =
∫

Ωs

(p + βū)h̄ dx

(cf. (5.8)). Consequently, by (6.12), h̄(x) = 0 if p(x) + βū(x) 6= 0 such that h̄ satisfies (6.1).

(ii) The weak limit h̄ ∈ Hū satisfies the condition (6.2):

Let us set ȳ = S(ū) and define the sets Aa, Ab and Amax by:

Aa := {x ∈ Ωg | ȳ(x) = ya(x)},
Ab := {x ∈ Ωg | ȳ(x) = yb(x)},

Amax := {x ∈ Ωs | ȳ(x) = ymax(x)}.

Since uk, for every k ∈ N, is feasible for (P), we obtain for all k ∈ N:

S(uk)(x)− ȳ(x)
‖uk − ū‖L2(Ωs)

≥ 0 ∀x ∈ Aa.

Additionally, by passing to the limit k → ∞, we obtain due to the continuous Fréchet differentia-
bility of G : L2(Ωs) → W 1,q(Ω) at ū and the compactness of the embedding W 1,q(Ω) ↪→ C(Ω) :

S′(ū)h̄ = lim
k→∞

S′(ū)hk = lim
k→∞

S′(ū)(uk − ū)
‖uk − ū‖L2(Ωs)

= lim
k→∞

S(uk)− S(ū)
‖uk − ū‖L2(Ωs)

in C(Ω).

Thus, S′(ū)h̄ =: yh̄ satisfies: yh̄(x) ≥ 0 for all x ∈ Aa. In a similar way, we show yh̄(x) ≤ 0 for all
x ∈ Ab and yh̄(x) ≤ 0 for all x ∈ Amax.

(iii) The weak limit h̄ ∈ Hū satisfies the condition (6.3):

The complementarity slackness conditions (5.3) imply that µa
g = 0 on Ωg \ Aa, µb

g = 0 on Ωg \ Ab

and µs = 0 on Ωs \ Amax. In view of (6.10), we hence obtain

(6.13) 0 =
∂L
∂u

(ū, µ)h̄ = f ′(ū)h̄ +
∫
Amax

yh̄dµs +
∫
Ab

yh̄dµb
g −

∫
Aa

yh̄dµa
g

On the one hand, we have due to the non-negativity of µs, µ
a
g , µb

g and (ii)

(6.14)
∫
Ab

yh̄dµb
g ≤ 0,

∫
Amax

yh̄dµs ≤ 0 and −
∫
Aa

yh̄dµa
g ≤ 0.
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On the other hand, by the assumption (6.4)

f ′(ū)h̄ = lim
k→∞

f ′(ū)hk = lim
k→∞

f ′(ū)(uk − ū)
‖uk − ū‖L2(Ωs)

= lim
k→∞

f(uk)− f(ū)
‖uk − ū‖L2(Ωs)

≤ lim
k→∞

1
k
‖uk − ū‖L2(Ωs) = 0.

(6.15)

From (6.13), (6.14), and (6.15), we infer that∫
Amax

yh̄dµs =
∫
Ab

yh̄dµb
g =

∫
Aa

yh̄dµa
g = 0.

Therefore, since µs = 0 on Ωs \ Amax, µa
g = 0 on Ωg \ Aa and µb

g = 0 on Ωg \ Ab, (iii) is verified.

Thus, we have just shown that h̄ ∈ Cū. Let us now demonstrate that h̄ = 0. From this, we
obtain the desired contradiction. Again, since G is twice continuously differentiable on Br(ū), for
each k ≥ k0 there exists a point zk ∈ L2(Ωs) between uk and ū (i.e. zk ∈ ukū) such that

L(uk, µ) = L(ū, µ) + ak
∂L
∂u

(ū, µ)hk +
a2

k

2
∂2L
∂u2

(zk, µ)h2
k ∀ k ≥ k0,

where k0 is as defined before in (6.7). By rearranging and dividing by a2
k/2, the above equation is

equivalent to

2
∂L
∂u

(ū, µ)(uk − ū) +
∂2L
∂u2

(ū, µ)h2
k =

2
a2

k

{
L(uk, µ)− L(ū, µ)

}
+

[∂2L
∂u2

(ū, µ)− ∂2L
∂u2

(zk, µ)
]
h2

k ∀ k ≥ k0.

Hence, since uk is feasible for (P) and ‖hk‖L2(Ωs) = 1 for all k ∈ N, the latter equality together
with (5.1) and (6.6) imply that

(6.16)
∂2L
∂u2

(ū, µ)h2
k <

1
k

+ ‖∂2L
∂u2

(ū, µ)− ∂2L
∂u2

(zk, µ)‖B2(L2(Ωs)) ∀ k ≥ k0,

where B2(L2(Ωs)) denotes the space of bounded bilinear forms from L2(Ωs)×L2(Ωs) to R. Notice
that ∂2L

∂u2 (·, µ) is continuous from L2(Ωs) to B2(L2(Ωs)), and hence since lim
k→∞

zk = ū in L2(Ωs),

the right hand side of (6.16) converges to zero as k → ∞. We consider now the left hand side of
(6.16). For each k ∈ N, we set yk := G′(ū)hk and wk := G′′(ū)h2

k and hence

∂2L
∂u2

(ū, µ)h2
k =‖∇yk‖2L2(Ωg) + (∇ȳ − z,∇wk)L2(Ωg) + β‖hk‖2L2(Ωs)

+
∫
Ω̄s

wk dµs +
∫
Ω̄g

wk dµb
g −

∫
Ω̄g

wk dµa
g .

(6.17)

Obviously, since G′(ū) is continuous and linear from L2(Ωs) to W 1,q(Ω) and hk ⇀ h̄ in L2(Ωs), one
finds

(6.18) ∇yk ⇀ ∇yh̄ in L2(Ω) as k →∞,
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with yh̄ = G′(ū)h̄. Moreover, the second term of the right hand side of the equality (6.17) can be
written as follows, cf. [13] p. 79,

(6.19) (∇ȳ − z,∇wk)L2(Ωg) = −12
∫

Γr

(Gσ|ȳ|ȳy2
k)q ds− 12

∫
Γ0

εσ|ȳ|ȳy2
kq ds.

Here, q is the solution of the following PDE

−div(κg∇q) = −∆ȳ + div z in Ωg,

−div(κs∇q) = 0 in Ωs,

κg

(
∂p

∂nr

)
g

− κs

(
∂p

∂nr

)
s

− 4σ|ȳ|3G?q = − ∂ȳ

∂nr
+ z · nr on Γr,

κs
∂q

∂n0
+ 4εσ|ȳ|3q = 0 on Γ0,

i.e. (5.7) without the multipliers on the right-hand side. It is straight-forward to show that As-
sumption 3.1 implies the existence of a unique solution q ∈ H1(Ω), cf. [13]. Now, since hk converges
weakly to h̄ as k →∞, and due to the compactness of the embedding W 1,q(Ω) ↪→ C(Ω), we obtain
lim

k→∞
yk = yh̄ in C(Ω) with yh̄ as defined above. Hence, from (6.19), one finds:

lim
k→∞

(∇ȳ − z,∇wk)L2(Ωg) = lim
k→∞

{
− 12

∫
Γr

(Gσ|ȳ|ȳy2
k)q ds− 12

∫
Γ0

εσ|ȳ|ȳy2
kq ds}

=− 12
∫
Γr

(Gσ|ȳ|ȳy2
h̄)q ds− 12

∫
Γ0

εσ|ȳ|ȳy2
h̄q ds

=(∇ȳ − z,∇wh̄)L2(Ωg)

(6.20)

where wh̄ = G′′(ū)h̄2 or equivalently wh̄ = −(A′q(ȳ))−1A′′q (ȳ)[yh̄, yh̄] (see Theorem 3.2). In view
of (3.2), A′′q (ȳ) is obviously continuous from C(Ω) × C(Ω) to W 1,q′(Ω)∗. Thus, together with the
compactness of the embedding W 1,q(Ω) ↪→ C(Ω), Theorem 3.1 implies that lim

k→∞
wk = wh̄ in C(Ω)

(recall that wk = G′′(ū)h2
k or equivalently wk = −(A′q(ȳ))−1A′′q (ȳ)[yk, yk]). Therefore, one obtains

as k →∞:

(6.21)
∫

Ω̄g

wkdµa
g →

∫
Ω̄g

wh̄dµa
g ,

∫
Ω̄g

wkdµb
g →

∫
Ω̄g

wh̄dµb
g,

∫
Ω̄s

wkdµs →
∫

Ω̄s

wh̄dµs.

Applying (6.16)-(6.21) and together with the weak convergence of hk to h̄ in L2(Ωs), we continue
with

∂2L
∂u2

(ū, µ)h̄2 =‖∇yh̄‖2L2(Ωg) + (∇ȳ − z,∇wh̄)L2(Ωg) + β‖h̄‖2L2(Ωs)

+
∫
Ω̄s

wh̄dµs −
∫
Ω̄g

wh̄dµa
g +

∫
Ω̄g

wh̄dµb
g

≤ lim inf
k→∞

∂2L
∂u2

(ū, µ)h2
k

≤ lim
k→∞

{1
k

+ ‖∂2L
∂u2

(ū, µ)− ∂2L
∂u2

(zk, µ)‖B2(L2(Ωs))

}
= 0.
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For this reason and since h̄ ∈ Cū, (SSC) implies that h̄ = 0. Thus, we have yh̄ = 0 and wh̄ = 0 and
consequently, lim

k→∞
(∇ȳ− z,∇wk)L2(Ωg) = 0. In view of (6.16), (6.17), and since ‖hk‖L2(Ωs) = 1 for

all k ∈ N, we therefore arrive at

1 = ‖hk‖2L2(Ωs) ≤
1
β

[∂2L
∂u2

(ū, µ)h2
k − (∇ȳ − z,∇wk)L2(Ωg) +

∫
Ω̄g

wkdµa
g −

∫
Ω̄g

wkdµb
g −

∫
Ω̄s

wk̄dµs

]
<

1
β

[1
k

+ ‖∂2L
∂u2

(ū, µ)− ∂2L
∂u2

(zk, µ)‖B2(L2(Ωs))

− (∇ȳ − z,∇wk)L2(Ωg) +
∫
Ω̄g

wkdµa
g −

∫
Ω̄g

wkdµb
g −

∫
Ω̄s

wkdµs

]
, ∀ k ≥ k0.

Finally, by passing to the limit k →∞, the theorem is verified.
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