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Abstract. In this paper we develop a QR-like algorithm for the palindromic eigenvalue problem Ax = λA?x.
We will discuss the two cases that A? denotes the transpose or the conjugate transpose of A ∈ Cn,n. It is shown
that this so-called palindromic QR iteration is equivalent to applying the standard QR algorithm to A−?A. Also
the concepts of deflation, shifting, and exploiting the invariance of a Hessenberg-type form are adapted. Moreover,
we analyze the problem of reducing a general square matrix to the mentioned Hessenberg-type form and establish
analogies to the Hamiltonian eigenvalue problem. Finally, we present concrete Hessenberg-type reduction algorithms
for special cases.
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1. Introduction. A generalized eigenvalue problem of the form

Ax = λA?x (1.1)

is called palindromic eigenvalue problem. Here, A ∈ Cn,n is a complex square matrix, λ ∈ C is
an eigenvalue, and x ∈ Cn \ {0} is a corresponding eigenvector. By writing A? we denote either
the transpose or the complex conjugate transpose of A, that is ? ∈ {T, ∗}. These two cases have
similar, though not identical, spectral properties. Whenever possible they are treated in a unified
way.

Palindromic eigenvalue problems of the form (1.1) are the linear case of polynomial palindromic
eigenvalue problems

P (λ)x =

(
k∑

i=0

Aiλ
i

)
x = 0, where A?

n−i = Ai ∈ Cn,n, i = 1, . . . , k. (1.2)

The underlying matrix polynomial P (λ) is invariant under reversing the order of the coefficients
and (conjugate-) transposing. This explains the term ’palindromic’, as palindromes are words that
are invariant under reversing the order of the letters. Well known palindromes are ’mom’, ’dad’,
or ’rotor’. Polynomial palindromic eigenvalue problems were introduced and analyzed in [15] and
arise for example in the vibration analysis of rail tracks [10] (T-case) or optimal control problems
[17] (∗-case). Under mild conditions, polynomial palindromic problems of the form (1.2) can be
linearized to linear palindromic problems of the form (1.1), see [15].

The symmetry in the coefficients of the palindromic eigenvalue problem (1.1) results in a
symmetry in the spectrum. Indeed, (conjugate-) transposing equation (1.1) yields

x?A? = λ?x?A⇔ x?A =
1
λ?

x?A?.

Thus, if λ 6= 0 is an eigenvalue (and x an associated eigenvector) then also 1
λ? is an eigenvalue

(and x? an associated left eigenvector). Note that for a scalar λ? means λ (if ? = T ) or λ̄, the
complex conjugate of λ (if ? = ∗). This spectral symmetry is called reciprocal pairing. Also a zero
eigenvalue is paired, with its partner being an infinite eigenvalue and vice versa. In the whole
paper we use the conventions 1

0 =∞, and 1
∞ = 0. The reciprocal pairing degenerates for so-called

exceptional eigenvalues with λ?λ = 1. Exceptional eigenvalues are ±1, if ? = T , or all numbers
on the unit circle, if ? = ∗.

Also the number and size of Jordan blocks associated with the eigenvalues λ and 1
λ? coincide.

This follows from a structured analogon to the Kronecker canonical form for palindromic pencils
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discussed in [20]. Similar canonical forms were presented in [12, 13, 19], but not in the context of
palindromic eigenvalue problems.

Existing methods for the palindromic eigenvalue problem can be divided into two classes based
on whether they target the palindromic Schur form (the same condensed form we will be aiming
at, see [16] or Theorem 1 below), or not. The first class includes a Jacobi-like method [10] and
the structured deflation method, a postprocessing step of the generalized Schur form [16]. Other
approaches to the solution of the palindromic eigenvalue problem are based on a URV-type matrix
factorization [21] or (for quadratic palindromic problems) on the structured doubling algorithm [7].

This paper is structured as follows. In Section 2 we recall the palindromic Schur form and
present the basic palindromic QR algorithm. In Section 3 the technique of shifting is developed
as a means to speed up the algorithm. Then, in Section 4 we consider Hessenberg-like matrices
that are invariant under palindromic QR steps. In Section 5 we discuss the reduction of a general
matrix to this Hessenberg-like form. Finally, we offer some conclusions.

Notation. As mentioned before, A? denotes either the transpose or conjugate transpose of A.
Consequently, A∗? := (A∗)? denotes either the complex conjugate of A, or A itself.

We call a matrix pair (A, B) a pencil. It refers to the generalized eigenvalue problem Ax =
λBx. A pencil is called regular, if A and B are square and det(A− λB) 6≡ 0, otherwise it is called
singular. The i-th vector of unity ei is the i-th column of the identity matrix I. The direct sum
of matrices A,B is defined as

A⊕B = diag(A,B) =
[
A 0
0 B

]
.

The term bαc denotes the largest integer that is smaller or equal to α (known as Gaussian paren-
theses). Throughout this paper, F denotes the so-called flip matrix

F =




0 1

. ..

1 0


 .

The name stems from the fact that upon premultiplication by F a matrix is flipped upside-down,
while postmultiplication corresponds to a flip leftside-right.

A matrix A ∈ Cn,n is called (lower) skew triangular, if aij = 0 whenever i + j ≤ n. Such

a matrix will be depicted by A = ¡. On the other hand, upper skew triangular matrices,

depicted by A = ¡, are those with aij = 0 for all i + j > n + 1. Note that the transpose
of a lower skew triangular matrix is also lower skew triangular, while its inverse (if it exists) is
upper skew triangular. Moreover, if an upper triangular matrix is flipped upside-down, i.e., if it is
premultiplied by F , it becomes skew triangular. Note further, that the product of an upper skew

triangular matrix and a lower skew triangular one is upper triangular, or shorter: ¡ ·¡=@.

These properties are summarized in the following table, where depicts a matrix that has no
particular zero pattern in general.

A ·B, B =

A AT A−1 FA AF @ @ ¡ ¡
@ @ @ ¡ ¡ @ ¡
@ @ @ ¡ ¡ @ ¡
¡ ¡ ¡ @ @ ¡ @
¡ ¡ ¡ @ @ ¡ @
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2. The palindromic QR algorithm. The palindromic eigenvalue problem is a special case
of the generalized eigenvalue problem. Hence it can be solved by standard methods for the gener-
alized eigenvalue problem, e.g., the QZ algorithm [9]. But such general methods do not preserve
the palindromic structure of the pencil and thus their results do not (due to rounding errors)
conform to the reciprocal pairing. Since in applications this pairing often has a physical meaning,
it is desirable to derive a method that preserves palindromic structure and consequently also the
reciprocal pairing. Such an algorithm should use only unitary congruence transformations, be-
cause congruences preserve the palindromic structure, P?(A,A?)P = (P?AP, (P?AP )?), whereas
unitary transformations are essential for achieving numerical backward stability [24].

Since the generalized Schur form is not palindromic (and thus cannot be reached by congru-
ences), the algorithm must target some other condensed form that reveals the eigenvalues of the
problem. Such a condensed form is provided by the following two results.

Theorem 1. For any square matrix A ∈ Cn,n there exists a unitary matrix Q such that

Q?AQ =




p p

p A13

A22 A23

p A31 A32 A33


 =




¡

¡




, (2.1)

for some p ≤ bn
2 c where the pencil (A22, A

?
22) is regular and has only exceptional eigenvalues with

λ?λ = 1.
Proof. For ? = T , this follows from a stronger result in [16]. The relevant part of the proof

given there can be generalized to cover the case ? = ∗ as well.
It will be shown that if the pencil (A,A?) is singular or has a non-exceptional eigenvalue, then

there exists a unitary Q ∈ Cn,n, such that

Q?AQ =




1 n− 2 1
1 0 0 Ã13

n− 2 0 Ã22 Ã23

1 Ã31 Ã32 Ã33


. (2.2)

By applying the same procedure to Ã22 the matrix is successively reduced to the form (2.1). We
consider two cases.

Case 1: A is singular. Then there exists a vector q1 of norm 1 such that A?q1 = 0. Let
Q̂ ∈ Cn,n be unitary, such that Q̂e1 = q1. Then

Â = Q̂?AQ̂ =




1 n− 2 1
1 0 0 0
n− 2 Â21 Â22 Â23

1 Â31 Â32 Â33


. (2.3)

Now, let H ∈ Cn−1,n−1 be unitary, such that

H?
[
Â21

Â31

]
= αen−1

with α ∈ C. This could be, e.g., a suitable Householder matrix [9]. Then, with Q = Q̂(1⊕H), we
have

Q?AQ =
[
1

H

]?
Â

[
1

H

]
=




1 n− 2 1
1 0 0 0
n− 2 0 Ã22 Ã23

1 α Ã32 Ã33


 (2.4)

of the form (2.2).
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Case 2: A is non-singular. Then, in particular, the pencil (A, A?) is regular. Let (λ, x) be an
eigenpair of (A,A?), where λ is a non-exceptional eigenvalue, i.e., λ?λ 6= 1. If such a pair does
not exist, there is nothing to show. But if it exists, then one has

x?(Ax) = x?(λA?x) = λ(Ax)?x = λ(λA?x)?x = λ?λx?Ax, (2.5)

i.e., x?Ax = 0. Let q1 be the normalized vector x. Let q2, . . . , qn−1 be an orthonormal family in the
orthogonal complement of span(x, (Ax)?∗) and let qn be a normalized vector, that is orthogonal
to q1, . . . , qn−1. Then Q = [q1, . . . , qn] is unitary and

Ã = Q?AQ =




1 n− 2 1
1 0 Ã12 Ã13

n− 2 0 Ã22 Ã23

1 Ã31 Ã32 Ã33


,

because q?1 Aq1 = 1
‖x‖2 x?Ax = 0 and q?j Aq1 = (q∗j (Aq1)∗?)∗? = 0. Since q1 is an eigenvector of

(A,A?), the first vector of unity, e1, is an eigenvector of (Ã, Ã?). Thus, Ã12 must be zero as well
and hence Ã is of the form (2.2). This concludes the proof.

From here on, we will assume that (A, A?) is a regular pencil with at most one exceptional
eigenvalue. This considerably simplifies the condensed form (2.1).

Corollary 2. Let A ∈ Cn,n be such that (A, A?) is a regular pencil with at most one
exceptional eigenvalue. Then there is a unitary Q such that

Q?AQ = R =¡.

Further, all eigenvalues of (A,A?) can be read off from R. They are given by the ratios

λi =
rn+1−i,i

r?i,n+1−i

, for i = 1...n. (2.6)

Moreover, Q can be chosen such that the eigenvalues λ1, λ2 . . . λn appear in any order yielding
λ?

i = 1
λn+1−i

for i = 1, . . . , n.
Proof. Since (A,A?) has at most one exceptional eigenvalue, the A22 block in the form (2.1)

is of size at most 1-by-1. Thus, in this case the form (2.1) reduces to a skew triangular matrix.
Since (A, A?) is a regular pencil, it has n eigenvalues. Considering the determinant of R − λR?

the assertion (2.6) follows.
The order of the eigenvalues λ1, . . . , λbn

2 c corresponds to the order of the eigenpairs selected
in the proof of Theorem 1 in case 2. The other eigenvalues follow from the relation (2.6).

Definition 3. Let A ∈ Cn,n such that (A,A?) is regular. A matrix R ∈ Cn,n is called a
palindromic Schur form of A, if R is skew triangular and there exists a unitary Q ∈ Cn,n such
that R = Q?AQ. R is called ordered, if |λi| ≥ |λi+1| for i = 1, . . . , n− 1 with λi as in (2.6).

Remark 4. The mentioned stronger result in [16] for the case ? = T states that for every

square matrix A there exists a unitary matrix Q such that QT AQ = R = ¡ is skew triangular.
There, R is called anti-triangular Schur form.

This does not hold in the ? = ∗ case. For example, the identity matrix I2 cannot be skew
triangularized by unitary ∗-congruence. Indeed, Q∗IQ = I is not skew triangular for any unitary

Q. In the T-case, however, with Q = 1√
2

[
1 −i
i −1

]
we have Q∗Q = I2, QT IQ = −i [ 0 1

1 0 ] =¡. ¤
The palindromic eigenvalue problem can be solved by transforming A in (1.1) to palindromic

Schur form. Thus, we are looking for a unitary matrix Q such that Q?AQ is skew triangular. This
situation is similar to the standard eigenvalue problem, where we want to find a unitary matrix Q
such that Q∗AQ is upper triangular. A commonly used method to compute such a Q is the QR
iteration [9]. A basic step of the iteration consists of performing a QR factorization A = QR and
then forming the A+ = RQ = Q∗AQ. Because of the mentioned similarity between the reduction
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Fig. 2.1. Convergence history of the palindromic QR iteration. We plot the elementwise common logarithm.
The lighter an element is the smaller it is in magnitude. The color bar to the right is labeled logarithmically.

to standard and palindromic Schur form, it is natural to come up with the palindromic QR itera-
tion consisting of repeatedly applying the following palindromic QR step.

Algorithm 1. Palindromic QR step

1: A→ QR (skew QR factorization, i.e., R =¡)

2: A1 ← RQ∗?

Note, that A1 is unitarily ?-congruent to A, as A1 = RQ∗? = Q∗AQ∗?. Here, Q∗? is a
somewhat cryptic notation for Q (if ? = ∗) or Q̄ (? = T ), respectively.

Example 1. As an example, we have applied the palindromic QR iteration to a (10 × 10)
real matrix, A, defined as follows: A = XDXT where X is a (10× 10) random matrix (generated
by the MATLAB command rand(10)) with condition number cond(X) ≈ 100. D was set to[

10

. ..
1

]
. Hence, the eigenvalues of (A, AT ) are 1

10 , 2
9 , 3

8 , 4
7 , 5

6 , 6
5 , 7

4 , 8
3 , 9

2 and 10
1 .

In Figure 2.1 the results of every 20th step are plotted. It can be observed that it takes 80
iterations for the first eigenvalue pair to converge. In A80 (lower center plot) the ratio a1,10

a10,1
equals

0.1 to an accuracy of 15 digits. After 194 iterations the matrix has converged to a skew triangular
form. ¤

The palindromic QR iteration converged for the preceeding example. In order to analyze the
convergence behavior the following result relates the palindromic QR iteration to the standard
QR iteration applied to the standard eigenvalue problem A−?Ax = λx, that arises if (1.1) is
premultiplied by A−? and thus has the same eigenvalues and (right) eigenvectors as (1.1).

Lemma 5. Let A ∈ Cn,n be non-singular and let A2 be the result of two palindromic QR steps
applied to A. Further, let B = A−?A and let B+ be the result of one standard QR step applied to
B. Then there is a unitary diagonal matrix D such that B+ = D∗A−?

2 A2D.
Proof. Carrying out two palindromic QR steps on A yields

A =: Q1R1, with R1 =¡, A1 := Q∗
1AQ∗?1 ,

A1 =: Q2R2, with R2 =¡, A2 := Q∗
2A1Q

∗?
2 .
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It follows that R1 = Q∗1A and R2 = Q∗
2Q

∗
1AQ∗?1 . Let Q := (Q1Q2)∗? and R := R−?

2 R1 =¡·¡=

@. Then we have

QR = (Q1Q2)∗?(Q∗2Q
∗
1AQ∗?

1 )−?Q∗1A = A−?A,

i.e., QR forms a standard QR-decomposition of A−?A. So, applying a standard QR step with this
QR-decomposition to A−?A yields

Q∗A−?AQ = Q?
2 Q?

1 A−?(Q1Q2Q
∗
2Q

∗
1)AQ?∗

1 Q?∗
2

= (Q∗2Q
∗
1AQ?∗

1 Q?∗
2 )−?(Q∗2Q

∗
1AQ?∗

1 Q?∗
2 )

= (Q∗2A1Q
?∗
2 )−?(Q∗2A1Q

?∗
2 )

= A−?
2 A2.

Since the QR-factorization of a non-singular matrix is unique up to a unitary diagonal factor [9]
the assertion follows.

Remark 6. In Lemma 5 A was assumed to be non-singular. This is not necessary for the
basic palindromic QR iteration to work. In fact, if A is singular then two steps of Algorithm 1
implement the procedure used in case 1 of the proof of Theorem 1. It is easy to check that (in the
generic case that the kernel of A is not orthogonal to en) A1 is of the form (2.3) and A2 is of the
form (2.4). ¤

The following result relates the Schurform of A−?A to the palindromic Schur form of A.
Lemma 7. Let A ∈ Cn,n be non-singular such that all eigenvalues of (A,A?) are of geometric

multiplicity 1 and there is at most one exceptional eigenvalue. Assume further that T := A−?A is
in Schur form, with 1

t?ii

= tn+1−i,n+1−i for i = 1, . . . , n. Then A is in palindromic Schur form.

Proof. By Corollary 2 there is a palindromic Schur decomposition A = Q∗?RQ∗ of A such

that rn+1−i,i

r?i,n+1−i

= tii for i = 1, . . . , bn
2 c. Set T̃ := R−?R =@ and note that 1

t̃?ii

= t̃n+1−i,n+1−i for

i = 1, . . . , n. We have

T = A−?A = (Q∗?RQ∗)−?(Q∗?RQ∗) = QR−?RQ∗ = QT̃Q∗. (2.7)

So, T and T̃ are both Schur forms of A−?A with the eigenvalues occurring in the same order.
Moreover, T and T̃ are unitarily similar. Since all eigenvalues are of geometric multiplicity 1, the
Schur form is essentially unique. So, Q must be a unitary diagonal matrix. Thus, A = Q∗?RQ∗

is skew triangular.
Lemmas 5 and 7 indicate that the palindromic QR iteration converges to a palindromic Schur

form under the assumptions that there is at most one exceptional eigenvalue, all eigenvalues are
non-derogatory and that the standard basic QR iteration converges when applied to A−?A.

At this point, the basic palindromic QR iteration has been introduced. The remainder of the
paper is about how to speed up the algorithm by strategies like deflation (Section 2.2), shifting
(Section 3) or the use of Hessenberg-like structures (Section 4).

2.1. The real case. Many palindromic problems arising in practice are real. In this case
one would like to keep all computations real as real operations are faster by a factor of 4 than
complex operations. Furthermore, in this case the eigenvalues occur in quadruples of the form
(λ, λ̄, 1

λ , 1
λ
), and exceptional eigenvalues are those on the unit circle.

Theorem 8. Let A ∈ Rn,n. Then, there is an orthogonal matrix Q ∈ Rn,n such that

QT AQ =




p p

p A13

A22 A23

p A31 A32 A33


 (2.8)

for some p ≤ bn
2 c where A13 is skew triangular, A31 is quasi skew triangular (i.e., with 1-by-1 and

2-by-2 blocks on the skew diagonal) and (A22, A
T
22) has only exceptional eigenvalues.
6



Proof. The proof is analogous to that of Theorem 1. Case 1 holds without changes. All that
remains to be shown in case 2 is the analogon of relation (2.5). So, assume that X ∈ Rn,2 spans a
deflating subspace corresponding to a complex conjugate pair of non-exceptional eigenvalues, i.e.,
AX = AT XL with L ∈ R2,2, λ(L) = {λ, λ̄}, and |λ| 6= 1. We have to show that XT AX = 0. This
is indeed the case as

XT (AX) = XT (AT XL) = (AX)T XL = (AT XL)T XL = LT XT AXL.

So, (LT ⊗ LT − I)vec(XT AX) = 0, where vec denotes the vectorization operator and ⊗ the
Kronecker product, see [11]. The spectrum of L̃ := LT ⊗ LT is given by {λiλj |λi, λj ∈ λ(L)}. So
every eigenvalue µ of L̃ is of modulus |µ| = |λ2| 6= 1. Thus, LT ⊗LT −I is non-singular, and hence
XT AX = 0.

If the palindromic QR algorithm is applied to a real matrix A, the whole iteration will stay
real. Moreover, Lemma 5 and a straightforward generalization of Lemma 7 still hold. So, what
we have said about the convergence of the iteration also applies to the real case. An example was
given in Example 1, as the matrix considered there was chosen real.

2.2. Deflation. If during the course of the iteration, the matrix A has the form

A =




p n− 2p p

p 0 0 A13

n− 2p 0 A22 A23

p A31 A32 A33


, (2.9)

for some integer p ≤ bn
2 c, then the first p vectors of unity span a deflating subspace of the pencil

(A,A?), and the spectrum decomposes into three subsets, λ(A,A?) = λ(A13, A
?
31)∪λ(A22, A

?
22)∪

λ(A31, A
?
13).

The first and last subsets can be computed simultaneously by transforming (A13, A
?
31) into

generalized Schur form, i.e., by determining two unitary matrices Q, Z ∈ Cp,p, such that

QA13Z = R1 =@, QA?
31Z = R2 =@.

For example, the QZ algorithm [9] can compute such matrices Q and Z. Let Q̃ = FQ? ⊕ I ⊕ Z.
Then we have

Q̃?AQ̃ =




p n− 2p p

p 0 0 FR1

n− 2p 0 A22 Ã23

p R?
2 F Ã32 Ã33


 =




p n− 2p p

p 0 0 ¡
n− 2p 0

p ¡




.

Then, the palindromic QR iteration can be continued on A22, yielding the remaining set λ(A22, A
?
22).

The subsequent iterations will be computationally less expensive, because A22 is of smaller size
than A.

In practice, the blocks A11, A12, A21 generally do not vanish as in (2.9). Rather they are set
to zero if they are neglectable, for instance, if ‖[A11, A12, A

T
21]‖F < 10−16‖A‖F .

3. Shifting. In general, the palindromic QR iteration converges very slowly (as in Exam-
ple 1). However, if (0,∞) is an eigenvalue pair, it is discovered within only two steps of the
iteration. If (0,∞) is not an exact, but an approximate eigenvalue pair, then it can still be
expected to be found within only a few iterations.

The basic idea behind shifting for the QR algorithm is to shift the original matrix to another
one with some eigenvalues near zero, so that the iterations can speed up. Here, we follow the same
idea. We will shift the pencil (A,A?) to another palindromic pencil (Ã, Ã?). The choice

Ã = A− κA?. (3.1)
7



is natural (as it is the analogon of the choice Ã = A− κB used by the shifted QZ iteration). If κ
is close to an eigenvalue it is reasonable to assume that this choice of Ã is close to singular. We
now analyze how the eigenvalues and eigenvectors of the so-called shifted system are related to
those of the original problem.

Lemma 9. Let A ∈ Cn,n such that (A,A?) is a regular pencil, and κ ∈ C with κ?κ 6= 1. Set
Ã = A− κA?. Then (Ã, Ã?) is regular.

Further, let (λ, x) be an eigenpair of (A,A?). Then (λ̃, x) is an eigenpair of (Ã, Ã?) with

λ̃ = fκ(λ) =
λ− κ

1− κ?λ
(3.2)

In particular, if κ = λ then λ̃ = 0 and if κ = 1
λ? then λ̃ =∞.

Proof. Suppose that y := A?x 6= 0, then (A−κA?)x = (λ−κ)y and (A−κA?)?x = (1−κ?λ)y,
thus, Ãx = λ−κ

1−κ?λ
Ã?x.

If A?x = 0, the result follows by exchanging the roles of A and A?.
Note, that the requirement κ?κ 6= 1 in Lemma 9 is important. If a value κ with κ?κ = 1 is

used as shift, all eigenvalues are mapped to the same value, λ̃ = −κ for all λ. This can also be
seen from the shifted system matrix Ã. It satisfies

Ã? = (A− κA?)? = A? − κ?A =
−1
κ

(−κA? + κ?κA) =
−1
κ

Ã.

Thus, every vector would be an eigenvector (associated with the eigenvalue −κ) of the pencil
(Ã, Ã?) and no information could be drawn from the shifted pencil.

The shifted palindromic QR step proceeds by applying a palindromic QR step to the shifted
system matrix Ã to get Ã1 = Q∗ÃQ∗?, where Q stems from the skew QR factorization of Ã.
Afterwards, Ã1 has to be ’unshifted’. The formula Ã1 = A1 − κA?

1 can be solved for A1 (again,
under the assumption that κ?κ 6= 1) yielding

A1 =
1

1− κ?κ
(Ã1 + κÃ?

1 ). (3.3)

Another way is to directly apply Q to A, i.e. setting A1 = Q∗AQ∗?. The latter is more expensive,
but could be numerically preferable, since then possible cancellation errors in (3.1) and (3.3) do
not carry over to A1.

Summarizing the discussion above, a shifted palindromic QR step looks as follows:
Algorithm 2. Shifted palindromic QR step

1: choose κ
2: Ã← A− κA?

3: Ã→ QR with R =¡
4: A1 ← Q∗AQ∗?

It remains to find an eigenvalue approximation κ from A. One possible choice is

κ1 =
a1,n

a?
n,1

. (3.4)

This is a good approximation if the first row and column of A are close to a multiple of the last
vector of unity, i.e., if A is close to the form (2.9) for p = 1.

Another possibility is to partition A as follows

A =




2 n− 4 2
2 A11 A12 A13

n− 4 A21 A22 A23

2 A31 A32 A33




and to chose κ as the eigenvalue of the pencil (A13, A
?
31) that is nearest to κ1 as of (3.4).
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Fig. 3.1. Convergence history of the shifted palindromic QR iteration. The plotted residual was computed as
r = ‖[A(1, 1 : 9), A(2 : 9, 1)T ]‖.

Example 2. The shifted palindromic QR iteration with shift (3.4) is applied to the matrix
from Example 1. As shown in Figure 3.1, the first eigenvalue pair converges within 10 iterations.

After deflation it takes 6 further steps for the next pair and all together only 28 steps for the
whole matrix to converge.

Note, that the lower right plot of the residual norm indicates quadratic convergence. ¤
In order to explain the observed quadratic convergence, we now give a result that connects the
shifted palindromic QR iteration with the rational QZ iteration described in [23]. Recall, that
a rational QZ step with numerator shift µ and denominator shift θ applied to a pencil (B, C)
consists of a QZ step with shift µ followed by a ZQ step with shift θ. The standard choices for the
shifts are µ = bnn

cnn
and θ = b11

c11
. For this choice, the rational QZ algorithm is observed to converge

quadratically.
Lemma 10. Let A ∈ Cn,n be non-singular and assume that κ = a1n

a?n1
is not an exact eigenvalue

of (A,A?). Let A2 be the result of two shifted palindromic QR steps applied to A, both steps using
κ as shift. Set S = A−?

2 A2.
Further, define B = FA, and C = FA?, µ = bnn

cnn
, θ = b11

c11
. Let B2, C2 be the result of a

rational QZ step applied to (B, C) using the standard shifts µ, θ. Set T = C−1
2 B2.

Then there exists a unitary, diagonal matrix D such that S = DTD∗.
Proof. The QZ step starts by forming the QR factorization

B − µC = Q1R1, with R1 =@,

followed by the RQ factorization Q∗
1C = C1Z1, where C1 is upper triangular. The results of the

QZ step are B1 = Q∗1BZ∗1 and C1 = Q∗1CZ∗1 . The following ZQ step proceeds by forming the RQ
factorization

B1 − θC1 = R2Z2, with R2 =@,

followed by the QR factorization C1Z
∗
2 = Q2C2, where C2 is upper triangular. This results in

B2 = Q∗2B1Z
∗
2 , C2 = Q∗2C1Z

∗
2 . Thus, with Q := Z2Z1, we have T = C−1

2 B2 = Z2Z1A
−?AZ∗1Z∗2 =

QA−?AQ∗.
9



On the other hand, two palindromic QR steps proceed as follows

A− κA? = Q̃1R̃1, with R̃1 =¡,

A1 = Q̃∗1AQ̃∗?
1 ,

A1 − κA?
1 = Q̃2R̃2, with R̃2 =¡,

A2 = Q̃∗2A1Q̃
∗?
2 .

Thus, with Q̃ := Q̃?
2 Q̃?

1 it follows that S = A−?
2 A2 = Q̃?

2 Q̃?
1 A−?AQ̃∗?

1 Q̃∗?2 = Q̃A−?AQ̃∗.
In the following, we show, that both matrices Q, and Q̃ define QR factorizations of K :=

(A− κA?)−?(A− κA?). Indeed,

Q̃K = Q̃?
2 Q̃?

1 (A− κA?)−?Q̃1Q̃
∗
1(A− κA?)

= (Q̃∗2Q̃
∗
1(A− κA?)Q̃∗?1 )−?Q̃∗1(A− κA?)

= (Q̃∗2(A1 − κA?
1 ))−?Q̃∗1(A− κA?)

= R̃−?
2 R̃1 =¡ ·¡=@.

On the other hand, noting that κ = a1n

an1
= bnn

cnn
= µ and κ = a1n

an1
= c?11

b?11
= 1

θ? , we have

QK = Z2Z1(A− κA?)−?(A− κA?)

= ((A? − 1
θ?

A)Z∗1Z∗2 )−1FQ1Q
∗
1F (A− µA?)

= (Q∗1(C −
1
θ?

B)Z∗1Z∗2 )−1Q∗
1(B − µC)

=
1
θ?

((θ?C1 −B1)Z∗2 )−1Q∗
1(B − µC)

= − 1
θ?

R−1
2 R1 =@ ·@=@.

Since the QR factorization of the non-singular matrix K is unique up to a unitary diagonal
factor, there exists a unitary and diagonal D such that Q̃ = DQ. Thus, S = Q̃A−?AQ̃∗ =
DQA−?AQ∗D∗ = DTD∗.

3.1. Multiple shifts. In order to get even faster convergence, it is natural to employ multiple
shifts in a single iteration. If one tries two shifts an obvious shift function to use is

f(λ) =
λ− κ1

1− κ?
1 λ
· λ− κ2

1− κ?
2 λ

.

However, it is not clear how a shifted pencil (Ã, Ã?) can be constructed from A such that an
eigenpair (λ, x) of (A,A?) corresponds to an eigenpair (f(λ), x) of (Ã, Ã?). We will come back to
this problem later, see Algorithm 4 below.

The situation is different with three shifts! By direct calculation (analogous to the proof of
Lemma 9) it is easy to verify that if (λ, x) is an eigenpair of (A,A?), then

(A− κ3A
?)(A− κ2A

?)−?(A− κ1A
?)︸ ︷︷ ︸

Ã

x = λ̃ (A? − κ?
1 A)(A? − κ?

2 A)−?(A? − κ?
3 A)︸ ︷︷ ︸

Ã?

x

with

λ̃ = f(λ) =
λ− κ1

1− κ?
1 λ
· λ− κ2

1− κ?
2 λ
· λ− κ3

1− κ?
3 λ

.

10
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More generally, for any odd number of shifts, k, the shifted matrix is given by

Ã = (A− κkA?)(A− κk−1A
?)−?(A− κk−2A

?) · · · (A− κ2A
?)−?(A− κ1A

?). (3.5)

This corresponds to the eigenvalue transformation

λ̃ = f(λ) =
k∏

i=1

λ− κi

1− κ?
i λ

,

i.e., all eigenvalues near one of the shifts get mapped approximately to 0. Hence, one palindromic
QR step applied to the shifted pencil will drive convergence towards the (typically k) eigenvalues
near κ1, ..., κk and the multi-shift algorithm can be expected to converge to a block skew triangular
form (2.9) with p = k, so that the problem can be deflated.

A multi shift palindromic QR step is very similar to the single-shift variant, except for the
formation of the shifted matrix Ã.

Algorithm 3. Multi shift palindromic QR step (odd k)
1: choose κ1, . . . κk

2: Ã← (A− κkA?)(A− κk−1A
?)−? · · · (A− κ1A

?)

3: Ã→ QR with R =¡
4: A1 ← Q∗AQ∗?

The the shifts, κ1, . . . , κk, can chosen similarly than in the single-shift case. Partition A as

A =




k n− 2k k

k A11 A12 A13

n− 2k A21 A22 A23

k A31 A32 A33




and use the eigenvalues of the pencil (A13, A
?
31) as shifts. This will give good approximations to

eigenvalues of (A,A?) if A11, A12, and A21 are small in norm.
Example 3. We have applied Algorithm 3 for k = 3 to the matrix from Example 1 and

plotted the results in Figure 3.2. After 10 iterations a block of 3 eigenvalue pairs converged. ¤
The following results relate the single-shift and the multi-shift palindromic QR algorithms. The
results will be used in a later section. The first lemma states that one multi-shift palindromic QR
step with the shifts κ1, . . . , κk is equivalent to k single–shift steps with the same shifts.

Lemma 11. Let A ∈ Cn,n such that (A,A?) is a regular pencil. Let κ1, . . . , κk be an odd
number of complex numbers, that are not exact eigenvalues of (A, A?) and that satisfy κ?

i κi 6= 1.
Let Ak be the result of k steps of the single–shift palindromic QR iteration (Algorithm 2) applied
to A using the shifts κ1, . . . , κk. Further, define A+ as the result of one multi–shift palindromic
QR step (Algorithm 3) applied to A, using the shifts κ1, . . . , κk.

Then there exists a unitary diagonal matrix D such that A+ = D?AkD.
11



Proof. The imposed requirements on the shifts assure the existence of the inverses used below.
Applying k single-shift steps to A amounts to

Ai−1 − κiA
?
i−1 =: QiRi, with Ri =¡,

Ai := Q∗
i Ai−1Q

∗?
i , i = 1, ..., k,

with A0 = A. Define Vi := Q1 · · ·Qi and note that V ∗
i (A − κiA

?)V ∗?
i−1 = Ri and V ∗

k AV ∗?
k = Ak.

Further, set

R := RkR−?
k−1Rk−2 · · ·R−?

2 R1 =¡ ·¡ ·¡· · ·¡ ·¡=¡ .

Then VkR is a skew QR factorization of Ã (as defined in (3.5)), since

VkR = VkRkR−?
k−1Rk−2 · · ·R−?

2 R1

= (VkRkV ?
k−1)(Vk−1Rk−1V

?
k−2)

−? · · · (V2R2V
?
1 )−?(V1R1)

= (A− κkA?)(A− κk−1A
?)−?(A− κk−2A

?) · · · (A− κ2A
?)−?(A− κ1A

?)
= Ã.

Hence, an application of the multi–shift palindromic QR step using this skew QR factorization
yields A+ = V ∗

k AV ?∗
k = Ak. The result follows, since skew QR factorizations of nonsingular

matrices are unique up to a unitary diagonal factor.
From the proof, it is easy to derive the following implicit variant of Algorithm 3 that does not

involve inverted matrices.
Algorithm 4. Multi–shift palindromic QR step (general k)

1: choose κ1, . . . , κk

2: for i = 1, . . . , k do (A− κiA
?)Q∗?i−1 → QiRi with Ri =¡, Q0 = I

3: A1 ← Q∗kAQ∗?
k

Note, that this variant is not restricted to odd k. For even k, the shifted matrix is given by

Ã = (A− κkA?)−?(A− κk−1A
?) · · · (A− κ2A

?)−?(A− κ1A
?). (3.6)

In the even case, however, if x is an eigenvector of (A,A?) it does not mean that x is also
eigenvector of (Ã, Ã?). Therefore, the original and the shifted pencils are not related as strongly
as in the case of an odd number of shifts. From here on, k is no longer restricted to be odd. The
next lemma is about the order of the steps.

Lemma 12. Let A ∈ Cn,n be non-singular and k ∈ N. Further, suppose that none of the
shifts κ1, ..., κk is an exact eigenvalue of (A,A?).Then Ã as of (3.5) or (3.6) is independent of the
orders of the odd numbered shifts (κ1, κ3, κ5, ...) and the even numbered shifts (κ2, κ4, κ6, ...).

Proof. The assumptions imply that every inverse used in the following exists. The shifted
matrix Ã can be written as a product of k matrices as follows,

Ã = · · · (A− κ4A
?)−?

︸ ︷︷ ︸
B4

(A− κ3A
?)︸ ︷︷ ︸

B3

(A− κ2A
?)−?

︸ ︷︷ ︸
B2

(A− κ1A
?)︸ ︷︷ ︸

B1

.

It is enough to show that exchanging κi with κi+2 does not change Ã as then any order within
the sets of shifts with even/odd indices can be reached. Since exchanging κi with κi+2 leaves the
first (k − i− 2) factors and the last (i− 1) ones unchanged, it suffices to prove that

Bi+2Bi+1Bi = BiBi+1Bi+2. (3.7)

Assume that i is odd. Then,

Bi+2Bi+1Bi = ABi+1A− κi+2A
?Bi+1A− κiABi+1A

? + κi+2κiA
?Bi+1A

?,

BiBi+1Bi+2 = ABi+1A− κi+2ABi+1A
? − κiA

?Bi+1A + κi+2κiA
?Bi+1A

?.

12



So, (3.7) holds if and only if ABi+1A
? = A?Bi+1A. This is indeed the case since

ABi+1A
? = A(A− κi+1A

?)−?A?

= (A−?(A− κi+1A
?)A−1)−?

= (A−?AA−1 − κi+1A
−?A?A−1)−?

= (A−1AA−? − κi+1A
−1A?A−?)−?

= (A−1(A− κi+1A
?)A−?)−?

= A?(A− κi+1A
?)−?A = A?Bi+1A.

If i is even we prove (Bi+2Bi+1Bi)−? = (BiBi+1Bi+2)−? instead. The proof is the same.
This lemma can be used to construct a method for real matrices. If A is real and both, the

even numbered shifts and the odd numbered shifts, are closed under complex conjugation, then
Ã is real as well and with it also the next iterate A1. We show this for k = 4. The general case
follows analogously. So, let κ1, . . . , κ4 be four complex shifts with κ3 = κ1 and κ4 = κ2. We have
for Ã

Ã = (A− κ2AT )−T (A− κ1AT )(A− κ2AT )−T (A− κ1AT )
= (A− κ2A

T )−T (A− κ1A
T )(A− κ2A

T )−T (A− κ1A
T )

(Lemma 12)
= (A− κ2A

T )−T (A− κ1A
T )(A− κ2A

T )−T (A− κ1A
T ) = Ã.

To summarize, as expected, shifting greatly reduces the number of necessary iterations of the
palindromic QR algorithm. Based on our observations with single shifts it takes on average 6 to 8
iterations for a reciprocal eigenvalue pair to converge. Thus, on average O(n) iterations seem to
be enough to get all the eigenvalues.

4. Skew Hessenberg matrices. The dominating operation in a palindromic QR step is
the skew QR factorization which takes O(n3) floating point operations. This makes the whole
iteration an expensive O(n4) process. The standard QR algorithm has the same problem, but for
Hessenberg matrices the cost is reduced by one order of magnitude. In this section we introduce
Hessenberg–like matrices that play an analogous role for the palindromic QR algorithm.

Definition 13. A square matrix A ∈ Cn,n is called skew Hessenberg, if aij = 0 whenever

i + j < n. Such a matrix is depicted by A =¡¡ .
A skew QR factorization of a skew Hessenberg matrix can be achieved by a series of n − 1

Givens rotations and can thus be computed in O(n2) operations. Therefore, if the result of a
palindromic QR step applied to a skew Hessenberg matrix is again skew Hessenberg, then the
whole algorithm will be one order of magnitude faster than for general matrices. The following
result states that although this is not the case, an equally attractive statement holds.

Theorem 14. Let A ∈ Cn,n be non-singular. Further, suppose that none of the values
κ1, . . . , κk with κ?

i κi 6= 1 is an exact eigenvalue of (A,A?). Let A2 be the result of two multi–shift
palindromic QR steps, the first using the shifts κ1, . . . , κk, the second using the shifts κk, . . . , κ1.
Then there is an upper triangular matrix R with A2 = R?AR.

In particular, if A is skew Hessenberg then so is A2.
Proof. Case 1 (unshifted, i.e., k = 1, κ1 = 0): Applying two palindromic QR steps to A yields

A = Q1R1, with R1 =¡, A1 = R1Q
∗?
1 , (4.1)

A1 = Q2R2, with R2 =¡, A2 = R2Q
∗?
2 .

From (4.1) we have A−? = Q∗?1 R−?
1 , thus A1 = R1A

−?R?
1 . Analogously,

A2 = R2A
−?
1 R?

2 = R2R
−?
1 AR−1

1 R?
2 = R?AR,

where R := R−1
1 R?

2 =¡ ·¡=@ is upper triangular.

13



Case 2 (single shift, i.e., k = 1, κ1 6= 0): The procedure of two single–shift palindromic QR
steps with the same shift κ1 is described as follows:
1: shift with κ1,
2: apply unshifted palindromic QR step,
3: unshift with κ1,
4: shift with κ1,
5: apply unshifted palindromic QR step,
6: unshift with κ1.

Steps 3 and 4 cancel each other. Hence, the two unshifted palindromic QR steps are carried out
successively. Thus, as in case 1, there is an upper triangular R such that A2 can be written as

A2 =
1

1− κ?
1 κ1

(Ã2 + κ1Ã
?
2 ) =

1
1− κ?

1 κ1
(R?ÃR + κ1(R?ÃR)?)

=
1

1− κ?κ
(R?(A− κA?)R + κR?(A− κA?)?R)

= R?AR.

Case 3 (multi–shift, i.e., k > 1): By Lemma 11, performing two steps of the multi-shift
palindromic QR iteration, one with the shifts κ1, ..., κk, the second one with the shifts κk, ..., κ1,
equals carrying out one step with the 2k − 1 shifts

κ1, . . . , κk, κk, κk−1, . . . , κ2 (4.2)

followed by a single–shift step with shift κ1. Within the sequence (4.2), the set of shifts with
odd index consists of all shifts κ1, . . . , κk, while the set of shifts with even index consists of
κ2, κ3, ..., κk. Hence, by Lemma 12, both sets can be reordered to change the sequence (4.2) into
κk, κk, κk−1, κk−1, ..., κ2, κ2, κ1. A palindromic QR step with these shifts followed by a single–
shift step using κ1 is, by Lemma 11, equivalent to two single–shift steps with κk followed by two
single–shift steps with κk−1, and so on. Hence, by case 2, there are upper triangular matrices
Rk, . . . , R1, such that A2 can be written as A2 = R?

1

(
R?

2 · · · (R?
kARk) · · ·R2

)
R1 = R?AR, where

R = Rk · · ·R2R1 is upper triangular.

Finally, if A is skew Hessenberg, then so is A2 = R?AR =@ ·¡¡ ·@=¡¡ .
Remark 15. It is not surprising and easy to show that the first iterate A1 has some structure,

as well. It belongs to the set of matrices that, in the spirit of [8], could be called skew generalized
Hessenberg matrices. Such a matrix fulfills rank(A(1 : i + 1, 1 : n− i)) = 1 for i = 1, . . . , n− 2. ¤

We have motivated our interest in skew Hessenberg matrices with the fact that they can
be factored in O(n2) flops. But Theorem 14 tells that only every second iterate is again a skew
Hessenberg matrix. Thus, in every other palindromic QR step still a full matrix has to be factored.
Fortunately, the computations of two consecutive steps can be reordered to be carried out in O(n2)
flops.

Algorithm 5. Unshifted palindromic QR double step for skew Hessenberg matrices
1: for i = 1, . . . , n− 1 do
2: A← G?

i A where Gi is a Givens rotation such that G?
i A(n− i : n− i + 1, i) = [ 0

∗ ]
3: end for
4: for i = 1, . . . , n− 1 do
5: A← AGi

6: A← G̃?
i A where G̃i is a Givens rotation such that G̃?

i A(i : i + 1, n− i) = [ 0
∗ ]

7: end for
8: for i = 1, . . . , n− 1 do
9: A← AG̃i

10: end for
Example 4. For n = 3 Algorithm 5 proceeds as follows. The first for–loop computes

A =
[

x x
x x x
x x x

]
, G?

1 A =
[

x x
0 x x
x x x

]
, G?

2 G?
1 A =

[
0 x
x x

x x x

]
= R1.

14
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Fig. 4.1. The unshifted algorithm needs 41 double steps until the first eigenvalue pair has converged. When
using single shifting this number decreases to 5 and the third graph indicates quadratic convergence.

The second for–loop computes

R1G1 =
[

x x
x x

x x x

]
, G̃?

1 R1G1 =
[

0 x
x x

x x x

]
, G̃?

1 R1G1G2 =
[

x
x x x
x x x

]
, G̃?

2 G̃?
1 R1G1G2 =

[
x

0 x x
x x x

]
= R2.

Finally, the third for–loop computes

R2G̃1 =
[

x
x x x
x x x

]
, R2G̃1G̃2 =

[
x x

x x x
x x x

]
.

The latter is the result which is in skew Hessenberg form. ¤
Lemma 16. Let A ∈ Cn,n be a nonsingular skew Hessenberg matrix. Let A2 be the result

of two steps of Algorithm 1 and let A+ be the result of Algorithm 5. Then there exists a unitary
diagonal matrix D such that A2 = D?A+D.

Proof. We need some intermediate results of Algorithm 5. Let R1, R2 be the value of the
matrix A at the end of the first and second respectively second for loop. Note that R1 and R2

are skew triangular. Set Q1 = G1G2 · · ·Gn−1 and Q2 = G̃1G̃2 · · · G̃n−1. Note that R1 = Q?
1 A, so

Q∗?
1 R1 is a skew QR factorization of A. Note further that R2 = Q?

2 R1Q1, and thus Q∗?2 R2 is a
skew QR factorization of R1Q1 =: A1. Finally, we have A+ = R2Q2. The assertion follows, since
skew QR factorizations of nonsingular matrices are unique up to a unitary diagonal factor.

Employing shifts is now straightforward.
Algorithm 6. Single–shift palindromic QR double step for Hessenberg matrices

1: choose κ
2: Ã← A− κA?

3: apply Algorithm 5 to Ã yielding Ã1

4: A1 ← 1
1−κ?κ

(Ã1 + κÃ?
1 )

As before, the last unshifting step can be carried out in an alternative way by applying the
transformations Gi, G̃i directly to A. As mentioned before, the latter approach is more stable.
However, during the course of the step the matrix becomes fully populated and although A1 is a
skew Hessenberg matrix in exact arithmetic, this may numerically not be the case. Developing an
implicit version of Algorithm 6 is topic of a subsequent paper.

Example 5. We applied Algorithms 5, and 6, to a skew Hessenberg matrix constructed
as follows: let Ã be the 10-by-10 matrix from Example 1. We computed the unitary matrix Q
that transforms Â = Ã(1 : 9, 1 : 9) to palindromic Schur form by the single–shift palindromic QR
iteration. Then, with Q̃ = Q⊕ 1, A := Q̃T ÃQ̃ is a skew Hessenberg matrix. Since Q happenend
to be real also A is real.

Figure 4.1 shows plots of the matrix after convergence of the first eigenvalue pair. ¤
Summarizing, skew Hessenberg matrices are for the palindromic QR algorithm, what Hessen-

berg matrices are for the standard QR algorithm. For these matrices the iterations can be carried
out one order of magnitude faster than for general matrices.

15



5. On the reduction to skew Hessenberg form. In this section we aim at developing
a direct algorithm of complexity O(n3) that reduces a given matrix A with a unitary matrix
Q ∈ Cn,n to Q?AQ which has skew Hessenberg structure. Unfortunately, this task is related to an
unsolved problem concerning Hamiltonian matrices. A matrix H ∈ R2n,2n is called Hamiltonian
if JH = (JH)T , where J =

[
0 I
−I 0

]
. The Hamiltonian eigenvalue problem has attracted a lot of

interest, see, e.g., [1, 2, 3, 4, 6, 14, 17, 18, 22] and the references therein. A structure preserving
QR-like algorithm has been developed in [5], but the reduction to a Hessenberg-like form is missing.

Any Hamiltonian eigenvalue problem can be transformed into a palindromic eigenvalue prob-
lem as follows

Hx = λx ⇔ JHx = λJx ⇔ (JH + J)x =
λ + 1
λ− 1

(JH − J)x ⇔ Ax = µAT x

with A = JH +J and µ = λ+1
λ−1 . Thus it is not surprising that the palindromic eigenvalue problem

inherits some of the complications arising in the Hamiltonian eigenvalue problem.
In the following, we will present our various approaches to the skew Hessenberg reduction,

discuss why they fail and draw connections to the Hamiltonian case. Closing this section we
discuss special situations in which the transformation is known.

The first approach is to determine a matrix of the form Q⊕ 1 where Q is a matrix that skew
triangularizes A1:n−1,1:n−1, the leading principal submatrix of A. Indeed, if such a matrix exists,
then

(Q⊕ 1)?A(Q⊕ 1) =




n− 1 1

n− 1 ¡
∗
...
∗

1 ∗ ··· ∗ ∗


 =¡¡ .

A setting where this approach is successful are projection methods, usually used for large and
sparse problems. In the k-th iteration of a projection method a palindromic eigenvalue problem
has to be solved for a k by k matrix Ak that arises from the matrix Ak−1 from the last iteration
by adding a further row and column. Hence, the wanted matrix Q that skew triangularizes the
leading principal submatrix of Ak is just the solution of the last iteration.

In the general setting however, the matrix Q is not available and its computation would require
to solve a palindromic eigenvalue problem of size n−1 which takes O(n4) flops without a reduction
to skew Hessenberg form. Also a recursive approach would take O(n4) flops. So, this choice is
not practical in general, but for ? = T it proves existence of a transformation to skew Hessenberg
form (by Remark 4).

A different approach is based on the observation that the leading principal submatrix of a
skew Hessenberg matrix of size dn

2 e−1 is zero. Therefore, it is reasonable to generate a zero block
in the upper left corner of A. We illustrate this with a 5-by-5 matrix:

A =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




=
[
A11 A12

A21 A22

]
,

where A is partitioned according to the lines. We begin by generating a zero in the top left corner
by solving the 2 by 2 palindromic problem for A11, i.e., by computing a 2-by-2 unitary matrix Q
with Q?A11Q = [ 0 ∗

∗ ∗ ] and applying a congruence with (Q ⊕ I) to A. Again, in the ? = T case
such Q always exists, while in the case ? = ∗ we have to assume that it does. This results in

Ã = (Q⊕ I)?A(Q⊕ I) =




0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




=
[

0 Ã12

Ã21 Ã22

]
.
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We then introduce zeros in the first row and column. To this end, let H ∈ C4,4 be a unitary
matrix such that [Ã21, Ã

?
12]

?H = [ 0 0 0 ∗
0 0 ∗ ∗ ]. Then, applying a congruence with (1⊕H) to Ã yields

Â = (1⊕H)?Ã(1⊕H) =




0 0 0 ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




=




0 0 Â13

0 Â22 Â23

Â31 Â32 Â33


 .

In order to preserve the zeros just generated, we restrict our further actions to the submatrix Â22

that arises from Â by deleting the last two and the first rows and columns. In this case, Â22 is
a 2-by-2 matrix that can be skew triangularized by a unitary Q2 as Q?

2 Â22Q2 = [ 0 ∗
∗ ∗ ]. A last

congruence with (1⊕Q2 ⊕ I2) finally gives

Ǎ← (1⊕Q2 ⊕ I2)?Â(1⊕Q2 ⊕ I2) =




0 0 0 ∗ ∗
0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




.

which actually is in skew Hessenberg form.
Generalizing this procedure to larger dimensions yields the following algorithm.
Algorithm 7.

1: if n ≤ 1 then return

2: compute Q ∈ C2,2 unitary, such that Q?A1:2,1:2Q =
[
0 ∗
∗ ∗

]

3: if such Q does not exist then
4: signal break down, stop
5: end if
6: set A← (Q⊕ In−2)?A(Q⊕ In−2)
7: if n = 2 then return
8: compute H ∈ Cn−1,n−1 unitary, such that H?A2:n,1 = αen−1

9: set A← (1⊕H)?A(1⊕H)
10: compute G ∈ Cn−2,n−2 unitary, such that A1,2:n−1G = βeT

n−2

11: set A← (1⊕G⊕ 1)?A(1⊕G⊕ 1)
12: apply this algorithm to A2:n−2,2:n−2

Note that the breakdown can only happen in the ? = ∗ case (see Remark 4).
The result of this algorithm can be postprocessed to get the following condensed form.
Lemma 17. Let A ∈ Cn,n. Define k = bn+1

3 c. If ? = ∗ assume that A is such that Algorithm 7
does not break down. Then a unitary matrix Q can be computed by a direct reduction process of
complexity O(n3) such that

Q?AQ =




k k

k 0 A12

0

k ¡




, (5.1)

where A12 is of one of the following shapes

[ 1 k

k 0 ¡
]
,

k

k ¡
,

[ k − 1
1 0

k − 1 ¡

]
,
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depending on whether n− 3k equals 1, 0, or −1.
Proof. If Algorithm 7 does not break down, then it yields a matrix of form

A =
[ k n− k

k 0 A12

n− k A21 A22

]
,

where k = bn+1
3 c. Let Q be a unitary matrix such that

Q?A21 =
[ k

n− 2k 0
k Ã31

]
, with Ã31 =¡.

Then a congruence with Ik ⊕Q results in

Ã = (Ik ⊕Q)?A(Ik ⊕Q) =




k n− 2k k

k 0 Ã12 Ã13

n− 2k 0 Ã22 Ã23

k Ã31 Ã21 Ã22


.

Next, the block Ã12 will be skew triangularized. This block is of dimension k-by-(n − 2k). The
transformation depends on whether k ≤ n− 2k or not.

Case 1: Assume k ≤ n− 2k. Then let Q be a unitary matrix such that

Ã12Q =
[n− 3k k

k 0 ¡
]
.

A congruence with (Ik ⊕Q⊕ Ik) yields form (5.1).
Case 2: If, on the other hand, k > n− 2k, then define unitary matrices Q,Z such that

Q?Ã12 =

[ k − 1
1 0

k − 1 ¡

]
, Z?Ã31Q =¡

and apply a congruence with (Q⊕ In−2k ⊕ Z) to get form (5.1).
It turns out, that Algorithm 7 yields skew Hessenberg structure only for matrices of size n

up to 5. For n ≥ 6, the result can still be described as ’skew triangular with k additional skew
diagonals’, but here k ≈ n

3 instead of just one (what would correspond to skew Hessenberg form).
The form (5.1) is invariant under double steps of the palindromic QR iteration, see Theorem 14.
Also, the skew QR factorization of a matrix of form (5.1) needs much less work than for a general
matrix, but still requires O(n3) flops. So, the palindromic QR iteration still has a complexity of
O(n4).

In the next section, we introduce another condensed form and give a reason why the transfor-
mation to skew Hessenberg form is so difficult to obtain for general matrices.

5.1. The palindromic PVL form. In this section we only consider the case ? = T , because
the methods require the diagonal of A− A? to be zero, which is not guaranteed for ? = ∗. Also,
we restrict n to be even. Comments on the case when n is odd are made at the end of this section.

The procedure that leads to the condensed form (5.1) was motivated by the aim to generate
a large zero block in the top left corner of the matrix A. In this section we relax this condition
and admit nonzero diagonal entries in the condensed form. This leads to the following definition.

Definition 18. A matrix A ∈ Cn,n is said to be in palindromic PVL form if it can be written
as a sum A = D +H +T where D is diagonal, H is symmetric and in skew Hessenberg form, and
T is skew symmetric and skew triangular, i.e., if

A + AT =@+¡¡ and A−AT =¡.
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The name ’PVL form’ stems from an analogous condensed form for Hamiltonian matrices that
was introduced by Paige and van Loan [18]. We now want to study the transformation of a general
matrix to PVL form.

Theorem 19. Let A ∈ Cn,n where n is even. Then there exist a unitary matrix Q ∈ Cn,n

that is computable by a direct algorithm of complexity O(n3) such that QT AQ is in palindromic
PVL form.

Proof. We will prove in a constructive way that for any symmetric/skew symmetric pair of

matrices M = MT , N = −NT , there is a unitary Q such that QT NQ = ¡ and QT MQ is in
palindromic PVL form. If M and N are chosen as symmetric and skew symmetric parts of A,
then QT AQ = QT MQ + QT NQ is also in palindromic PVL form.

As a first step, we compute a unitary Q such that QT NQ =¡. Such a Q always exists and
may be computed, e.g., by a series of Householder transformations in O(n3) flops, see the skew
QRQT factorization in [21]. Applying this Q yields new matrices M and N : M ← QT MQ =

, N ← QT NQ = ¡. We now transform M to ’skew Hessenberg plus diagonal’ form while
keeping N in skew triangular form.

Let k = n
2 for the entire proof. First annihilate the (2, 1) element of M by a rotation in the

(2, 3) plane applied as congruence. This also zeros out m12 and introduces non zero elements in N
at position (2, n− 2) and (n− 2, 2). These new elements are being zeroed again by a congruence
rotation in the (n − 2, n − 1) plane which restores the skew triangular form of N , but leaves
invariant the zero pattern of M . This can be repeated for the entries (3, 1), (4, 1), . . . , (k − 1, 1).

We next zero out element (k, 1) of M . This is done with a congruence rotation in the (k, k+1)
plane. This rotation also zeroes out the element (1, k) of M , but leaves N skew triangular, because
2-by-2 skew symmetric matrices can only have one zero pattern namely [ 0 ∗

∗ 0 ].
We continue by eliminating the element (k + 1, 1) of M by a congruence rotation in the

(k + 1, k + 2) plane. This congruence rotation also eleminates m1,k+1, but introduces non zero
entries in N at positions (k + 1, k − 1) and (k − 1, k + 1). These can be zeroed out again by a
further congruence rotation in the (k − 1, k) plane leaving invariant the zero pattern of M . This
can be repeated for the entries (k + 2, 1), (k + 3, 1), . . . , (n− 2, 1).

At this point, all necessary zeros in the first row and column of M have been generated. This
required roughly 2n rotations taking O(n2) flops to be applied.

Note, that the last row and column of M and N were not altered during the described
procedure. Thus, the zeros in the first row and column of M are preserved when the procedure
is applied recursively to the submatrices that arise from M and N by deleting the first and last
rows and columns. This yields a palindromic PVL form for M , thus for A in O(n3) flops. This
finishes the proof.

In terms of additional non-zeros the palindromic PVL form is much closer to skew Hessenberg
form than the condensed form (5.1). However, it is in general not invariant under palindromic QR
steps. The palindromic PVL form is invariant only if the diagonal elements a11, a22, . . . , an

2−1, n
2−1

are zero, i.e., if the palindromic PVL form reduces to skew Hessenberg form.
Thus, the reduction to palindromic PVL form is not suited as a preliminary step for the

palindromic QR iteration, unless it yields a skew Hessenberg matrix. The remainder of this section
analyses when a palindromic PVL form actually is skew Hessenberg. We start with the following
uniqueness result which is similar to the implicit Q theorem and states that a palindromic PVL
form is fixed, once the first or last column of Q is known.

Theorem 20. Let A ∈ Cn,n where n is even such that A−AT is non-singular. Let Q1, Q2 ∈
Cn,n be two unitary matrices with Q1e1 = Q2e1 or Q1en = Q2en. Further, let P1, P2 ∈ Cn,n be
two matrices in palindromic PVL form such that the skew diagonal entries of Pi−PT

i and the skew
super diagonal entries of Pi + PT

i are real, positive, and non-zero, and QT
i AQi = Pi for i = 1, 2.

Then Q1 = Q2 and P1 = P2.
Proof. Let M = 1

2 (A + AT ), N = 1
2 (A− AT ) be the symmetric and skew symmetric parts of

A respectively. Analogously, let K = 1
2 (P1 + PT

1 ), L = 2(P1 − PT
1 )−1. Then A = M + N and
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P1 = K + L−1. Further, let Q1 = [q1, q2, . . . , qn]. We will prove that given q1 or qn then K, L and
the remaining columns of Q are fixed.

Consider the relation x = αy for a given non-zero vector x, an unknown normalized vector
y and a unknown scalar α. It follows that |α| = ‖αy‖ = ‖x‖ and y = 1

αx. So, α can be freely
chosen on the circle of radius ‖x‖. But if α is restricted to be real and positive, then the solution
is unique. Similar relations will arise involving the skew diagonal entries of P1−PT

1 and the skew
super diagonal entries of P1 +PT

1 . Thus, they must be restricted to be real, positive, and non-zero
in order to have uniqueness.

We have

QT
1 MQ1 = K,

QT
1 NQ1 = L−1,

hence

MQ1 = Q̄1K, (5.2)
N−1Q̄1 = Q1L. (5.3)

Multiplying (5.3) from the right by en gives (note, that L is upper skew triangular)

N−1q̄n = q1l1,n

If qn is given then this relation yields l1,n = ‖N−1q̄n‖ and q1 = 1
l1,n

N−1q̄n. If, on the other

hand, q1 is given, the relation yields l−1
1,n = ‖Nq1‖ and qn = l1,nNq1. In both cases, at this point

q1, qn, l1,n, and ln,1 = −l1,n are known.
Multiplying (5.2) from the right by e1 yields (as K is in PVL form)

Mq1 = q̄1k1,1 + q̄n−1kn−1,1 + q̄nkn,1.

From this relation we can read off the following elements:

k1,1 = qT
1 Mq1,

kn,1 = qT
n Mq1,

kn−1,1 = ‖Mq1 − q̄1k1,1 − q̄nkn,1‖,
and

qn−1 =
1

kn−1,1
(Mq1 − q̄1k1,1 − q̄nkn,1).

Thus, at this point we know q1, qn−1, qn as well as the first row and column of K and the last row
and column of L.

The rest follows by induction. Assume that the first i − 1 and the last i columns of Q1 as
well as the first i− 1 rows and columns of K and the last i− 1 rows and columns of L are known.
Multiplying (5.3) from the right by en+1−i gives

N−1q̄n+1−i =
i∑

j=1

qj lj,n+1−i. (5.4)

The vector qi is the only unknown vector in this relation. We get

lj,n+1−i = q∗j N−1q̄n+1−i, j = 1, ..., i− 1,

li,n+1−i = ‖N−1q̄n+1−i −
i−1∑

j=1

qj lj,n+1−i‖,

qi =
1

li,n+1−i


N−1q̄n+1−i −

i−1∑

j=1

qj lj,n+1−i


 .
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At this point, also qi and the (n + 1− i)st row and column of L are known.
Next, we multiply (5.2) from the right by ei, yielding

Mqi = q̄iki,i +
n∑

j=n−i

q̄jkj,i. (5.5)

From this equation we get for qn−i and the ith column of K

kj,i = qT
j Mqi, j = i and j = n− i + 1, n− i + 2, . . . , n,

kn−i,i = ‖Mqi − q̄iki,i −
n∑

j=n+1−i

q̄jkj,i‖,

qn−i =
1

kn−i,i


Mqi − q̄iki,i −

n∑

j=n+1−i

q̄jkj,i


.

Carrying out this procedure for i = 2, ..., n
2 fixes Q1 and thus also P1,K, and L.

So, a palindromic PVL form P = QT AQ is determined by A and the first (as well as the last)
column of Q. This changes our question of ’when is a palindromic PVL form a skew Hessenberg
matrix?’ to ’what conditions should q1 fulfill so that the resulting palindromic PVL form is in skew
Hessenberg form?’. For example, in order for p1,1 to be zero, q1 has to satisfy p1,1 = qT

1 Aq1 = 0.
The following theorem is a generalization of a result in [1] for Hamiltonian matrices.

Theorem 21. Let A ∈ Cn,n, with n even, be such that A−AT is non-singular. Let Q ∈ Cn,n

be a unitary matrix such that QT AQ = P is in palindromic PVL form with unreduced super skew
diagonal, i.e., pi,n−i 6= 0, i = 1, . . . , n− 1. Let q1 = Qe1 be the first column of Q.

Then P is in skew Hessenberg form if and only if q1 satisfies the following conditions:

qT
1 ((N−1M)i)T M(N−1M)iq1 = 0, i = 0, . . . ,

n

2
− 2, (5.6)

where M = 1
2 (A + AT ), N = 1

2 (A−AT ).
Proof. Set K := 1

2 (P + PT ) = QT MQ, L := 1
2 (P − PT ) = QT NQ. Note that L is skew

triangular with unreduced skew diagonal, i.e., li,n+1−i 6= 0 for i = 1, . . . , n, since N is non-
singular. Further note that K is in palindromic PVL form with unreduced super skew diagonal,
i.e. ki,n−i 6= 0 for i = 1, . . . , n− 1, since P has that property. Moreover, P is in skew Hessenberg
form if and only if ki,i = 0 for i = 1, . . . , n

2 − 1.
We will prove the following: if for some r ∈ {1, . . . , n

2 − 2} we have that k1,1 = k2,2 = . . . =
kr,r = 0, then for all s = 0, . . . , r:

kr+1,r+1 = 0 ⇐⇒ qT
r+1−s((N

−1M)s)T M(N−1M)sqr+1−s = 0. (5.7)

The assertion (5.6) follows from (5.7) by induction over r, in each step setting s = r.
So, assume r ∈ {1, . . . , n

2 − 2} and k1,1 = k2,2 = . . . = kr,r = 0. We will need the following
product, Ks := ((L−1K)s)T K(L−1K)s. Note that, because of the structure of L and K, the
matrix Ks has the pattern

Ks =




r − s

r − s + 1 0

, (5.8)

i.e., the matrix Ks consists of a zero block in the top left corner of size (r− s + 1)× (r− s). This
can be seen by considering the action of the matrix L−1K on the unit vectors ei and noting that
Ksei = ±K(L−1K)2sei, where the sign depends on s. This also shows that, actually, Ks consists
of many more zeros, but we will only use those claimed in (5.8). Multiplication with an upper
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skew triangular matrix will not destroy the zero entries, but only move them to the bottom/right.
Thus,

L−T Ks =




r − s

r − s + 1 0


, L−T KsL

−1 =




r − s

r − s + 1 0


. (5.9)

Moreover, multiplication with K just slightly reduces the zero block:

L−T KsL
−1K =




r − s

r − s 0


. (5.10)

The statement (5.7) is proved by induction over s. Clearly, it holds for s = 0, as kr+1,r+1 =
qT
r+1Mqr+1.

Now, we prove the step ”s⇒ s + 1”, i.e.,

qT
r+1−sMsqr+1−s = 0 ⇐⇒ qT

r−sMs+1qr−s = 0, for s = 0, . . . , r − 1, (5.11)

where Ms := ((N−1M)s)T M(N−1M)s. By equation (5.4) with i = r + 1 − s, the vector qr+1−s

can be written as

qr+1−s =
1

lr+1−s,n−r+s
(N−1q̄n−r+s −

r−s∑

j=1

lj,n−r+sqj).

Here, lr+1−s,n−r+s 6= 0, since it is on the skew diagonal of L.
Inserting this into the term qT

r+1−sMsqr+1−s yields

qT
r+1−sMsqr+1−s =

1
l2r+1−s,n−r+s

(
q∗n−r+sN

−T MsN
−1q̄n−r+s

−2
r−s∑

j=1

lj,n−r+s(q∗n−r+sN
−T Msqj) (5.12)

+
r−s∑

i,j=1

li,n−r+slj,n−r+s(qT
i Msqj)

)
.

In this sum only the first term is non-zero, because for j = 1, ..., r − s we have

q∗n−r+sN
−T Msqj = eT

n−r+sQ
∗N−T MsQej = eT

n−r+sL
−T Ksej

(5.9)
= 0,

and for i, j = 1, . . . , r − s

qT
i Msqj = eT

i QT MsQej = eT
i Ksej

(5.8)
= 0.

Thus, equation (5.12) reduces to

qT
r+1−sMsqr+1−s =

1
l2r+1−s,n−r+s

q∗n−r+sN
−T MsN

−1q̄n−r+s. (5.13)

The vector q̄n−r+s can, by equation (5.5) with i = r − s, be written as (note, that kr−s,r−s = 0)

q̄n−r+s =
1

kn−r+s,r−s
(Mqr−s −

n∑

j=n−r+1+s

kj,r−sq̄j).
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Here, kn−r+s,r−s 6= 0, as it is on the super skew diagonal of K.
Inserting this into the term q∗n−r+sN

−T MsN
−1q̄n−r+s gives

q∗n−r+sN
−T MsN

−1q̄n−r+s =
1

k2
n−r+s,r−s

(
qT
r−sMN−T MsN

−1Mqr−s

−2
n∑

j=n+1−r+s

kj,r−s(q∗j N−T MsN
−1Mqr−s) (5.14)

+
n∑

i,j=n+1−r+s

ki,r−skj,r−s(q∗i N−T MsN
−1q̄j)


 .

Also here, only the first summand is non-zero. Indeed, for j = n + 1− r + s, . . . , n

q∗j N−T MsN
−1Mqr−s = eT

j Q∗N−T MsN
−1MQer−s = eT

j L−T KsL
−1Ker−s

(5.10)
= 0,

and for i, j = n + 1− r + s, ..., n

q∗i N−T MsN
−1q̄j = eT

i Q∗N−T MsN
−1Q̄ej = eT

i L−T KsL
−1ej

(5.9)
= 0.

Hence, equation (5.14) reduces to

q∗n−r+sN
−T MsN

−1q̄n−r+s =
1

k2
r−s,n−r+s

qT
r−sMN−T MsN

−1Mqr−s. (5.15)

Equations (5.13) and (5.15) together yield

qT
r+1−sMsqr+1−s = c · qT

r−sMN−T MsN
−1Mqr−s = c · qT

r−sMs+1qr−s,

where c = 1
k2

r−s,n−r+sl2r+1−s,n−r+s
6= 0 which is equivalent to (5.11). Thus (5.7) follows and the

proof is complete.
We have proved that in order for QT AQ to be in skew Hessenberg form, the first column of

Q has to fulfill the n
2 − 1 conditions (5.6). This is in sharp contrast to the standard eigenvalue

problem. There, a unitary matrix Q with arbitrary first column can be found such that Q∗AQ is
in standard Hessenberg form. This suggests, that the skew Hessenberg reduction is not possible
without solving the (nonlinear) constraints (5.6). For the Hamiltonian eigenvalue problem this is
known as ”Van Loan’s curse”, see [3, 18].

Remark 22. In the case of odd dimension n, the skew symmetric part of A, N = 1
2 (A−AT )

is singular, as every skew symmetric matrix of odd dimension is singular. Assuming that N is of
rank n− 1, one can find a unitary Q such that P := QT AQ is of PVL-like form, such that P can

be written as sum of a skew triangular and a diagonal matrix, P =¡+@, and P −PT is of the
form

P − PT =

[ 1 n− 1
1 0 0

n− 1 0 ¡

]
.

Here, the first column of Q is fixed as a vector that forms a basis of the nullspace of N . As before,
the remaining columns follow from the first one. Thus the whole matrix Q is fixed. ¤

Summarizing, the chances to find a matrix Q that transforms A to skew Hessenberg form are
limited. However, there are situations, in which this transformation is possible. Such are presented
next.
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5.2. Skew Hessenberg reduction for SISO systems. Here, and in the following section,
we want to discuss how to reduce specially structured matrices to skew Hessenberg form. Note,
that we no longer restrict to the T–case, but allow ∗-palindromic pencils again.

Here, we assume that the matrix A is of the following structure,

P?AP =




m 1 m

m 0 0 E
1 b? r 0
m G 0 K


.

for some E, G,K ∈ Cm,m, b ∈ Cm, r ∈ C. This structure arises, e.g., in optimal control problems
for single input, single output (SISO) systems, see [5, 17].

We will describe how to transform A to skew Hessenberg form by a unitary congruence trans-
formation. As a first step, b? will be reduced. For this let Ũ1 be a unitary matrix such that
b?Ũ1 = αeT

m, where α is a constant. Defining U1 := diag(Ũ1, Im+1) yields

Ã := U?
1 P?APU1 =




m 1 m

m 0 0 Ẽ
1 αeT

m r 0
m G̃ 0 K


,

with Ẽ = U?
1 E and G̃ = GU1.

We proceed with the reduction to skew Hessenberg, skew triangular form of G̃, Ẽ. Let Q,Z

be two unitary matrices such that Q(FG̃?, F Ẽ)Z = (H, R) =
(
@@ ,@

)
and Qe1 = e1. These

can be obtained by the standard reduction to Hessenberg, triangular form for matrix pencils [9].
Define U2 := diag(FQ?F, 1, Z), then

Â := U?
2 ÃU2 =




m 1 m

m 0 0 Ê
1 b̂ r 0
m Ĝ 0 K̂


, with





Ê = FQFẼZ = FR =¡,

b̂ = αeT
mFQ?F = αeT

1 Q?F = αeT
m,

Ĝ = Z?G̃FQ?F = H?F =¡¡ ,

K̂ = Z?KZ.

Hence, Â is in skew Hessenberg form.

5.3. Skew-Hessenberg reduction after symmetric rank–one updates. Assume, that
A ∈ Cn,n is a symmetric rank one perturbation of a skew triangular matrix, i.e., there are a skew

triangular matrix B = ¡ and a vector b ∈ Cn such that A = B + bb?. We will show how to
transform A to skew-Hessenberg form.

Set k = bn
2 c−1 and let U = U1,2U2,3 · · ·Uk,k+1 be a product of Givens rotations, where Ui,i+1

is a Givens rotation in the (i, i + 1) plane, such that U?b vanishes in the first k positions.
If n is even, then k = n

2 − 1 and

U?AU = U?BU + U?b(U?b)?

=




n
2

n
2

n
2 0 ¡¡
n
2 ¡¡


 +




n
2 − 1 n

2 + 1
n
2 − 1 0 0
n
2 + 1 0


 =¡¡

is in skew Hessenberg form.
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Similarly, if n is odd, then k = n−3
2 and

U?AU= U?BU + U?b(U?b)?

=




n−1
2 1 n−1

2

n−1
2 0 0 ¡¡

1 0 ∗ ∗ · · · ∗
n−1

2 ¡¡
∗
...
∗


 +




n−3
2

n+3
2

n−3
2 0 0

n+3
2 0


 =




∗ ∗
. ..

...
∗ ∗ ∗
∗ ∗ ∗

. ..
...

∗ ∗
∗ · · · ∗ ∗ · · · ∗ ∗




.

Finally, solving the 2 × 2 problem in the (n−1
2 , n+1

2 ) plane (for ? = ∗ we have to assume that a
solution exists) results in skew Hessenberg form.

6. Conclusion. We discussed structure preserving algorithms for the palindromic eigenvalue
problem Ax = λA?x. The development was oriented at the standard QR algorithm. First, we
presented palindromic versions of the Schur form and the basic QR iteration. Then we adapted
techniques that helped to speed up the standard QR algorithm like deflation, shifting and exploit-
ing the invariance of Hessenberg-like matrices.

Let us summarize the practically relevant results of this paper. For general complex and real
matrices, the single-shift palindromic QR iteration, Algorithm 2 can be used. Although this is a
method of complexity O(n4), it is still of practical use: in [16] the palindromic eigenvalue problem
is treated by a combination of several methods. Roughly speaking, the eigenvalues far from the
unit circle are deflated first with an unstructured method. Then, the remaining problem which
contains the ’close to exceptional’ eigenvalues is solved by our palindromic QR algorithm. This
remaining problem is often of such small dimension that the complexity of the used method is less
important.

For skew Hessenberg matrices an explicit single-shift algorithm of complexity O(n3) was pro-
vided. At this point we refer the reader to a forthcomming paper that will develop an implicit
version being capable of incorporating multiple shifts and staying in real arithmetic for real prob-
lems.

In the last part we have discussed the problem of reducing a full matrix to skew Hessenberg
form. We have shown several connections to the Hamiltonian eigenvalue problem, and like in
the latter problem, a satisfying algorithm remains unknown. Filling this gap will be the hardest
part of work in the development of efficient, structure preserving methods for the palindromic
eigenvalue problem.
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