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Abstract. In this paper, we discuss stability properties of positive descriptor systems in the
continuous-time as well as in the discrete-time case. We present different characterisations of posi-
tivity and establish generalised stability criteria for the case of positive descriptor systems. We show
that if the spectral projector onto the right finite deflating subspace of the matrix pair (E, A) is non-
negative, then all stability criteria for standard positive systems take a comparably simple form in
the positive descriptor case. Furthermore, we provide sufficient conditions that guarantee entry-wise
non-negativity along with positive semi-definiteness of solutions of generalised projected Lyapunov
equations. As an application of the framework established throughout this paper, we exemplarily
generalise two criteria for the stability of two switched standard positive systems under arbitrary
switching to the descriptor case.
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1. Introduction. We consider linear time-invariant positive descriptor systems
in continuous-time

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0 (1.1a)

y(t) = Cx(t), (1.1b)

and in discrete-time

Ex(t + 1) = Ax(t) + Bu(t), x(0) = x0 (1.2a)

y(t) = Cx(t), (1.2b)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are real constant coefficient matrices.
In the continuous-time case the state x, input u and output y are real-valued vector
functions. In the the discrete-time case x, u and y are real-valued vector sequences.
Positive systems arise naturally in many applications such as pollutant transport,
chemotaxis, pharmacokinetics, Leontief input-output models, population models and
compartmental systems, [2], [4], [5], [7], [14], [20], [24]. In these models, the variables
represent concentrations, population numbers of bacteria or cells or, in general, mea-
sures that are per se non-negative. Positive standard systems, i.e., where E = I, are
subject to ongoing research by many authors, [1], [15], [16], [20], [24], [34], [35], [36],
[38], [39]. Recent advances on control theoretical issues have been made especially in
the positive discrete-time case. Yet, there are still many open problems, especially for
standard positive systems in continuous-time. Control theory of descriptor systems
without the non-negativity restriction is to a large extent well understood, see, e.g.,
[17]. Very little is known about positive descriptor systems up to now, however, some
properties mainly in the discrete-time case were studied in [8], [9], [10], [24].
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It is well known that stability properties of standard systems, where E = I, are
closely related to the spectral properties of the system matrix A. If the dynamics
of the system, however, is described by an implicit differential or difference equation,
then stability properties are determined by the eigenvalues and eigenvectors associated
with the matrix pencil λE − A, or just the matrix pair (E, A).

In the case of standard positive systems, classical stability criteria take a simpler
form, [20], [24]. In this paper we present generalisations of these stability criteria for
the case of positive descriptor systems. It turns out, that if the spectral projector
onto the right finite deflating subspace of the matrix pair (E, A) is non-negative, then
all stability criteria for standard positive systems take a comparably simple form in
the positive descriptor case.

Stability properties and also many other control theoretical issues such as model
reduction methods or the quadratic optimal control problem are, furthermore, closely
related to the solution of Lyapunov equations, see. e.g., [3], [21], [22], [27], [32]. For
descriptor systems, generalised projected Lyapunov equations were presented in [37].
Entry-wise non-negative solutions to standard Lyapunov equations were discussed,
e.g., in [18]. In this paper, we provide sufficient conditions that guarantee entry-wise
non-negativity of solutions of generalised projected Lyapunov equations.

This paper is organised as follows. In Section 2 we recall fundamental properties
of matrix pencils, descriptor systems, projectors and non-negative matrices. In par-
ticular, we recall the generalised Perron-Frobenius Theorem for matrix pairs given in
[33] that forms the basis for many results in this paper. In Section 3 we give char-
acterisations of positive continuous-time and discrete-time descriptor systems going
from the most general one to the case where the spectral projector onto the right
finite deflating subspace is non-negative. In the latter case the given characterisation
shows a greater correspondence to the standard case and for discrete-time descrip-
tor systems the characterisation was already given in [9]. In Section 4 we generalise
the special stability conditions for positive systems from the standard case, see [20],
to the descriptor case. In Section 5 we establish conditions for the solutions of the
continuous-time and discrete-time generalised projected Lyapunov equations, as in-
troduced in [37], to be entry-wise non-negative. Finally, in Section 6 we exemplarily
show how we can use the framework established throughout this paper in order to
generalise the results on stability of two standard switched positive systems, see [30],
[31], to positive descriptor systems.

2. Preliminaries.

2.1. Matrix pairs. Let E, A ∈ Rn×m. A matrix pair (E, A), or matrix pencil
λE − A, is called regular if E and A are square (n = m) and det(λE − A) 6= 0 for
some λ ∈ R. It is called singular otherwise. In this paper we only consider square
and regular pencils.

A scalar λ ∈ C is said to be a (generalised) eigenvalue of the matrix pair (E, A) if
det(λE−A) = 0. A vector x ∈ Cn\{0} such that (λE−A)x = 0 is called (generalised)
eigenvector of (E, A) corresponding to λ. If E is singular and v ∈ Cn \ {0}, such that
Ev = 0 holds, then v is called eigenvector of (E, A) corresponding to the eigenvalue
∞.

The set of all finite eigenvalues is called finite spectrum of (E, A) and is denoted
by σf (E, A). In the case that E is invertible, we denote by ρ(E, A) the spectral radius
of (E, A) defined by ρ(E, A) = maxλ∈σ(E,A) |λ|. If E is singular, then we denote by
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ρf (E, A) = maxλ∈σf (E,A) |λ| the finite spectral radius of (E, A).

A k-dimensional subspace Sdef
λ ⊂ Cn is called right deflating subspace of (E, A)

corresponding to λ, if there exists a k-dimensional subspace W ⊂ Cn such that
ESdef

λ ⊂ W and ASdef
λ ⊂ W . Let λ1, . . . , λp be the pairwise distinct finite eigen-

values of (E, A) and let Sdef
λi

, i = 1, . . . , p be the corresponding deflating subspaces
associated with these eigenvalues. We call the subspace defined by

Sdef
f := Sdef

λ1
⊕ . . . ⊕ Sdef

λp
(2.1)

the right finite deflating subspace of (E, A).

For an eigenvalue λ we denote by ℜ(λ) its real part. For a vector x we denote by
X := diag(x) a diagonal matrix with diagonal entries Xii = xi.

Lemma 2.1. Let (E, A) be a regular matrix pair. Let λ̂ be chosen such that

λ̂E − A is non-singular. Then, the matrices

Ê = (λ̂E − A)−1E and Â = (λ̂E − A)−1A

commute.

Proof. See, e.g., [13], [26].

Throughout the paper, we refer to Ê, Â as defined in Lemma 2.1 independent
of the special choice of λ̂. Furthermore, for a matrix B from system 1.1 or (1.2) we

define B̂ := (λ̂E − A)−1B.

We denote by AD the Drazin inverse of a matrix A, see, e.g., [13], [19]. The
following Theorem gives an explicit solution representation in terms of the Drazin
inverse.

Theorem 2.2. Let (E, A) be a regular matrix pair with E, A ∈ Cn×n and let
ind(E, A) = ν. Furthermore, for the continuous-time case, let u ∈ Cν . Then, every
solution x ∈ C1 to Equation (1.1a) has the form:

x(t) = eÊDÂtÊDÊv +

∫ t

0

eÊDÂ(t−τ)ÊDB̂u(τ )dτ−

−(I − ÊDÊ)

ν−1
∑

i=0

(ÊÂD)iÂDB̂u(i)(t).

(2.2)

for some v ∈ Cn. In the discrete-time case, every solution sequence x(t) to Equation
(1.2a) has the form:

x(t) = (ÊDÂ)tÊDÊv +

t−1
∑

τ=0

(ÊDÂ)t−1−τ ÊDB̂u(τ )−

−(I − ÊDÊ)

ν−1
∑

i=0

(ÊÂD)iÂDB̂u(t + i).

(2.3)

for some v ∈ Cn.

Proof. See, e.g., [11], [26].

Corollary 2.3. With the same assumptions as in Theorem 2.2, the continuous-
time initial value problem (1.1) has a (unique) solution if and only if there exists a
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vector v ∈ Cn such that

x0 = ÊDÊv − (I − ÊDÊ)

ν−1
∑

i=0

(ÊÂD)iÂDB̂u(i)(0). (2.4)

and the discrete-time initial value problem (1.2) has a (unique) solution if and only if

x0 = ÊDÊv − (I − ÊDÊ)
ν−1
∑

i=0

(ÊÂD)iÂDB̂u(i). (2.5)

for some v ∈ C.

Proof. See, e.g., [11], [26].

2.2. Projectors and index of (E, A). A matrix Q is called projector if Q2 = Q.
A projector Q is called projector onto a subspace S ⊆ Rn if imQ = S. It is called
projector along a subspace S ⊆ Rn if kerQ = S.

Let (E, A) be a regular matrix pair. As introduced in [23] we define a matrix
chain by setting

E0 := E, A0 := A and (2.6a)

Ei+1 := Ei − AiQ̃i, Ai+1 := AiP̃i, for i ≥ 0, (2.6b)

where Q̃i are projectors onto kerEi and P̃i = I−Q̃i. Since we have assumed (E, A) to
be regular, there exists an index ν such that Eν is nonsingular and all Ei are singular
for i < ν, [28]. Note, that ν is independent of a special choice of the projectors Qi.
Then, we say that the matrix pair (E, A) has (tractability) index ν and denote it by
ind(E, A) = ν. It is well known that for regular pairs (E, A) the tractability index is
equal to the differentiation index, see, e.g., [12], and it can be determined as the size
of the largest Jordan block associated with the eigenvalue infinity in the Weierstraß
canonical form of the pair (E, A), see [26, 28]. In the following we, therefore, only
speak of the index of the pair (E, A).

It is possible to construct the matrix chain in (2.6) with special, so called canonical

projectors, see [29], [33]. For such projectors Qi, it holds that for all v ∈ Sdef
f and

for all i = 0, . . . , ν − 1 we have Qiv = 0. In the following, whenever we refer to the
matrix chain in (2.6), we assume that it is constructed with canonical projectors.

2.3. Nonnegative matrices and matrix pairs. A matrix A ∈ Rn×n, A =
[aij ]

n
i,j=1 is called nonnegative and we write A ≥ 0 if all entries aij are nonnegative.

Matrices A for which eAt ≥ 0 are called exponentially non-negative.

The matrix A is called Z-matrix if its off-diagonal entries are non-positive. In the
literature, a matrix for which −A is a Z-matrix sometimes is called L-matrix, Metzler
matrix or essentially positive matrix, see, e.g., [6], [20], [24], [40]. Throughout this
paper we will use the term −Z-matrix. For a matrix A we have that eAt ≥ 0 if and
only if A is a −Z-matrix, see, e.g., [40]. Let B ≥ 0 with spectral radius ρ(B). A
matrix A of the form A = sI − B, with s > 0, and s ≥ ρ(B) is called M -matrix.
If s > ρ(B) then A is a nonsingular M -matrix, if s = ρ(B) then A is a singular
M -matrix. The class of M -matrices is a subclass of the Z-matrices.

A matrix A is called strictly diagonally dominant if for all i = 1, . . . , n we have
|aii| >

∑

i 6=j |aij |. A matrix A is called positive (semi-)definite if for all x 6= 0 we have
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(xT Ax ≥ 0) xT Ax > 0. If this holds for −A then A is called negative (semi-)definite.
A strictly diagonally dominant matrix A with positive diagonal entries is positive
definite, see, e.g., [40].

The following generalised Perron-Frobenius-type condition for matrix pairs is pre-
sented in [33].

Theorem 2.4. Let (E, A), with E, A ∈ Rn×n, be a regular matrix pair of
ind(E, A) = ν. Let a matrix chain as in (2.6) be constructed with canonical pro-
jectors Qi, Pi. If

E−1
ν Aν ≥ 0, (2.7)

holds, then the finite spectral radius ρf (E, A) is an eigenvalue and there exists a
corresponding nonnegative eigenvector v ≥ 0. If E−1

ν Aν is, in addition, irreducible,
then we have that ρf (E, A) is simple and v > 0 is unique up to a scalar multiple.

Proof. See [33].

Corollary 2.5. Let Pr be a projector onto the right finite deflating subspace
Sdef

f , let Ê, Â be defined as in Lemma 2.1. Under the assumptions of Theorem 2.4
the conditions

PrE
−1
ν A ≥ 0, (2.8)

E−1
ν AÊDÊ ≥ 0, (2.9)

ÊDÂ ≥ 0, (2.10)

are equivalent to condition (2.7).

Proof. See [33].

In particular, Corollary 2.5 implies the following identities that we will frequently
use throughout the paper:

• Pr = ÊDÊ;
• Sdef

f = im(Pr) = im(ÊDÊ);

• ÊDÂ = E−1
ν Aν = E−1

ν APr = PrE
−1
ν A.

3. Positive descriptor systems. For standard systems internal positivity im-
plies that for any initial condition x0 ≥ 0 and any input function u(t) ≥ 0 we have
x(t) ≥ 0 and y(t) ≥ 0 for all t ≥ 0, see [20], [24]. In the case of descriptor systems,
an initial value is constrained in order to be consistent, see Corollary 2.3. Hence, for
the positivity of the initial condition only the part that can be chosen freely, i.e., the
part that corresponds to the finite deflating subspace, has to be non-negative.

Definition 3.1 (Consistent non-negative initial condition). Let the matrices
E, A, B, C be the system matrices in (1.1) or (1.2), respectively with ind(E, A) = ν.
We call the initial value x0 in (1.1) or (1.2) consistent non-negative if there exists a
vector v ∈ Cn such that (2.4) or (2.5) holds, respectively, and furthermore ÊDÊv ≥
0.

Note, that for standard systems, this non-negative consistency condition reduces
to x0 ≥ 0. In contrast to standard systems, here it is only required that the initial
condition is non-negative on the finite deflating subspace Sdef

f . On the subspace
corresponding to the infinite eigenvalues, the solution does not depend on the initial
condition and its positivity. Hence, the positivity of the initial condition on the
subspace corresponding to infinite eigenvalues should be a property of the system.
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Definition 3.2 (Positivity). We call the continuous-time system (1.1) with
ind(E, A) = ν internally positive if for every consistent non-negative initial condition
x0 and every non-negative input function u such that u(i)(t) ≥ 0 for i = 0, . . . , ν − 1,
the state vector x(t) and the output y(t) are non-negative for all t ≥ 0.
The discrete-time system (1.2) is called internally positive if for any consistent non-
negative initial condition x0 and every non-negative input sequence u(t), t ≥ 0, the
output y(t) and the state x(t) are non-negative for all t > 0.

In the following theorem we formulate an extension of the characterisation of
positivity in the standard case in, e.g., [20], [24].

Theorem 3.3 (Continuous-time case). Let E, A, B, C be the matrices in system
(1.1) with ind(E, A) = ν and (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1.
Then, the continuous-time system (1.1) is internally positive if and only if the matrix

ÊDÂ is exponentially non-negative on the right finite deflating subspace Sdef
f and

ÊDB̂, C ≥ 0.

Proof. “⇒” Let the system (1.1) be internally positive. If the initial condition
x0 is consistent non-negative, then by Corollary 2.3 there exists a v ∈ Cn, such that
(2.4) holds. For internally positive systems, we have x(t) ≥ 0 and y(t) ≥ 0 for every
u(t) ≥ 0 and for every consistent non-negative x0. Hence, in particular for u ≡ 0,
from (2.2) we get that

x(t) = eÊDÂtÊDÊv ≥ 0, (3.1)

holds for any x0 = ÊDÊv ≥ 0. Hence, eÊDÂt is non-negative on Sdef
f = im(ÊDÊ),

i.e., ÊDÂ is exponentially non-negative on the right finite deflating subspace Sdef
f .

For x0 = 0 and u ≡ ξ ≥ 0, where ξ ∈ Rm
+ is a constant vector and hence, all

derivatives of u are zero, we get from (2.4) that

x0 = ÊDÊv − (I − ÊDÊ)ÂDB̂ξ = 0. (3.2)

Since, im(ÊDÊ) ⊕ im(I − ÊDÊ) = Cn, we conclude that ÊDÊv = 0 and (I −
ÊDÊ)ÂDB̂ξ = 0. Thus, from (2.2) we obtain that

x(t) =

∫ t

0

eÊDÂ(t−τ)ÊDB̂ξdτ ≥ 0, (3.3)

for any ξ ∈ Rm
+ . Since ÊDÂ is exponentially non-negative on im(ÊDÊ) and since

integration is monotone and (3.3) must hold for all ξ ∈ Rm
+ , we conclude that ÊDB̂ ≥

0. Additionally, since the system is internally positive, we get y(t) = Cx(t) ≥ 0 for
any x ≥ 0 and therefore, C ≥ 0.

“⇐” Let ÊDÂ be exponentially non-negative on the right finite deflating subspace
Sdef

f , let ÊDB̂, C ≥ 0 and (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1. We have

to show that for any consistent non-negative x0 and for u(t) with u(i)(t) ≥ 0 for all
t ≥ 0 and i = 0, . . . , ν − 1 we get x(t) ≥ 0 and y(t) ≥ 0 for all t. The solution at time
t is given by

x(t) = eÊDÂtÊDÊv +

∫ t

0

eÊDÂ(t−τ)ÊDB̂u(τ )dτ −

−(I − ÊDÊ)

ν−1
∑

i=0

(ÊÂD)iÂDB̂u(i)(t), (3.4)
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and x0 = ÊDÊv − (I − ÊDÊ)
∑ν−1

i=0 (ÊÂD)iÂDB̂u(i)(0). Since x0 is consistent non-

negative, we get ÊDÊv ≥ 0, see Definition 3.1. Since, additionally, ÊDÂ is ex-
ponentially non-negative on Sdef

f = im(ÊDÊ), the first term is non-negative. For

the second term we have that ÊDB̂ ≥ 0 and therefore eÊDÂ(t−τ)ÊDB̂u(τ ) ≥ 0 for
any u ≥ 0, since ÊDB̂u(τ ) im ÊDÊ. Hence, since integration is monotone, the sec-
ond term is non-negative. Furthermore, we have −(I − ÊDÊ)(ÊÂD)iÂDB̂ ≥ 0 for
i = 0, . . . , ν − 1 and therefore the third term is also non-negative for any u(t) with
u(i)(t) ≥ 0 for all t ≥ 0 and i = 0, . . . , ν − 1. Thus, x(t) ≥ 0. From y(t) = Cx(t) and
C ≥ 0, we also conclude that y(t) ≥ 0.

Lemma 3.4. Consider the matrix pair (E, A) in the positive continuous-time
system (1.1). If the spectral projector Pr = ÊDÊ is non-negative, where Ê is defined
as in Lemma 2.1, then there exists α ≥ 0 such that

ÊDÂ + αÊDÊ ≥ 0.

Proof. For continuous-time positive systems (1.1), from the proof of Theorem 3.3
we have that equation (3.1) holds, i.e.,

eÊDÂtÊDÊv ≥ 0 for all ÊDÊv ≥ 0 and all t ≥ 0.

If ÊDÊ ≥ 0, then we obtain that

eÊDÂtÊDÊv ≥ 0 for all v ≥ 0 and all t ≥ 0,

and hence,

eÊDÂtÊDÊ ≥ 0. (3.5)

From this, we have that (ÊDÂ)ij ≥ 0 for all pairs (i, j) such that (ÊDÊ)ij = 0, since
otherwise, for t > 0 small enough, we obtain

eÊDÂtÊDÊ = (ÊDÊ)ij + (ÊDÂ)ijt + O(t2) < 0,

which contradicts equation (3.5). Setting α ≥ |min(i,j)(Ê
DÂ)ij |, we obtain ÊDÂ +

αÊDÊ ≥ 0.

Remark 3.5. The important implication of Lemma 3.4 is that we can shift the
finite spectrum of the matrix pair (E, A) as in the standard case, see, e.g., [20, p.38],
such that the shifted matrix pair (E, A + αE) fulfils the assumptions of Theorem 2.4
and its finite spectral radius is an eigenvalue. Furthermore, for any finite eigenvalue
µ of (E, A + αE) we have that λ = µ − α is a finite eigenvalue of (E, A). The
eigenvectors and eigenspaces of (E, A) and (E, A + αE) are the same. In particular,
the eigenspace that corresponds to the eigenvalue ∞ remains unchanged.

Proof. Let (λ, v) be a finite eigenpair of (E, A), i.e.,

(λE − A)v = 0

⇔ ((λ + α)E − A − αE)v = 0.

Hence, (µ, v) with µ := λ + α is a finite eigenpair of (E, A + αE).
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The following theorem characterises positivity in the case that the spectral pro-
jector is non-negative.

Theorem 3.6. Let E, A, B, C be the matrices in system (1.1) with ind(E, A) = ν
and (I − ÊDÊ)(ÊÂD)iÂDB ≤ 0 for i = 0, . . . , ν − 1. If in addition ÊDÊ ≥ 0, then
we have the following characterisations of internal positivity.
The continuous-time system (1.1) is internally positive if and only if there exists a
scalar α > 0 such that the matrix

M := −αI + (ÊDÂ + αÊDÊ)

is a −Z-matrix and ÊDB, C ≥ 0. Note, that on the right finite deflating subspace
Sdef

f the matrix M is identical to ÊDÂ, i.e., for any v ∈ Sdef
f we have

Mv = (−αI + ÊDÂ + αÊDÊ)v = ÊDÂv.

Proof. By Lemma 3.4 we have that for the continuous-time internally positive
system (1.1) if ÊDÊ ≥ 0, then there exists a scalar α > 0 such that ÊDÂ+αÊDÊ ≥ 0.
Hence, the matrix M has non-negative off-diagonal entries and we have

eÊDÂtÊDÊ = eMtÊDÊ ≥ 0,

since M is a −Z-matrix. The rest of the proof follows from Theorem 3.3.

Corollary 3.7. Let E, A, B, C be the matrices in system (1.1) with ind(E, A) =
ν and (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1. If the matrix ÊDÂ is a −Z-
matrix and ÊDB̂, C ≥ 0, then the continuous-time system (1.1) is internally positive.

Proof. If ÊDÂ is a −Z-matrix, this implies that ÊDÂ is exponentially non-
negative on Sdef

f . Internal positivity follows from Theorem 3.3.

The first of the following two examples demonstrates that the property that ÊDÂ
is a −Z-matrix is not necessary for the system (1.1) to be internally positive. The
second example is a system that is not (internally) positive.

Example 3.8. Consider the system




1 1 0
0 0 0
0 0 0



 ẋ =





−1 0 0
0 −1 0
0 0 −1



x +





0
0
1



u.

Since the matrices E and A commute, we can directly compute

EDA =





−1 −1 0
0 0 0
0 0 0



 ,

which is not a −Z-matrix and

EDE =





1 1 0
0 0 0
0 0 0



 , EDB = 0.

For the state vector, we then obtain

x(t) = eEDAtEDEv − (I − EDE)ADBu(t) =

=





e−t e−t − 1 0
0 1 0
0 0 1









v1 + v2

0
0



−





0
0
−1



u(t).
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Hence, the system is internally positive, although EDA is not a −Z-matrix.

Example 3.9. Consider the system





1 1 0
0 1 0
0 0 0



 ẋ =





1 0 0
0 1 0
0 0 −1



x +





0
0
1



u.

Here, the matrices E and A also commute and we can compute

EDA =





1 −1 0
0 1 0
0 0 0



 ,

which is also not a −Z-matrix and

EDE =





1 0 0
0 1 0
0 0 0



 , EDB = 0.

For the solution, we obtain

x(t) = eEDAtEDEv − (I − EDE)ADBu(t) =





et −tet 0
0 et 0
0 0 1









v1

v2

0



−





0
0
−1



u(t).

The system is not internally positive, since the first component of x may become
negative.

The following Theorem 3.10 gives a characterisation of positivity in the case of
discrete-time systems.

Theorem 3.10 (Discrete-time case). Let E, A, B, C be the matrices in system
(1.2) with ind(E, A) = ν. Then, the discrete-time system (1.2) is internally positive if

and only if ÊDÂ is non-negative on the right finite deflating subspace Sdef
f , ÊDB̂, C ≥

0 and (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1.

Proof. “⇒” Let the system (1.2) be internally positive. If the initial condition
x0 is consistent non-negative, then by Corollary 2.3 there exists a v ∈ Cn, such that
(2.5) holds. For internally positive systems, we have x(t) ≥ 0 and y(t) ≥ 0 for every
sequence u(t) ≥ 0 and for every consistent non-negative x0. Then, in particular, for
u ≡ 0, we have

x(1) = ÊDÂ(ÊDÊv) ≥ 0, (3.6)

for any x0 = ÊDÊv ≥ 0. Hence, ÊDÂ is non-negative on Sdef
f = im(ÊDÊ). Further-

more, for u ≡ 0 we have that y(1) = Cx0 ≥ 0 for any x0 ≥ 0 and therefore C ≥ 0.
Now, choose a time t > 0 and set x0 such that ÊDÊv = 0 and

u(τ ) =

{

ei, τ = t − 1,
0, otherwise,

where ei is the i-th unit vector and obtain

x(1) = ÊDB̂ei ≥ 0,
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for i = 1, . . . , m. Hence, we have ÊDB̂ ≥ 0. Finally, choose x0 such that ÊDÊv = 0
and

u(τ ) =

{

ei, τ = t,
0, otherwise.

We obtain

x(1) = −(I − ÊDÊ)ÂDB̂ei ≥ 0,

for i = 1, . . . , m. Hence, we have −(I − ÊDÊ)ÂDB̂ ≥ 0. By repeating the procedure
for τ = t+1, . . . , t+ν−1, we obtain −(I−ÊDÊ)(ÊÂD)iÂDB̂ ≥ 0 for i = 1, . . . , ν−1.

“⇐” Let ÊDÂ be non-negative on the right finite deflating subspace, ÊDB̂, C ≥ 0
and (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1. We have to show that for any
consistent non-negative x0 and any input sequence u ≥ 0 we get x(t) ≥ 0 and y(t) ≥ 0
for all t. The solution at time t is given by

x(t) = (ÊDÂ)tÊDÊv +

t−1
∑

τ=0

(ÊDÂ)(t−1−τ)ÊDB̂u(τ ) −

−(I − ÊDÊ)

ν−1
∑

i=0

(ÊÂD)iÂDB̂u(t + i),

and x0 = ÊDÊv − (I − ÊDÊ)
∑ν−1

i=0 (ÊÂD)iÂDB̂u(i). Since x0 is consistent non-

negative, we have ÊDÊv ≥ 0. Since, additionally, ÊDÂ is non-negative on im ÊDÊ
the first term is non-negative. Since ÊDB̂ ≥ 0, we have that (ÊDÂ)t−1−τ ÊDB̂u(τ ) ≥
0 for any u ≥ 0 and the second term is also non-negative. Additionally, we have
(I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1 and therefore, the third term is
non-negative for any u ≥ 0. Hence, x(t) ≥ 0. From y(t) = Cx(t) and C ≥ 0, we also
conclude that y(t) ≥ 0.

The discrete-time analogon to Theorem 3.6 was given In [9]. Under the assump-
tion that ÊDÊ ≥ 0 it states that internal positivity of the system (1.2) is equivalent to
ÊDÂ, ÊDB̂, C ≥ 0 and (I−ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν−1. Furthermore,
the following holds.

Corollary 3.11. Let E, A, B, C be the matrices in system (1.2) with ind(E, A) =
ν. If ÊDÂ, ÊDB̂, C ≥ 0 and (I − ÊDÊ)(ÊÂD)iÂDB̂ ≤ 0 for i = 0, . . . , ν − 1, then
the discrete-time system (1.2) is internally positive.

Proof. If ÊDÂ ≥ 0, this implies that ÊDÂ is non-negative on Sdef
f . Internal

positivity then follows from Theorem 3.10.

4. Stability conditions for positive descriptor systems. In the course of
this section, we consider linear homogeneous positive time-invariant systems:

• in continuous-time:

Eẋ(t) = Ax(t), x(0) = x0 (4.1)

• or in discrete-time:

Ex(t + 1) = Ax(t), x(0) = x0. (4.2)
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Definition 4.1 (c-/d-positive matrix pair). We call a matrix pair (E, A) c-
positive if system (4.1) is internally positive. We call a matrix pair (E, A) d-positive
if system (4.2) is internally positive.

Definition 4.2 (c-/d-stable matrix pair). A matrix pair (E, A) is called c-stable
if all finite eigenvalues of (E, A) have negative real part. A matrix pair (E, A) is called
d-stable if ρf (E, A) < 1.

In this subsection we generalise the special stability conditions in the case of
positive systems from the standard case, see [20], to the descriptor case under the
assumption that the spectral projector Pr onto the right finite deflating subspace
Sdef

f is non-negative. This is a reasonable assumption, since in this case for any
vector v ≥ 0 a consistent initial value x0 is also consistent non-negative. In [9], this
condition is imposed to charactarise positivity of discrete-time positive descriptor
systems.

Stability conditions for positive systems are closely related to and can be charac-
terised by the so called dominant eigenvalue(s) of the system.

Definition 4.3 (c-/d-dominant eigenvalue). For linear
continuous-time systems (1.1), we call a finite eigenvalue λ of the matrix pair (E, A)
c-dominant if its real part is larger or equal to the real part of any other eigenvalue
of the matrix pair (E, A), i.e. ℜ(λ) ≥ ℜ(λi) for all λi ∈ σf (E, A).
For linear discrete-time systems (1.2), we call a finite eigenvalue of the matrix pair
(E, A) d-dominant if it is larger or equal in modulus than any other eigenvalue of the
matrix pair (E, A), i.e. |λ| ≥ |λi| for all λi ∈ σf (E, A).

Note, that for standard continuous-time systems, where E = I, a c-dominant
eigenvalue is an eigenvalue of the matrix A with the largest real part and for standard
discrete-time systems a d-dominant eigenvalue is an eigenvalue of A that is largest in
modulus.

By using Lemma 3.4 and Remark 3.5, we can generalise the result on dominant
eigenvalues in [20, Theorem 11] to descriptor systems.

Theorem 4.4. Consider the positive continuous-time system (1.1). If the spectral
projector Pr = ÊDÊ onto the right finite deflating subspace is non-negative, then the
c-dominant eigenvalue v of the system is real and unique. Furthermore, there exists
a non-negative eigenvector corresponding to this c-dominant eigenvalue.
Consider the positive discrete-time system (1.2). If the spectral projector Pr = ÊDÊ
onto the right finite deflating subspace is non-negative, then ρf (E, A) is a d-dominant
eigenvalue and there exists a corresponding non-negative eigenvector.

Proof. In the continuous-time case, since ÊDÊ ≥ 0, by Lemma 3.4 and Re-
mark 3.5 we have that there exists a scalar α > 0 such that for the shifted matrix pair
(E, A+αE) the finite spectral radius ρf (E, A+αE) is an eigenvalue. Hence, λ = µ−α
is an eigenvalue of (E, A) and it is the eigenvalue with the largest real part, i.e., the
c-dominant eigenvalue of the positive system (1.1). Hence, the c-dominant eigenvalue
λ is real and unique. Since by Remark 3.5, the eigenvectors remain unchanged by the
shift, there exists a corresponding non-negative eigenvector.

In the discrete-time case, if ÊDÊ ≥ 0, then for a positive system (1.2) we have
that ÊDÂ ≥ 0, see [9]. Hence, by Theorem 2.4, the finite spectral radius of (E, A) is
an eigenvalue and there exists a corresponding non-negative eigenvector.
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Example 4.5. Let E =

[

1 0
0 0

]

and A =

[

−1 0
0 1

]

. We have ÊDÊ =

[

1 0
0 0

]

and ÊDÂ =

[

−1 0
0 0

]

. Hence, the system (4.1) is positive, since

eÊDÂÊDÊv =

[

e−t 0
0 1

] [

1 0
0 0

] [

v1

v2

]

=

[

e−tv1

0

]

≥ 0,

for all v1 ≥ 0. Choose α = |mini,j(Ê
DÂ)i,j | = 1. We obtain

ÊDÂ + αÊDÊ =

[

0 0
0 0

]

≥ 0.

Hence, µ := ρ(ÊDÂ+αÊDÊ) = 0 is an eigenvalue and the corresponding c-dominant
eigenvalue of (E, A) is λ = µ − α = −1. This means that (E, A) is also c-stable.

Lemma 4.6. Let (E, A) be a regular c-stable matrix pair. Then, for any α > 0
we have that

B := −αI + ÊDÂ + αÊDÊ,

is a stable (regular) matrix. If, in addition, the matrix pair (E, A) is c-positive and
the spectral projector ÊDÊ is non-negative, then there exists α > 0 such that B is a
−M -matrix.

Proof. All finite eigenvalues of (E, A) are also eigenvalues of ÊDÂ. The eigenvalue
∞ of (E, A) is mapped to the eigenvalue 0 of ÊDÂ. For any finite einpair (λ, v) of
(E, A), we have

Bv = ÊDÂv = λv.

Therefore, all finite, stable eigenvalues remain the same. For any eigenvector w cor-
responding to the eigenvalue ∞ of (E, A), i.e., Ew = 0, we have by the definition of
Ê in Lemma 2.1 that

ÊDÂw = ÊDÂÊDÊw = ÊDÂÊD(λE − A)−1Ew = 0,

and hence,

Bw = −α(I − ÊDÊ)w = −αw.

Thus, w is now eigenvector corresponding to a negative eigenvalue −α. Hence, all
eigenvalues of B have negative real parts and therefore B is stable. If, in addition, the
matrix pair (E, A) is c-positive and the spectral projector ÊDÊ is non-negative, then
by Lemma 3.4 we have that there exists α > 0 such that T := ÊDÂ + αÊDÊ ≥ 0.
By the generalised Perron-Frobenius Theorem 2.4 we have that ρ(T ) is an eigenvalue
of T and ρ(T ) − α is the finite eigenvalue of (E, A) with the largest real part and it
is negative, since (E, A) is c-stable. Therefore, we have α > ρ(ÊDÂ + αÊDÊ) and B
is a −M -matrix.

In the following we generalise a Lyapunov-type stability condition from the stan-
dard case, see [20], to the descriptor case.

Theorem 4.7. Let the matrix pair (E, A) be c-positive. If the spectral projector
Pr = ÊDÊ is non-negative, then the pencil (E, A) is c-stable if and only if there ex-
ists a positive definite diagonal matrix Y such that (ÊDÂ)T Y + Y (ÊDÂ) is negative
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definite on Sdef
f .

For a d-positive matrix pair (E, A), if the spectral projector Pr = ÊDÊ is non-
negative, then (E, A) is d-stable if and only if there exists a positive definite diagonal
matrix Y such that (ÊDÂ)T Y (ÊDÂ) − Y is negative definite.

Proof. Continuous-time case:
“⇒”By Lemma 4.6, we have that the matrix

M := αI − (ÊDÂ + αÊDÊ),

is a regular M -matrix. Therefore, we have M−1 ≥ 0. Let 1 denote the vector of all
ones and set x := M−T1 > 0 and z := M−11 > 0. Define the diagonal matrix Y by
Y := diag(y), where yi := xi/zi. Then, since ÊDÊv = v, we have for all v ∈ Sdef

f

that

vT (ÊDÂ)T Y v + vT Y (ÊDÂ)v =

vT (−(αI − (ÊDÂ + αÊDÊ)))T Y v + vT Y (−(αI − (ÊDÂ + αÊDÊ)))v =

vT (−M)T Y v + vT Y (−M)v.

The matrix −(MT Y +Y M) is negative definite, which can be shown as in the standard
case, see, e.g., [6], [20]. Hence, we have constructed a positive definite diagonal matrix

Y such that (ÊDÂ)T Y + Y (ÊDÂ) is negative definite on Sdef
f .

“⇐” By Theorem 4.4, we have that the c-dominant eigenvalue λ of (E, A) is real
and unique. Hence, it suffices to show that λ is negative. Let v be an eigenvector
corresponding to λ. Since by Theorem 2.4 the eigenpair (λ, v) is also an eigenpair of
ÊDÂ, we obtain

vT (ÊDÂ)T Y v + vT Y (ÊDÂ)v = vT λY v + vT Y λv =

2λvT Y v < 0,

whereas vT Y v > 0. Hence, λ < 0.

Discrete-time case:
“⇒” If ÊDÊ ≥ 0, for a positive system we also have ÊDÂ ≥ 0, see [9]. Since the
matrix pair (E, A) is d-stable, we have ρf (E, A) < 1 and hence, the matrix

M := I − ÊDÂ,

is a regular M -matrix. Therefore, we have M−1 > 0. Set x := M−T1 > 0 and define
the diagonal matrix Y by Y := diag(x). We show that (ÊDÂ)T Y (ÊDÂ) − Y has
negative row sums. Then, since the first product is non-negative and Y is diagonal,
we have diagonal dominance and symmetry, and hence, negative definiteness. For the
row sums we obtain

((ÊDÂ)T Y (ÊDÂ) − Y )1 = ((ÊDÂ)T Y (ÊDÂ − I + I) − Y )1 =

= (ÊDÂ)T (−Y M + Y )1− x =

= −(ÊDÂ)T Y M1+ (ÊDÂ)T x − x,

where the first term is negative, since due to diagonal dominance and the fact that
M is an M -matrix the matrix Y M has positive row sums and ÊDÂ ≥ 0. Therefore,
we obtain

((ÊDÂ)T Y (ÊDÂ) − Y )1 ≤ −Mx = −1 < 0.
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Hence, we have shown that (ÊDÂ)T Y (ÊDÂ) − Y has negative row sums, which
completes the proof.
“⇐” By Theorem 4.4, we have that there exists a d-dominant eigenvalue λ of (E, A)
that is non-negative and real. Hence, it suffices to show that λ is smaller than 1.
Let v be an eigenvector corresponding to λ. Since by Theorem 2.4 (λ, v) is also an
eigenpair of ÊDÂ, we obtain

vT (ÊDÂ)T Y (ÊDÂ)v − vT Y v = λ2vT Y v − vT Y v =

= (λ2 − 1)vT Y v < 0,

whereas vT Y v > 0. Since λ is non-negative, we have λ < 1.

Corollary 4.8. Let the matrix pair (E, A) be c-positive. If the spectral projector
Pr = ÊDÊ is non-negative, then the matrix pair (E, A) is c-stable if and only if there
exists a scalar α > 0 such that M := αI − (ÊDÂ + αÊDÊ) and

• all principal minors of M are positive;
• the coefficients of the characteristic polynomial of M are negative.

Let the matrix pair (E, A) be d-positive. If the spectral projector Pr = ÊDÊ is non-
negative, then the matrix pair (E, A) is d-stable if and only if M̃ := I − ÊDÂ and

• all principal minors of M̃ are positive;
• the coefficients of the characteristic polynomial of M̃ are negative.

Proof. By Lemma 4.6 there exists α > 0 such that M is an M -matrix. By
Theorem 4.7 also M̃ is an M -matrix. Therefore, the assertions of the present Theorem
follow directly from the M -matrix properties of M and M̃ .

5. Non-negative solution of generalised Lyapunov equations. Consider
the following generalised projected continuous-time Lyapunov equation [37]

ET XA + AT XE = −PT
r GPr, (5.1)

where Pr is the spectral projection onto the right finite deflating subspace Sdef
f of the

pencil (E, A).

Theorem 5.1. Let (E, A) be a regular matrix pair and let Pr be a spectral
projector onto the finite deflating subspace with Pr ≥ 0. If (E, A) is c-stable, then
equation (5.1) has a unique solution for every matrix G. The solution is given by

X = E−T
ν

(
∫ ∞

0

e(ÊDÂ)T tPT
r GPre

(ÊDÂ)tdt

)

E−1
ν , (5.2)

where Eν is defined as in the matrix chain in (2.6). If G is symmetric positive
(semi)definite, then X is symmetric positive semidefinite. If, in addition, the matrix
pair (E, A) is c-positive and G ≥ 0 and PrE

−1
ν ≥ 0 than also X ≥ 0.

Proof. We show that X as defined in (5.2) is solution of (5.1). Since (E, A) is
c-stable, by Lemma 4.6 we have that for any α > 0 the matrix

M := −αI + ÊDÂ + ÊDÊ
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is stable and MPr = PrM = ÊDÂ. Therefore, we have that

ET XE = ET E−T
ν

(
∫ ∞

0

e(ÊDÂ)T tPT
r GPre

(ÊDÂ)tdt

)

E−1
ν E =

= ET E−T
ν

(
∫ ∞

0

e(ÊDÂ)T tPT
r GPre

(ÊDÂ)tdt

)

(I − Q0 − . . . − Qν−1) =

=

∫ ∞

0

e(ÊDÂ)T tPT
r GPre

(ÊDÂ)tdt =

=

∫ ∞

0

eMT tPT
r GPre

Mtdt

is a solution of the standard Lyapunov equation

(ET XE)M + MT (ET XE) = −PT
r GPr.

On the other hand, we have

AT XE = AT E−T
ν

(
∫ ∞

0

e(ÊDÂ)T tPT
r GPre

(ÊDÂ)tdt

)

E−1
ν E

= PT
r AT E−T

ν

(
∫ ∞

0

e(ÊDÂ)T tPT
r GPre

(ÊDÂ)tdt

)

=

= (ÊDÂ)T

(
∫ ∞

0

e(ÊDÂ)T tPT
r GPre

(ÊDÂ)tdt

)

=

= MT

(
∫ ∞

0

e(ÊDÂ)T tPT
r GPre

(ÊDÂ)tdt

)

=

= MT (ET XE),

and analogously ET XA = (ET XE)M . Hence, if we plug X defined in (5.2) into
equation (5.1), then we obtain

ET XA + AT XE = (ET XE)M + MT (ET XE) =

= −PT
r GPr.

If (E, A) is c-positive and Pr ≥ 0, then e(ÊDÂ)tPr ≥ 0. With G ≥ 0 and PrE
−1
ν ≥ 0

we obtain X ≥ 0.

For the discrete-time case, consider the following generalised projected discrete-
time Lyapunov equation [37]

AT XA − ET XE = −PT
r GPr, (5.3)

where Pr is the spectral projection onto the right finite deflating subspace of the pencil
(E, A).

Theorem 5.2. Let (E, A) be a regular matrix pair and let Pr be a spectral
projector onto the finite deflating subspace with Pr ≥ 0. If (E, A) is d-stable, then
equation (5.3) has a unique solution for every matrix G. The solution is given by

X = E−T
ν

(

∞
∑

t=0

((ÊDÂ)T )tG(ÊDÂ)t

)

E−1
ν , (5.4)
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where Eν is defined as in the matrix chain in (2.6). If G is symmetric positive
(semi)definite, than X is symmetric positive semidefinite. If, in addition, the matrix
pair (E, A) is d-positive and G ≥ 0 and PrE

−1
ν ≥ 0 than also X ≥ 0.

Proof. We show that X as defined in (5.4) is solution of (5.3). For X as defined
in (5.4) we have that

ET XE = ET E−T
ν

(

∞
∑

t=0

((ÊDÂ)T )tG(ÊDÂ)t

)

E−1
ν E =

=

∞
∑

t=0

((ÊDÂ)T )tPT
r GPr(Ê

DÂ)t

is a solution of the standard discrete-time Lyapunov equation

(ÊDÂ)T (ET XE)(ÊDÂ) − (ET XE) = −PT
r GPr.

On the other hand, we have

AT XA = (ÊDÂ)T

(

∞
∑

t=0

((ÊDÂ)T )tG(ÊDÂ)t

)

(ÊDÂ).

Hence, if we plug X into equation (5.3), then we obtain

AT XA − ET XE = (ÊDÂ)T (ET XE)(ÊDÂ) − (ET XE) =

= −PT
r GPr.

If (E, A) is d-positive and Pr ≥ 0, then we have that ÊDÂ ≥ 0, [9]. With G ≥ 0 and
PrE

−1
ν ≥ 0 we obtain X ≥ 0.

6. Stability of switched positive descriptor systems. The study of stabil-
ity properties of switched systems is subject to ongoing research, see [25] and the
references therein. Especially, in the case of standard positive systems, progress has
been made on this subject due to the existence of a diagonal Lyapunov function,
see, e.g., [30], [31] and the references therein. The existence of a common diagonal
Lyapunov function of two positive systems, i.e. a diagonal positive definite matrix Y
such that

AT
1 Y + Y A1 and

AT
2 Y + Y A2

are negative definite, guarantees the stability of the switched system under arbitrary
switching. In this section, we show how we can use the framework established through-
out this paper in order to generalise these results to positive descriptor systems.

The following sufficient conditions for the existence of a common diagonal Lya-
punov function in the standard case can be found, e.g., in [30], [31]. We give the proof
for completeness.

Theorem 6.1. Let A1, A2 ∈ Rn×n be −M -matrices, i.e., stable −Z-matrices.
Then, the following conditions are sufficient for the existence of a common diagonal
Lyapunov function.

1. A1A
−1
2 and A−1

2 A1 are both M -matrices.
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2. A1A
−1
2 and A−1

2 A1 are both non-negative.

Proof. Define the diagonal matrix Y as in the proof of Theorem 4.7, i.e., Y :=
diag(y) with yi := xi/zi and the vectors x and z are defined by x := A−T

1 1 and
z := A−1

1 1, respectively. Then, Y is Lyapunov function for A1 and we have to show
that it is also Lyapunov function for A2. We have that

AT
2 Y + Y A2 is negative definite

⇔ Z(AT
2 A−T

1 )AT
1 X + Y (A2A

−1
1 )A1Z is negative definite,

where X := diag(x) and Z := diag(z). Furthermore, we have that the row sums of
both summands are negative

Z(AT
2 A−T

1 )AT
1 X1 = −Z(AT

2 A−T
1 )1 < 0,

X(A2A
−1
1 )A1Z1 = −X(A2A

−1
1 )1 < 0,

since A1A
−1
2 and A−1

2 A1 are both M -matrices and therefore (AT
2 A−T

1 ) ≥ 0 and
(A2A

−1
1 ) ≥ 0. Due to the M -matrix properties we obtain diagonal dominance and

hence negative definiteness. The second sufficient condition follows in an analogous
manner.

The generalisation to positive descriptor systems uses Theorem 4.7 and is as
follows.

Theorem 6.2. Let (E1, A1), (E2, A2) be two regular c-stable matrix pairs and
ÊD

1 Ê1 ≥ 0 and ÊD
2 Ê2 ≥ 0. Then there exist scalars α1, α2 > 0 such that

M1 := αI − ÊD
1 Â1 − αÊD

1 Ê1, and

M2 := αI − ÊD
2 Â2 − αÊD

2 Ê2

are M -matrices and each of the following conditions is sufficient for the existence of
a common diagonal Lyapunov function.

1. M1M
−1
2 and M−1

2 M1 are both M -matrices.
2. M1M

−1
2 and M−1

2 M1 are both non-negative.

Proof. By Lemma 4.6, there exist scalars α1, α2 > 0 such that M1, M2 are M -
matrices. The rest follows as in the proof of the standard case in Theorem 6.1.

7. Conclusions. In this paper, we have discussed positive descriptor systems in
the continuous-time as well as in the discrete-time case. We have presented different
characterisations of positivity and generalisations of stability criteria for the case of
positive descriptor systems. We have shown that if the spectral projector onto the
right finite deflating subspace of the matrix pair (E, A) is non-negative, then all
stability criteria for standard positive systems take a comparably simple form in the
positive descriptor case. Furthermore, we have provided sufficient conditions that
guarantee entry-wise non-negativity of solutions of generalised projected Lyapunov
equations. As an application of the framework established throughout this paper,
we have shown how stability criteria of switched standard positive systems can be
extended to the descriptor case.
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