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AbstratWe investigate the onvexity of hane onstraints with independent random vari-ables. It will be shown, how onavity properties of the mapping related to thedeision vetor have to be ombined with a suitable property of derease for themarginal densities in order to arrive at onvexity of the feasible set for large enoughprobability levels. It turns out that the required derease an be veri�ed for mostprominent density funtions. The results are applied then, to derive onvexity oflinear hane onstraints with normally distributed stohasti oe�ients when as-suming independene of the rows of the oe�ient matrix.Key words: hane onstraints, probabilisti onstraints, stohasti programming, on-vexity, random matrix
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Mathematis Subjet Classi�ation (2000):90C151 IntrodutionMany optimization problems in engineering or �nane ontain so-alled hane onstraintsor probabilisti onstraints of the form
P(h(x, ξ) ≥ 0) ≥ p, (1)where x ∈ R

n is a deision vetor, ξ : Ω → R
m is an m-dimensional random vetor de�nedon some probability spae (Ω,A, P), h : R

n × R
m → R

s is a vetor-valued mapping and
p ∈ [0, 1] is some probability level. A ompilation of pratial appliations in whihonstraints of the type (1) play a ruial role, may be found in the standard referenes[11℄, [12℄. Not surprisingly, one of the most important theoretial questions related to suhonstraints is that of onvexity of the set of deisions x satisfying (1). It is well-known([11℄, Th. 10.2.1) that this set is onvex provided that the law P ◦ ξ−1 of ξ is a log-onave probability measure on R

m and that the omponents hi of h are quasi-onave.The power of this result beomes evident in ombination with a elebrated theorem byPrékopa stating that the law of ξ is log-onave whenever ξ has a log-onave density.As this is easily veri�ed to hold true for many prominent multivariate distributions, thislassial result guarantees onvexity of the set of feasible deisions for a broad lass ofappliations. The required quasi-onavity of the hi is satis�ed, for instane in the linearmodel h(x, ξ) = Ax − Bξ, where atually onavity of the hi holds true.In this paper, we shall be interested in hane onstraints where random vetors appearseparated from deision vetors, and whih ome as a speial ase of (1) by putting
h(x, ξ) = g(x)−ξ. More preisely, we want to study onvexity of a set of feasible deisionsde�ned by

M(p) = {x ∈ R
n|P(ξ ≤ g(x)) ≥ p}, (2)where g : R

n → R
m is some vetor-valued mapping. With F : R

m → R denoting the2



distribution funtion of ξ, the same set an be rewritten as
M(p) = {x ∈ R

n|F (g(x)) ≥ p}. (3)We are interested in onditions on F and g suh that M(p) beomes a onvex set for all
p ≥ p∗, where p∗ < 1. Note that onvexity for large enough p is a relevant feature beause
p is typially hosen to be lose to one.When trying to link the previously mentioned lassial result to the speial ase of (2),in addition to the log-onavity of the law of ξ, we would have to impose quasi-onavity ofthe funtions gi(x)− ξi. Unfortunately, unlike onavity, quasi-onavity is not preservedunder addition, so quasi-onavity of the omponents gi is not su�ient here to ensureonvexity of M(p). To illustrate this fat onsider the following example:Example 1.1 In (2), let ξ have a bivariate standard normal distribution with independentomponents, and let g(x, y) := (ex, ey). Then, the omponents gi are quasi-onave (asfuntions of x and y simultaneously). However, the set M(0.5) fails to be onvex (e.g.,for u := (1,−3) and v = (−3, 1) one has that u, v ∈ M(0.5) but (u + v)/2 /∈ M(0.5)).On the other hand, onavity of the omponents gi would do beause then, gi(x) − ξi isa onave, hene quasi-onave funtion of the two variables x and ξ, simultaneously. Inpartiular, onvexity of M(p) would hold true for all p ∈ [0, 1] in Example 1.1 upon passingfrom g to −g. Therefore, the question arises, whether one an still derive onvexity resultsfor M(p) in (2) when relaxing the strong requirement of onave omponents gi. It turnsout that this will be possible under the additional assumption of ξ having independentomponents. Then, roughly speaking, onvexity an be derived for so-alled r-onave gi,a onept providing a parametrization of onavity properties between true onavity andquasi-onavity (see Setion 2). As an appliation, we show that joint hane onstraintsde�ned by a normally distributed random matrix yield a onvex set of feasible deisionsprovided the probability level is large enough and the rows of the random matrix areindependently distributed. To the best of our knowledge, this result is new and may havean impat on solution proedures for problems of suh kind by making available toolsfrom onvex optimization. We emphasize that the independene assumption is essential3



for our approah. For other work on onvexity properties of hane onstraints whereindependene has been suessfully exploited, we refer to [1℄, [4℄ and [7℄. A Theorem byBawa [1℄, for instane, provides a ondition to ensure onavity of the produt funtion
H(t) = F (t1) · · ·F (tm),where F is a one-dimensional distribution funtion. This would be of interest in theontext of (3) if all omponents ξi of the random vetor had idential independent distri-butions. However, the interplay with relaxations of onavity of the gi in (3) is not lear.The onditions we are going to impose on the distribution funtion F (or better: on themarginal distribution funtions Fi) are related to the degree at whih the orrespondingdensities fi derease asymptotially. This will ensure that the mappings t 7→ Fi(1/t

α)beome onave for an appropriate α > 0.2 NotationWe reall the de�nition of an r-onave funtion:De�nition 2.1 A funtion f : R
s → (0,∞) is alled r-onave for some r ∈ [−∞,∞], if

f(λx + (1 − λ)y) ≥ [λf r(x) + (1 − λ)f r(y)]1/r ∀x, y ∈ R
s, ∀λ ∈ [0, 1]. (4)In this de�nition, the ases r ∈ {−∞, 0,∞} are to be interpreted by ontinuity. Inpartiular, 1-onavity amounts to lassial onavity, 0-onavity equals log-onavity(i.e., onavity of log f), and −∞-onavity identi�es quasi-onavity (this means thatthe right-hand side of the inequaltiy in the de�nition beomes min{f(x), f(y)}). Wereall, that an equivalent way to express log-onavity is the inequality

f(λx + (1 − λ)y) ≥ fλ(x)f 1−λ(y) ∀x, y ∈ R
s, ∀λ ∈ [0, 1]. (5)For r < 0, one may raise (4) to the negative power r and reognize, upon reversing theinequality sign, that this redues to onvexity of f r. If f is r∗-onave, then f is r-onavefor all r ≤ r∗. We shall be mainly interested in the ase r ≤ 1.The following property is ruial in the ontext of this paper:4



De�nition 2.2 We all a funtion f : R → R r-dereasing for some r ∈ R, if it isontinuous on (0,∞) and if there exists some t∗ > 0 suh that the funtion trf(t) isstritly dereasing for all t > t∗.Evidently, 0-dereasing means stritly dereasing in the lassial sense. If f is a non-negative funtion like the density of some random variable, then r-dereasing implies
r′-dereasing whenever r′ ≤ r. Therefore, one gets narrower families of r-dereasing den-sity funtions with r → ∞. If f is not just ontinuous on (0,∞) but happens even to bedi�erentiable there, then the property of being r-dereasing amounts to the ondition

tf ′(t) + rf(t) < 0 for all t > t∗. (6)3 A Convexity ResultLemma 3.1 Let F : R → [0, 1] be a distribution funtion with (r + 1)-dereasing density
f for some r > 0. Then, the funtion z 7→ F (z−1/r) is onave on (0, (t∗)−r), where t∗refers to De�nition 2.2. Moreover, F (t) < 1 for all t ∈ R.Proof. Let h : R → R be de�ned by h(z) = F (z−1/r), for all z > 0. By de�nition, itholds that

h(z) = F (0) +

∫ z−1/r

0

f(t)dt ∀z > 0.With the hange of variables t = u−1/r, the last equation rereads
h(z) = F (0) + r−1

∫ +∞

z

u−(1+1/r)f(u−1/r)du.Sine f is ontinuous on (0,∞) by the very de�nition of r-dereasing funtions, F and hare di�erentiable on the same interval. Consequently,
h′(z) = −r−1z−(1+1/r)f(z−1/r).Sine, by assumption, t 7→ tr+1f(t) is stritly dereasing on (t∗, +∞), one gets that

z 7→ z−(1+1/r)f(z−1/r) is stritly inreasing on (0, (t∗)−r). Summarizing, h′ is stritlydereasing on (0, (t∗)−r), whene h is onave on this interval.5



Conerning the seond statement, assume that F (t) = 1 for all t ≥ τ . Therefore, with
F being a distribution funtion, it follows the ontradition F ′(t) = f(t) = 0 for all t > τto f being (r + 1)-dereasing.Theorem 3.1 For (2), we make the following assumptions for i = 1, . . . , m:1. There exist ri > 0 suh that the omponents gi are (−ri)-onave.2. The omponents ξi of ξ are independently distributed with (ri+1)-dereasing densities

fi.Then, M(p) is onvex for all p > p∗ := max{Fi(t
∗
i )|1 ≤ i ≤ m}, where Fi denotes thedistribution funtion of ξi and the t∗i refer to De�nition 2.2 in the ontext of fi being

(ri + 1)-dereasing.Proof. Let p > p∗, λ ∈ [0, 1] and x, y ∈ M(p) be arbitrary. We have to show that
λx + (1 − λ)y ∈ M(p). Referring to the distribution funtions Fi of ξi, we put

qx
i := Fi(gi(x)) < 1, qy

i := Fi(gi(y)) < 1 (i = 1, . . . , m) , (7)where the strit inequalities rely on the seond statement of Lemma 3.1. By assumption2., the omponents of ξ are independent, hene the feasible set in (2) or (3), respetively,may be rewritten as
M(p) =

{

w ∈ R
n

∣

∣

∣

∣

∣

m
∏

i=1

Fi(gi(w)) ≥ p

}

. (8)In partiular, by (7), the inlusions x, y ∈ M(p) mean that
m
∏

i=1

qx
i ≥ p,

m
∏

i=1

qy
i ≥ p. (9)Now, (7), (9) and the de�nition of p∗ entail that

1 > qx
i ≥ p > Fi(t

∗
i ) ≥ 0, 1 > qy

i ≥ p > Fi(t
∗
i ) ≥ 0 (i = 1, . . . , m) . (10)For τ ∈ [0, 1], we denote the τ -quantile of Fi by

F̃i(τ) := inf{z ∈ R|Fi(z) ≥ τ}.6



Note that, for τ ∈ (0, 1), F̃i(τ) is a real number. Having a density, by assumption 2., the
Fi are ontinuous distribution funtions. As a onsequene, the quantile funtions F̃i(τ)satisfy the impliation

q > Fi(z) =⇒ F̃i(q) > z ∀q ∈ (0, 1) ∀z ∈ R.Now, (7) and (10) provide the relations
gi(x) ≥ F̃i(q

x
i ) > t∗i > 0, gi(y) ≥ F̃i(q

y
i ) > t∗i > 0 (i = 1, . . . , m) . (11)In partiular, for all i = 1, . . . , m, it holds that

[

min{F̃−ri
i (qx

i ), F̃−ri
i (qy

i )}, max{F̃−ri
i (qx

i ), F̃−ri
i (qy

i )}
]

⊆
(

0, (t∗i )
−ri
)

. (12)Along with assumption 1., (11) yields for i = 1, . . . , m:
gi (λx + (1 − λ)y) ≥

(

λg−ri
i (x) + (1 − λ)g−ri

i (y)
)−1/ri

≥
(

λF̃−ri
i (qx

i ) + (1 − λ)F̃−ri
i (qy

i )
)−1/ri

. (13)The monotoniity of distribution funtions allows to ontinue by
Fi (gi (λx + (1 − λ)y)) ≥ Fi

(

(

λF̃−ri
i (qx

i ) + (1 − λ)F̃−ri
i (qy

i )
)−1/ri

)

(i = 1, . . . , m) .(14)Owing to assumption 2., Lemma 3.1 guarantees that the funtions z 7→ Fi(z
−1/ri) areonave on (0, (t∗i )

−ri). In partiular, these funtions are log-onave on the indiatedinterval, as this is a weaker property than onavity (see Setion 2). By virtue of (12)and (5), this allows to ontinue (14) as
Fi (gi (λx + (1 − λ)y)) ≥

[

Fi

(

F̃i(q
x
i )
)]λ [

Fi

(

F̃i(q
y
i )
)]1−λ

(i = 1, . . . , m) .Exploiting the fat that the Fi as ontinuous distribution funtions satisfy the relation
Fi(F̃i(q)) = q for all q ∈ (0, 1), and realling that qx

i , qy
i ∈ (0, 1) by (10), we may deduethat

Fi (gi (λx + (1 − λ)y)) ≥ [qx
i ]λ [qy

i ]
1−λ

(i = 1, . . . , m) .Passing to the produt, it follows together with (9) that
m
∏

i=1

Fi (gi (λx + (1 − λ)y)) ≥
m
∏

i=1

[qx
i ]λ [qy

i ]
1−λ =

[

m
∏

i=1

qx
i

]λ [ m
∏

i=1

qy
i

]1−λ

≥ pλp1−λ = p.7



Referring to (8), this shows that λx + (1 − λ)y ∈ M(p).Remark 3.1 The ritial probability level p∗ beyond whih onvexity an be guaranteedin Theorem 3.1, is ompletely independent of the mapping g, it just depends on the dis-tribution funtions Fi. In other words, for given distribution funtions Fi, the onvexityof M(p) in (2) for p > p∗ an be guaranteed for a whole lass of mappings g satisfyingthe �rst assumption of Theorem 3.1. Therefore, it should ome at no surprise that, forspei� mappings g even smaller ritial values p∗ may apply (see Example 4.1 below).In the following proposition, we establish the relation between log-onave distributionsand distributions having an r-dereasing density. We reall that the lass of log-onavedistributions having a density oinides with the lass of distributions having a log-onavedensity ([2℄, Th. 3.1).We also mention that most of the prominent distributions fall intothis lass.Proposition 3.1 Let f : R → [0, 1] be a log-onave and ontinuous density having anunbounded support in positive diretion. Then, f is r-dereasing for all r > 0.Proof. By assumption, φ := log f is a onave, possibly extended-valued funtion. Asa onsequene of onavity, there exists some τ > 0 suh that either φ (t) = −∞ forall t > τ or φ (t) > −∞ for all t > τ . The �rst ase amounts to f (t) = 0 for all
t > τ , whih is a ontradition with our assumption of f having an unbounded supportin positive diretion. Consequently, φ is onave and real-valued on [τ,∞). Moreover,as a ontinuous and log-onave density funtion, f must tend to zero at in�nity, hene
limt→∞ φ (t) = −∞. Along with the onavity of φ, this implies the existene of α < 0and β ∈ R suh that

φ (t) ≤ αt + β ∀t ≥ τ . (15)Now, let r > 0 be arbitrary and put h(t) := trf(t) for t > 0. Then, log h = r log (·) +

φ is also onave and real-valued on [τ,∞). Assume there exists some τ ∗ > τ suhthat log h (τ ∗) < log h (τ). By onavity of log h, this funtion and, thus, h itself mustthen be stritly dereasing on [τ ∗,∞). In other words, f is r-dereasing as was to be8



shown. Therefore, we are done if we an lead to a ontradition the opposite ase, namely
log h (t) ≥ log h (τ) for all t ≥ τ . This is equivalent to

φ (t) ≥ log h (τ) − r log t ∀t ≥ τ . (16)We apply the general relation
−r log t ≥ −r log s − rt/s − r ∀t ≥ s > 0to s := −2r/α > 0, where α refers to (15):

−r log t ≥ −r log (−2r/α) + αt/2 − r ∀t ≥ s.Combining this with (15) and (16), we arrive at the ontradition
K := log h (τ) − r log (−2r/α) − r − β ≤ αt/2 ∀t ≥ max{τ, s}to the fat that K is a onstant and α/2 < 0.Realling that normal densities are log-onave, ontinuous and have unbounded support,we may ombine Theorem 3.1 and Proposition 3.1, in order to obtain a useful harater-ization of onvexity under normally distributed data:Corollary 3.2 In (2), let ξ have a regular multivariate normal distribution with indepen-dent omponents. Moreover, let eah omponent gi of g be (−ri)-onave for some ri > 0.Then, there exists some p∗ < 1 suh that M(p) is onvex for all p > p∗.4 ExamplesThe Cauhy distribution has a density

f(t) =
a

π (a2 + t2)
(a > 0)whih is r-dereasing for any r < 2 but fails to be so for any r ≥ 2. Most of the prominentone-dimensional distributions, however, have a density whih is r-dereasing for any r > 0.Next, we want to alulate for some well-known one-dimensional distributions the t∗- and9



F (t∗)- values needed in Theorem 3.1 for the omputation of the ritial probability level
p∗. We start with the orresponding derivation of the normal distribution and ollet theothers in Table 1. To emphasize the dependene on the order r, we shall write t∗r ratherthan just t∗.Proposition 4.1 Let ξ have a normal distribution with salar parameters µ and σ > 0.Moreover, let r > 0 be arbitrarily given. Then, the orresponding density is r-dereasingwith

t∗r =

√

µ2 + 4rσ2 + µ

2
and F (t∗r) = Φ

(

√

r +
1

4

(µ

σ

)2

− 1

2

µ

σ

)

,where Φ denotes the distribution funtion of the standard normal distribution.Proof. The alulation of the (optimal) t∗r- value is straightforward from the representa-tion of the normal density and (6). By de�nition,
F (t∗r) = P (ξ ≤ t∗r) = P

(

ξ − µ

σ
≤ t∗r − µ

σ

)

.Sine σ−1 (ξ − µ) has a standard normal distribution, one may ontinue as
F (t∗r) = Φ

(

t∗r − µ

σ

)

= Φ

(

√

r +
1

4

(µ

σ

)2

− 1

2

µ

σ

)

.

For the speial ase of a standard normal distribution (µ = 0, σ = 1), one gets t∗r =
√

rand F (t∗r) = Φ(
√

r). As an illustration, we onsider the following example:Example 4.1 In (2) let ξ have a bivariate standard normal distribution: ξ ∼ N (0, I2).Moreover, put
g1(x, y) =

1

x2 + y2 + 0.1
, g2(x, y) =

1

(x + y)2 + 0.1
.Then, learly, the omponents gi are (−1)-onave (i.e. 1/gi is onvex). By assump-tion, the omponents of ξ have a one-dimensional standard normal distribution whih,by Proposition 4.1, has a 2-dereasing density with t∗ =

√
2. Now, Theorem 3.1 maybe applied and we may derive onvexity of the feasible set M(p) in (2) beyond a ritial10



probability level p∗ = Φ
(√

2
)

≈ 0.921. Aording to Remark 3.1, possibly some muhsmaller level ould do with respet to onvexity. This is on�rmed for the example by Fig-ure 1: obviously, the feasible set is onvex for probabilities higher than 0.7 and nononvexfor probabilities lower than 0.6, so the true ritial level in this example is somewherein between 0.6 and 0.7. Note that the lassial onvexity theory ould not be applied tothis example beause the omponents gi are not onave (see Introdution). This is alsosupported by the observation that onvexity fails for small probabilities.Figure 1: Illustration of the feasible set M(p) for di�erent levels p in an example.
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In the example, onvexity of the feasible set M(p) ould be guaranteed for all probabilitylevels larger than 0.921. This may sound a strong requirement, but note that, in haneonstraint programming, these levels are typially high, say 0.95 or 0.99. Moreover, theresult of Proposition 4.1 strongly depends on the parameters µ and σ, and, more preisely,on their ratio. If this ratio beomes large, then F (t∗r) onverges towards Φ (0). Hene, forthe ase of normal distributions with small relative standard deviations, the ritial level
p∗ tends to 0.5.Table 1 shows, how the t∗r- value depends on r and on the parameters of the di�erentdistributions. For two distributions, a losed formula is available for the orrespondingvalue F (t∗r) of the distribution funtion: First, for the exponential distribution, one gets
F (t∗r) = 1 − e−r. Hene, reonsidering Example 4.1 with independent exponential ratherthan normal distributions, one ould derive onvexity of the set M(p) for probabilities11



Table 1: t∗r- values in the de�nition of r-dereasing densities for a set of ommon distri-butions. Law Density t∗rnormal 1√
2πσ

exp
(

− (t−µ)2

2σ2

)

µ+
√

µ2+4rσ2

2exponential λ exp (−λt) (t > 0) r
λWeibull abtb−1 exp

(

−atb
)

(t > 0)
(

b+r−1
ab

)1/bGamma ba

Γ(a)
exp (−bt) ta−1 (t > 0) a+r−1

b

χ 1
2n/2−1Γ(n/2)

tn−1 exp
(

− t2

2

)

(t > 0)
√

n + r − 1

χ2 1
2n/2Γ(n/2)

tn/2−1 exp
(

− t
2

)

(t > 0) n + 2r − 2log-normal 1√
2πσt

exp
(

− (log t−µ)2

2σ2

)

(t > 0) eµ+(r−1)σ2Maxwell 2t2√
2πσ3

exp
(

− t2

2σ2

)

(t > 0) σ
√

r + 2Rayleigh 2t
λ

exp
(

− t2

λ

)

(t > 0)
√

r+1
2

λlarger than 1 − e−2 ≈ 0.864 whih is a slightly better value than in the normal ase. Itis interesting to observe that the ritial probability level for the exponential distributiondoes not depend on the parameter of this distribution. The seond ase with a losedformula is the Weibull distribution, where one alulates F (t∗) = 1 − e−(b+r−1)/b (seeTable 1 for the meaning of parameters). In general, no losed formula is available, butin onrete appliations, the ritial probability levels are easily read o� from usual datatables or numerial routines.5 Chane onstraints with normally distributed sto-hasti matriesIn this setion, we want to apply Theorem 3.1 in order to derive a onvexity result for amore ompliated hane onstraint than (2). More preisely, onsider the feasible set
M(p) = {x ∈ R

n|P(Ξx ≤ a) ≥ p}, (17)12



where the rows ξi of the stohasti matrix Ξ have multivariate normal distributions aord-ing to ξi ∼ N (µi, Σi). Linear hane onstraints of this type, having random oe�ients,are of importane in many engineering appliations (e.g., mixture problems). Note that,in ontrast to (2), the random parameter and the deision vetor are no longer separatedbut oupled in a multipliative way. This makes the onvexity analysis more involved. Alassial result due to Kataoka [6℄ and Van de Panne and Popp [8℄ states that M(p) isonvex for p ≥ 0.5 in the simple ase where Ξ redues to single row (m = 1). A muhmore preise haraterization not only of onvexity but also of ompatness and nontriv-iality of M(p) in this elementary situation was provided in [5℄. Moreover, ompatnessof M(p) ould even be haraterized there in the general ase (m arbitrary). However,onvexity in the general ase remains an open question. Below, we shall provide a positiveresult under the assumption of Ξ having independent rows. This yields a omplementaryharaterization to results by Prékopa and Burkauskas, who derived onvexity under theassumption that all ovariane and ross-ovariane matries of the olumns or rows of Ξ,respetively, are proportional to eah other (see [10℄ and [3℄).A diret appliation of Theorem 3.1 to (17) is not possible, sine this type of haneonstraint is di�erent from (2). However, there exists a useful transformation of the oneinto the other. First, we need an auxiliary result:Lemma 5.1 For µ ∈ R
n and positive de�nite matrix Σ of order (n, n), we put

f(x) :=
〈x, Σx〉

(a − 〈µ, x〉)2 de�ned on the domain Ω1 := {x|a − 〈µ, x〉 > 0}.Then, f is onvex on the following open subset of Ω1:
Ω2 :=

{

x
∣

∣

∣
a − 〈µ, x〉 > 4λmaxλ

−3/2
min ‖µ‖

√

〈x, Σx〉
}

.Here, λmax and λmin denote the largest and smallest eigenvalues of Σ.Proof. On Ω1, the Hessian of f alulates as
D2f(x) = 2 (a − 〈µ, x〉)−4 [(a − 〈µ, x〉)2 Σ + 4 (a − 〈µ, x〉)ΣxµT + 3 〈x, Σx〉 µµT

]

.In order to verify the positive de�niteness of D2f on Ω2, it is evidently su�ient to showthis property for the matrix
(a − 〈µ, x〉)Σ + 4ΣxµT .13



If z 6= 0 and x ∈ Ω2 are arbitrarily given, then, by de�nition of Ω2,
〈

z,
[

(a − 〈µ, x〉) Σ + 4ΣxµT
]

z
〉

= (a − 〈µ, x〉) 〈z, Σz〉 + 4 〈z, Σx〉 〈µ, z〉

≥ λmin ‖z‖2 (a − 〈µ, x〉) − 4 ‖Σx‖ ‖µ‖ ‖z‖2

> 4 ‖z‖2 ‖µ‖
(

λmaxλ
−1/2
min

√

〈x, Σx〉 − ‖Σx‖
)

≥ 0.Here, we exploited the relations
〈

x, Σ2x
〉

≤ λ2
max ‖x‖2 , λmin ‖x‖2 ≤ 〈x, Σx〉 .

The next simple proposition will be needed later on but is of independent interest as wellbeause it makes no restritions on the probability level p:Proposition 5.1 If a ≥ 0 (omponentwise) in (17), then M(p) is starshaped with respetto the origin. In partiular, M(p) is a onneted set.Proof. Sine a ≥ 0 by assumption, one immediately derives that 0 ∈ M(p). We haveto show that, for arbitrary x ∈ M(p) and arbitrary λ ∈ [0, 1], it follows that λx ∈ M(p).This is evident for λ = 0. If λ ∈ (0, 1], then
P(Ξ(λx) ≤ a) = P(Ξx ≤ λ−1a) ≥ P(Ξx ≤ a) ≥ p.Here we used that λ−1a ≥ a (omponentwise) due to a ≥ 0 and λ ≤ 1. In other words,

λx ∈ M(p).Theorem 5.1 In (17) we assume that the rows ξi of Ξ are pairwise independently dis-tributed. Then, M(p) is onvex for
p > Φ

(

max
{√

3, u∗
})

, (18)where Φ is the one-dimensional standard normal distribution funtion,
u∗ = max

i=1,...,m
4λ(i)

max

[

λ
(i)
min

]−3/2

‖µi‖ .and λ
(i)
max and λ

(i)
min refer to the largest and smallest eigenvalue of Σi.14



Proof. The assumption of independent rows allows to rewrite the feasible set as
M(p) =

{

x ∈ R
n
∣

∣

∣

∏m

i=1
P(〈ξi, x〉 ≤ ai) ≥ p

}

.For x 6= 0 and i = 1, . . . , m, we put
ηi(x) :=

〈ξi − µi, x〉
√

〈x, Σix〉
∼ N (0, 1); gi(x) :=

ai − 〈µi, x〉
√

〈x, Σix〉
.Evidently, for x 6= 0, one has that 〈ξi, x〉 ≤ ai holds true if and only if ηi(x) ≤ gi(x). Sinethe ηi(x) have a standard normal distribution, one obtains

P(〈ξi, x〉 ≤ ai) = Φ(gi(x)) (for x 6= 0 and i = 1, . . . , m). (19)We introdue the following sets for i = 1, . . . , m:
Ω

(i)
1 : = {x ∈ R

n|ai − 〈µi, x〉 > 0}

Ω
(i)
2 : =

{

x ∈ R
n|ai − 〈µi, x〉 > 4λ(i)

max

[

λ
(i)
min

]−3/2

‖µi‖
√

〈x, Σix〉
}

.The following inlusions hold true whenever p satis�es (18):
M(p)\{0} ⊆ Ω

(i)
2 ⊆ Ω

(i)
1 (i = 1, . . . , m).The seond inlusion is trivial. To verify the �rst one, let x ∈ M(p)\{0} be arbitrary.Sine Φ ≤ 1, one derives from (19) that

Φ (gi(x)) ≥
∏m

j=1
Φ (gj(x)) =

∏m

j=1
P(〈ξj, x〉 ≤ aj) ≥ p > Φ (u∗) (i = 1, . . . , m).With Φ being stritly inreasing, this amounts to gi(x) > u∗ and thus x ∈ Ω

(i)
2 for

i = 1, . . . , m by de�nition of u∗.Next, on Ω
(i)
1 de�ne

fi(w) :=
〈w, Σiw〉

(ai − 〈µi, w〉)2 (i = 1, . . . , m).Note that the fi are �nite-valued on Ω
(i)
1 . By Lemma 5.1, the fi are onvex on Ω

(i)
2 . Onthe other hand, the gi are �nite-valued and positive on Ω

(i)
1 \{0} and so in partiular on

Ω
(i)
2 \{0}. From the respetive de�nitions, it follows then that fi = g−2

i on Ω
(i)
2 \{0}.15



Realling that p > 0, by assumption, one gets that 0 ∈ M(p) if and only if ai ≥ 0 forall i = 1, . . . , m. We proeed by ase distintion:First ase: min
i=1,...,m

ai < 0Then, 0 /∈ M(p) and, by (19), M(p) = {x ∈ R
n |∏m

i=1 Φ (gi(x)) ≥ p}. Hene, we are inthe setting of (8) in Theorem 3.1 with Fi := Φ for i = 1, . . . , m. From the remark belowProposition 4.1, we know that Φ has a 3 -dereasing density with ritial value t∗ =
√

3.Therefore, ondition 2. of Theorem 3.1 is satis�ed with ri := 2 for i = 1, . . . , m, andthe statement of the Theorem will allow to derive onvexity of M(p) for all p > Φ(
√

3)under the ondition that the �rst assumption of Theorem 3.1 be ful�lled, i.e., the gi are
(−2)-onave. This point, however, deserves some attention beause in ontrast to thesetting required in Theorem 3.1 and in De�nition 2.1, our gi are not de�ned on the wholespae and may be not (−2)-onave on all of their domain. We shall proeed as follows:as in Theorem 3.1 we onsider arbitrary x, y ∈ M(p) and λ ∈ [0, 1], and we show that

xλ := λx + (1 − λ)y ∈ M(p).We have two options to do so. The �rst one is to hek the relation of (−2)-onavity ofthe gi for the onrete triple (x, y, xλ):
gi(xλ) ≥

(

λg−2
i (x) + (1 − λ)g−2

i (y)
)−1/2

. (20)Indeed, this last relation orresponds to the �rst inequality in (13). A brief reinspetionof the proof of Theorem 3.1 shows that, given all the neessary assumptions on thedistribution funtions, this inequality is all what is needed to derive that xλ ∈ M(p).However, it may happen, that (20) annot be veri�ed, for instane due to xλ = 0, so that
xλ does not belong to the domain of the gi. Then, we might be able to show xλ ∈ M(p)by a diret argument.In a �rst step, we show that xλ 6= 0. Assuming to the ontrary, that xλ = 0 andrealling that 0 /∈ M(p) (so x, y 6= 0), it follows the existene of some α < 0 suh that
x = αy. Sine, x, y ∈ M(p) = M(p)\{0} ⊆ Ω

(i)
1 for i = 1, . . . , m, one derives from herethe relation

|〈µi, y〉| < min
{

ai,−α−1ai

}

(i = 1, . . . , m).16



On the other hand, in the present �rst situation of ase distintion, there exists at leastone ai < 0. Then, however, the right hand side of the last inequality beomes negativewhih yields a ontradition.With x, y ∈ M(p) = M(p)\{0} ⊆ Ω
(i)
2 and the Ω

(i)
2 being onvex sets for i = 1, . . . , m,it results that xλ ∈ Ω

(i)
2 . The onvexity of the fi on Ω

(i)
2 allows to ontinue as

fi(xλ) ≤ λfi(x) + (1 − λ)fi(y) (i = 1, . . . , m).On the other hand, we know that x, y, xλ 6= 0, whene the fi-values may be replaed bythose of the g−2
i (see above):

g−2
i (xλ) ≤ λg−2

i (x) + (1 − λ)g−2
i (y) (i = 1, . . . , m).Moreover, as the gi are �nite-valued and positive on Ω

(i)
2 \{0} (see above), so are the g−2

i .This allows to raise the last inequality to the power −1/2 in order to derive at (20) asdesired.Seond ase: min
i=1,...,m

ai ≥ 0Then, 0 ∈ M(p). Consequently, we may assume that xλ 6= 0. This already exludesthe ase x = y = 0. Next suppose that, say, x 6= 0 and y = 0. Then, we may applyProposition 5.1, to derive that xλ = λx ∈ M(p). The ase y 6= 0 and x = 0 follows bysymmetry. Summarizing, we may assume that x, y, xλ 6= 0 whih allows to repeat theargumentation from the �rst ase and then to invoke again (20) in order to verify that
xλ ∈ M(p).We note that the assumption of independent rows ξi in Theorem 5.1 does not meanindependene of all entries of Ξ. Rather, the ross-ovariane matries cov (ξi, ξj) arerequired to be zero for i 6= j whereas there are no restritions for i = j.Remark 5.1 If the value u∗ in Theorem 5.1 happens to be smaller than √

3, (e.g., formean vetors ‖µi‖ lose to zero), then onvexity of M(p) an be derived for p > Φ(
√

3) ≈
0.958.Aknowledgement: 17
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