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Abstra
tWe investigate the 
onvexity of 
han
e 
onstraints with independent random vari-ables. It will be shown, how 
on
avity properties of the mapping related to thede
ision ve
tor have to be 
ombined with a suitable property of de
rease for themarginal densities in order to arrive at 
onvexity of the feasible set for large enoughprobability levels. It turns out that the required de
rease 
an be veri�ed for mostprominent density fun
tions. The results are applied then, to derive 
onvexity oflinear 
han
e 
onstraints with normally distributed sto
hasti
 
oe�
ients when as-suming independen
e of the rows of the 
oe�
ient matrix.Key words: 
han
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onstraints, probabilisti
 
onstraints, sto
hasti
 programming, 
on-vexity, random matrix
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Mathemati
s Subje
t Classi�
ation (2000):90C151 Introdu
tionMany optimization problems in engineering or �nan
e 
ontain so-
alled 
han
e 
onstraintsor probabilisti
 
onstraints of the form
P(h(x, ξ) ≥ 0) ≥ p, (1)where x ∈ R

n is a de
ision ve
tor, ξ : Ω → R
m is an m-dimensional random ve
tor de�nedon some probability spa
e (Ω,A, P), h : R

n × R
m → R

s is a ve
tor-valued mapping and
p ∈ [0, 1] is some probability level. A 
ompilation of pra
ti
al appli
ations in whi
h
onstraints of the type (1) play a 
ru
ial role, may be found in the standard referen
es[11℄, [12℄. Not surprisingly, one of the most important theoreti
al questions related to su
h
onstraints is that of 
onvexity of the set of de
isions x satisfying (1). It is well-known([11℄, Th. 10.2.1) that this set is 
onvex provided that the law P ◦ ξ−1 of ξ is a log-
on
ave probability measure on R

m and that the 
omponents hi of h are quasi-
on
ave.The power of this result be
omes evident in 
ombination with a 
elebrated theorem byPrékopa stating that the law of ξ is log-
on
ave whenever ξ has a log-
on
ave density.As this is easily veri�ed to hold true for many prominent multivariate distributions, this
lassi
al result guarantees 
onvexity of the set of feasible de
isions for a broad 
lass ofappli
ations. The required quasi-
on
avity of the hi is satis�ed, for instan
e in the linearmodel h(x, ξ) = Ax − Bξ, where a
tually 
on
avity of the hi holds true.In this paper, we shall be interested in 
han
e 
onstraints where random ve
tors appearseparated from de
ision ve
tors, and whi
h 
ome as a spe
ial 
ase of (1) by putting
h(x, ξ) = g(x)−ξ. More pre
isely, we want to study 
onvexity of a set of feasible de
isionsde�ned by

M(p) = {x ∈ R
n|P(ξ ≤ g(x)) ≥ p}, (2)where g : R

n → R
m is some ve
tor-valued mapping. With F : R

m → R denoting the2



distribution fun
tion of ξ, the same set 
an be rewritten as
M(p) = {x ∈ R

n|F (g(x)) ≥ p}. (3)We are interested in 
onditions on F and g su
h that M(p) be
omes a 
onvex set for all
p ≥ p∗, where p∗ < 1. Note that 
onvexity for large enough p is a relevant feature be
ause
p is typi
ally 
hosen to be 
lose to one.When trying to link the previously mentioned 
lassi
al result to the spe
ial 
ase of (2),in addition to the log-
on
avity of the law of ξ, we would have to impose quasi-
on
avity ofthe fun
tions gi(x)− ξi. Unfortunately, unlike 
on
avity, quasi-
on
avity is not preservedunder addition, so quasi-
on
avity of the 
omponents gi is not su�
ient here to ensure
onvexity of M(p). To illustrate this fa
t 
onsider the following example:Example 1.1 In (2), let ξ have a bivariate standard normal distribution with independent
omponents, and let g(x, y) := (ex, ey). Then, the 
omponents gi are quasi-
on
ave (asfun
tions of x and y simultaneously). However, the set M(0.5) fails to be 
onvex (e.g.,for u := (1,−3) and v = (−3, 1) one has that u, v ∈ M(0.5) but (u + v)/2 /∈ M(0.5)).On the other hand, 
on
avity of the 
omponents gi would do be
ause then, gi(x) − ξi isa 
on
ave, hen
e quasi-
on
ave fun
tion of the two variables x and ξ, simultaneously. Inparti
ular, 
onvexity of M(p) would hold true for all p ∈ [0, 1] in Example 1.1 upon passingfrom g to −g. Therefore, the question arises, whether one 
an still derive 
onvexity resultsfor M(p) in (2) when relaxing the strong requirement of 
on
ave 
omponents gi. It turnsout that this will be possible under the additional assumption of ξ having independent
omponents. Then, roughly speaking, 
onvexity 
an be derived for so-
alled r-
on
ave gi,a 
on
ept providing a parametrization of 
on
avity properties between true 
on
avity andquasi-
on
avity (see Se
tion 2). As an appli
ation, we show that joint 
han
e 
onstraintsde�ned by a normally distributed random matrix yield a 
onvex set of feasible de
isionsprovided the probability level is large enough and the rows of the random matrix areindependently distributed. To the best of our knowledge, this result is new and may havean impa
t on solution pro
edures for problems of su
h kind by making available toolsfrom 
onvex optimization. We emphasize that the independen
e assumption is essential3



for our approa
h. For other work on 
onvexity properties of 
han
e 
onstraints whereindependen
e has been su

essfully exploited, we refer to [1℄, [4℄ and [7℄. A Theorem byBawa [1℄, for instan
e, provides a 
ondition to ensure 
on
avity of the produ
t fun
tion
H(t) = F (t1) · · ·F (tm),where F is a one-dimensional distribution fun
tion. This would be of interest in the
ontext of (3) if all 
omponents ξi of the random ve
tor had identi
al independent distri-butions. However, the interplay with relaxations of 
on
avity of the gi in (3) is not 
lear.The 
onditions we are going to impose on the distribution fun
tion F (or better: on themarginal distribution fun
tions Fi) are related to the degree at whi
h the 
orrespondingdensities fi de
rease asymptoti
ally. This will ensure that the mappings t 7→ Fi(1/t

α)be
ome 
on
ave for an appropriate α > 0.2 NotationWe re
all the de�nition of an r-
on
ave fun
tion:De�nition 2.1 A fun
tion f : R
s → (0,∞) is 
alled r-
on
ave for some r ∈ [−∞,∞], if

f(λx + (1 − λ)y) ≥ [λf r(x) + (1 − λ)f r(y)]1/r ∀x, y ∈ R
s, ∀λ ∈ [0, 1]. (4)In this de�nition, the 
ases r ∈ {−∞, 0,∞} are to be interpreted by 
ontinuity. Inparti
ular, 1-
on
avity amounts to 
lassi
al 
on
avity, 0-
on
avity equals log-
on
avity(i.e., 
on
avity of log f), and −∞-
on
avity identi�es quasi-
on
avity (this means thatthe right-hand side of the inequaltiy in the de�nition be
omes min{f(x), f(y)}). Were
all, that an equivalent way to express log-
on
avity is the inequality

f(λx + (1 − λ)y) ≥ fλ(x)f 1−λ(y) ∀x, y ∈ R
s, ∀λ ∈ [0, 1]. (5)For r < 0, one may raise (4) to the negative power r and re
ognize, upon reversing theinequality sign, that this redu
es to 
onvexity of f r. If f is r∗-
on
ave, then f is r-
on
avefor all r ≤ r∗. We shall be mainly interested in the 
ase r ≤ 1.The following property is 
ru
ial in the 
ontext of this paper:4



De�nition 2.2 We 
all a fun
tion f : R → R r-de
reasing for some r ∈ R, if it is
ontinuous on (0,∞) and if there exists some t∗ > 0 su
h that the fun
tion trf(t) isstri
tly de
reasing for all t > t∗.Evidently, 0-de
reasing means stri
tly de
reasing in the 
lassi
al sense. If f is a non-negative fun
tion like the density of some random variable, then r-de
reasing implies
r′-de
reasing whenever r′ ≤ r. Therefore, one gets narrower families of r-de
reasing den-sity fun
tions with r → ∞. If f is not just 
ontinuous on (0,∞) but happens even to bedi�erentiable there, then the property of being r-de
reasing amounts to the 
ondition

tf ′(t) + rf(t) < 0 for all t > t∗. (6)3 A Convexity ResultLemma 3.1 Let F : R → [0, 1] be a distribution fun
tion with (r + 1)-de
reasing density
f for some r > 0. Then, the fun
tion z 7→ F (z−1/r) is 
on
ave on (0, (t∗)−r), where t∗refers to De�nition 2.2. Moreover, F (t) < 1 for all t ∈ R.Proof. Let h : R → R be de�ned by h(z) = F (z−1/r), for all z > 0. By de�nition, itholds that

h(z) = F (0) +

∫ z−1/r

0

f(t)dt ∀z > 0.With the 
hange of variables t = u−1/r, the last equation rereads
h(z) = F (0) + r−1

∫ +∞

z

u−(1+1/r)f(u−1/r)du.Sin
e f is 
ontinuous on (0,∞) by the very de�nition of r-de
reasing fun
tions, F and hare di�erentiable on the same interval. Consequently,
h′(z) = −r−1z−(1+1/r)f(z−1/r).Sin
e, by assumption, t 7→ tr+1f(t) is stri
tly de
reasing on (t∗, +∞), one gets that

z 7→ z−(1+1/r)f(z−1/r) is stri
tly in
reasing on (0, (t∗)−r). Summarizing, h′ is stri
tlyde
reasing on (0, (t∗)−r), when
e h is 
on
ave on this interval.5



Con
erning the se
ond statement, assume that F (t) = 1 for all t ≥ τ . Therefore, with
F being a distribution fun
tion, it follows the 
ontradi
tion F ′(t) = f(t) = 0 for all t > τto f being (r + 1)-de
reasing.Theorem 3.1 For (2), we make the following assumptions for i = 1, . . . , m:1. There exist ri > 0 su
h that the 
omponents gi are (−ri)-
on
ave.2. The 
omponents ξi of ξ are independently distributed with (ri+1)-de
reasing densities

fi.Then, M(p) is 
onvex for all p > p∗ := max{Fi(t
∗
i )|1 ≤ i ≤ m}, where Fi denotes thedistribution fun
tion of ξi and the t∗i refer to De�nition 2.2 in the 
ontext of fi being

(ri + 1)-de
reasing.Proof. Let p > p∗, λ ∈ [0, 1] and x, y ∈ M(p) be arbitrary. We have to show that
λx + (1 − λ)y ∈ M(p). Referring to the distribution fun
tions Fi of ξi, we put

qx
i := Fi(gi(x)) < 1, qy

i := Fi(gi(y)) < 1 (i = 1, . . . , m) , (7)where the stri
t inequalities rely on the se
ond statement of Lemma 3.1. By assumption2., the 
omponents of ξ are independent, hen
e the feasible set in (2) or (3), respe
tively,may be rewritten as
M(p) =

{

w ∈ R
n

∣

∣

∣

∣

∣

m
∏

i=1

Fi(gi(w)) ≥ p

}

. (8)In parti
ular, by (7), the in
lusions x, y ∈ M(p) mean that
m
∏

i=1

qx
i ≥ p,

m
∏

i=1

qy
i ≥ p. (9)Now, (7), (9) and the de�nition of p∗ entail that

1 > qx
i ≥ p > Fi(t

∗
i ) ≥ 0, 1 > qy

i ≥ p > Fi(t
∗
i ) ≥ 0 (i = 1, . . . , m) . (10)For τ ∈ [0, 1], we denote the τ -quantile of Fi by

F̃i(τ) := inf{z ∈ R|Fi(z) ≥ τ}.6



Note that, for τ ∈ (0, 1), F̃i(τ) is a real number. Having a density, by assumption 2., the
Fi are 
ontinuous distribution fun
tions. As a 
onsequen
e, the quantile fun
tions F̃i(τ)satisfy the impli
ation

q > Fi(z) =⇒ F̃i(q) > z ∀q ∈ (0, 1) ∀z ∈ R.Now, (7) and (10) provide the relations
gi(x) ≥ F̃i(q

x
i ) > t∗i > 0, gi(y) ≥ F̃i(q

y
i ) > t∗i > 0 (i = 1, . . . , m) . (11)In parti
ular, for all i = 1, . . . , m, it holds that

[

min{F̃−ri
i (qx

i ), F̃−ri
i (qy

i )}, max{F̃−ri
i (qx

i ), F̃−ri
i (qy

i )}
]

⊆
(

0, (t∗i )
−ri
)

. (12)Along with assumption 1., (11) yields for i = 1, . . . , m:
gi (λx + (1 − λ)y) ≥

(

λg−ri
i (x) + (1 − λ)g−ri

i (y)
)−1/ri

≥
(

λF̃−ri
i (qx

i ) + (1 − λ)F̃−ri
i (qy

i )
)−1/ri

. (13)The monotoni
ity of distribution fun
tions allows to 
ontinue by
Fi (gi (λx + (1 − λ)y)) ≥ Fi

(

(

λF̃−ri
i (qx

i ) + (1 − λ)F̃−ri
i (qy

i )
)−1/ri

)

(i = 1, . . . , m) .(14)Owing to assumption 2., Lemma 3.1 guarantees that the fun
tions z 7→ Fi(z
−1/ri) are
on
ave on (0, (t∗i )

−ri). In parti
ular, these fun
tions are log-
on
ave on the indi
atedinterval, as this is a weaker property than 
on
avity (see Se
tion 2). By virtue of (12)and (5), this allows to 
ontinue (14) as
Fi (gi (λx + (1 − λ)y)) ≥

[

Fi

(

F̃i(q
x
i )
)]λ [

Fi

(

F̃i(q
y
i )
)]1−λ

(i = 1, . . . , m) .Exploiting the fa
t that the Fi as 
ontinuous distribution fun
tions satisfy the relation
Fi(F̃i(q)) = q for all q ∈ (0, 1), and re
alling that qx

i , qy
i ∈ (0, 1) by (10), we may dedu
ethat

Fi (gi (λx + (1 − λ)y)) ≥ [qx
i ]λ [qy

i ]
1−λ

(i = 1, . . . , m) .Passing to the produ
t, it follows together with (9) that
m
∏

i=1

Fi (gi (λx + (1 − λ)y)) ≥
m
∏

i=1

[qx
i ]λ [qy

i ]
1−λ =

[

m
∏

i=1

qx
i

]λ [ m
∏

i=1

qy
i

]1−λ

≥ pλp1−λ = p.7



Referring to (8), this shows that λx + (1 − λ)y ∈ M(p).Remark 3.1 The 
riti
al probability level p∗ beyond whi
h 
onvexity 
an be guaranteedin Theorem 3.1, is 
ompletely independent of the mapping g, it just depends on the dis-tribution fun
tions Fi. In other words, for given distribution fun
tions Fi, the 
onvexityof M(p) in (2) for p > p∗ 
an be guaranteed for a whole 
lass of mappings g satisfyingthe �rst assumption of Theorem 3.1. Therefore, it should 
ome at no surprise that, forspe
i�
 mappings g even smaller 
riti
al values p∗ may apply (see Example 4.1 below).In the following proposition, we establish the relation between log-
on
ave distributionsand distributions having an r-de
reasing density. We re
all that the 
lass of log-
on
avedistributions having a density 
oin
ides with the 
lass of distributions having a log-
on
avedensity ([2℄, Th. 3.1).We also mention that most of the prominent distributions fall intothis 
lass.Proposition 3.1 Let f : R → [0, 1] be a log-
on
ave and 
ontinuous density having anunbounded support in positive dire
tion. Then, f is r-de
reasing for all r > 0.Proof. By assumption, φ := log f is a 
on
ave, possibly extended-valued fun
tion. Asa 
onsequen
e of 
on
avity, there exists some τ > 0 su
h that either φ (t) = −∞ forall t > τ or φ (t) > −∞ for all t > τ . The �rst 
ase amounts to f (t) = 0 for all
t > τ , whi
h is a 
ontradi
tion with our assumption of f having an unbounded supportin positive dire
tion. Consequently, φ is 
on
ave and real-valued on [τ,∞). Moreover,as a 
ontinuous and log-
on
ave density fun
tion, f must tend to zero at in�nity, hen
e
limt→∞ φ (t) = −∞. Along with the 
on
avity of φ, this implies the existen
e of α < 0and β ∈ R su
h that

φ (t) ≤ αt + β ∀t ≥ τ . (15)Now, let r > 0 be arbitrary and put h(t) := trf(t) for t > 0. Then, log h = r log (·) +

φ is also 
on
ave and real-valued on [τ,∞). Assume there exists some τ ∗ > τ su
hthat log h (τ ∗) < log h (τ). By 
on
avity of log h, this fun
tion and, thus, h itself mustthen be stri
tly de
reasing on [τ ∗,∞). In other words, f is r-de
reasing as was to be8



shown. Therefore, we are done if we 
an lead to a 
ontradi
tion the opposite 
ase, namely
log h (t) ≥ log h (τ) for all t ≥ τ . This is equivalent to

φ (t) ≥ log h (τ) − r log t ∀t ≥ τ . (16)We apply the general relation
−r log t ≥ −r log s − rt/s − r ∀t ≥ s > 0to s := −2r/α > 0, where α refers to (15):

−r log t ≥ −r log (−2r/α) + αt/2 − r ∀t ≥ s.Combining this with (15) and (16), we arrive at the 
ontradi
tion
K := log h (τ) − r log (−2r/α) − r − β ≤ αt/2 ∀t ≥ max{τ, s}to the fa
t that K is a 
onstant and α/2 < 0.Re
alling that normal densities are log-
on
ave, 
ontinuous and have unbounded support,we may 
ombine Theorem 3.1 and Proposition 3.1, in order to obtain a useful 
hara
ter-ization of 
onvexity under normally distributed data:Corollary 3.2 In (2), let ξ have a regular multivariate normal distribution with indepen-dent 
omponents. Moreover, let ea
h 
omponent gi of g be (−ri)-
on
ave for some ri > 0.Then, there exists some p∗ < 1 su
h that M(p) is 
onvex for all p > p∗.4 ExamplesThe Cau
hy distribution has a density

f(t) =
a

π (a2 + t2)
(a > 0)whi
h is r-de
reasing for any r < 2 but fails to be so for any r ≥ 2. Most of the prominentone-dimensional distributions, however, have a density whi
h is r-de
reasing for any r > 0.Next, we want to 
al
ulate for some well-known one-dimensional distributions the t∗- and9



F (t∗)- values needed in Theorem 3.1 for the 
omputation of the 
riti
al probability level
p∗. We start with the 
orresponding derivation of the normal distribution and 
olle
t theothers in Table 1. To emphasize the dependen
e on the order r, we shall write t∗r ratherthan just t∗.Proposition 4.1 Let ξ have a normal distribution with s
alar parameters µ and σ > 0.Moreover, let r > 0 be arbitrarily given. Then, the 
orresponding density is r-de
reasingwith

t∗r =

√

µ2 + 4rσ2 + µ

2
and F (t∗r) = Φ

(

√

r +
1

4

(µ

σ

)2

− 1

2

µ

σ

)

,where Φ denotes the distribution fun
tion of the standard normal distribution.Proof. The 
al
ulation of the (optimal) t∗r- value is straightforward from the representa-tion of the normal density and (6). By de�nition,
F (t∗r) = P (ξ ≤ t∗r) = P

(

ξ − µ

σ
≤ t∗r − µ

σ

)

.Sin
e σ−1 (ξ − µ) has a standard normal distribution, one may 
ontinue as
F (t∗r) = Φ

(

t∗r − µ

σ

)

= Φ

(

√

r +
1

4

(µ

σ

)2

− 1

2

µ

σ

)

.

For the spe
ial 
ase of a standard normal distribution (µ = 0, σ = 1), one gets t∗r =
√

rand F (t∗r) = Φ(
√

r). As an illustration, we 
onsider the following example:Example 4.1 In (2) let ξ have a bivariate standard normal distribution: ξ ∼ N (0, I2).Moreover, put
g1(x, y) =

1

x2 + y2 + 0.1
, g2(x, y) =

1

(x + y)2 + 0.1
.Then, 
learly, the 
omponents gi are (−1)-
on
ave (i.e. 1/gi is 
onvex). By assump-tion, the 
omponents of ξ have a one-dimensional standard normal distribution whi
h,by Proposition 4.1, has a 2-de
reasing density with t∗ =

√
2. Now, Theorem 3.1 maybe applied and we may derive 
onvexity of the feasible set M(p) in (2) beyond a 
riti
al10



probability level p∗ = Φ
(√

2
)

≈ 0.921. A

ording to Remark 3.1, possibly some mu
hsmaller level 
ould do with respe
t to 
onvexity. This is 
on�rmed for the example by Fig-ure 1: obviously, the feasible set is 
onvex for probabilities higher than 0.7 and non
onvexfor probabilities lower than 0.6, so the true 
riti
al level in this example is somewherein between 0.6 and 0.7. Note that the 
lassi
al 
onvexity theory 
ould not be applied tothis example be
ause the 
omponents gi are not 
on
ave (see Introdu
tion). This is alsosupported by the observation that 
onvexity fails for small probabilities.Figure 1: Illustration of the feasible set M(p) for di�erent levels p in an example.

-2 -1 0 1 2
-2

-1

0

1

2 p=0.5
p=0.6

p=0.7

In the example, 
onvexity of the feasible set M(p) 
ould be guaranteed for all probabilitylevels larger than 0.921. This may sound a strong requirement, but note that, in 
han
e
onstraint programming, these levels are typi
ally high, say 0.95 or 0.99. Moreover, theresult of Proposition 4.1 strongly depends on the parameters µ and σ, and, more pre
isely,on their ratio. If this ratio be
omes large, then F (t∗r) 
onverges towards Φ (0). Hen
e, forthe 
ase of normal distributions with small relative standard deviations, the 
riti
al level
p∗ tends to 0.5.Table 1 shows, how the t∗r- value depends on r and on the parameters of the di�erentdistributions. For two distributions, a 
losed formula is available for the 
orrespondingvalue F (t∗r) of the distribution fun
tion: First, for the exponential distribution, one gets
F (t∗r) = 1 − e−r. Hen
e, re
onsidering Example 4.1 with independent exponential ratherthan normal distributions, one 
ould derive 
onvexity of the set M(p) for probabilities11



Table 1: t∗r- values in the de�nition of r-de
reasing densities for a set of 
ommon distri-butions. Law Density t∗rnormal 1√
2πσ

exp
(

− (t−µ)2

2σ2

)

µ+
√

µ2+4rσ2

2exponential λ exp (−λt) (t > 0) r
λWeibull abtb−1 exp

(

−atb
)

(t > 0)
(

b+r−1
ab

)1/bGamma ba

Γ(a)
exp (−bt) ta−1 (t > 0) a+r−1

b

χ 1
2n/2−1Γ(n/2)

tn−1 exp
(

− t2

2

)

(t > 0)
√

n + r − 1

χ2 1
2n/2Γ(n/2)

tn/2−1 exp
(

− t
2

)

(t > 0) n + 2r − 2log-normal 1√
2πσt

exp
(

− (log t−µ)2

2σ2

)

(t > 0) eµ+(r−1)σ2Maxwell 2t2√
2πσ3

exp
(

− t2

2σ2

)

(t > 0) σ
√

r + 2Rayleigh 2t
λ

exp
(

− t2

λ

)

(t > 0)
√

r+1
2

λlarger than 1 − e−2 ≈ 0.864 whi
h is a slightly better value than in the normal 
ase. Itis interesting to observe that the 
riti
al probability level for the exponential distributiondoes not depend on the parameter of this distribution. The se
ond 
ase with a 
losedformula is the Weibull distribution, where one 
al
ulates F (t∗) = 1 − e−(b+r−1)/b (seeTable 1 for the meaning of parameters). In general, no 
losed formula is available, butin 
on
rete appli
ations, the 
riti
al probability levels are easily read o� from usual datatables or numeri
al routines.5 Chan
e 
onstraints with normally distributed sto-
hasti
 matri
esIn this se
tion, we want to apply Theorem 3.1 in order to derive a 
onvexity result for amore 
ompli
ated 
han
e 
onstraint than (2). More pre
isely, 
onsider the feasible set
M(p) = {x ∈ R

n|P(Ξx ≤ a) ≥ p}, (17)12



where the rows ξi of the sto
hasti
 matrix Ξ have multivariate normal distributions a

ord-ing to ξi ∼ N (µi, Σi). Linear 
han
e 
onstraints of this type, having random 
oe�
ients,are of importan
e in many engineering appli
ations (e.g., mixture problems). Note that,in 
ontrast to (2), the random parameter and the de
ision ve
tor are no longer separatedbut 
oupled in a multipli
ative way. This makes the 
onvexity analysis more involved. A
lassi
al result due to Kataoka [6℄ and Van de Panne and Popp [8℄ states that M(p) is
onvex for p ≥ 0.5 in the simple 
ase where Ξ redu
es to single row (m = 1). A mu
hmore pre
ise 
hara
terization not only of 
onvexity but also of 
ompa
tness and nontriv-iality of M(p) in this elementary situation was provided in [5℄. Moreover, 
ompa
tnessof M(p) 
ould even be 
hara
terized there in the general 
ase (m arbitrary). However,
onvexity in the general 
ase remains an open question. Below, we shall provide a positiveresult under the assumption of Ξ having independent rows. This yields a 
omplementary
hara
terization to results by Prékopa and Burkauskas, who derived 
onvexity under theassumption that all 
ovarian
e and 
ross-
ovarian
e matri
es of the 
olumns or rows of Ξ,respe
tively, are proportional to ea
h other (see [10℄ and [3℄).A dire
t appli
ation of Theorem 3.1 to (17) is not possible, sin
e this type of 
han
e
onstraint is di�erent from (2). However, there exists a useful transformation of the oneinto the other. First, we need an auxiliary result:Lemma 5.1 For µ ∈ R
n and positive de�nite matrix Σ of order (n, n), we put

f(x) :=
〈x, Σx〉

(a − 〈µ, x〉)2 de�ned on the domain Ω1 := {x|a − 〈µ, x〉 > 0}.Then, f is 
onvex on the following open subset of Ω1:
Ω2 :=

{

x
∣

∣

∣
a − 〈µ, x〉 > 4λmaxλ

−3/2
min ‖µ‖

√

〈x, Σx〉
}

.Here, λmax and λmin denote the largest and smallest eigenvalues of Σ.Proof. On Ω1, the Hessian of f 
al
ulates as
D2f(x) = 2 (a − 〈µ, x〉)−4 [(a − 〈µ, x〉)2 Σ + 4 (a − 〈µ, x〉)ΣxµT + 3 〈x, Σx〉 µµT

]

.In order to verify the positive de�niteness of D2f on Ω2, it is evidently su�
ient to showthis property for the matrix
(a − 〈µ, x〉)Σ + 4ΣxµT .13



If z 6= 0 and x ∈ Ω2 are arbitrarily given, then, by de�nition of Ω2,
〈

z,
[

(a − 〈µ, x〉) Σ + 4ΣxµT
]

z
〉

= (a − 〈µ, x〉) 〈z, Σz〉 + 4 〈z, Σx〉 〈µ, z〉

≥ λmin ‖z‖2 (a − 〈µ, x〉) − 4 ‖Σx‖ ‖µ‖ ‖z‖2

> 4 ‖z‖2 ‖µ‖
(

λmaxλ
−1/2
min

√

〈x, Σx〉 − ‖Σx‖
)

≥ 0.Here, we exploited the relations
〈

x, Σ2x
〉

≤ λ2
max ‖x‖2 , λmin ‖x‖2 ≤ 〈x, Σx〉 .

The next simple proposition will be needed later on but is of independent interest as wellbe
ause it makes no restri
tions on the probability level p:Proposition 5.1 If a ≥ 0 (
omponentwise) in (17), then M(p) is starshaped with respe
tto the origin. In parti
ular, M(p) is a 
onne
ted set.Proof. Sin
e a ≥ 0 by assumption, one immediately derives that 0 ∈ M(p). We haveto show that, for arbitrary x ∈ M(p) and arbitrary λ ∈ [0, 1], it follows that λx ∈ M(p).This is evident for λ = 0. If λ ∈ (0, 1], then
P(Ξ(λx) ≤ a) = P(Ξx ≤ λ−1a) ≥ P(Ξx ≤ a) ≥ p.Here we used that λ−1a ≥ a (
omponentwise) due to a ≥ 0 and λ ≤ 1. In other words,

λx ∈ M(p).Theorem 5.1 In (17) we assume that the rows ξi of Ξ are pairwise independently dis-tributed. Then, M(p) is 
onvex for
p > Φ

(

max
{√

3, u∗
})

, (18)where Φ is the one-dimensional standard normal distribution fun
tion,
u∗ = max

i=1,...,m
4λ(i)

max

[

λ
(i)
min

]−3/2

‖µi‖ .and λ
(i)
max and λ

(i)
min refer to the largest and smallest eigenvalue of Σi.14



Proof. The assumption of independent rows allows to rewrite the feasible set as
M(p) =

{

x ∈ R
n
∣

∣

∣

∏m

i=1
P(〈ξi, x〉 ≤ ai) ≥ p

}

.For x 6= 0 and i = 1, . . . , m, we put
ηi(x) :=

〈ξi − µi, x〉
√

〈x, Σix〉
∼ N (0, 1); gi(x) :=

ai − 〈µi, x〉
√

〈x, Σix〉
.Evidently, for x 6= 0, one has that 〈ξi, x〉 ≤ ai holds true if and only if ηi(x) ≤ gi(x). Sin
ethe ηi(x) have a standard normal distribution, one obtains

P(〈ξi, x〉 ≤ ai) = Φ(gi(x)) (for x 6= 0 and i = 1, . . . , m). (19)We introdu
e the following sets for i = 1, . . . , m:
Ω

(i)
1 : = {x ∈ R

n|ai − 〈µi, x〉 > 0}

Ω
(i)
2 : =

{

x ∈ R
n|ai − 〈µi, x〉 > 4λ(i)

max

[

λ
(i)
min

]−3/2

‖µi‖
√

〈x, Σix〉
}

.The following in
lusions hold true whenever p satis�es (18):
M(p)\{0} ⊆ Ω

(i)
2 ⊆ Ω

(i)
1 (i = 1, . . . , m).The se
ond in
lusion is trivial. To verify the �rst one, let x ∈ M(p)\{0} be arbitrary.Sin
e Φ ≤ 1, one derives from (19) that

Φ (gi(x)) ≥
∏m

j=1
Φ (gj(x)) =

∏m

j=1
P(〈ξj, x〉 ≤ aj) ≥ p > Φ (u∗) (i = 1, . . . , m).With Φ being stri
tly in
reasing, this amounts to gi(x) > u∗ and thus x ∈ Ω

(i)
2 for

i = 1, . . . , m by de�nition of u∗.Next, on Ω
(i)
1 de�ne

fi(w) :=
〈w, Σiw〉

(ai − 〈µi, w〉)2 (i = 1, . . . , m).Note that the fi are �nite-valued on Ω
(i)
1 . By Lemma 5.1, the fi are 
onvex on Ω

(i)
2 . Onthe other hand, the gi are �nite-valued and positive on Ω

(i)
1 \{0} and so in parti
ular on

Ω
(i)
2 \{0}. From the respe
tive de�nitions, it follows then that fi = g−2

i on Ω
(i)
2 \{0}.15



Re
alling that p > 0, by assumption, one gets that 0 ∈ M(p) if and only if ai ≥ 0 forall i = 1, . . . , m. We pro
eed by 
ase distin
tion:First 
ase: min
i=1,...,m

ai < 0Then, 0 /∈ M(p) and, by (19), M(p) = {x ∈ R
n |∏m

i=1 Φ (gi(x)) ≥ p}. Hen
e, we are inthe setting of (8) in Theorem 3.1 with Fi := Φ for i = 1, . . . , m. From the remark belowProposition 4.1, we know that Φ has a 3 -de
reasing density with 
riti
al value t∗ =
√

3.Therefore, 
ondition 2. of Theorem 3.1 is satis�ed with ri := 2 for i = 1, . . . , m, andthe statement of the Theorem will allow to derive 
onvexity of M(p) for all p > Φ(
√

3)under the 
ondition that the �rst assumption of Theorem 3.1 be ful�lled, i.e., the gi are
(−2)-
on
ave. This point, however, deserves some attention be
ause in 
ontrast to thesetting required in Theorem 3.1 and in De�nition 2.1, our gi are not de�ned on the wholespa
e and may be not (−2)-
on
ave on all of their domain. We shall pro
eed as follows:as in Theorem 3.1 we 
onsider arbitrary x, y ∈ M(p) and λ ∈ [0, 1], and we show that

xλ := λx + (1 − λ)y ∈ M(p).We have two options to do so. The �rst one is to 
he
k the relation of (−2)-
on
avity ofthe gi for the 
on
rete triple (x, y, xλ):
gi(xλ) ≥

(

λg−2
i (x) + (1 − λ)g−2

i (y)
)−1/2

. (20)Indeed, this last relation 
orresponds to the �rst inequality in (13). A brief reinspe
tionof the proof of Theorem 3.1 shows that, given all the ne
essary assumptions on thedistribution fun
tions, this inequality is all what is needed to derive that xλ ∈ M(p).However, it may happen, that (20) 
annot be veri�ed, for instan
e due to xλ = 0, so that
xλ does not belong to the domain of the gi. Then, we might be able to show xλ ∈ M(p)by a dire
t argument.In a �rst step, we show that xλ 6= 0. Assuming to the 
ontrary, that xλ = 0 andre
alling that 0 /∈ M(p) (so x, y 6= 0), it follows the existen
e of some α < 0 su
h that
x = αy. Sin
e, x, y ∈ M(p) = M(p)\{0} ⊆ Ω

(i)
1 for i = 1, . . . , m, one derives from herethe relation

|〈µi, y〉| < min
{

ai,−α−1ai

}

(i = 1, . . . , m).16



On the other hand, in the present �rst situation of 
ase distin
tion, there exists at leastone ai < 0. Then, however, the right hand side of the last inequality be
omes negativewhi
h yields a 
ontradi
tion.With x, y ∈ M(p) = M(p)\{0} ⊆ Ω
(i)
2 and the Ω

(i)
2 being 
onvex sets for i = 1, . . . , m,it results that xλ ∈ Ω

(i)
2 . The 
onvexity of the fi on Ω

(i)
2 allows to 
ontinue as

fi(xλ) ≤ λfi(x) + (1 − λ)fi(y) (i = 1, . . . , m).On the other hand, we know that x, y, xλ 6= 0, when
e the fi-values may be repla
ed bythose of the g−2
i (see above):

g−2
i (xλ) ≤ λg−2

i (x) + (1 − λ)g−2
i (y) (i = 1, . . . , m).Moreover, as the gi are �nite-valued and positive on Ω

(i)
2 \{0} (see above), so are the g−2

i .This allows to raise the last inequality to the power −1/2 in order to derive at (20) asdesired.Se
ond 
ase: min
i=1,...,m

ai ≥ 0Then, 0 ∈ M(p). Consequently, we may assume that xλ 6= 0. This already ex
ludesthe 
ase x = y = 0. Next suppose that, say, x 6= 0 and y = 0. Then, we may applyProposition 5.1, to derive that xλ = λx ∈ M(p). The 
ase y 6= 0 and x = 0 follows bysymmetry. Summarizing, we may assume that x, y, xλ 6= 0 whi
h allows to repeat theargumentation from the �rst 
ase and then to invoke again (20) in order to verify that
xλ ∈ M(p).We note that the assumption of independent rows ξi in Theorem 5.1 does not meanindependen
e of all entries of Ξ. Rather, the 
ross-
ovarian
e matri
es cov (ξi, ξj) arerequired to be zero for i 6= j whereas there are no restri
tions for i = j.Remark 5.1 If the value u∗ in Theorem 5.1 happens to be smaller than √

3, (e.g., formean ve
tors ‖µi‖ 
lose to zero), then 
onvexity of M(p) 
an be derived for p > Φ(
√

3) ≈
0.958.A
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