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Abstract

We investigate the convexity of chance constraints with independent random vari-
ables. It will be shown, how concavity properties of the mapping related to the
decision vector have to be combined with a suitable property of decrease for the
marginal densities in order to arrive at convexity of the feasible set for large enough
probability levels. It turns out that the required decrease can be verified for most
prominent density functions. The results are applied then, to derive convexity of
linear chance constraints with normally distributed stochastic coefficients when as-

suming independence of the rows of the coefficient matrix.
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1 Introduction

Many optimization problems in engineering or finance contain so-called chance constraints

or probabilistic constraints of the form
P(h(z,£) = 0) = p, (1)

where x € R" is a decision vector, £ : 2 — R™ is an m-dimensional random vector defined
on some probability space (2, A,P), h: R" x R™ — R® is a vector-valued mapping and
p € [0,1] is some probability level. A compilation of practical applications in which
constraints of the type (1) play a crucial role, may be found in the standard references
[11], [12]. Not surprisingly, one of the most important theoretical questions related to such
constraints is that of convexity of the set of decisions z satisfying (1). It is well-known
(J11], Th. 10.2.1) that this set is convex provided that the law P o ¢! of £ is a log-
concave probability measure on R™ and that the components h; of h are quasi-concave.
The power of this result becomes evident in combination with a celebrated theorem by
Prékopa stating that the law of £ is log-concave whenever & has a log-concave density.
As this is easily verified to hold true for many prominent multivariate distributions, this
classical result guarantees convexity of the set of feasible decisions for a broad class of
applications. The required quasi-concavity of the h; is satisfied, for instance in the linear
model h(zx,§) = Ax — BE, where actually concavity of the h; holds true.

In this paper, we shall be interested in chance constraints where random vectors appear
separated from decision vectors, and which come as a special case of (1) by putting
h(z,&) = g(x) —&. More precisely, we want to study convexity of a set of feasible decisions

defined by
M(p) = {z e R"[P(£ < g(x)) = p}, (2)

where g : R” — R™ is some vector-valued mapping. With F' : R™ — R denoting the



distribution function of &, the same set can be rewritten as

M(p) = {x € R"[F(g(x)) = p}. (3)

We are interested in conditions on F' and g such that M(p) becomes a convex set for all
p > p*, where p* < 1. Note that convexity for large enough p is a relevant feature because
p is typically chosen to be close to one.

When trying to link the previously mentioned classical result to the special case of (2),
in addition to the log-concavity of the law of &, we would have to impose quasi-concavity of
the functions g;(x) — &. Unfortunately, unlike concavity, quasi-concavity is not preserved
under addition, so quasi-concavity of the components g; is not sufficient here to ensure

convexity of M (p). To illustrate this fact consider the following example:

Example 1.1 In (2), let £ have a bivariate standard normal distribution with independent
components, and let g(z,y) = (e*,e¥). Then, the components g; are quasi-concave (as

functions of x and y simultaneously). However, the set M(0.5) fails to be convex (e.g.,

for w:= (1,-3) and v = (—=3,1) one has that u,v € M(0.5) but (u+v)/2 ¢ M(0.5)).

On the other hand, concavity of the components g; would do because then, g;(x) —&; is
a concave, hence quasi-concave function of the two variables  and &, simultaneously. In
particular, convexity of M (p) would hold true for all p € [0, 1] in Example 1.1 upon passing
from g to —g. Therefore, the question arises, whether one can still derive convexity results
for M(p) in (2) when relaxing the strong requirement of concave components g;. It turns
out that this will be possible under the additional assumption of £ having independent
components. Then, roughly speaking, convexity can be derived for so-called r-concave g;,
a concept providing a parametrization of concavity properties between true concavity and
quasi-concavity (see Section 2). As an application, we show that joint chance constraints
defined by a normally distributed random matrix yield a convex set of feasible decisions
provided the probability level is large enough and the rows of the random matrix are
independently distributed. To the best of our knowledge, this result is new and may have
an impact on solution procedures for problems of such kind by making available tools

from convex optimization. We emphasize that the independence assumption is essential



for our approach. For other work on convexity properties of chance constraints where
independence has been successfully exploited, we refer to [1], [4] and |7]. A Theorem by

Bawa [1], for instance, provides a condition to ensure concavity of the product function
H(t) = F(t1) - - F(tm),

where F' is a one-dimensional distribution function. This would be of interest in the
context of (3) if all components &; of the random vector had identical independent distri-
butions. However, the interplay with relaxations of concavity of the g; in (3) is not clear.
The conditions we are going to impose on the distribution function F' (or better: on the
marginal distribution functions F;) are related to the degree at which the corresponding
densities f; decrease asymptotically. This will ensure that the mappings ¢ — F;(1/t%)

become concave for an appropriate o > 0.

2 Notation

We recall the definition of an r-concave function:
Definition 2.1 A function f : R® — (0,00) is called r-concave for some r € [—o0, 00], if
FOz+ (1= Ny) > A (2) + (L= N f (] Yo,y e R, VA€ [0,1], (4)

In this definition, the cases r € {—00,0,00} are to be interpreted by continuity. In
particular, 1-concavity amounts to classical concavity, O-concavity equals log-concavity
(i.e., concavity of log f), and —oo-concavity identifies quasi-concavity (this means that
the right-hand side of the inequaltiy in the definition becomes min{f(x), f(y)}). We

recall, that an equivalent way to express log-concavity is the inequality
fFOa+ (1 =Ny = fAa)f M y) Yoy e R, V¥A€[0,1]. (5)

For r < 0, one may raise (4) to the negative power r and recognize, upon reversing the
inequality sign, that this reduces to convexity of f". If f is r*-concave, then f is r-concave
for all » < r*. We shall be mainly interested in the case r < 1.

The following property is crucial in the context of this paper:
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Definition 2.2 We call a function f : R — R r-decreasing for some r € R, if it is
continuous on (0,00) and if there exists some t* > 0 such that the function t" f(t) is

strictly decreasing for all t > t*.

Evidently, O-decreasing means strictly decreasing in the classical sense. If f is a non-
negative function like the density of some random variable, then r-decreasing implies
r’-decreasing whenever r’ < r. Therefore, one gets narrower families of r-decreasing den-
sity functions with r — co. If f is not just continuous on (0, 00) but happens even to be

differentiable there, then the property of being r-decreasing amounts to the condition

tf'(t) +rf(t) <0 forallt>t" (6)

3 A Convexity Result

Lemma 3.1 Let F': R — [0, 1] be a distribution function with (r 4+ 1)-decreasing density
f for some r > 0. Then, the function z — F(z7Y") is concave on (0, (t*)™"), where t*

refers to Definition 2.2. Moreover, F(t) <1 for all t € R.

Proof. Let h : R — R be defined by h(z) = F(z~'/"), for all z > 0. By definition, it
holds that

Since f is continuous on (0, 00) by the very definition of r-decreasing functions, F' and h

are differentiable on the same interval. Consequently,
h’(z) _ —T_lz_(l—H/r)f(Z_l/r).

Since, by assumption, ¢ — t"T1f(t) is strictly decreasing on (t*,4o00), one gets that
z = (YD) £(2=1m) s strictly increasing on (0, (+*)7"). Summarizing, A’ is strictly

decreasing on (0, (¢*)~"), whence h is concave on this interval.
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Concerning the second statement, assume that F(t) = 1 for all t > 7. Therefore, with
F being a distribution function, it follows the contradiction F'(t) = f(¢t) =0 for all ¢t > 7

to f being (r + 1)-decreasing. [

Theorem 3.1 For (2), we make the following assumptions fori=1,... ,m:

1. There exist r; > 0 such that the components g; are (—r;)-concave.

2. The components &; of & are independently distributed with (r;+1)-decreasing densities
fi-

Then, M(p) is convex for all p > p* := max{F;(t})|1 < i < m}, where F; denotes the
distribution function of & and the t} refer to Definition 2.2 in the context of f; being

(r; + 1)-decreasing.

Proof. Let p > p*, A € [0,1] and z,y € M(p) be arbitrary. We have to show that
Az + (1 — Ny € M(p). Referring to the distribution functions F; of &;, we put

¢ = Fi(gi(x)) <1, ¢ =Fi(gly) <1l (i=1....m), (7)

where the strict inequalities rely on the second statement of Lemma 3.1. By assumption
2., the components of £ are independent, hence the feasible set in (2) or (3), respectively,

may be rewritten as

11 F(gi(w)) Zp}- (8)

1=1

M(p) = {weR"

In particular, by (7), the inclusions z,y € M(p) mean that

m m

[[e=r [[d=r (9)
i=1 i=1
Now, (7), (9) and the definition of p* entail that
1>¢ >p>F(t)>0, 1>¢>p>F({)>0 (=1,...,m). (10)
For 7 € [0, 1], we denote the 7-quantile of F; by
Ey(7) := inf{z € R|F;(2) > 7}
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Note that, for 7 € (0,1), Fi(7) is a real number. Having a density, by assumption 2., the
F; are continuous distribution functions. As a consequence, the quantile functions E(T)

satisfy the implication
q> Fi(z) = F(q) >z VYqe(0,1)VzeR.
Now, (7) and (10) provide the relations
gi(x) > Fy(¢®) >t >0, g(y)>E(¢)>t:>0 (i=1,...,m). (11)
In particular, for all © = 1, ..., m, it holds that

miﬂ{ﬁf”@f),Ff”(q;y)},maX{FZ”(Qf),F_”(qZ)}} C (0,()™). (12)
Along with assumption 1., (11) yields for i =1,...,m

g Az +(1=XNy) > ()‘gi_”(f) +(1- )\)g_n(y))—l/ri

—1/7‘1'

> (M) + (A= NET) (13)

The monotonicity of distribution functions allows to continue by

o Ot (=200 = B (V@) + 0= 0F D)) = L),
(14)
Owing to assumption 2., Lemma 3.1 guarantees that the functions z + Fj(27'/") are
concave on (0, (¢f)~"). In particular, these functions are log-concave on the indicated
interval, as this is a weaker property than concavity (see Section 2). By virtue of (12)

and (5), this allows to continue (14) as
LN SN
Fi(g:0a+ (1= M) > [F (B)] [A (B@)] ~ G=1....m).
Exploiting the fact that the F; as continuous distribution functions satisfy the relation
F;(Fy(q)) = q for all ¢ € (0,1), and recalling that ¢, ¢’ € (0,1) by (10), we may deduce
that
F(g:Qa+ (1=Ny) = @1 gf] ™ (i=1,...,m).
Passing to the product, it follows together with (9) that

m

[1F (g (a+ (1 - ﬁ [ﬁQf] [ﬁ QE’] > p'p' ™ = p.

i=1 =1



Referring to (8), this shows that Az + (1 — \)y € M(p). u

Remark 3.1 The critical probability level p* beyond which convexity can be guaranteed
in Theorem 3.1, is completely independent of the mapping g, it just depends on the dis-
tribution functions F;. In other words, for given distribution functions F;, the convexity
of M(p) in (2) for p > p* can be guaranteed for a whole class of mappings g satisfying
the first assumption of Theorem 3.1. Therefore, it should come at no surprise that, for

specific mappings g even smaller critical values p* may apply (see Example 4.1 below).

In the following proposition, we establish the relation between log-concave distributions
and distributions having an r-decreasing density. We recall that the class of log-concave
distributions having a density coincides with the class of distributions having a log-concave
density (|2], Th. 3.1).We also mention that most of the prominent distributions fall into

this class.

Proposition 3.1 Let f : R — [0,1] be a log-concave and continuous density having an

unbounded support in positive direction. Then, f is r-decreasing for all v > 0.

Proof. By assumption, ¢ := log f is a concave, possibly extended-valued function. As
a consequence of concavity, there exists some 7 > 0 such that either ¢ (¢) = —oo for
all t > 7 or ¢(t) > —oo for all ¢ > 7. The first case amounts to f(t) = 0 for all
t > 7, which is a contradiction with our assumption of f having an unbounded support
in positive direction. Consequently, ¢ is concave and real-valued on [r,00). Moreover,
as a continuous and log-concave density function, f must tend to zero at infinity, hence
limy .o ¢ (t) = —oo. Along with the concavity of ¢, this implies the existence of o < 0
and § € R such that

p(t) <at+5 Vt>T. (15)

Now, let 7 > 0 be arbitrary and put h(t) := ¢"f(¢t) for t > 0. Then, logh = rlog(:) +
¢ is also concave and real-valued on [7,00). Assume there exists some 7" > 7 such
that logh (7*) < logh (7). By concavity of logh, this function and, thus, A itself must

then be strictly decreasing on [7%,00). In other words, f is r-decreasing as was to be



shown. Therefore, we are done if we can lead to a contradiction the opposite case, namely

log h (t) > log h (7) for all £ > 7. This is equivalent to
¢ (t) >logh(r) —rlogt Vt>rT. (16)

We apply the general relation

—rlogt > —rlogs —rt/s—r Yt>s>0
to s := —2r/a > 0, where « refers to (15):

—rlogt > —rlog (—2r/a) +at/2 —r Vt>s.
Combining this with (15) and (16), we arrive at the contradiction
K :=logh(r) —rlog(—2r/a) —r—p < at/2 Vt>max{r, s}

to the fact that K is a constant and «/2 < 0. n

Recalling that normal densities are log-concave, continuous and have unbounded support,
we may combine Theorem 3.1 and Proposition 3.1, in order to obtain a useful character-

ization of convexity under normally distributed data:

Corollary 3.2 In (2), let £ have a regqular multivariate normal distribution with indepen-
dent components. Moreover, let each component g; of g be (—r;)-concave for some r; > 0.

Then, there ezists some p* < 1 such that M(p) is convex for all p > p*.

4 Examples
The Cauchy distribution has a density

1) =~ (a>0)

(a2 + t2)
which is r-decreasing for any r» < 2 but fails to be so for any » > 2. Most of the prominent

one-dimensional distributions, however, have a density which is r-decreasing for any r > 0.

Next, we want to calculate for some well-known one-dimensional distributions the ¢*- and



F(t*)- values needed in Theorem 3.1 for the computation of the critical probability level
p*. We start with the corresponding derivation of the normal distribution and collect the
others in Table 1. To emphasize the dependence on the order r, we shall write ¢ rather

than just t*.

Proposition 4.1 Let & have a normal distribution with scalar parameters p and o > 0.

Moreover, let r > 0 be arbitrarily given. Then, the corresponding density 1s r-decreasing

2+ 4dro? 1 2 1

with

g

r 2 "ty 25

4

where ® denotes the distribution function of the standard normal distribution.

Proof. The calculation of the (optimal) ¢}~ value is straightforward from the representa-

tion of the normal density and (6). By definition,

F(t*)ﬂ(&gt:)ﬂ(““gti‘“).

" o o

Since 07! (¢ — ) has a standard normal distribution, one may continue as

=0 (570 <o (i (2 35).

For the special case of a standard normal distribution (u = 0,0 = 1), one gets t* = /r

and F(t*) = ®(y/r). As an illustration, we consider the following example:

Example 4.1 In (2) let & have a bivariate standard normal distribution: £ ~ N (0, I3).

Moreover, put

1 1

Z, = "5, 90 T, = 2 .
a1(z.y) 22 +y240.1 92(:9) (z +y)* +0.1

Then, clearly, the components g; are (—1)-concave (i.e. 1/g; is conver). By assump-
tion, the components of & have a one-dimensional standard normal distribution which,
by Proposition 4.1, has a 2-decreasing density with t* = /2. Now, Theorem 3.1 may
be applied and we may derive convezity of the feasible set M(p) in (2) beyond a critical
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probability level p* = ® (\/5) ~ 0.921. According to Remark 3.1, possibly some much
smaller level could do with respect to convexity. This is confirmed for the example by Fig-
ure 1: obviously, the feasible set is convex for probabilities higher than 0.7 and nonconvez
for probabilities lower than 0.6, so the true critical level in this example is somewhere
in between 0.6 and 0.7. Note that the classical convezity theory could not be applied to
this example because the components g; are not concave (see Introduction). This is also

supported by the observation that convexity fails for small probabilities.

Figure 1: Illustration of the feasible set M (p) for different levels p in an example.

2

In the example, convexity of the feasible set M(p) could be guaranteed for all probability
levels larger than 0.921. This may sound a strong requirement, but note that, in chance
constraint programming, these levels are typically high, say 0.95 or 0.99. Moreover, the
result of Proposition 4.1 strongly depends on the parameters 1 and o, and, more precisely,
on their ratio. If this ratio becomes large, then F'(¢f) converges towards ® (0). Hence, for
the case of normal distributions with small relative standard deviations, the critical level
p* tends to 0.5.

Table 1 shows, how the - value depends on r and on the parameters of the different
distributions. For two distributions, a closed formula is available for the corresponding
value F(t}) of the distribution function: First, for the exponential distribution, one gets
F(tf) =1 —e™". Hence, reconsidering Example 4.1 with independent exponential rather

than normal distributions, one could derive convexity of the set M(p) for probabilities
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Table 1: t;- values in the definition of r-decreasing densities for a set of common distri-

butions.
Law Density i
normal Zlm exp (—%) w
exponential | Aexp (—=At) (¢t > 0) 3
Weibull | abtLexp (—at?)  (t > 0) (=)
Gamma r(a) exp (=bt) >t (t >0) atr—l

X e 11Fn/2 - exp( 2) (t>0)|vVn+r—1
)?

X 2n/2r(n ) /2L exp %) (t>0) | n+2r—2
log-normal \/ﬁot exp ( (IngzQ“ ) (t > 0) o+ (r=1)o?
Maxwell m exp <_%> (t > 0) o +2
Rayleigh 2 exp <_§) (t > 0) ry

larger than 1 — e™2

~ 0.864 which is a slightly better value than in the normal case. It
is interesting to observe that the critical probability level for the exponential distribution
does not depend on the parameter of this distribution. The second case with a closed
formula is the Weibull distribution, where one calculates F(t*) = 1 — e=®+=1/b (see
Table 1 for the meaning of parameters). In general, no closed formula is available, but

in concrete applications, the critical probability levels are easily read off from usual data

tables or numerical routines.

5 Chance constraints with normally distributed sto-

chastic matrices

In this section, we want to apply Theorem 3.1 in order to derive a convexity result for a

more complicated chance constraint than (2). More precisely, consider the feasible set

M(p) = {r e R"[P(Zz < a) > p}, (17)
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where the rows &; of the stochastic matrix = have multivariate normal distributions accord-
ing to & ~ N (u;,%;). Linear chance constraints of this type, having random coefficients,
are of importance in many engineering applications (e.g., mixture problems). Note that,
in contrast to (2), the random parameter and the decision vector are no longer separated
but coupled in a multiplicative way. This makes the convexity analysis more involved. A
classical result due to Kataoka [6] and Van de Panne and Popp |8 states that M(p) is
convex for p > 0.5 in the simple case where = reduces to single row (m = 1). A much
more precise characterization not only of convexity but also of compactness and nontriv-
iality of M(p) in this elementary situation was provided in [5]. Moreover, compactness
of M(p) could even be characterized there in the general case (m arbitrary). However,
convexity in the general case remains an open question. Below, we shall provide a positive
result under the assumption of = having independent rows. This yields a complementary
characterization to results by Prékopa and Burkauskas, who derived convexity under the
assumption that all covariance and cross-covariance matrices of the columns or rows of =,
respectively, are proportional to each other (see [10] and |3]).

A direct application of Theorem 3.1 to (17) is not possible, since this type of chance
constraint is different from (2). However, there exists a useful transformation of the one

into the other. First, we need an auxiliary result:

Lemma 5.1 For p € R™ and positive definite matriz 3 of order (n,n), we put

f(x) = L@z defined on the domain Qy := {x|a — (u,z) > 0}.

(@ —(n,x))

Then, f is convex on the following open subset of Q) :
0 = {]a— {0, 2) > Dnasdoit? 1all V2, 5) |
Here, Apax and Apin denote the largest and smallest eigenvalues of 3.
Proof. On €y, the Hessian of f calculates as
D*f(x) =2(a— (ma) " [(a = (n,2))* S+ 4 (a— (u,2)) Sap” + 3 (z, %) pu"] .

In order to verify the positive definiteness of D?f on Q,, it is evidently sufficient to show
this property for the matrix
(a— (u,z)) 2+ 4Xwu’.
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If 2 # 0 and x € Q) are arbitrarily given, then, by definition of 5,

(2 [(@— () S+ 480 2) = (a— (1.2)) (2. 82) +4 (2, 5a) {p. )

> i 121 (@ = (i 2)) = 4[] el 121
> a2l el (Amahis” /o S0) — 122
> 0.

Here, we exploited the relations

(2.5%) < Mo 2l*, Auinllo® < (2, 52)

The next simple proposition will be needed later on but is of independent interest as well

because it makes no restrictions on the probability level p:

Proposition 5.1 Ifa > 0 (componentwise) in (17), then M(p) is starshaped with respect

to the origin. In particular, M(p) is a connected set.

Proof. Since a > 0 by assumption, one immediately derives that 0 € M(p). We have
to show that, for arbitrary @ € M(p) and arbitrary A € [0, 1], it follows that Az € M(p).
This is evident for A = 0. If A € (0, 1], then

PE\r) <a)=PEr <A 'a) >P(Er <a)>p.

Here we used that \~'a > a (componentwise) due to @ > 0 and A < 1. In other words,

Ax € M(p). u

Theorem 5.1 In (17) we assume that the rows & of = are pairwise independently dis-

tributed. Then, M(p) is convex for
p>d <max{\/§, u*}) , (18)
where O s the one-dimensional standard normal distribution function,
w = max 0, MO

and Aff;’ax and )xffl)in refer to the largest and smallest eigenvalue of Y;.
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Proof. The assumption of independent rows allows to rewrite the feasible set as

M(p) = {x € R"

H:; P((&,z) < a;) > p} )

For x 20 and i =1,...,m, we put

(& — pi, x) a; — (pi, ©)
> T N(0,1); gi(x) = .
(x, %) ©.1); gilz) V{z, Six)

Evidently, for x # 0, one has that (§;, z) < a; holds true if and only if 7;(z) < g;(x). Since

ni(x) ==

the n;(x) have a standard normal distribution, one obtains

P((&,x) < a;) = P(gi(x)) (forx#0andi=1,...,m). (19)
We introduce the following sets for ¢ = 1,...,m:
Qo ={z eRYa; — (;,x) > 0}

. , L 1-3/2
o+ =o€ R = o > 0 0] il VT )

The following inclusions hold true whenever p satisfies (18):
MM\l cal? (=1,...,m).

The second inclusion is trivial. To verify the first one, let x € M(p)\{0} be arbitrary.

Since ® < 1, one derives from (19) that

@ (0i(x) > [T @ 0s) =T P&.2) <) 2p> @) (i=1....m).

With & being strictly increasing, this amounts to g;(x) > u* and thus = € Qg) for
1 =1,...,m by definition of u*.

Next, on Qgi) define

(w, 3w)
(a;i — (i w>)2

Note that the f; are finite-valued on Qgi). By Lemma 5.1, the f; are convex on Qgi). On

fi(w) = (i=1,...,m).

the other hand, the g; are finite-valued and positive on Q{”’\{0} and so in particular on

Qg)\{O} From the respective definitions, it follows then that f; = g; % on Qg)\{()}
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Recalling that p > 0, by assumption, one gets that 0 € M (p) if and only if a; > 0 for

all7 =1,...,m. We proceed by case distinction:

First case: min a; <0

i=1,..,m
Then, 0 ¢ M(p) and, by (19), M(p) = {z € R"|[[;~, ® (g:(z)) > p}. Hence, we are in
the setting of (8) in Theorem 3.1 with F; := ® for i = 1,...,m. From the remark below
Proposition 4.1, we know that ® has a 3 -decreasing density with critical value t* = v/3.
Therefore, condition 2. of Theorem 3.1 is satisfied with r; := 2 for ¢ = 1,...,m, and
the statement of the Theorem will allow to derive convexity of M (p) for all p > ®(+/3)
under the condition that the first assumption of Theorem 3.1 be fulfilled, i.e., the g; are
(—2)-concave. This point, however, deserves some attention because in contrast to the
setting required in Theorem 3.1 and in Definition 2.1, our g; are not defined on the whole
space and may be not (—2)-concave on all of their domain. We shall proceed as follows:

as in Theorem 3.1 we consider arbitrary z,y € M(p) and A € [0, 1], and we show that
Ty:=Ar+ (1= Ny € M(p).

We have two options to do so. The first one is to check the relation of (—2)-concavity of

the g; for the concrete triple (z,y, x,):

i) > (g 2(x) + (1= Mg () . (20)

Indeed, this last relation corresponds to the first inequality in (13). A brief reinspection
of the proof of Theorem 3.1 shows that, given all the necessary assumptions on the
distribution functions, this inequality is all what is needed to derive that z), € M(p).
However, it may happen, that (20) cannot be verified, for instance due to x) = 0, so that
xy does not belong to the domain of the g;. Then, we might be able to show x, € M(p)
by a direct argument.

In a first step, we show that x, # 0. Assuming to the contrary, that z = 0 and
recalling that 0 ¢ M(p) (so z,y # 0), it follows the existence of some a < 0 such that
x = ay. Since, z,y € M(p) = M(p)\{0} C Qgi) for = 1,...,m, one derives from here
the relation

(i, y)| < min{a;, —a"'a;}  (i=1,...,m).
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On the other hand, in the present first situation of case distinction, there exists at least
one a; < 0. Then, however, the right hand side of the last inequality becomes negative
which yields a contradiction.

With z,y € M(p) = M(p)\{0} C Qgi) and the Qg) being convex sets for i = 1,...,m,

it results that z, € Qg). The convexity of the f; on Qg) allows to continue as

filex) < Afi(x) + (L= A fily) (@=1,...,m).

On the other hand, we know that x,y,z) # 0, whence the f;-values may be replaced by

those of the g; 2 (see above):

g (xa) S Mg (@) + (1= Ngi *(y) (i=1,....,m).

Moreover, as the g; are finite-valued and positive on Qg)\{O} (see above), so are the g; 2.
This allows to raise the last inequality to the power —1/2 in order to derive at (20) as

desired.

Second case: min a; >0

i=1,...,m
Then, 0 € M(p). Consequently, we may assume that x, # 0. This already excludes
the case x = y = 0. Next suppose that, say, x # 0 and y = 0. Then, we may apply
Proposition 5.1, to derive that zy = Az € M(p). The case y # 0 and = 0 follows by
symmetry. Summarizing, we may assume that x,y,z, # 0 which allows to repeat the
argumentation from the first case and then to invoke again (20) in order to verify that

x) € M(p). m

We note that the assumption of independent rows &; in Theorem 5.1 does not mean
independence of all entries of =. Rather, the cross-covariance matrices cov (§;,§;) are

required to be zero for ¢ # j whereas there are no restrictions for ¢ = j.

Remark 5.1 If the value u* in Theorem 5.1 happens to be smaller than /3, (e.g., for
mean vectors ||| close to zero), then conveity of M(p) can be derived for p > ®(v/3) ~
0.958.
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