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Abstract

Starting from the logical description of gene regulatory networks developed by
R. Thomas, we introduce an enhanced modelling approach based on timed au-
tomata. We obtain a refined qualitative description of the dynamical behaviour by
exploiting not only information on ratios of kinetic parameters related to synthesis
and decay, but also constraints on the time delays associated with the operations of
the system. We develop a formal framework for handling such temporal constraints
using timed automata, discuss the relationship with the original Thomas formal-
ism, and demonstrate the potential of our approach by analysing an illustrative gene
regulatory network of bacteriophage λ.

1 Introduction

When modelling a gene regulatory network one has basically two options. Tra-
ditionally, such a system is modelled with differential equations. The equations
used, however, are mostly non-linear and thus cannot be solved analytically.
Furthermore, the available experimental data is often of qualitative charac-
ter and does not allow a precise determination of quantitative parameters for
the differential model. This eventually led to the development of qualitative
modelling approaches. R. Thomas introduced a logical formalism in the 1970s,
which, over the years, has been further developed and successfully applied to
different biological problems (see [10], [11] and references therein). The only
information on a concentration of gene products required in this formalism
is whether or not it is above a threshold relevant for some interaction in the
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network. Furthermore, parameters holding information about the ratio of pro-
duction and spontaneous decay rates of the gene products are used. The values
of these parameters determine the dynamical behaviour of the system, which
is represented as a state transition graph. Moreover, Thomas realized that a
realistic model should not be based on the assumption that the time delay
from the start of the synthesis of a given product until the point where the
concentration reaches a threshold is the same for all the genes in the network.
Neither will the time delays associated with synthesis and those associated
with decay be the same. Therefore, he uses an asynchronous description of
the dynamics of the system, i. e., a state in the state transition graph differs
from its predecessor in one component only.

In order to refine the model, we would like to incorporate information about
the values of the time delays. Since precise data about the time delays is
not available (in biological systems the delays will not even have an exactly
determined value), the information is given in the form of inequalities that
impose constraints on the time delays. So we need to keep track of time while
the system evolves. A theoretical framework providing us with the necessary
premises is the theory of timed automata. Each gene is equipped with a clock
which is used to evaluate the conditions imposed on the time delays of that
particular gene during the evolution of the system. The resulting transition
system is in general nondeterministic, but the additional information inserted
allows for a refined view of the dynamics. Conclusions about stability of dy-
namical behaviour and restriction to certain behaviour in comparison to the
predictions of the Thomas model become possible. Also, the possibility of
synchronous update is not excluded under certain conditions. Furthermore,
our modelling approach permits the modelling of context sensitive systems.
That is, interactions between the network’s components are allowed to be of
different character, i. e., inhibiting or activating, depending on the state of
the system. The resulting framework is substantially less restrictive than the
classical Thomas formalism.

The organisation of this paper is as follows. We start in Sect. 2 with a math-
ematical presentation of the Thomas formalism, followed by a short review of
the basic concepts of timed automata in Sect. 3. In Sect. 4 we develop our
new modelling framework, which is the most important contribution of this
paper. In Sect. 5, we show that using our approach, it is possible to obtain
the state transition graph of the original Thomas model. To illustrate the
theoretical considerations, we analyse in Sect. 6 two regulatory networks of
bacteriophageλ. The corresponding models have been implemented using the
verification tool UPPAAL. In the last section, we discuss the mathematical
and biological perspectives of our approach.

This is the long version of a paper presented at CMSB’2006 [7].
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2 Generalised Logical Formalism of Thomas

In this section we give a formal definition of a gene regulatory network in the
sense of the modelling approach of R. Thomas (see for example [10] and [11]).
We use mainly the formalism introduced in [4].

2.1 Structure and Dynamics

Definition 1 An interaction graph (or biological regulatory graph) I is a
labelled directed graph with vertex set V := {α1, . . . , αn}, n ≥ 1 and edge set
E. Each edge αj → αi is labelled with a sign εij ∈ {+,−} and an integer bij ∈
{1, . . . , dj}, where dj denotes the out-degree of αj. Furthermore, we assume
that {bij | ∃ αj → αi} = {1, . . . , pj} for all j ∈ {1, . . . , n} and pj ≤ dj. We
call {0, . . . , pj} the range of αj. For each i ∈ {1, . . . , n} we denote by Pred(αi)
the set of vertices αj such that αj → αi is an edge in E.

The vertices of this graph represent the genes of the regulatory network, the
range of a vertex the different expression levels affecting the behaviour. An
edge αj → αi signifies that the gene product of αj influences the gene αi in
a positive or negative way depending on the sign εij and provided that the
expression level of αj is equal or above bij. Note that the values bij do not
have to be pairwise distinct.

In order to describe the behaviour of a gene regulatory network we need a
formal framework to capture its dynamics.

Definition 2 Let I be an interaction graph. A state of the system described
by I is a tuple s ∈ Sn := {0, . . . , p1} × · · · × {0, . . . , pn}. The set of resources
Ri(s) of αi in state s is the set

{αj ∈ Pred(αi) | (εij = + ∧ sj ≥ bij) ∨ (εij = − ∧ sj < bij)}.

Finally, we define the set of (logical) parameters

K(I) := {Kαi,ω ∈ {0, . . . , pi} | i ∈ {1, . . . , n}, ω ⊆ Pred(αi)}.

We call the pair (I, K(I)) a gene regulatory network.

The set of resources Ri(s) provides information about the presence of activa-
tors and the absence of inhibitors for some gene αi in state s. The value of the
parameter Kαi,Ri(s) indicates how the expression level of gene αi will evolve.
The product concentration will increase (resp. decrease) if the parameter value
is greater (resp. smaller) than si. The expression level stays the same if both
values are equal.
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Fig. 1. Interaction graph, parameters and state transition graph of a gene regulatory
network associated with bacteriophage λ.

Now, we describe the dynamics of the gene regulatory network by means of a
state transition graph.

Definition 3 The state transition graph SN corresponding to a gene regula-
tory network N = (I, K(I)) is a directed graph with vertex set Sn. There is an
edge s → s′ if there is i ∈ {1, . . . , n} such that s′i = si +sgn(Kαi,Ri(s)−si) 6= si

and sj = s′j for all j ∈ {1, . . . , n} \ {i}.

The above definition reflects the use of the asynchronous update rule, since a
state differs from a successor state in one component only. If s is a state such
that an evolution in more than one component is indicated, then there will be
more than one successor of s. Note that s is a steady state if s has no outgoing
edge.

Example 4 Figure 1 shows the interaction as well as the state transition
graph of a gene regulatory network comprising two genes connected by nega-
tive edges. Furthermore, each gene influences itself via a positive resp. negative
loop. However, the given parameter values render the loop starting in α1 inef-
fective with respect to the dynamics of the system. This example was given in
[9] as a simplified model of a genetic network associated with the virus bacte-
riophage λ. We will give a closer look to its biological meaning and dynamical
behaviour in Section 6.

2.2 Parameter Constraints

Thomas and Snoussi used their formalism to discretise a certain class of dif-
ferential equation systems (see [8]). To reflect this, the following constraint
has to be imposed on the parameter values:

ω ⊆ ω′ ⇒ Kαi,ω ≤ Kαi,ω′ (1)

for all i ∈ {1, . . . , n}. This condition signifies that an effective activator or a
non-effective inhibitor cannot induce the decrease of the expression level of αi.
In biology, there are situations where this condition is not met. For instance,
two substances can have activating properties when isolated from each other,
but act inhibiting when combined. Thus it would be desirable to relax this
restrictive condition.
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The definition of the state transition graph representing the dynamics of a
system does not have to be altered when dropping the parameter constraints
(1). However, the interpretation of the corresponding interaction graph, and as
a consequence that of the definition of the resources, becomes more difficult.
Condition (1) ensures that the way two components influence each other,
i. e., activation or inhibition, does not depend on the state of the system. For
instance, if there is a positive edge from αi to αj, then the increase of the
expression level of αi can never lead to a decrease of the expression level of αj.
In this sense, condition (1) formalises the intuitive interpretation of the signs
in the interaction graph. A source of a positive (resp. negative) interaction
will never act as an inhibitor (resp. activator) of the corresponding target.
The interaction graph is global, not depending on the current state of the
system.

The formalism becomes much more flexible when allowing local interaction
graphs that describe the interactions occurring between the components of the
system in a given state. The local view allows for modelling systems including
components acting as both activators or inhibitors, depending on the state of
the other components (as mentioned above) or even depending on their own
expression level (e. g. activating at low concentration levels, inhibiting at high
levels). A notion of local interaction graphs has been proposed in [6].

The modelling approach we introduce in the following sections is also of local
character and thus has the potential to capture the situations described in the
preceding paragraph. Consequently, we do not require the constraints given in
(1). We continue to use the formal definitions given in Section 2.1, in order to
illustrate the development of our approach starting from the Thomas formal-
ism. Furthermore, we will assume that condition (1) holds when comparing
the dynamical behaviour resulting from both approaches.

3 Timed Automata

In this section we formally introduce timed automata. We mainly use the
definitions and notations given in [1]. To introduce the concept of time in
our system, we consider a set C := {c1, . . . , cn} of real variables that behave
according to the differential equations ċi = 1. These variables are called clocks.
They progress synchronously and can be reset to zero under certain conditions.
We define the set Φ(C) of clock constraints ϕ by the grammar

ϕ ::= c ≤ q | c ≥ q | c < q | c > q |ϕ1 ∧ ϕ2 ,

where c ∈ C and q is a rational constant.

A clock interpretation is a function u : C → R≥0 from the set of clocks to the
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non-negative reals. For δ ∈ R≥0, we denote by u + δ the clock interpretation
that maps each c ∈ C to u(c) + δ. For Y ⊆ C, we indicate by u[Y := 0] the
clock interpretation that maps c ∈ Y to zero and agrees with u over C \ Y . A
clock interpretation u satisfies a clock constraint ϕ if ϕ(u) = true. The set of
all clock interpretations is denoted by RC

≥0.

Definition 5 A timed automaton is a tuple (L, L0, Σ, C, I, E), where L is a
finite set of locations, L0 ⊆ L is the set of initial locations, Σ is a finite set
of events (or labels), C is a finite set of clocks, I : L → Φ(C) is a mapping
that labels each location with some clock constraint called the invariant of the
location, and E ⊆ L× Σ× Φ(C)× 2C × L is a set of switches.

A timed automaton can be represented as a directed graph with vertex set L.
The vertices are labelled with the corresponding invariants and are marked as
initial locations if they belong to L0. The edges of the graph correspond to
the switches and are labelled with an event, a clock constraint called guard
specifying when the switch is enabled, and a subset of C comprising the clocks
that are reset to zero with this switch. While switches are instantaneous, time
may elapse in a location. To describe the dynamics of such an automaton
formally, we use the notion of a transition system.

Definition 6 Let A be a timed automaton. The (labelled) transition system
TA associated with A is a tuple (Q,Q0, Γ,→), where Q is the set of states
(l, u) ∈ L × RC

≥0 such that u satisfies the invariant I(l), Q0 comprises the
states (l, u) ∈ Q where l ∈ L0 and u ascribes the value zero to each clock, and
Γ := Σ ∪ R≥0. Moreover, →⊆ Q× Γ×Q is defined as the set comprising

• (l, u)
δ−→ (l, u + δ) for δ ∈ R≥0 such that for all 0 ≤ δ′ ≤ δ the clock

interpretation u + δ′ satisfies the invariant I(l), and
• (l, u)

a−→ (l′, u[R := 0]) for a ∈ Σ such that there is a switch (l, a, ϕ, R, l′)
in E, u satisfies ϕ, and u[R := 0] satisfies I(l′).

The elements of → are called transitions.

The first kind of transition is a state change due to elapse of time, while the
second one is due to a location-switch and is called discrete. Again we can
visualise the object TA as a directed graph with vertex set Q and edges cor-
responding to the transitions given by →. Note, that by definition the set
of states may be infinite and that the transition system is in general nonde-
terministic, i. e., a state may have more than one successor. Moreover, it is
possible that a state is the source for edges labelled with a real value as well
as for edges labelled with events. However, although every discrete transition
corresponds to a switch in A, there may be switches in A that do not lead to a
transition in TA. That is due to the additional conditions placed on the clock
interpretations.
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Finally, we obtain a modified transition system by considering only the loca-
tion vectors as states, dropping all transitions labelled with real values, but
keeping every discrete transition of TA. We call this the discrete (or symbolic)
transition system of A.

4 Modelling with Timed Automata

In order to model a gene regulatory network as a timed automaton, we first
introduce components that correspond to the genes of the network. They con-
stitute the building blocks that compose the automaton, representing the net-
work dynamics much in the same way n timed automata are integrated to
represent a product automaton (see [1]).

In the following, let N = (I, K(I)) be a gene regulatory network comprising
the genes α1, . . . , αn. We will illustrate each step of the modelling process with
the example introduced in Fig. 1.

4.1 Constructing the Components

For i ∈ {1, . . . , n} we define the component Ai := (Li, L
0
i , Σi, Ci, Ii, Ei) cor-

responding to αi according to the syntax of timed automata. In addition we
will label the locations with a set of switch conditions.

Locations: We define the location set Li as the set comprising the elements αk
i

for k ∈ {0, . . . , pi}, αk+
i for k ∈ {0, . . . , pi − 1}, and αk−

i for k ∈ {1, . . . , pi}.
The location αk

i represents a situation where gene αi maintains expression
level k. We call such a location regular. If the superscript is k+ (resp. k−),
the expression level is k but the concentration of the gene product tends to
increase (resp. decrease). Those locations are called intermediate. We define
L0

i := {αk
i | k ∈ {0, . . . , pi}}.

Example 7 As shown in Fig. 2, the component A1 corresponding to gene α1

of the example given in Fig. 1 contains two regular locations signifying its
expression levels 0 and 1. Component A2 has three regular locations, namely
α0

2, α1
2 and α2

2, since three distinct expression levels are associated with gene
α2.

In order to measure time delays, we need to know when a gene starts the
process of increasing or decreasing its expression level. We achieve this by
introducing the intermediate locations. For example, the location α0+

1 repre-
sents the situation that gene α1 is in the process of changing its expression
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ι(l1) < 1 ∧ ι(l2) < 2

Fig. 2. Components A1 and A2 representing the genes α1 and α2 in Figure 1.

level from zero to one. Note that the expression level in this location is still 0,
indicated by the number in the superscript.

Events: The events in Σi correspond to the intermediate locations. We set
Σi := {ak+

i , am−
i | k ∈ {0, . . . , pi − 1}, m ∈ {1, . . . , pi}}. These events will be

used later on to identify certain discrete transitions starting in the intermediate
locations, namely those that result in a change of expression level. For example,
the event a0+

1 signifies that the expression level of gene α1 changes from zero
to one.

Clocks: For each gene we use a single clock, i. e., Ci := {ci}.

Invariants: We define the mapping Ii : Li → Φ(Ci) as follows. Every regular
location αk

i is mapped to ci ≥ 0 (evaluating to true). That is, the question
whether or not the system remains in a regular location does not depend on the
clock values. Now, we make the first step in incorporating time delays. Since
it is not realistic to assign an exact time delay to a biological process such as
change of expression level, we rather use an interval bounded by a maximal
and minimal time delay. For each intermediate location αkε

i , ε ∈ {+,−}, we
choose T kε

i ∈ Q≥0 and set Ii(α
kε
i ) = (ci ≤ T kε

i ). The value T kε
i signifies the

maximal time delay before the expression level of αi changes to k+1, if ε = +,
or to k − 1, if ε = −.

Switches: To specify the guard conditions on the switches, we choose time
constants tk+

i , tl−i ∈ Q≥0 for all k ∈ {0, . . . , pi − 1}, l ∈ {1, . . . , pi}. There
are two kinds of switches in the set Ei. For all k ∈ {0, . . . , pi − 1}, we

have (αk+
i , ak+

i , ϕk+
i , {ci}, αk+1

i ) ∈ Ei, where ϕk+
i = (ci ≥ t

k+)
i ), represent-
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ing increase of expression level. Furthermore, for l ∈ {1, . . . , pi}, the switch
(αl−

i , al−
i , ϕl−

i , {ci}, αl−1
i ) with ϕl−

i = (ci ≥ tl−i ) belongs to Ei and represents
expression level decrease. The given time constraints determine the minimal
time delay before a change in expression level can occur. Choosing the time
constants associated with the guards strictly smaller than those associated
with the invariants of the corresponding intermediate location leads to inde-
terministic behaviour of the system in this location.

Switch conditions: In a last step, we have to incorporate information of network
interactions and parameters. We label each location with conditions concern-
ing the expression levels of the interacting genes. If the conditions are met, a
change in the location is indicated. Note that in general these conditions can
only be evaluated in the network context, since information about the current
location of all interacting genes is needed.

To formulate the switch conditions, we need to know how to obtain from a
location the expression level of the corresponding gene. We use the function
ι :

⋃
j∈{1,...,n} Lj → N0 that maps the locations αk

j , αk+
j and αk−

j to k.

Let k ∈ {1, . . . , pi − 1} and consider a location of Ai that represents expres-
sion level k. First we determine the resources (see Def. 2) that influence the
behaviour of Ai in this location. For every αj ∈ Pred(αi) and lj a location of
Aj let

λ
αj

i (lj) :=

 ι(lj) ≥ bij , εij = +

ι(lj) < bij , εij = −
, λ

αj

i (lj) :=

 ι(lj) < bij , εij = +

ι(lj) ≥ bij , εij = −
.

Thus, if λ
αj

i (lj) evaluates to true, then the location lj of Aj represents a
resource of αi. If the negation is true, then lj does not represent a resource.
In order to find out whether or not a location change in Ai is indicated, we
have to consider the parameter values that determine the dynamics of the
system. Let ω1, . . . , ωm1

i
, υ1, . . . , υm2

i
be the subsets of Pred(αi) such that the

parameter inequalities Kαi,ωh
> k for all h ∈ {1, . . . ,m1

i } as well as Kαi,υh
< k

for all h ∈ {1, . . . ,m2
i } hold.

Example 8 In our example from Fig. 1 we obtain for α2 and k = 1 the sets
ω1 = {α1, α2}, υ1 = ∅ and υ2 = {α2}.

Now we combine the above inequalities to derive conditions that allow us to
check whether the composed system is in a state that indicates a change in
the expression level of αi. Let l ∈ L1×· · ·×Ln, where li is the chosen location
in Ai, and ρ = ωh or ρ = υh. Then we define

λρ
i (l) :=

∧
αj∈ρ

λ
αj

i (lj) ∧
∧

αj∈Pred(αi)\ρ
λ

αj

i (lj).
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If λωh
i (l) is true for some ωh, then an increase of expression level of gene αi

is indicated. If λυh
i (l) is satisfied for some υh, then the expression level will

decrease.

Example 9 For our running example and with ω1, υ1 and υ2 as calculated
above we obtain λω1

2 (l) = (ι(l1) < 1) ∧ (ι(l2) < 2), λυ1
2 (l) = (ι(l1) ≥ 1) ∧

(ι(l2) ≥ 2) and λυ2
2 (l) = (ι(l1) ≥ 1) ∧ (ι(l2) < 2). Therefore, if the system

is in state l′ = (α0+
1 , α1

2), for instance, the condition λω1
2 (l′) is true and the

expression level of α2 should increase, while for l = (α1
1, α

1
2) condition λυ2

2 (l)
is satisfied and indicates expression level decrease. Note that condition λυ1

2 (l)
is not satisfied.

In order to induce a corresponding change in expression level, it is sufficient
if the condition λωh

i (l) resp. λυh
i (l) holds for some ωh resp. υh. Due to this

observation we set

Λk+
i (l) :=

∨
h∈{1,...,m1

i }
λωh

i and Λk−
i (l) :=

∨
h∈{1,...,m2

i }
λυh

i .

We define Λ0+
i and Λpi−

i accordingly.

Now, we assign all locations αk
i , k ∈ {1, . . . , pi − 1} the conditions Λk+

i and
Λk−

i . The location α0
i resp. αpi

i is labelled with Λ0+
i resp. Λpi−

i only, since the
location represents the lowest resp. highest expression level possible. Further-
more, we want to check in an intermediate location whether the condition that
led to the process of changing the expression level is still valid. If that is not
the case, the system should not remain in that location Thus, we associate
with location αk+

i the condition ¬Λk+
i for all k ∈ {0, . . . , pi − 1}, and allot to

location αk−
i the condition ¬Λk−

i for all k ∈ {1, . . . , pi}.

All the above considerations on how the switch conditions should influence
the behaviour of the system will be realised in the definition of the timed
automaton representing the network dynamics.

Formally speaking, the components defined above are timed automata. How-
ever, it does not make sense to evaluate their behaviour in isolation from
each other. This becomes apparent when looking at the graph representation.
Most locations in the automaton Ai are not connected by edges. Every path
in the graph contains at most one edge. Figure 2 illustrates this observation.
The behaviour of the gene regulatory network is captured when allowing the
components to interact, the rules of interaction given by the switch conditions.
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4.2 Simplifying the Switch Conditions

The definition of the switch conditions reflects the local character of our mod-
elling approach. The boolean value resulting from the evaluation of the switch
conditions obviously depends on the state the system is in. This allows for a
flexible description of interactions between the components of the network as
already discussed in Section 2.2.

However, given a concrete model, it is often possible to simplify the switch
conditions. Assume, for instance, that the Snoussi condition (1) holds and
define sets ω1, . . . , ωm1

i
, υ1, . . . , υm2

i
as in the preceding section. Then it is suf-

ficient to define λωh
i (l) :=

∧
αj∈ωh

λ
αj

i (lj), since the addition of another re-
source never results in a smaller parameter value. An increase of expression
level is indicated if

∧
αj∈ωh

λ
αj

i (lj) is true regardless of the expression level of
predecessors of αi not contained in ωh. For the same reason we can define
λυh

i (l) :=
∧

αj∈Pred(αi)\υh
λ

αj

i (lj).

Moreover, whenever ωh1 ⊆ ωh2 for sets ωh, then λ
ωh1
i (l) is true if λ

ωh2
i (l) is

true. Since condition (1) implies that Kαi,ωh2
≥ Kαi,ωh1

> k, we can delete

condition λ
ωh2
i (l) from the expression Λk+

i (l). Analogously, if υh1 ⊆ υh2 , we
can delete the condition λ

υh1
i (l) from the expression Λk−

i (l). Figure 2 shows
the components A1 and A2 corresponding to the genes of our running example,
which satisfies condition (1). The switch conditions are given in the simplified
form explained above.

In general, any inequality concerning the expression level of the location the
inequality is associated with can be evaluated immediately. For example, the
location α2

2 in Fig. 2 is labelled with the switch condition ι(l1) ≥ 1∨ ι(l2) ≥ 2.
Since ι(α2

2) ≥ 2, the switch condition in that location is always true, regardless
of the state of A1.

4.3 Modelling the Network

Combining the components A1, . . . , An, we now construct the timed automa-
ton AN := (L, L0, Σ, C, I, E) representing the whole network N . We define
L := L1 × · · · × Ln, L0 := L0

1 × · · · × L0
n and Σ := {a} ∪ ⋃

i∈{1,...,n} Σi. Here
a stands for a general event, which is used to indicate that the switch is de-
fined by means of the switch conditions of the components Ai (see below). A
location in L is called regular, if all of its components are regular, and inter-
mediate otherwise. Furthermore, we define the set of clocks C :=

⋃
i∈{1,...,n} Ci

and I : L → Φ(C), (l1, . . . , ln) 7→ (I1(l1) ∧ · · · ∧ In(ln)). The set of switches
E ⊆ L× Σ× Φ(C)× 2C × L is comprised of the following elements:
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• For every i ∈ {1, . . . , n} and every switch (li, ai, ϕi, Ri, l
′
i) ∈ Ei the tuple

(h, ai, ϕi, Ri, h
′), with h, h′ ∈ L, hj = h′j for all j 6= i, hi = li and h′i = l′i, is

a switch in E. That is, we preserve the switches of the components.
• Let (l, a, ϕ, R, l′) ∈ L × Σ × Φ(C) × 2C × L with ϕ := true. Let J be the

set of those j ∈ {1, . . . , n} such that for each lj, j ∈ J one of the associated
switch conditions is true. Assume R comprises the clocks cj, j ∈ J . Let
li = l′i for all i /∈ J , and let, for all j ∈ J ,

l′j =



αk−
j , if lj = αk

j for some k and Λk−
j (l) = true

αk+
j , if lj = αk

j for some k and Λk+
j (l) = true

αk
j , if lj = αk−

j for some k and ¬Λk−
j (l) = true

αk
j , if lj = αk+

j for some k and ¬Λk+
j (l) = true

(2)

Then (l, a, ϕ, R, l′) is a switch in E.

Although the formal definition of the switches looks quite complicated, the
actual meaning is straightforward. A location change occurs when the current
state of locations allows for a change. The switch conditions Λk+

j , Λk−
j carry

the information which conditions, depending on the current location of A, the
expression levels of the genes influencing αj have to satisfy in order to induce
a change in the expression level of αj (see motivation of switch conditions
of components Ai). Furthermore, changes in the expression level of a gene
happen gradually. That is, for every two locations l, l′ connected by a switch
we have |ι(li)− ι(l′i)| ≤ 1 for all i ∈ {1, . . . , n}. The event a is used to identify
the switches that require checking the switch conditions of some location.

Example 10 Figure 3 shows a part of the automaton derived from the compo-
nents A1 and A2 of our running example. Let us consider the location (α0

1, α
0
2).

There is no switch in A1 starting in location α0
1, and neither is there a switch

in A2 starting in α0
2 as can be seen in Fig. 2. So there is no switch starting in

(α0
1, α

0
2) that originates from the switches of the components.

Let us now evaluate the switch conditions in α0
1 and α0

2 given in Fig. 2. We
have ι(α0

1) = ι(α0
2) = 0 < 1. Thus both switch conditions are true in (α0

1, α
0
2).

According to (2) we obtain the switch ((α0
1, α

0
2), a, true, {c1, c2}, (α0+

1 , α0+
2 )).

This switch represents the following situation. If both genes α1 and α2 have
expression level zero, neither one inhibits the other. Therefore, both genes start
to increase their expression level. This is represented by the state (α0+

1 , α0+
2 ).

For both components of (α0+
1 , α0+

2 ) there exist switches in A1 resp. A2. They are
preserved in the automaton A and we obtain the switches ((α0+

1 , α0+
2 ), a0+

1 , (c1 ≥
t0+
1 ), {c1}, (α1

1, α
0+
2 )) and ((α0+

1 , α0+
2 ), a0+

2 , (c2 ≥ t0+2 ), {c2}, (α0+
1 , α1

2)). They
represent the crossing of the corresponding threshold between expression level
zero and one. Furthermore, we have to check the switch conditions in α0+

1

12



α0+
1 α0+

2

c1 ≤ T 0+
1 ∧ c2 ≤ T 0+

2

α0
1α1

2

c1 ≥ 0 ∧ c2 ≥ 0

α1
1α1

2

c1 ≥ 0 ∧ c2 ≥ 0

α0
1α0

2

c1 ≥ 0 ∧ c2 ≥ 0

α1
1α0

2

c1 ≥ 0 ∧ c2 ≥ 0

α1−
1 α0

2

c1 ≤ T 1−
1 ∧ c2 ≥ 0

α0+
1 α1

2

c1 ≤ T 0+
1 ∧ c2 ≥ 0

α0
1α1−

2

c1 ≥ 0 ∧ c2 ≤ T 1−
2

α1
1α0+

2

c1 ≥ 0 ∧ c2 ≤ T 0+
2

α1−
1 α1−

2

c1 ≤ T 1−
1 ∧ c2 ≥ T 1−

1

c1 ≥ t1−1

a1−
1

{c1}

a

a0+
1

a

a

{c1}

{c1}{c1}

{c1}

{c1}

true

c1 ≥ t0+1

true

true

true
a

true

a

{c2}

c2 ≥ t0+2

a0+
2

{c2}

true
a

{c2}

c2 ≥ t1−2
a1−
2

{c2}
{c1, c2}

c1 ≥ t1−1a1−
1

c2 ≥ t0+2

a0+
2

{c2}

a0+
1

c1 ≥ t0+1

{c2}
{c1, c2}

c2 ≥ t1−2

a1−
2

Fig. 3. A part of the timed automaton A constructed from A1 and A2 given in
Fig. 2.

and α0+
2 . Neither one is satisfied, so there is no switch starting in (α0+

1 , α0+
2 )

labelled with a.

From state (α1
1, α

0+
2 ) there is the switch ((α1

1, α
0+
2 ), a0+

2 , (c2 ≥ t0+2 ), {c2}, (α1
1, α

1
2)),

which is preserved from A2, as well as the switch ((α1
1, α

0+
2 ), a, true, {c2}, (α1

1, α
0
2)).

The latter reflects the fact that the switch condition in α0+
2 is met, while the

condition in α1
1 is not true in state (α1

1, α
0+
2 ).

Note that at this point we have not yet evaluated any of the time constraints
placed on switches and locations. In the next step we have to determine which
of the paths in the graph representing the automaton A correspond to possible
dynamical behaviours.

4.4 The Associated Transition System

Let TA = (Q,Q0, Γ,→) be the transition system associated with A as defined
in Section 3. We will refine the system in one aspect, which leads to a smaller
set of possible transitions. Whenever (l, u) ∈ Q is a state such that there is
some transition (l, u)

a−→ (l′, v) to some state (l′, v) ∈ Q, we delete every

transition of the form (l, u)
δ−→ (l, u + δ) regardless of the value of δ. We call

a an urgent event. That is to say, whenever some transition is labelled with
the urgent event a, it is not possible for time to elapse further in location
l. However, there may be further discrete transitions starting in (l, u). To

13



illustrate this, we take a look at location (α0+
1 , α1

2) in Fig 3 and assume we are
in a state (α0+

1 , α1
2, τ1, τ2). Since there is a switch labelled with a starting in

this location, we obtain two possible transitions starting in this state, namely

(α0+
1 , α1

2, τ1, τ2)
a−→ (α0

1, α
1
2, 0, τ2) and (α0+

1 , α1
2, τ1, τ2)

a0+
1−→ (α1

1, α
1
2, 0, τ2). If we

want to put even stronger emphasis on the switches derived from the switch
conditions, we delete all transitions other than that labelled with a starting
in (l, u), and call a an overriding event. Thus, in our example above only the
switch mentioned first would remain. Unless otherwise stated, we assume in
the following that a is urgent.

Furthermore, note that a transition labelled with a never leads to a change
in the expression levels of the genes, and that the set J in the definition of
the second kind of switch is chosen maximal. Thus, if a path in TA starts in
a regular location and its first transition is labelled with a, then the second
transition in the path will not be labelled with a. This can be interpreted as
follows. Starting in a regular state, all commands for a location change caused
by the current distribution of resources, evaluated via the switch conditions,
happen simultaneously. This leads to a location where each component is ei-
ther in a location indicating increase or decrease of expression level or remains
in the regular location of the original state. In this new state no switch con-
dition of a component location is satisfied, since the expression levels of all
components stayed the same. Thus, all transitions starting in the new location
are either due to elapse of time or discrete transitions originating from some
component Ai.

Again we are able to identify steady states of the system by the lack of outgoing
edges. Here, a discrete state l ∈ L is called a steady state if TA does not contain
a discrete transition starting in (l, u), for all clock interpretations u.

To analyse the dynamics of the gene regulatory network we consider the paths
in TA that start in some initial state in Q0. Questions of interest are for example
if a steady state is reachable from a given initial location via some path in TA.
We will discuss the analysis of TA in a later section.

5 Comparison of the Models

In this section, we aim to show that on the one hand the information inherent
in the state transition graph from Definition 3 can also be obtained from the
transition system TA of a suitable timed automaton A. On the other hand,
the modelling approach via timed automata offers possibilities to incorporate
information about gene regulatory networks that cannot be included in the
Thomas model, and thus leads to a refined view on the dynamics of the system.
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Let SN be the state transition graph corresponding to N and A the timed
automaton derived from N . We set T kε

i , tkε
i = 0 for all i ∈ {0, . . . , n}, ε ∈

{+,−}. Thus every guard condition evaluates to true and time does not elapse
in the intermediate locations.

Next we derive a graph G from TA. First we identify locations of Ai rep-
resenting the same expression level, i. e., for k ∈ {1, . . . , pi − 1} we define
vαi

k := {αk
i , α

k+
i , αk−

i }, vαi
0 := {α0

i , α
0+
i } and vαi

pi
:= {αpi

i , αpi−
i }. Let V αi :=

{vαi
k | k ∈ {0, . . . , pi}} and V := V α1 × · · · × V αn be the vertex set of G.

Furthermore, there is an edge v → w, if v 6= w and if there is a path in TA

from some state (l, u), such that l is regular, to a state (l′, u′) satisfying l′i ∈ wi

for all i, such that every discrete state on the path other than l′ is an element
of v1×· · ·×vn. The condition to start in a regular state l ensures that the first
discrete transition occurring is labelled with a. This excludes the possibility of
a change of expression level that does not correspond to the parameter values.
We can drop the condition, if we declare a an overriding event.

Now, we need to show that SN is contained in G. For the sake of completeness
we prove the following stronger statement.

Theorem 11 Suppose that the parameter constraints (1) associated with the
Thomas formalism are satisfied. Then the graphs SN and G are isomorphic.

PROOF. We define f : Sn → V, (s1, . . . , sn) 7→ (vα1
s1

, . . . , vαn
sn

). Then it is
easy to see that f is a bijection.

Let s → s′ be an edge in SN . We have to show that f(s) → f(s′) is an edge
in G. Set v := f(s) and w := f(s′). According to the definition of edges in
SN , there is a j ∈ {1, . . . , n} such that s′j = sj + sgn(Kαj ,Rj(s) − sj) 6= sj and
si = s′i for all i ∈ {1, . . . , n} \ {j}. Thus, vi = wi for all i 6= j, and vj 6= wj.

First we consider the case that sj < Kαj ,Rj(s). It follows that sj 6= pj, and thus

α
sj

j , α
sj+
j ∈ vj, and s′j = sj + 1. We choose l ∈ L such that li = αsi

i for all
i ∈ {1, . . . , n}, thus l ∈ v1 × · · · × vn is regular. Furthermore, we choose the
clock interpretation u that assigns each clock the value zero.

We have Rj(s) ⊆ Pred(αj) and, by definition, we know that λ
Rj(s)
j (l), and

thus the switch condition Λ
sj+
j (l), is true. It follows that there is a switch

(l, a, ϕ, R, l̃) ∈ E with ϕ = true, l̃j = α
sj+
j and l̃i ∈ vi for all i 6= j. Thus we find

a transition (l, u)
a−→ (l̃, u). Since time is not allowed to elapse in intermediate

locations, and since no transition starting in (l̃, u) is labelled with a according
to the observations made in the preceding section, every transition starting in
(l̃, u) will lead to a state that differs from (l̃, u) in one component of the location

vector only. Moreover, we have (α
sj+
j , a

sj+
j , ϕ

sj+
i , {cj}, α

sj+1
j ) ∈ Ej and thus
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there is a transition (l̃, u) → (l′, u) labelled with a
sj+
j , with l′j = α

sj+1
j ∈ wj

and l′i = l̃i ∈ vi = wi for i 6= j. It follows that f(s) = v → w = f(s′) is an
edge in G.

The case that sj > Kαj ,Rj(s) and thus s′j = sj − 1 can be treated analogously.

Now let v → w be an edge in G. We set s := f−1(v) and s′ := f−1(w).
According to the definition there is a path ((l1, u1), . . . , (lm, um)) in TA such
that l1 is regular, lji ∈ vi for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m− 1} and lmi ∈ wi

for all i ∈ {1, . . . , n}. Since l1 6= lm, there is some discrete transition in
the path. Since every component of l1 is regular, and thus the only discrete
transition starting there is labelled by a, and since a is an urgent event, we
can deduce that (l1, u1) → (l2, u2) is labelled by a. Then l2 has at least one
component which is an intermediate location. Let J ⊆ {1, . . . , n} be such that
l2j is an intermediate location for all j ∈ J , and l2i is a regular location for
all i /∈ J . Then l2i = l1i for all i /∈ J . Since time is not allowed to elapse in
the intermediate locations, the transition from (l2, u2) to (l3, u3) has to be
discrete. Moreover, we know that the transition is not labelled by a, since the
first transition of the path is already labelled that way. It follows that there
is j ∈ J such that l3j is regular, l3j 6= l2j , and l3i = l2i for all i 6= j. Furthermore,
the expression levels of gene αj in location l1j and in location l3j differ. We can
deduce that l3j /∈ vj and thus l3j ∈ wj, m = 3 and wi = vi for all i 6= j. We

have l1j = α
sj

j and l3j = α
s′
j

j and |sj − s′j| = 1.

We first consider the case that s′j = sj + 1, i. e., l1j = α
sj

j , l2j = α
sj+
j and

l3j = α
sj+1
j . Since there is a transition from (l1, u1) to (l2, u2), we can deduce

that the switch condition Λ
sj+
j (l1) evaluates to true. Thus, there exists a subset

ω of Pred(αj) such that Kαj ,ω > sj and λω
j (l1) is true. By definition of the

resources, we have Rj(s) ⊃ ω and thus Kαj ,Rj(s) ≥ Kαj ,ω > sj according to
condition (1). It follows that s′=sj +1 = sj + sgn(Kαj ,Rj(s)− sj) and thus that
s → s′ is an edge in the state transition graph SN .

The case that s′j = sj − 1 can be treated analogously. 2

In the above proof we used the most basic version of a timed automaton rep-
resenting the network in question. Furthermore, we simplified the transition
system TA. Obviously, our modelling approach is designed to incorporate ad-
ditional information about the biological system, e.g. about the actual values
of synthesis and decay rates. Thereby we can obtain a more precise descrip-
tion of the dynamics of the system. For example, we may be able to discard
certain paths in the state transition graph that violate conditions involving
the time delays (see the example in the next section). Furthermore, we can
evaluate stability and feasibility of a certain behaviour, i. e., a path in the
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discrete transition system, in terms of clock interpretations that allow for that
behaviour. The stricter the conditions the clock interpretations have to satisfy
to permit a certain behaviour, the less allowance is made for fluctuations in
the actual time delays of the genes involved.

The intermediate locations give supplementary information about the be-
haviour of the genes. For instance, it is possible to distinguish between a
gene keeping the same expression level because there is no change in the ex-
pression levels of the genes influencing it, and the same behaviour due to
alternating opposed influences. In the first case, the gene stays in the regular
location representing the expression level, in the latter case it also traverses
the corresponding intermediate locations.

Moreover, although this model uses asynchronous updates, it also allows for
synchronous updates in the sense that two discrete transitions may occur at
the same point in time. That is due to the fact that transitions labelled with
a never result in a change of expression level. But, on the other hand those
transitions are the only ones resulting in a change in more than one component
of the location vector. Thus a change of expression level for more than one
component cannot happen in a single transition. However, it is possible that
two transitions resulting in change of expression level are executed successively,
i. e., time does not elapse between those transitions. This may lead to paths in
the transition system that are not incorporated in the state transition graph
of the Thomas formalism.

To clarify the above considerations we give an illustrative example in the next
section.

6 Bacteriophage λ

Temperate bacteriophages are viruses that can act in two different ways upon
infection of a bacterium. If they display the lytic response, the virus multiplies,
kills and lyses the cell. However, in some cases the viral DNA integrates into
the bacterial chromosome, rendering the viral genome harmless for the so-
called lysogenic bacterium.

6.1 Two Genes Model

In [9], the formalism of Thomas is used to describe and analyse the genetic
network associated with this behaviour. Figure 1 shows the simplified model
they propose, which we already used as a running example in the preceding
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d) T 0+
2 = 8 and t0+2 = 6 e) T 0+

2 = 7 and t0+2 = 5 f) T 0+
1 = 7 and t0+1 = 5

Fig. 4. Graphs representing the dynamical behaviour of the system derived from
the transition systems resulting from different specifications of the model. Unless
otherwise stated a is an urgent event and we set T k+

i = T k−
i = 10 and tk+

i = tk−i = 8
for all i ∈ {1, 2} and k ∈ {0, 1, 2}.

sections. The gene α1 corresponds to the gene cI and α2 to the gene cro of the
bacteriophage λ. The choice of the thresholds and parameter values is based
on experimental data. As already mentioned, they render the loop starting
in α1 ineffective with respect to the dynamics. The resulting state transition
graph in Fig. 1 shows two possible behaviours. The steady state in (1, 0) can
be related to the lysogenic, the cycle comprising the states (0, 1) and (0, 2) to
the lytic behaviour.

Now we analyse this network modelled as a timed automaton A with compo-
nents A1 and A2, see Fig. 2. A part of A is shown in Fig. 3, but we have not
yet considered the corresponding transition system. Figure 4 displays graphs,
which are condensed versions of the different transition systems derived from
A. With the exception of graph (c), the vertices of the graphs represent the
expression levels of the genes, which correspond to the integer value of the
location superscript. For instance, states (α0

1, α
1−
2 ) and (α0+

1 , α1
2) are both rep-

resented by (0, 1). We analyse the dynamics of the system starting only from
regular states. Thus, edges as well as paths in the graphs from a vertex (j1, j2)
to a vertex (i1, i2) signify that the system can evolve from (αj1

1 , αj2
2 ) to a state

where α1 and α2 have expression level i1 and i2 respectively. Thereby it tra-
verses states with expression levels corresponding to the vertices in the path,
provided there is an actual point in time in which the genes acquire those
expression levels. Again graph (c) is an exception to this representation and
its analysis will clarify the distinction.

We specify our model by choosing values for the maximal and minimal time
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delays. Set T k+
i = T k−

i = 10 and tk+
i = tk−i = 8 for all i ∈ {1, 2} and

k ∈ {0, 1, 2}. That is to say, the time delays for synthesis and decay are all in
the same range regardless of the gene and the expression level. If we declare
a to be an overriding event, we avoid the possibility that there is a path from
(0, 0) to (1, 1) in the graph derived from the corresponding transition system
as explained in Section 4.4. This is illustrated in Fig. 4 (a) and matches the
state transition graph in Fig. 1. In (b), a is again an urgent event. We obtain
two opposite edges between (0, 0) and (1, 1). However, there are very strict
conditions imposed on the time delays in order for the system to traverse
those edges, which we drew dotted for that reason. To clarify the situation,
we follow the path from (0, 0) to (1, 1) via the intermediate states shown in
(c). A switch labelled with a leads to (0+, 0+). Assuming that α1 reaches the
next expression level faster than α2 after a time delay 8 ≤ r1 ≤ 10, we reach
(1, 0+). In that situation two switches are enabled. One is labelled by a and
leads to (1, 0). Since time is not allowed to pass, whenever the actual time r2

that α2 needs to reach the expression level 1 differs from r1, that switch is
taken. Only in the case that both time delays are exactly equal, the system
will move via the switch labelled by a0+

Y to (1, 1). Analogous considerations
apply to the path via (0+, 1). It follows that although states (0, 0) and (1, 1)
form a cycle in the graph, it is not plausible that the system will traverse that
cycle. Once in the cycle, even the slightest perturbation of one of the time
delays suffices for the system to leave the cycle. It is unstable.

These considerations apply not only to the edges representing synchronous
update. In Fig. 4 (d) we change the values for T 0+

2 and t0+2 to express that the
synthesis of α2 is usually faster than that of α1. The system can reach the
state (1, 0) only if α2 needs the maximal and α1 the minimal time to change
their expression level. So, usually we would expect the system to reach the
cycle comprising (0, 1) and (0, 2), corresponding to the lytic behaviour of the
bacteriophage. If we know that α2 is always faster than α1 in reaching the
expression level 1, we can altogether eliminate both the edge leading from
(0, 0) to (1, 0), and the one leading to (1, 1), as shown in (e). There is no clock
interpretation satisfying the imposed conditions. If we reverse the situation
of α1 and α2, we eliminate the edges from (0, 0) to (0, 1) and (1, 1) as shown
in (f). In this case, the system starting in (0, 0) will always reach the steady
state (1, 0) representing the lysogenic response of the bacteriophage.

We have implemented the above system in UPPAAL, a tool for analysing sys-
tems modelled as networks of timed automata ([3], and http://www.uppaal.

com). Since UPPAAL uses product automata in the sense of [1], we had to
make some modifications in the modelling of the components. Primarily, we
converted the switch conditions to actual switches, which synchronise via the
input of an external component that ensures the desired update mechanisms of
the system. Using the UPPAAL model checking engine, we verified the above
mentioned dynamical properties of the different specifications of our model.
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Fig. 5. Extended model of the bacteriophage λ network. Only non-zero parameter
values are given

6.2 Four Genes Model

In [9] the authors furthermore discuss a more complete model of the consid-
ered bacteriophage system. They include the effects of not only genes cI and
cro but also of genes cII and N . The resulting model is shown in Fig. 5, the
parameter values are derived from experimental data and theoretical consid-
erations (see [9] for details). Again the lytic and lysogenic behaviour can be
identified in the state transition graph. The former is represented by the steady
state (2, 0, 0, 0), the latter by the cycle C comprising the states (0, 2, 0, 0) and
(0, 3, 0, 0). The timed automaton model consists of four components. Com-
ponent A1 corresponding to cI includes three regular and four intermediate
locations. Component A2 corresponding to cro includes four regular and six in-
termediate locations, and components A3 and A4 corresponding to cII and N
both have two regular and two intermediate locations. The parameter values
satisfy condition (1) which simplifies the switch conditions.

Again we have implemented the model in UPPAAL and analysed the dynami-
cal behaviour for different time constraints, starting with identical time values
regardless of corresponding gene and expression level. As a first result, we note
that the crucial roles of cI and cro, i. e., α1 and α2, are preserved in the fol-
lowing sense. If the values of T k+

1 and tk+
1 for k ∈ {0, 1, 2} are sufficiently big

in comparison with T l+
2 and tl+2 for l ∈ {0, 1, 2, 3}, then the state (2, 0, 0, 0) is

not reachable from the initial state (0, 0, 0, 0) while the cycle C is reachable.
That is, if the expression level increase of cI is slow relative to that of cro, the
system shows lytic behaviour. If the situation is reversed, the system shows
lysogenic behaviour. These observations are in accordance with the results for
the two gene model as illustrated in Fig. 4.

Now, we want to give an example how to incorporate information on the
system gathered from biological experiments (see [5] for an overview). When
transcription of the bacteriophage DNA is initiated, cro and N are the first
of our model components that are expressed. This is exactly the kind of infor-
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Fig. 6. Parts of the state transition graph resp. transition systems of the model
given in Fig. 5

mation we need in order to obtain a more concise model. Starting in the state
(0, 0, 0, 0) the given parameter values indicate expression level increase for the
genes cI, cro and N . According to the given data, we choose the values T 0+

2 ,
T 0+

4 , t0+
2 and t0+

4 smaller than the values T 0+
1 and t0+1 . The impact on the dy-

namical behaviour of the system is illustrated in Fig. 6 (a) and (b). In (a) we
see part of the state transition graph obtained from the model given in Fig. 5.
Starting in the state (0,0,0,0), representing the inactivity of the bacteriophage
DNA when introduced into the bacterial cell, all possible changes in expres-
sion level, i. e., for genes cI, cro and N , are taken into account. In the state
transition graph of the Thomas formalism we thus have three outgoing edges.
From the corresponding target states again every possible change in expres-
sion level is included in the graph, resulting in a strongly branched structure.
The impact of the additional information on the time constraints given above
is shown in (b). The transition from initial state (0, 0, 0, 0) to (1, 0, 0, 0) can
be excluded since it violates the temporal constraints. Furthermore, we can
derive that the second transition has to lead to state (0, 1, 0, 1), representing
expression of the genes cro and N in accordance with the experimental ob-
servations. Thus, we are able to exclude sizeable parts of the state transition
graph.

We want to point out a further advantage of our approach by taking a closer
look to the dynamics presented in Fig. 6. The part of the state transition
graph given in (a) contains two cycles. First, we have the cycle C representing
the lytic behaviour, second the cycle C ′ comprising the states (0, 2, 0, 1) and
(0, 3, 0, 1). According to the information inherent in the state transition graph,
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the system could remain in the cycle C ′ indefinitely. Figure 6 (c) shows the
cycle in a suitable transition system derived from the timed automaton model.
Starting from the regular location (α0

1, α
2
2, α

0
3, α

1
4) we enter the cycle by eval-

uating the switch conditions and executing a switch labelled with a. Now, α2

has to reach its next expression level sooner than α3 and α4 in order to reach
the state (α0

1, α
3
2, α

0+
3 , α1−

4 ), corresponding to the state (0, 3, 0, 1). Continuing
in that manner, we derive time constraints that have to be satisfied if the
system is to remain in the cycle. However, a close look shows that A4 always
remains in the location α1−

4 representing the process of gene N decreasing its
expression level from one to zero. After the corresponding time delay, N will
reach the expression level zero, thus forcing the system out of the cycle. Cycles
with this property have already been considered in [10].

The cycle C representing the lytic behaviour, as illustrated in Fig. 6 (d),
shows opposite characteristics. We enter the cycle from the regular state
(α0

1, α
2
2, α

0
3, α

0
4). The given parameter values, evaluated by means of the switch

conditions, indicate a change in expression level for gene cro only, leading to
a transition to (α0

1, α
2+
2 , α0

3, α
1
4). In fact, all transitions in the cycle concern

solely gene cro. The other genes remain in their respective stable regular loca-
tion. Thus, we can deduce that the actual values of the time delays concerning
the expression level changes from two to three and back do not influence the
behaviour of the system after reaching the cycle C.

Lastly, we take another look at the key players in the network. While the genes
cI and cro define the lysogenic and lytic states respectively, studies have shown
the importance of cII in the switching process (see [5]). Since cro and N are
the first to be expressed, the activation of cI transcription heavily depends
on cII. As for the time constraints concerning cI and cro discussed above, we
find that we can determine the decision between lysogeny and lytic behaviour
by evaluating the cII time delays with respect to those of cro. Again, if the
expression level increase of cII is sufficiently slow in comparison with that of
cro, the system will reach the lytic state. In the reversed situation, we obtain
lysogeny. However, the impact of cII cannot be correctly captured by our
model. The reason for this is the following. The parameter values for cI reflect
that cI can reach its highest expression level in the absence of cro, as well as
in the presence of cII. Thus, if either condition is met, the system moves to
the location representing increase of expression level which is labelled with the
corresponding time delay. However, the rate for synthesis of cI in the presence
of cII is much higher than in its absence. Thus, we need to consider distinct
time delays which depend on the current expression level of cII, if we want to
capture the resulting impact on the dynamical behaviour. This issue will be
addressed again in the following section.
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7 Perspectives

In this paper, we introduced a discrete modelling approach that extends the
established formalism of Thomas by incorporating constraints on the time
delays occurring in the operations of biological systems. We addressed some
of the advantages this kind of model offers, but naturally there is much room
for future work. One of the most interesting possibilities the model provides is
the evaluation of feasibility and stability of certain behaviours of the system
by means of the constraints imposed on the time delays. We may find cycles
in the transition system (implying homeostatic behaviour of the real system),
the persistence of which requires that equalities for time delays are satisfied.
It is highly unlikely that a biological system will sustain a behaviour which
does not allow for the slightest perturbation in its temporal processes. A cycle
persisting for a range of values for each time delay will be a lot more stable.
The merit of such considerations was already mentioned by Thomas (see [11]).
It calls for a thorough analysis using mathematical methods as well as testing
with substantial biological examples.

Furthermore, it seems worthwhile to relax some of the conditions imposed
by the Thomas formalism. We already emphasised the local character of our
approach regarding the interactions between the components of the network.
Thus we were able to avoid the restrictions induced by the parameter con-
straints (1). It also could be advantageous to allow a gene product to influence
a target gene depending on its concentration. For instance, it may be activat-
ing at low but inhibiting at high concentrations. Our approach clearly allows
for the modelling of such a situation, however the underlying formal frame-
work, i. e., the definitions of interaction graph, resources and/or parameter
values, has to be adapted to obtain a concise description.

A related observation is that our modelling formalism does not allow one to
distinguish between processes of expression level change, represented by some
intermediate location, caused by different situations. That is, we cannot cap-
ture the behaviour of a system where the change of expression level from some
level k to k + 1 (or k − 1) occurs with different time delays depending on the
state of the system. This could be achieved by allowing for different inter-
mediate locations that represent the same process of expression level change.
However, some thought has to be given to the possible definition of switches
between such intermediate locations.

We would like to close with some remarks regarding the analysis of the dy-
namics of our model. The theory of timed automata provides powerful results
concerning analysis and verification of the model by means of model check-
ing techniques. For example, CTL and LTL model checking problems can
be decided for timed automata (see [2]). However, we face the state explosion

23



problem and moreover the task to phrase biological questions in terms suitable
for model checking. A thorough study of problems and possibilities of applying
model checking techniques to answer biologically relevant questions using the
modelling framework given in this paper seems necessary and profitable.
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