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1 Introduction
The so-called control variational method was introduced in several recent papers by
the authors (see [1, 10, 11, 13]), especially in connection with problems that are
related to the theory of Kirchho��Love arches or to various models of plates. Also
the full three-dimensional linear elasticity system has been studied in [13]. Much of
this material can be found in the recent monograph [7].
The basic idea is to re�ne the standard variational approach from the theory of
partial di�erential equations by using the tools of modern optimal control theory.
This o�ers more �exibility and allows to derive new results, both from a theoretical
and a numerical point of view.
It should be noted that already Pironneau and Glowinski (cf. [8, 9]) pointed out
that optimal control methods can be successfully applied to the numerical solution
of the biharmonic equation.
In this paper, we study via the control variational method the generalized Naghdi
model for three-dimensional curved rods, which was introduced by Ignat, Sprekels,
and Tiba in [5]. In the next section, we will recall this model, and in Section 3 we
demonstrate how optimal control theory can be applied to its study.
We underline that there are several possible ways to do this, which argues for the
�exibility of our method. We also mention the simplicity of the control approach:
for instance, the state equation used by us can be solved explicitly.
Finally, let us note that other approaches to curved rods can be found in the papers
[3] and [14].

2 The Naghdi model
Let θ̄ ∈ W 2,∞(0, L)3 , L > 0 , be the parametrization of a three-dimensional Jordan
curve, which will be the line of centroids of the curved rod, and let ω ⊂ IR2 be some
two-dimensional domain, which is not necessarily simply connected. If t̄, n̄, b̄ denote
the local orthonormal frame associated at each point x3 ∈ [0, L] with the curve θ̄ ,
we de�ne the geometric transformation

F : Ω = ω× ]0, L[→ F (Ω) = Ω̂ ⊂ IR3 ,

F (x̄) = F (x1, x2, x3) = θ̄(x3) + x1 n̄(x3) + x2 b̄(x3)

∀ (x1, x2) ∈ ω , ∀ x3 ∈]0, L[ . (2.1)
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In the following, we will need the Jacobian of F , J = ∇F , and its inverse, J(x̄)−1 =
(hij(x̄))i,j=1,3 . We have

J(x̄)−1 =




n1 − c t1x2

det J(x̄)
n2 − c t2x2

det J(x̄)
n3 − c t3x2

det J(x̄)

b1 +
c t1x1

det J(x̄)
b2 +

c t2x1

det J(x̄)
b3 +

c t3x1

det J(x̄)

t1
det J(x̄)

t2
det J(x̄)

t3
det J(x̄)




, (2.2)

det J(x̄) = 1 − β x1 − a x2 . (2.3)
The computations to verify (2.2), (2.3) are elementary and can be found in [7,
Chapter 6]. Moreover, in [7] the construction of a local frame is given that di�ers
from the classical Frenet or Darboux frames and requires just C1[0, L]3 regularity
for θ̄ . The coe�cients a, β, c ∈ L∞(0, L) appearing in (2.2), (2.3) are similar to
the torsion and curvature known from classical di�erential geometry and may be
obtained by the �equations of motion�:

t̄′(x3) = a(x3) b̄(x3) + β(x3) n̄(x3) ,

b̄′(x3) = −a(x3) t̄(x3) + c(x3) n̄(x3) ,

n̄′(x3) = −β(x3) t̄(x3) − c(x3) b̄(x3) . (2.4)

We also assume that the selection of axes in ω ⊂ IR2 is made in such a way that

0 =

∫

ω

x1 dx1 dx2 =

∫

ω

x2 dx1 dx2 =

∫

ω

x1 x2 dx1 dx2 , (2.5)

which is usual in the literature on curved rods, see [6]. If the diameter of ω is
su�ciently small, then |x1|, |x2| are small, and since β and a are bounded on
[0, L] , relation (2.3) shows that we may assume that

det J(x̄) ≥ K > 0 ∀ x̄ ∈ Ω . (2.6)

Then it is known that F : Ω → Ω̂ is a one-to-one transformation, and this justi�es
the geometric de�nition of the curved rod Ω̂ ⊂ IR3 , see [4, Thm. 3.1-1].
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The generalized Naghdi model may be stated as the following variational equation:

B(ȳ, v̄) = λ̃

∫

Ω

3∑
i,j=1

[
Ni(x3) h1i(x̄) + Bi(x3) h2i(x̄) + (τ ′i(x3) + x1 N ′

i(x3)

+ x2 B′
i(x3)) h3i(x̄)

] [
Mj(x3) h1j(x̄) + Dj(x3) h2j(x̄)

+(µ′j(x3) + x1 M ′
j(x3) + x2 D′

j(x3)) h3j(x̄)
]

det J(x̄) dx̄

+ µ̃

∫

Ω

∑
i<j

[
Ni(x3) h1j(x̄) + Bi(x3) h2j(x̄) + (τ ′i(x3) + x1 N ′

i(x3)

+ x2 B′
i(x3)) h3j(x̄) + Nj(x3) h1i(x̄) + Bj(x3) h2i(x̄)

+(τ ′j(x3) + x1 N ′
j(x3) + x2 B′

j(x3)) h3i(x̄)
]

·
[
Mi(x3) h1j(x̄) + Di(x3) h2j(x̄) + (µ′i(x3) + x1 M ′

i(x3)

+ x2 D′
i(x3)) h3j(x̄) + Mj(x3) h1i(x̄) + Dj(x3) h2i(x̄)

+ (µ′j(x3) + x1 M ′
j(x3) + x2 D′

j(x3)) h3i(x̄)
]

det J(x̄) dx̄

+ 2 µ̃

∫

Ω

3∑
i=1

[
Ni(x3) h1i(x̄) + Bi(x3) h2i(x̄) + (τ ′i(x3) + x1 N ′

i(x3)

+x2 B′
i(x3)) h3i(x̄)

] [
Mi(x3)h1i(x̄) + Di(x3) h2i(x̄)

+(µ′i(x3) + x1 M ′
i(x3) + x2 D′

i(x3)) h3i(x̄)
]

det J(x̄) dx̄

=
3∑

`=1

∫

Ω

f`(x̄)(µ`(x3) + x1 M`(x3) + x2 D`(x3)) det J(x̄) dx̄ , (2.7)

for any test functions µ̄ = (µ1, µ2, µ3) , M̄ = (M1,M2,M3) , D̄ = (D1, D2, D3) in
H1

0 (0, L)3 . We have v̄ = (µ̄, M̄ , D̄) ∈ H1
0 (0, L)9 , and ȳ = (τ1, τ2, τ3, N1, N2, N3, B1,

B2, B3) ∈ H1
0 (0, L)9 is the vector of the unknowns. The bilateral null conditions,

given by the choice of the space H1
0 (0, L) , correspond to a clamped curved rod. The

model (2.7) is deduced from the linear elasticity system under the assumption that
the displacement ȳ has the form

ȳ(x̂) = τ̄(x3) + x1 N̄(x3) + x2 B̄(x3) , ∀ x̂ ∈ Ω̂ , (2.8)

with x̄ = (x1, x2, x3) = F−1(x̂) ∈ Ω . A similar form is imposed for the test functions.
It should be clear that τ̄ describes the translation of the points on the line of
centroids, and the vectors N̄ + n̄ , B̄ + b̄ re�ect the deformation of the orthogonal
frame in the cross section (which remains plane but not necessarily orthogonal to
the tangent of the new centroid line, i.e., to θ̄′ + τ̄ ′ ). This allows for shear and
for length or volume changes after the deformation. The vector f̄ = (f1, f2, f3)
represents the body forces acting on the curved rods, λ̃ > 0 , µ̃ ≥ 0 are the Lamé
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coe�cients that characterize the elastic material, and the model is valid only for
small displacements.
The assumption (2.8), which is in fact a �rst-order approximation of the displace-
ment, enters the category of polynomial models for curved rods and allows to obtain
realistic results even for the corresponding shape optimization problems; see [2]. We
have called such a model a generalized Naghdi model in view of a certain similarity
with Naghdi models for shells (cf. [4, 12]).

3 The control problem
We do not explain �how and why� this particular problem has been chosen, and we
underline that this choice is not the only possible one (see the last remark in this
section). The basic property of the chosen optimal control problem is that it solves
system (2.7) and has a simple structure.
We formulate it now:

Min {λ̃
∫

Ω

3∑
i,j=1

Uii(x̄) Ujj(x̄) det J(x̄) dx̄ + µ̃

∫

Ω

∑
i<j

[Uij(x̄) + Uji(x̄)]2 det J(x̄) dx̄

+ 2 µ̃

∫

Ω

3∑
i=1

U2
ii(x̄) det J(x̄) dx̄ − 2

3∑
i=1

∫

Ω

fi(x̄) [τi(x3) + x1 Ni(x3)

+ x2 Bi(x3)] det J(x̄) dx̄} (3.1)

subject to the state system

Ni(x3) h1j(x̄)+Bi(x2) h2j(x̄)+ [τ ′i(x3)+x1 N ′
i(x3)+x2 B′

i(x3)] h3j(x̄) = Uij(x̄) in Ω ,
(3.2)

Ni(0) = Bi(0) = τi(0) = 0 , i = 1, 3 , (3.3)
and to the control constraints

U = {Uij}i,j=1,3 ∈ V ⊂ L2(Ω)9 . (3.4)

Here, V is the closed linear subspace that is generated from all functions in L2(0, L)
having zero mean value (i.e., their integral over [0, L] vanishes), used on the position
of τ ′i , N

′
i , B

′
i , i = 1, 3 . Then Ni, Bi can easily be computed by simple integration,

and one can form all the combinations indicated on the left side of (3.2) to gener-
ate V .
The state equation (3.2) is an ordinary di�erential system in the variable x3 ∈ [0, L] ,
while (x1, x2) ∈ ω appear as parameters. The constraint {Uij}i,j=1,3 ∈ V ensures
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that (3.2) has a unique solution that also satis�es

τi(L) = Ni(L) = Bi(L) = 0 , i = 1, 3 . (3.5)

One could impose (3.5) as a state constraint in the problem (3.1)�(3.3), but we
prefer to impose the restriction (3.4), which is explicit and constructive.

Theorem 3.1 The optimal control problem (3.1)�(3.3) has a unique optimal �pair�
U∗ = {U∗

ij}i,j=1,3 ∈ V and [τ ∗i , N∗
i , B∗

i ]i=1,3 ∈ H1
0 (0, L)9 .

Proof. Let L(U) denote the cost functional (3.1). Then

αL(U) ≥
∫

Ω

∑
i<j

[Uij(x̄)+Uji(x̄)]2 dx̄ +

∫

Ω

3∑
i=1

U2
ii(x̄) dx̄− c̄

3∑
i=1

L∫

Ω

[τ 2
i +N2

i +B2
i ]

1
2 dx3 ,

(3.6)
where α > 0 , c̄ > 0 , are constants obtained from λ̃, µ̃, |fi|2L2(Ω) , (2.3), and simple
binomial inequalities.
Using (3.2) in (3.6), and again some binomial inequalities, we obtain (where we
denote zi := τ ′i + x1 N ′

i + x2 B′
i ):

αL(U) ≥
∫

Ω

∑
i<j

[Ni h1j + Bi h2j + zi h3j + Nj h1i + Bj h2i + zj h3i]
2 dx̄

+

∫

Ω

3∑
i=1

[Ni h1i + Bi h2i + zi h3i]
2 dx̄ − c̄

3∑
i=1

L∫

Ω

[
τ 2
i + N2

i + B2
i

] 1
2 dx3

≥
∫

Ω

∑
i<j

(zi h3j + zj h3i)
2 dx̄ +

∫

Ω

3∑
i=1

z2
i h2

3i dx̄ − ĉ

3∑
i=1

L∫

0

[N2
i + B2

i ] dx3

− c̄

3∑
i=1

L∫

0

[τ 2
i + N2

i + B2
i ]

1
2 dx3 . (3.7)

Here, in the structure of the constant ĉ > 0 , we also use that hij ∈ L∞(Ω) , i, j =
1, 3 . We apply in (3.7) the following identities:

1

2

∑
i<j

(zi h3j+zj h3i)
2 +

3

2

3∑
i=1

z2
i h2

3i =
1

2

3∑
i=1

z2
i

3∑
j=1

h2
3j +

1

2

∑
i<j

(zi h3i+zj h3j)
2, (3.8)
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∫

Ω

z2
i dx̄ =

∫

Ω

[τ ′i + x1 N ′
i + x2 B′

i]
2 dx̄

=

L∫

0

∫

ω

(τ ′i)
2 dx̄ + 2

L∫

0

τ ′i N ′
i dx3

∫

ω

x1 dx1 dx2 + 2

L∫

0

τ ′i B′
i dx3

∫

ω

x2 dx1 dx2

+

L∫

0

(N ′
i)

2 dx3

∫

ω

x2
1 dx1 dx2 +

L∫

0

(B′
i)

2dx3

∫

ω

x2
2 dx1 dx2

+ 2

L∫

0

N ′
i B′

i dx3

∫

ω

x1 x2 dx1 dx2 ≥ c̃

L∫

0

[
(τ ′i)

2 + (N ′
i)

2 + (B′
i)

2
]

dx3 , (3.9)

with c̃ := min {meas(ω) ,
∫

ω
x2

1 dx1 dx2 ,
∫

ω
x2

2 dx1 dx2} ,
3∑

j=1

h2
3j =

1

det J(x̄)

3∑
j=1

t2j =
1

det J(x̄)
≥ č > 0 in Ω . (3.10)

Relations (3.9), (3.10) are a consequence of (2.5), respectively, of (2.2), (2.3). From
(3.7)�(3.10) we can infer that

αL(U) + c̄

3∑
i=1

L∫

0

[τ 2
i + N2

i + B2
i ]

1
2 dx3

≥ ĉ

3∑
i=1

[
|τi|2H1

0 (0,L) + |Ni|2H1
0 (0,L) + |Bi|2H1

0 (0,L)

]

− Ĉ

3∑
i=1

[
|Ni|2L2(0,L) + |Bi|2L2(0,L)

]2

, (3.11)

where ĉ, Ĉ, c̄ are some positive constants that do not depend on τi, Ni, Bi, Uij, i, j =
1, 3 .

Lemma 3.2 There is some δ > 0 such that

αL(U) + c̄

3∑
i=1

L∫

0

[
τ 2
i + N2

i + B2
i

] 1
2 dx3

≥ δ

3∑
i=1

[
|τi|2H1

0 (0,L) + |Ni|2H1
0 (0,L) + |Bi|2H1

0 (0,L)

]
(3.12)

∀ τi, Ni, Bi ∈ H1
0 (0, L) , i = 1, 3 , obtained by (3.2) from any {Uij}i,j=1,3 ∈ V .
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Proof. Owing to (3.6),

αL(U) + c̄

3∑
i=1

L∫

0

[
τ 2
i + N2

i + B2
i

] 1
2 dx3 ≥ 0 .

Assume that (3.12) is false. Then, to any ε > 0 there are some U ε = {U ε
ij}i,j=1,3 ∈

V , and {τ ε
i , N ε

i , Bε
i }i=1,3 6= 0 associated with it by (3.2), such that

ε

3∑
i=1

[
|τ ε

i |2H1
0 (0,L) + |N ε

i |2H1
0 (0,L) + |Bε

i |2H1
0 (0,L)

]

≥ αL(U ε) + c̄

3∑
i=1

L∫

0

[
(τ ε

i )2 + (N ε
i )2 + (Bε

i )
2
] 1

2 dx3

≥
∫

Ω

∑
i<j

[
U ε

ij(x̄) + U ε
ji(x̄)

]2
dx̄ +

∫

Ω

3∑
i=1

(U ε
ii)

2 dx̄ ≥ 0 . (3.13)

Notice that we may assume
3∑

i=1

[
|τ ε

i |2H1
0 (0,L) + |N ε

i |2H1
0 (0,L) + |Bε

i |2H1
0 (0,L)

]
= 1 ,

by scaling with the square root of this factor (if it di�ers from unity) in the equation
(3.2) and in the �rst and last term of (3.13). Then we may assume that

τ ε
i → τi , N ε

i → Ni , Bε
i → Bi , i = 1, 3 ,

weakly in H1
0 (0, L) and strongly in L2(0, L) .

Moreover, by virtue of the state equation (3.2), we also see that U ε
ij → Uij weakly

in L2(Ω) , on a subsequence. Also, {τi, Ni, Bi}i=1,3 satisfy together with {Uij}i,j=1,3

equation (3.2), while {Uij} ∈ V .
Passing to the limit in (3.13), we �nd that

∫

Ω

∑
i<j

[Uij(x̄) + Uji(x̄)]2 dx̄ +

∫

Ω

3∑
i=1

(Uii)
2 dx = 0 . (3.14)

From (3.14) it follows that

Ni h1i + Bi h2i + zi h3i = 0 , i = 1, 3 , (3.15)

Ni h1j + Bi h2j + zi h3j + Nj h1i + Bj h2i + zj h3i = 0 , i 6= j . (3.16)

Now �x j = j0 in (3.16), and let i1, i2 be the two possible choices of indices i
satisfying the condition in (3.16).
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We multiply (3.15), written for i = i1 or i2 , by h3j0 , and subtract the result from
(3.16) with j = j0 , multiplied by h3i1 , respectively, h3i2 . Adding the results to the
relation (3.15), written for i = j0 and multiplied by h3j0 , we see that

zj0

3∑
i=1

h2
3i = Γ̃j0(N̄ , B̄) , j0 = 1, 3 , (3.17)

where Γ̃j is some linear expression of N̄ , B̄ . By (2.2), we obtain from (3.17) that

τ ′i + x1 N ′
i + x2 B′

i = Γi(N̄ , B̄) , i = 1, 3 , (3.18)

where, again, Γi is linear in N̄ , B̄ .
Giving (x1, x2) ∈ ω several independent values, and taking into account (3.3), we
conclude that all the limit points {τi, Ni, Bi}i=1,3 , {Uij}i,j=1,3 , are identically zero
in their domains of de�nition.
Since the convergence of {τ ε

i , N ε
i , Bε

i }i=1,3 is strong in L2(0, L)9 , we can pass to
the limit in (3.11), combined with the �rst inequality in (3.13), to arrive at the
contradiction

0 ≥ ĉ > 0 .

This ends the proof of Lemma 3.2.

Proof of Theorem 3.1 (continued): Let {Un
ij}i,j=1,3 and {τn

i , Nn
i , Bn

i } be a
minimizing sequence in V × L2(0, L)9 for the problem (3.1)�(3.4). Clearly, L(Un)
is majorized from above, and inequality (3.12) shows that {τn

i , Nn
i , Bn

i }i=1,3 is
bounded in H1

0 (0, L)9 . Consequently, by (3.2), {Un
ij}i,j=1,3 is bounded in L2(Ω)9 .

Let {τ ∗i , N∗
i , B∗

i }i=1,3 and {U∗
ij}i,j=1,3 denote their respective weak limits, on a sub-

sequence. Clearly {U∗
ij}i,j=1,3 ∈ V , since V is a closed linear subspace. Now, we can

pass to the limit in (3.2) and use the weak lower semicontinuity of (3.1) to conclude
that {τ ∗i , N∗

i , B∗
i }i=1,3 and {U∗

ij}i,j=1,3 indeed give an optimal pair for the problem
(3.1)�(3.4).
The uniqueness is an automatic consequence of the next result and of (3.2).

Theorem 3.3 The optimal state {τ ∗i , N∗
i , B∗

i }i=1,3 is the unique solution to the sys-
tem (2.7) that governs the generalized Naghdi model.

Proof. For any {Vij}i,j=1,3 ∈ V , we de�ne the system in variations by

Mi(x3) h1j(x̄) + Di(x3) h2j(x̄) + [µ′i(x3) + x1 M ′
i(x3)

+ x2 D′
i(x3)] h3j(x̄) = Vij(x̄) , i, j = 1, 3 , (3.19)

Mi(0) = Di(0) = µi(0) = 0 , i = 1, 3 . (3.20)
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Next, we perform admissible variations about the optimal pair, given by

{τ ∗i , N∗
i , B∗

i }i=1,3 + λ{µi,Mi, Di}i=1,3 , and {U∗
ij}i,j=1,3 + λ{Vij}i,j=1,3 , λ ∈ IR .

Subtracting the associated costs, dividing by λ > 0 or λ < 0 , and taking the
limits as λ → 0 , the minimum property of {U∗

ij}i,j=1,3 yields the associated Euler
equation,

0 = λ̃

∫

Ω

3∑
i,j=1

[
U∗

ii Vjj + U∗
jj Vii

]
det J dx̄ + 2 µ̃

∫

Ω

∑
i<j

[
U∗

ij + U∗
ji

]
[Vij + Vji] det J dx̄

+ 4 µ̃

∫

Ω

3∑
i=1

U∗
ii Vii det J dx̄ − 2

∫

Ω

3∑
i=1

fi [µi + x1 Mi + x2 Di] det J dx̄ ,

∀ {Vij}i,j=1,3 ∈ V . (3.21)

If the Vij are replaced as in (3.19), (3.20), and the U∗
ij are replaced as in (3.2), then

a simple computation shows that (3.21) becomes (2.7), which is known to have a
unique solution.

Proposition 3.4 If {U∗
ij} is known, then {τ ∗i , N∗

i , B∗
i }i=1,3 can be computed explic-

itly.

Proof. Starting from (2.2), one can check the following orthogonality-type relations

3∑
j=1

h1j bj = 0 ,

3∑
j=1

h3j bj = 0 ,

3∑
j=1

h2j bj = 1 , (3.22)

3∑
j=1

h1j nj = 1 ,

3∑
j=1

h2j nj = 0 ,

3∑
j=1

h3j nj = 0 , (3.23)

3∑
j=1

h1j tj = − c x2

det J(x̄)
,

3∑
j=1

h2j tj =
c x1

det J(x̄)
,

3∑
j=1

h3j tj =
1

det J(x̄)
. (3.24)

Consequently, multiplying the equations (3.2) containing N∗
i , B∗

i , z
∗
i by nj (respec-

tively, bj, tj ) and adding for j = 1, 3 , we obtain from (3.22)�(3.24) the relations

B∗
i =

3∑
j=1

U∗
ij bj , i = 1, 3 , (3.25)

N∗
i =

3∑
j=1

U∗
ij nj , i = 1, 3 , (3.26)
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(τ ∗i )′ + x1 (N∗
i )′ + x2 (B∗

i )
′ =

3∑
j=1

U∗
ij tj det J(x̄) +

3∑
j=1

U∗
ij nj c x2

−
3∑

j=1

U∗
ij bj c x1 , i = 1, 3 . (3.27)

Thus, integrating (3.27) over [0, x3] , and subtracting (3.25), (3.26), we get the
explicit formula for {τ ∗i }i=1,3 , which completes the ones given by (3.25), (3.26).

Remark: Let us denote by Li(Uij) the right-hand side of (3.27). Then we can
perform the following substitution in (3.1):

3∑
i=1

∫

Ω

fi [τi + x1 Ni + x2 Bi] det J dx̄

= −
3∑

i=1

∫

Ω

[τ ′i + x1 B′
i + x2 N ′

i ]

x3∫

0

fi(x1, x2, ρ) det J(x1, x2, ρ) dρ dx̄

= −
3∑

i=1

∫

Ω

Li(Uij)

x3∫

0

fi(x1, x2, ρ) det J(x1, x2, ρ) dρ dx̄ .

In this way, the optimal control problem (3.1)�(3.4) can be transformed into a
mathematical programming problem de�ned on V ⊂ L2(Ω)9 , since the state is
completely eliminated from the cost. However, one has to solve (3.2), or use (3.25)�
(3.27), to compute the solution of (2.7), and we recommend to solve (3.1)�(3.4)
directly, which is closer to the main problem given by (2.7).

Proposition 3.5 The directional derivative of L(Uij) , i, j = 1, 3 , in the direction
{Vij}i,j=1,3 ∈ V is given by

〈∇L(Uij), {Vij}〉 = λ̃

∫

Ω

3∑
i,j=1

[Uii Vjj + Ujj Vii] det J dx̄

+ 2 µ̃

∫

Ω

∑
i<j

[Uij + Uji] [Vij + Vji] det J dx̄ + 4 µ̃

∫

Ω

3∑
i=1

Uii Vii det J dx̄

−2

∫

Ω

3∑
i=1

Li(Vij)

∫ x3

0

fi(x1, x2, ρ) det J(x1, x2, ρ) dρ dx̄ . (3.28)

Here, 〈·, ·〉 is the scalar product in L2(Ω)9 .

Proof. The computation of the directional derivative at an arbitrary point
{Uij}i,j=1,3 ∈ V is similar to the deduction of the Euler equation (3.21). The last
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integral may be rewritten by using (3.19), (3.20), and the variant of (3.25)�(3.27)
associated with (3.19), (3.20), in the following way:

∫

Ω

3∑
i=1

fi [µi + x1 Mi + x2 Di] det J dx̄

= −
∫

Ω

3∑
i=1

Li(Vij)

x3∫

0

fi(x1, x2, ρ) det J(x1, x2, ρ) dρ dx̄ ,

as in the previous remark.

Remark: Using (3.28), one can solve (3.1)�(3.4) by standard gradient with projec-
tion methods.

We close this section with an abstract variant of problem (3.1)�(3.4). To this end,
let V ⊂ H be two separable Hilbert spaces with dense and continuous embedding,
which are endowed with the scalar products (·, ·)V and (·, ·)H , respectively. Let
A1, A2 : V → V ∗ (V ∗ is the dual of V , while H is identi�ed with its dual) be
linear, continuous, symmetric, and positive de�nite operators.
We brie�y comment on the equation

(A1 + A2) y = f ∈ H . (3.29)

Under the above assumptions, equation (3.29) has a unique solution y ∈ V . We
associate with it the optimal control problem

Min

{
1

2
|w|2H +

1

2
(A2 y, y)V ∗×V

}
, (3.30)

A
1/2
1 y = g + w , (3.31)

where g is the unique solution of A
1/2
1 g = f and A

1/2
1 : V → H is the square root

of A1 , that is,

(A
1/2
1 y , A

1/2
1 v)H = (A1 y, v)V ∗×V for all y, v ∈ V .

Clearly, A
1/2
1 is symmetric and positive de�nite, and equation (3.31) has a unique

solution for any w ∈ H . Moreover, since the cost functional (3.30) is coercive and
strictly convex, it is well known that the control problem (3.30), (3.31) has a unique
optimal pair [y∗, w∗] ∈ V ×H .
We now take arbitrary variations of the form

y∗ + λ z , λ ∈ IR , z ∈ V , and w∗ + λ v , v = A
1/2
1 z .

Then the same argument as for (3.21) gives the Euler equation associated with
(3.30), (3.31):

(w∗, v)H + (A2 y∗, z)V ∗×V = 0 . (3.32)
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In (3.32), we replace

v = A
1/2
1 z , and w∗ = A

1/2
1 y∗ − g = A

1/2
1 y∗ − A

−1/2
1 f

to obtain that

0 = (A2 y∗, z)V ∗×V + (A
1/2
1 y∗ − A

−1/2
1 f , A

1/2
1 z)H

= (A2 y∗, z)V ∗×V + (A1 y∗, z)V ∗×V − (f, z)V ∗×V ,

for any z ∈ V . This shows that y∗ solves (3.29), which is a result that is similar to
Theorem 3.3.

Remark: Notice that the solution to (3.30), (3.31) does not require the inversion
of A2 ; that is, in solving (3.29), we may separate the �good� part of A1 of the
di�erential operator and work just with it.

Remark: One may use (3.30), (3.31) directly in connection to (2.7) with V =
H1

0 (0, L)9 and H = L2(0, L)9 , which is an alternative choice to (3.1)�(3.4). However,
the construction of the square root of an operator may be a di�cult task, so we do
not pursue this idea, here.
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